(19)
(11)EP 3 579 624 A1

(12)EUROPÄISCHE PATENTANMELDUNG

(43)Veröffentlichungstag:
11.12.2019  Patentblatt  2019/50

(21)Anmeldenummer: 19176418.2

(22)Anmeldetag:  24.05.2019
(51)Internationale Patentklassifikation (IPC): 
H04W 56/00(2009.01)
H04Q 9/00(2006.01)
H04L 7/00(2006.01)
(84)Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME
Benannte Validierungsstaaten:
KH MA MD TN

(30)Priorität: 08.06.2018 DE 102018004567
19.06.2018 DE 102018004815

(71)Anmelder: Diehl Metering Systems GmbH
90451 Nürnberg (DE)

(72)Erfinder:
  • MZYK, Raphael
    91126 Kammerstein (DE)
  • PETKOV, Hristo
    90425 Nürnberg (DE)
  • KAUPPERT, Thomas
    90455 Nürnberg (DE)
  • GOTTSCHALK, Klaus
    90610 Winkelhaid (DE)

(74)Vertreter: Diehl Patentabteilung 
c/o Diehl Stiftung & Co. KG Stephanstrasse 49
90478 Nürnberg
90478 Nürnberg (DE)

  


(54)VERFAHREN ZUM BETRIEB EINES FUNKÜBERTRAGUNGSSYSTEMS SOWIE ANORDNUNG EINES FUNKÜBERTRAGUNGSSYSTEMS


(57) Die Erfindung betrifft ein Verfahren zum Betrieb eines Funkübertragungssystems mit einem Funksender (S) und mindestens einem Funkempfänger (E), wobei der Funksender (S) mindestens einen Sender-Zeitgeber (ZS), insbesondere einen Taktgeber, umfasst, und zur Übertragung von Daten ein Paket und/oder ein Teilpaket und/oder eine Mehrzahl an Paketen nacheinander sendet, wobei die Trägerfrequenz und die Sendezeitpunkte der Daten und/oder die Trägerfrequenz und die Abtastrate der Daten und/oder die Sendezeitpunkte der Daten und die Abtastrate der Daten vom Sender-Zeitgeber (ZS), insbesondere von einem Taktgeber, abhängen, und der Funkempfänger (E) mindestens einen Empfänger-Zeitgeber (ZE), insbesondere einen Taktgeber, mit Zeitmessmitteln zur Bestimmung von Sendezeitpunkten und/oder zur Bestimmung von Trägerfrequenzen und/oder zur Bestimmung von Abtrastraten umfasst, wobei der Funkempfänger (E) aufgrund der empfangenen Daten einen Fehler, insbesondere einen Trägerfrequenzfehler und/oder einen Abtastratenfehler und/oder einen Fehler in der Übertragungszeit abschätzt und daraus einen Zeitfehler ermittelt, wobei auf Basis des Zeitfehlers ein zeitlicher Korrekturfaktor zur Kompensation bestimmt wird. Ferner betrifft die Erfindung eine Anordnung eines Funkübertragungssystems, welche nach dem Verfahren betreibbar ist.




Beschreibung

Verfahren zum Betrieb eines Funkübertraaunassvstems sowie Anordnung eines Fu nkübertraaunassvstems



[0001] Die Erfindung betrifft ein Verfahren zum Betrieb eines Funkübertragungssystems, mit den Merkmalen des Oberbegriffs des Anspruchs 1. Ferner betrifft die vorliegende Erfindung Anordnung eines Funkübertragungssystems gemäß dem Oberbegriff des Anspruchs 16.

