(19)
(11)EP 3 579 282 A1

(12)EUROPEAN PATENT APPLICATION

(43)Date of publication:
11.12.2019 Bulletin 2019/50

(21)Application number: 19188173.9

(22)Date of filing:  19.09.2012
(51)International Patent Classification (IPC): 
H01L 31/0216(2014.01)
H01L 31/0693(2012.01)
H01L 31/18(2006.01)
H01L 31/0687(2012.01)
H01L 31/0304(2006.01)
(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 22.09.2011 US 201113239969

(62)Application number of the earlier application in accordance with Art. 76 EPC:
12185114.1 / 2573825

(71)Applicant: The Boeing Company
Chicago, IL 60606-1596 (US)

(72)Inventors:
  • XING-QUAN, Liu
    Arcadia, CA 91007 (US)
  • LAW, Daniel C.
    Arcadia, CA 91007 (US)
  • REHDER, Eric Michael
    Los Angeles, CA 92708 (US)
  • FETZER, Christopher M.
    Valencia, CA 91354 (US)
  • KING, Richard R.
    Thousand Oaks, CO 91360 (US)

(74)Representative: St Clair Jones, Gregory Arthur Langley et al
Kilburn & Strode LLP Lacon London 84 Theobalds Road
London WC1X 8NL
London WC1X 8NL (GB)

 
Remarks:
This application was filed on 24.07.2019 as a divisional application to the application mentioned under INID code 62.
 


(54)MULTI-LAYER BACK SURFACE FIELD LAYER IN A SOLAR CELL STRUCTURE


(57) Photovoltaic (PV) cell structures are disclosed. In one example embodiment, a PV cell includes an emitter layer, a base layer adjacent to the emitter layer, and a back surface field (BSF) layer adjacent to the base layer. The BSF layer includes a first layer, and a second layer adjacent to the first layer. The first layer includes a first material and the second layer includes a second material different than the first material.




Description

BACKGROUND



[0001] The field of the disclosure relates generally to solar energy conversion devices, and more particularly to a multi-layer back surface field layer in a solar cell structure.

[0002] Interest in photovoltaic ("PV") cells in both terrestrial and non-terrestrial applications has increased as concerns over pollution and limited resources continue. Regardless of the application of such cells, efforts have been ongoing to increase the output and/or increase the efficiency of PV cells.

[0003] Some known PV cell structures include a cell base with layers lattice matched to substrates with relatively high bandgaps. A back surface field (BSF) layer is often used between a cell base portion of a solar cell and the substrate or layers next to the base layer to reduce electron-hole recombination at the interface, block minority carriers from diffusing away from the pn junction and to thereby increase the cell's efficiency. The BSF layer is commonly lattice-matched to the cell lattice constant. The relatively large cell band gaps in such structures, however, reduce the efficiency of the solar cell structure.

[0004] Some multijunction terrestrial PV cell structures, utilize an upright metamorphic design with a larger lattice constant and a wider bandgap range to better split the solar spectrum, and therefore to increase efficiency. Some such PV cell structures may have a cell base bandgap range from about 0.7eV to about 2.0 eV. To lattice match the BSF layer to the larger cell lattice constant in metamorphic PV cell structures, indium is often added to the BSF layer. For example, some known upright metamorphic PV cells use an AlGaInAs or ALGaInP BSF layer. In at least one known metamorphic PV cell structure, the BSF layer includes about twenty percent indium and about sixty percent aluminum. Although the added indium increases the lattice constant of the BSF layer, the indium also reduces the bandgap of the BSF layer. As a result, some known metamorphic PV cell structures have an indirect bandgap below 2.0eV. At such a relatively low bandgap relative to the cell base bandgap, the BSF layer may not function as effectively as desired, and efficiency of such a PV cell may be reduced. Moreover, p-doping with carbon in the BSF layer is limited because of the indium etching effect of carbon. Thus, at least some known metamorphic PV cell structures that include indium in the BSF layer are limited to p-doping of less than about 1018 cm-3.

BRIEF DESCRIPTION



[0005] According to an aspect of the present invention there is provided, a photovoltaic (PV) cell including an emitter layer, a base layer adjacent to the emitter layer, and a back surface field (BSF) layer adjacent to the base layer. The BSF layer includes a first layer adjacent to the base layer, and a second layer adjacent to the first layer. The first layer includes a first material and the second layer includes a second material different than the first material.