Technologischer Hintergrund



[0002] Intelligente Verbrauchsmessgeräte, auch Verbrauchsmesser oder Smart Meter genannt, sind in ein Versorgungsnetz eingebundene Verbrauchsmessgeräte z. B. für Wärme bzw. Energie, Strom, Gas, Wasser, die dem jeweiligen Anschlussbenutzer den tatsächlichen Verbrauch anzeigen und in ein Kommunikationsnetz eingebunden sind. Intelligente Verbrauchsmessgeräte haben den Vorteil, dass manuelle Ablesungen der Zählerstände entfallen und seitens des Versorgers kurzfristigere Rechnungstellungen gemäß dem tatsächlichen Verbrauch vorgenommen werden können. Durch kurzfristigere Ableseintervalle ist wiederum eine genauere Kopplung der Endkundentarife an die Entwicklung der Börsenstrompreise möglich. Auch können Versorgungsnetze wesentlich besser ausgelastet werden.

[0003] Intelligente Verbrauchsmessgeräte sind üblicherweise jeweils Wohneinheiten oder Wohnhäusern zugeordnet. Die dort anfallenden Messdaten können auf unterschiedlichste Weise ausgelesen werden. Beispielsweise können Messdaten per Mobilfunktechnologie in Form von Datenpaketen oder Telegrammen übertragen werden. Dies ist allerdings teuer, setzt die Installation von Mobilfunkmodulen an den Verbrauchsmessgeräten voraus und hat Nachteile bezüglich des hohen Stromverbrauchs an den einzelnen Verbrauchsmessgeräten. Ferner können Messdaten in Form von Datenpaketen oder Telegrammen auch per Funk, beispielsweise im ISM (Industrial, Scientific, Medical)-Band-Frequenzbereich oder im SRD (Short Range Devices)-Band-Frequenzbereich, übertragen werden. Diese Frequenzbereiche haben den Vorteil, dass von den Betreibern lediglich eine allgemeine Zulassung der Frequenzverwaltung notwendig ist. Allerdings besteht das Problem, dass aufgrund der Häufigkeit der Verwendung derartiger Frequenzbereiche für unterschiedlichste technische Einrichtungen wie etwa Garagentorsteuerungen, Babyphones, Alarmanlagen, WLAN, Bluetooth, Rauchwarnmelder usw. es häufig zu Störungen kommen kann. Das Sammeln der Messdaten per Funk erfolgt entweder durch ortsfeste oder mobile Datensammler (Kollektoren) bzw. Basisstationen, an die die in den Sendern der Verbrauchsmessgeräte bereitgestellten Messdaten übertragen werden.

[0004] Aus rechtlichen Gründen dürfen von den Sendern der Verbrauchsmessgeräte lediglich Messdaten, die zu bestimmten, sehr kurzen Stichzeiträumen (Stichzeit bzw. Stichzeitpunkt inklusive Zeitabweichung) an den Datensammler übertragen werden, für die Verbrauchsauswertung herangezogen werden. Während dieser sehr kurzen Stichzeiträume übertragen die Sender aller Verbrauchsmessgeräte ihre Datenpakete an den Empfänger des Datensammlers. Außerhalb der Stichzeiträume empfangene Datenpakete werden verworfen. Hierbei kommt es durchaus häufig vor, dass sich die Übertragungen von Messdaten von Sendern unterschiedlicher Verbrauchsmessgeräte innerhalb des Stichzeitraums gegenseitig stören. Auch gebäudespezifische Besonderheiten können oftmals dazu führen, dass die Übertragung der Messdaten von den Verbrauchsmessgeräten zur Basisstation bzw. zum Datensammler gestört ist. Alle diese Faktoren führen dazu, dass nur eine mäßige Wahrscheinlichkeit besteht, dass die Datenpakete in dem betreffenden Kanal durchkommen.

[0005] Funkkommunikation über sehr große Reichweiten setzen unter anderem hochempfindliche Empfängersysteme voraus. Eine weitere Schwierigkeit besteht darin, dass Kommunikationssysteme mit Funkübertragung zwischen Datensammler und Verbrauchsmessgeräten eine sehr genaue Zeitsynchronisation zwischen den im Bereich der Verbrauchsmessgeräte befindlichen Kommunikationsmodulen und demjenigen des Datensammlers benötigen.