[0006] Advantageously the second layer of said BSF layer is lattice-matched to said base layer.

[0007] Advantageously the first layer of said BSF layer is lattice-mismatched to said base layer. Preferably the first layer of said BSF layer is lattice-mismatched to said base layer by greater than about 0 percent. Preferably the first layer of said BSF layer is lattice-mismatched to said base layer by greater than about .5 percent. Preferably the first layer of said BSF layer is lattice-mismatched to said base layer by greater than about 1 percent.

[0008] Advantageously the emitter and base layers each comprise AlGaInP materials. Preferably the first material of said first layer of said BSF layer comprises AlGaAs material. Preferably the second material of said second layer of said BSF layer comprises AlGaInAs material.

[0009] Advantageously the first layer of said BSF layer is thinner than said second layer of said BSF layer.

[0010] According to an aspect of the present invention there is provided, a photovoltaic (PV) cell including an emitter layer, a base layer adjacent to the emitter layer, and a back surface field (BSF) layer adjacent to the base layer. The emitter layer and the base layer establish a cell lattice constant. The BSF layer includes a first layer adjacent to the base layer, and a second layer adjacent to the first layer. The first layer is mismatched to the cell lattice constant, and the second layer is matched to the cell lattice constant.

[0011] Advantageously the emitter and base layers each comprise AlGaInP materials. Preferably the first layer of said BSF layer comprises AlGaAs material.

[0012] Advantgeously the second layer of said BSF layer comprises AlGaInAs material. Preferably the first layer of said BSF layer is lattice-mismatched to said base layer by greater than about 0 percent. Preferably the first layer of said BSF layer is lattice-mismatched to said base layer by greater than about .5 percent. Preferably the first layer of said BSF layer is lattice-mismatched to said base layer by greater than about 1 percent.

[0013] Advantageously the first layer of said BSF layer is thinner than said second layer of said BSF layer.

[0014] According to an aspect of the present invention there is provided, a photovoltaic (PV) cell including an emitter layer, a base layer adjacent to the emitter layer, and a back surface field (BSF) layer adjacent to the base layer. The BSF layer includes a strained pseudomorphic layer adjacent to the base layer, and a lattice-matched layer adjacent to the strained pseudomorphic layer.

[0015] Advantageously the strained pseudomorphic layer is a fully strained pseudomorphic layer. Preferably the strained pseudomorphic layer of said BSF layer is lattice-mismatched to said base layer by greater than about 0 percent. Preferably the pseudomorphic layer of said BSF layer is lattice-mismatched to said base layer by greater than about .5 percent. Preferably the pseudomorphic layer of said BSF layer is lattice-mismatched to said base layer by greater than about 1 percent.

[0016] Advantageously the strained pseudomorphic layer has a higher bandgap than said lattice-matched layer.

[0017] Advantageously the emitter and base layers each comprise AlGaInP materials. Preferably the strained pseudomorphic layer comprises AlGaAs material. Preferably the lattice-matched layer comprises AlGaInAs material.

[0018] The features, functions, and advantages that have been discussed can be achieved independently in various embodiments or may be combined in yet other embodiments further details of which can be seen with reference to the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS



[0019] 

FIG. 1 is a cross section schematic view of an exemplary photovoltaic cell structure.

FIG. 2 is an exemplary graph of current as a function of voltage for four sample photovoltaic cell structures fabricated based on the photovoltaic structure shown in FIG. 1.

FIG. 3 is an exemplary plot of open circuit voltage for the four sample photovoltaic cell structures shown in FIG. 2.

FIG. 4 is an exemplary plot of fill factor for the four sample photovoltaic cell structures shown in FIG. 2.

FIG. 5 is an exemplary plot of efficiency for the four sample photovoltaic cell structures shown in FIG. 2.

FIG. 6 is a cross section schematic view of an exemplary photovoltaic cell structure.

FIG. 7 is a cross section schematic view of another exemplary photovoltaic cell structure.


DETAILED DESCRIPTION



[0020] As used herein, an element or step recited in the singular and proceeded with the word "a" or "an" should be understood as not excluding plural elements or steps unless such exclusion is explicitly recited. Furthermore, references to "one embodiment" of the present invention or the "exemplary embodiment" are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.

[0021] As used herein, the term "lattice-mismatched" refers to an intentional mismatching of material lattice constants between layers of photovoltaic devices. The term "material lattice constant" generally refers to the lattice constant of material in a free-standing layer (i.e., when the material is "relaxed" or "fully relaxed"). A "lattice-mismatch" of a first layer with respect to a second layer is the difference between the material lattice constant of the first layer and the material lattice constant of the second layer divided by the material lattice constant of the second layer. Layers of a photovoltaic device that are "lattice-mismatched" are mismatched to a greater degree, and are thus substantially different, than layers that are "lattice-matched" or "nearly lattice-matched." As used herein, a "strained" layer has a lattice-mismatch of greater than zero percent.

[0022] Exemplary photovoltaic (PV) cell structures are described herein. Each exemplary structure includes a multi-layer back surface field (BSF) layer that may provide a higher band gap BSF layer as compared to some known structures. Accordingly, the BSF layer may function more efficiently as a BSF layer and/or the efficiency of the structure may be improved. Moreover, exemplary structures described herein may permit greater p-doping of at least one layer of the BSF layer than is possible with some known structures. In contrast with at least some known structures, the exemplary structures described herein may include a BSF layer doped with carbon, which will not diffuse into the base of the PV cell, rather than with zinc.

[0023] FIG. 1 is a cross sectional schematic view of an exemplary PV cell structure 10. In the exemplary embodiment, PV cell structure 10 is a single-junction PV structure. In other embodiments, PV cell structure 10 may be a multi-junction PV cell structure. PV cell structure 10 includes a PV cell 12, a cap layer 14, a buffer 16, a tunnel junction 18, and a substrate 20. PV cell 12 includes a window layer 22, an emitter layer 24, a base layer 26, and a BSF layer 28.

[0024] In the exemplary embodiment, emitter layer 24 is of a first doping type and base layer 26 of a second doping type. For example, if emitter layer 24 is n-type, then base layer 26 is typically p-type; and if emitter layer 24 is p-type, then base layer 26 is typically n-type. Accordingly, a p-n junction is formed between emitter layer 24 and base layer 26. In some embodiments, there may be variations in the doping concentration in emitter layer 24 and/or base layer 26. Such variations may be used to suppress minority-carrier concentration at the surfaces away from the p-n junction, and to enhance minority-carrier flow toward the collecting p-n junction. In the exemplary embodiment, emitter layer 24 and base layer 26 are fabricated from the same material, though doped differently. More specifically, in the exemplary embodiment, emitter layer 24 and base layer 26 are each fabricated from AlGaInP material. Even more specifically, in the exemplary embodiment, emitter layer 24 and base layer 26 each includes (AlGa)0.32In0.68P material. In other embodiments, emitter layer 24 and base layer 26 may include any other suitable material and/or any other suitable formulation of AlGaInP. In the exemplary embodiment, emitter layer 24 and base layer 26 are lattice-matched to each other and establish a lattice constant of PV cell 12.

[0025] PV cell 12 includes window layer 22 positioned on top of emitter layer 24. In the exemplary embodiment, window layer 22 has the same doping type (e.g., p-type or n-type) as emitter layer 24. In some embodiments, window layer 22 has a higher doping concentration than emitter layer 24 and/or a higher bandgap than emitter layer 24. This difference facilitates suppressing minority-carrier photogeneration and injection in window layer 22, and thus reduces any recombination that would otherwise occur in window layer 22. In the exemplary embodiment, window layer 22 is lattice-mismatched with respect to emitter layer 24. In other embodiments, window layer 22 may be lattice-matched or nearly lattice-matched to emitter layer 24. Further, in the example embodiment, window layer 22 includes AlInP material. More specifically, window layer 22 includes Al0.5In0.5P material. In other embodiments, window layer 22 may include any other suitable material and/or any other suitable formulation of AlInP.

[0026] In the exemplary embodiment, within PV cell 12, BSF layer 28 is adjacent to base layer 26. BSF layer 28 substantially prevents passage of minority carriers and passivates base layer 26 of PV cell 12. In the exemplary embodiment, BSF layer 28 has the same doping type (e.g., p-type or n-type) as base layer 26. In some embodiments, BSF layer 28 has a higher doping concentration than base layer 26 and a higher bandgap than base layer 26, to facilitate suppressing minority-carrier photogeneration and injection in BSF layer 28, and to facilitate reducing recombination at the interface between the base and BSF or in BSF layer 28.