[0006] Damit gehen schmalbandige Übertragungskanäle einher, welche bestimmte Anforderungen an die Genauigkeit in der Frequenz und in der Zeitbestimmung der beteiligten Geräte stellen. Um die Funkkommunikation weniger störanfällig zu machen und damit die Robustheit des Systems zu erhöhen, werden beispielsweise die Funktelegramme in kleine Subpakete partitioniert, wie es in der DE 10 2011 082 098 B4 gezeigt ist. Diese Subpakete werden anschließend zu unterschiedlichen Zeitpunkten auf unterschiedlichen Frequenzen versendet. Diese Art der Übertragung fällt unter den Bereich Frequenzsprungverfahren bzw. Frequenzspreizverfahren.

[0007] Die verwendeten Trägerfrequenzen, Sendezeitpunkte, sowie Abtastraten leiten sich in solchen Funkübertragungssystem typischerweise von Hochfrequenz-Quarzen bzw. Hochfrequenz-Quarzoszillatoren ab. Die zeitlichen Ereignisse leiten sich von Schwingquarzen, wie beispielsweise Zeitquarzen bzw. Uhrenquarzen ab. Bei der Kommunikation, wie beispielsweise in einem Verbrauchsdatenerfassungssystem bzw. Metering Funknetzwerk bestimmen daher fertigungsbedingte Toleranzen der verwendeten Quarze Abweichungen innerhalb der Frequenz und Zeit zwischen Basisstation bzw. Datensammler und Endgerät bzw. Verbrauchszähler. Dies kann wiederum zu degradierenden Effekten wie zu einer reduzierten Reichweite oder im schlimmsten Fall zum Abbruch der Kommunikation. Zudem stellt das Aussenden von Subpaketen über zeitlich versetzte Teilpakete sehr hohe Anforderungen an die Übereinstimmung zwischen den Abtastraten von Sender und Empfänger, da über einen langen Zeitraum zeitlich sehr exakt abgetastet werden muss. Eine unterschiedliche schnelle Abtastrate zwischen Sender und Empfänger kann ebenfalls zu einer Degradierung der Kommunikation oder zum Abbruch führen.

[0008] Gerade im Bereich der Kommunikationsmodule autonomer Verbrauchsmessgeräte werden als Frequenzreferenzeinrichtungen einfache Quarze mit geringem Stromverbrauch eingesetzt. Derartige Quarze weisen aufgrund von Fertigungstoleranzen, Temperaturverhalten und Alterung Quarzfehler von 10 - 100 ppm auf. Beispielsweise führt bei einem Standartquarz ein Quarzfehler von 50 ppm zu einer Abweichung von 4,3 Sekunden pro Tag bzw. 26 Minuten pro Jahr.

Nächstliegender Stand der Technik



[0009] Die EP 1 791 100 B1 beschreibt ein Funkübertragungssystem mit kompensierter Senderfrequenzstabilität und entsprechendem Funkempfangsfrequenz-Suchlauf. Das Funkübertragungssystem umfasst mindestens einen Funksender sowie mindestens einen Funkempfänger. Ferner umfasst der Funksender einen Zeitgeber mit Zeitmessmitteln und einen Trägerfrequenzgeber, wobei die vom Zeitgeber vorgegebene Zeit von der Frequenz des Trägerfrequenzgebers abhängig ist. Der Funkempfänger sucht in einem Frequenz-Suchlauf mit abnehmender Funkempfangsfrequenz, um die Funkempfangsfrequenz des Funkempfängers auf die Funksendefrequenz des Funksenders abzustimmen. Der Funksender befindet sich allerdings im Endgerät bzw. Verbrauchszähler und der Funkempfänger in einer Basisstation bzw. einem Datensammler. Eine Fehlerkompensation findet somit in der Basisstation und nicht in einem Verbrauchszähler, insbesondere nicht in einem energieautarken Verbrauchszähler statt.

Aufgabe der vorliegenden Erfindung



[0010] Die Aufgabe der vorliegenden Erfindung besteht darin, ein neuartiges Verfahren zum Betrieb eines Funkübertragungssystems sowie eine neuartige Anordnung zur Verfügung zu stellen, mit dem die Übertragungsqualität erhöht wird bei gleichzeitig erhöhter Kosteneffizienz und Energieeffizienz.