[0027] BSF layer 28 includes a first (or upper) layer 30, and a second (or lower) layer 32. Upper layer 30 is located adjacent to, or below, base layer 26. Lower layer 32 is located adjacent to, or below, upper layer 30. Lower layer 32 is lattice-matched to the lattice constant of PV cell 12. Upper layer 30, however, is lattice-mismatched to base 26, and to the remaining layers of PV cell 12. More specifically, upper layer 30 is a strained pseudomorphic layer in which the atoms in upper layer 30 are strained to substantially align with the lattice structure of adjacent layer. More specifically, the atoms in upper layer 30 are strained without being plastically deformed as a metamorphic layer would be. The amount of strain in upper layer 30 is generally indicated by an amount of lattice-mismatch. Upper layer 30 is strained and thus has a lattice mismatch of greater than zero percent. In some embodiments, upper layer 30 is lattice-mismatched to base 26 by greater than about 0.5 percent. In still other embodiments, upper layer 30 is lattice-mismatched to base 26 by more than one percent. A layer, such as upper layer 30, with a lattice-mismatch of greater than about 0.5 percent may be referred to herein as "highly strained" or "fully strained."

[0028] Lower layer 32 of BSF layer 28 is lattice-matched to the lattice constant of emitter layer 24 and of base layer 26. In the exemplary embodiment, lower layer 32 includes AlGaInAs material. More specifically, in the exemplary embodiment, lower layer 32 includes (AlGa)0.8In0.2As. In other embodiments, other materials and/or formulations may be used. In the exemplary embodiment, lower layer 32 includes about twenty percent indium. In some embodiments, lower layer 32 includes more than twenty percent indium. In other embodiments, lower layer 32 includes between about one percent and twenty percent indium. In still other embodiments, lower layer 32 includes between about ten percent and twenty percent indium. Although lower layer 32 is lattice-matched to base layer 26, and could be used as a BSF without upper layer 30, the indium in lower layer 32 results in a relatively low bandgap, which may result in relatively poor performance as a BSF. In the exemplary embodiment, lower layer 32 has a bandgap of below 2.0 eV.

[0029] In the exemplary embodiment, upper layer 30 includes an indium-free material. More specifically, upper layer 30 includes AlGaAs. Even more specifically, upper layer 30 includes Al0.8Ga0.2As. Thus, in the exemplary embodiment, upper layer 30 includes about eighty percent aluminum. As used herein, an aluminum content greater than about fifty percent may be referred to as a "high" aluminum content. The increased aluminum content of upper layer 30 over the BSF layer in some known structures and over lower layer 32 results in an increased indirect bandgap. The bandgap of upper layer 30 is preferably between about 4.95 eV and about 2.1 eV. In other embodiments, other materials and/or formulations may be used. For example, in some embodiments, the aluminum content of upper layer 30 may be between about twenty percent and about one-hundred percent. In other embodiments, the aluminum content may be greater than about sixty percent. In still other embodiments, the aluminum content of upper layer 30 is greater than or equal to about eighty percent. Upper layer 30 is lattice-mismatched to the lattice constant of PV cell 12 and is a fully strained layer that has a higher bandgap than lower layer 32. The increased bandgap permits upper layer 30, and accordingly BSF layer 28 as a whole, to function more effectively as a BSF for minority carriers by reducing injection of minority carriers from base layer 26 into BSF layer 28, where the minority-carrier lifetime is low. Further, because upper layer 30 does not include indium, p-type doping of upper layer 30 may be achieved using carbon. More specifically, in the exemplary embodiment, upper layer 30 may be p-doped to about 1020cm-3. In other embodiments, upper layer 30 may include p-doping of greater than about 1018cm-3. In contrast, materials that contain indium, such as lower layer 32 experience difficulty with p-type doping using carbon due to an indium etching effect by the carbon source material. In the exemplary embodiment, lower layer 32 is p-doped to less than about 1018cm-3.

[0030] A series of sample PV cells 12 were produced with varying thicknesses of upper layer 30 and tested. The results of these tests are illustrated in FIGS. 2-5. In all sample cells, lower layer 32 was (AlGa)0.8In0.2As lattice-matched with base layer 26. Moreover, in all sample cells with an upper layer 30, upper layer 30 was a highly strained Al0.8Ga0.2As layer. The first sample cell was produced without upper layer 30 as an initial reference or control. The second sample included upper layer 30 with a thickness t1 between about 1 nm and about 4 nm. The third sample included upper layer 30 with thickness t2 between about 4 nm and about 8 nm. The fourth sample included upper layer 30 with thicknesses t3 between about 9 nm and 15 nm. The thicknesses of upper layer 30 in the sample cells 12 are exemplary only. The thickness of upper layer 30 may vary above and/or below the thicknesses stated above. In particular, upper layer 30 may vary in thickness depending on the lattice constant of the material used for upper layer 30 and the other layers of cell 12.

[0031] FIG. 2 is an exemplary graph 100 of current as a function of voltage (commonly referred to as an I-V curve) for each of the four sample cells. More specifically, trace 102 corresponds to the first sample cell, trace 104 corresponds to the second sample cell, trace 106 corresponds to the third sample cell, and trace 108 corresponds to the fourth sample cell. Traces 104-108 illustrate a greater open circuit voltage than trace 102. As such, the addition of strained upper layer 30 improved performance over the first sample cell without strained upper layer 30. As the thickness of upper layer 30 was increased from t2 to t3 (trace 108), the open circuit voltage decreased because the strained upper layer 30 was partially relaxed.

[0032] FIGS. 3-5 are exemplary plots of open circuit voltage (Voc), fill factor (FF), and efficiency, respectively, for the four sample cells graphed in FIG. 2. FIGS. 3-5 demonstrate the increased open circuit voltage, fill factor, and efficiency provided by the addition of strained upper layer 30. Each of these performance measures generally increases over the first (control) sample as the thickness of strained upper layer 30 increases. When the thickness of upper layer 30 exceeds some thickness greater than the third sample (t2), open circuit voltage, fill factor and efficiency begin to decline. Except for efficiency, however, all of these performance measures still exceed those for the control sample at the thickest upper layer 30 tested (t3).

[0033] FIG. 6 is a cross sectional schematic view of an exemplary PV cell structure 200. PV cell structure 200 is similar to PV cell structure 10 (shown in FIG. 1) and common reference numerals are used to indicate common elements. In PV cell structure 200, BSF first layer 30 is located between second layer 32 and buffer 16. FIG. 7 is a cross sectional schematic view of another exemplary PV cell structure 300. PV cell structure 300 is similar to PV cell structures 10 (shown in FIG. 1) and 200 (shown in FIG. 6). Common reference numerals are used to indicate common elements. In PV cell structure 300, BSF layer 28 includes a third layer 302. First layer 30 is located between second layer 32 and third layer 302. In the exemplary embodiment, third layer 302 generally includes the same materials and formulation as second layer 32. More specifically, third layer 302 includes AlGaInAs material. Even more specifically, in the exemplary embodiment, third layer 302 includes (AlGa)0.8In0.2As. In other embodiments, other materials and/or formulations may be used. In the exemplary embodiment, third layer 302 and second layer 32 are substantially the same thickness. In other embodiments, third layer 302 may be thicker or thinner than second layer 32.

[0034] The PV cell structures described herein include an indium-free highly strained layer as part of the BSF at the cell base side. This BSF layer has a higher bandgap and may operate better in a minority carrier blocking role than some known cell structures. Moreover, the BSF layer is relatively thin, is within the Mathews-Blakeslee critical thickness, and is a fully strained pseudomorphic layer. Hence, this layer passivates well the base-BSF interface. Further, the strained layer is indium-free with a relatively high aluminum content. The high aluminum content of the strained layer results in an increased indirect bandgap, thereby increasing the effectiveness of the BSF layer and increasing the overall efficiency of the PV cell structure over some known structures. Further, due to the lack of indium, the layer can be highly p-doped with carbon to form band bending to more effectively block minority carriers. Accordingly, PV cell structures described herein provide a BSF layer that may be more easily doped with carbon and provide increased performance over at least some known PV cell structures.

[0035] The description of the different advantageous embodiments has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the embodiments in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. Further, different advantageous embodiments may provide different advantages as compared to other advantageous embodiments. The embodiment or embodiments selected are chosen and described in order to best explain the principles of the embodiments, the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.

[0036] This written description uses examples to disclose various embodiments, which include the best mode, to enable any person skilled in the art to practice those embodiments, including making and using any devices or systems and performing any incorporated methods. The patentable scope is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

[0037] Further, the disclosure comprises embodiments according to the following clauses:

Clause 1. A photovoltaic (PV) cell comprising:

an emitter layer;

a base layer adjacent to said emitter layer; and

a back surface field (BSF) layer adjacent to said base layer, said BSF layer comprising:

a first layer comprising a first material; and

a second layer adjacent to said first layer and comprising a second material different than the first material.

Clause 2. A PV cell in accordance with Clause 1, wherein said second layer of said BSF layer is lattice-matched to said base layer.

Clause 3. A PV cell in accordance with Clause 2, wherein said first layer of said BSF layer is lattice-mismatched to said base layer.

Clause 4. A PV cell in accordance with Clause 3, wherein said first layer of said BSF layer is lattice-mismatched to said base layer by greater than about 0 percent.

Clause 5. A PV cell in accordance with Clause 1, wherein said emitter and base layers each comprise AIGaInP materials.

Clause 6. A PV cell in accordance with Clause 5, wherein the first material of said first layer of said BSF layer comprises AIGaAs material.

Clause 7. A PV cell in accordance with Claim 6, wherein the second material of said second layer of said BSF layer comprises AIGaInAs material.

Clause 8. A PV cell in accordance with Clause 1, wherein said first layer of said BSF layer is thinner than said second layer of said BSF layer.




Claims

1. A photovoltaic, PV, cell comprising:

an emitter layer (24);
a base layer (26) adjacent to said emitter layer (24); and

a back surface field, BSF, layer (28) adjacent to said base layer (26), said BSF layer (28) comprising:

a first layer (30) comprising a first material, wherein the first material of said first layer (30) of said BSF layer (28) comprises AlGaAs material; and

a second layer (32) adjacent to said first layer and comprising a second material different than the first material, wherein the second material of said second layer (32) of said BSF layer (28) comprises AlGaInAs material.


 
2. A PV cell in accordance with Claim 1, wherein said second layer (32) of said BSF layer (28) is lattice-matched to said base layer (26).
 
3. A PV cell in accordance with Claim 2, wherein said first layer (30) of said BSF layer (28) is lattice-mismatched to said base layer (26).
 
4. A PV cell in accordance with Claim 3, wherein said first layer (30) of said BSF layer (28) is lattice-mismatched to said base layer (26) by greater than about 0 percent.
 
5. A PV cell in accordance with any preceding Claim, wherein said emitter (24) and base layers (26) each comprise AlGaInP materials.
 
6. A PV cell in accordance with any preceding Claim, wherein said first layer (30) of said BSF layer (28) is thinner than said second layer (32) of said BSF layer (28).
 
7. A PV cell in accordance with any preceding Claim, wherein emitter layer (24) is of a first doping type and base layer (26) of a second doping type.
 
8. A PV cell in accordance with Claim 7, wherein, if emitter layer (24) is n-type, then base layer (26) is p-type and, wherein, if emitter layer (24) is p-type, then base layer (26) is n-type.
 
9. A PV cell in accordance with any preceding Claim, wherein the emitter layer (24) and the base layer (26) are fabricated from the same material.
 
10. A PV cell in accordance with any preceding Claim, further comprising a window layer (22) positioned adjacent the emitter layer (24).
 
11. A PV cell in accordance with Claim 10, wherein the window layer (22) has the same doping type as the emitter layer (24).
 
12. A PV cell in accordance with either of Claim 10 or Claim 11, wherein the window layer (22) has a higher doping concentration than emitter layer (24) and/or a higher bandgap than the emitter layer (24).
 
13. A PV cell in accordance with any of Claims 10 to 12, wherein the window layer (22) is lattice-mismatched with respect to emitter layer (24).
 
14. A PV cell in accordance with any of Claims 10 to 12, wherein the window layer (22) is lattice-matched with respect to emitter layer (24).
 
15. A PV cell structure comprising:

the PV cell of any preceding claim;

a cap layer (14);

a buffer (16);

a tunnel junction (18); and

a substrate (20).


 




Drawing
















Search report












Search report