Lösung der Aufgabe



[0011] Die vorstehende Aufgabe wird durch die gesamte Lehre des Anspruchs 1 sowie durch eine Anordnung gemäß Anspruch 16 gelöst. Zweckmäßige Ausgestaltungen der Erfindung sind in den Unteransprüchen beansprucht.

[0012] Erfindungsgemäß ist ein Verfahren zum Betrieb eines Funkübertragungssystems vorgesehen mit einem Funksender und mindestens einem Funkempfänger, wobei der Funksender mindestens einen Sender-Zeitgeber, insbesondere einen Taktgeber, umfasst, und zur Übertragung von Daten ein Paket und/oder ein Teilpaket und/oder eine Mehrzahl an Paketen nacheinander sendet, wobei die Trägerfrequenz und die Sendezeitpunkte der Daten und/oder die Trägerfrequenz und die Abtastrate der Daten und/oder die Sendezeitpunkte der Daten und die Abtastrate der Daten vom Sender-Zeitgeber, insbesondere von einem Taktgeber, abhängen, und der Funkempfänger mindestens einen Empfänger-Zeitgeber, insbesondere einen Taktgeber, mit Zeitmessmitteln zur Bestimmung von Sendezeitpunkten und/oder zur Bestimmung von Trägerfrequenzen und/oder zur Bestimmung von Abtrastraten umfasst, wobei kennzeichnenderweise der Funkempfänger aufgrund der empfangenen Daten einen Fehler, insbesondere einen Trägerfrequenzfehler und/oder einen Abtastratenfehler und/oder einen Fehler in der Übertragungszeit abschätzt und daraus einen Zeitfehler ermittelt, wobei auf Basis des Zeitfehlers ein zeitlicher Korrekturfaktor zur Kompensation bestimmt wird.

[0013] Besonders zweckmäßig ist es, wenn die Trägerfrequenz und die Sendezeitpunkte der Daten und/oder die Trägerfrequenz und die Abtastrate der Daten und/oder die Sendezeitpunkte der Daten und die Abtastrate der Daten von demselben Taktgeber abhängen. Vorteilhafterweise können somit Abweichungen in der Frequenz und/oder der Zeitbestimmung und/oder in der Abtastrate zwischen einem Funksender und einem Funkempfänger kompensiert werden. Es ist damit eine Möglichkeit geschaffen, um degradierende Effekte, wie z. B. eine reduzierte Funkreichweite oder einen Abbruch der Kommunikation, zu verhindern. Die Kompensation der Abweichungen kann vorteilhafterweise im Funkempfänger durchgeführt werden.

[0014] Zweckmäßigerweise besteht die Möglichkeit, dass der Funkempfänger energieautark ist. Somit ist ein weiterer Vorteil des Verfahrens, dass dieses auf einem energieautarken Funkempfänger durchgeführt werden kann, ohne eine zusätzliche Anforderung an den Energiebedarf des Funkempfängers zu stellen.

[0015] Zweckmäßigerweise kann der Funksender ein Paket zerstückelt als Teilpakete senden, indem mindestens zwei Pausen innerhalb des Pakets eingelegt werden, wobei die Pausen aus demselben Sender-Zeitgeber generiert werden, aus dem die Trägerfrequenz generiert wird. Dies hat den Vorteil, dass beispielsweise vorhandene Übertragungsbandbreiten effektiv ausgenutzt werden können.

[0016] Vorteilhafterweise können sich der Funkempfänger und/oder der Funksender in den Pausen des Pakets abschalten, insbesondere in einen Sleep-Modus gehen, um Energie zu sparen und das Aufwachen unter anderem durch den zeitlichen Korrekturfaktor bestimmt werden. Zweckmäßigerweise können sich der Funkempfänger und/oder der Funksender zwischen zwei aufeinanderfolgenden Paketen abschalten, insbesondere in einen Sleep-Modus gehen, um Energie zu sparen und das Aufwachen für ein nächstes Paket unter anderem durch den zeitlichen Korrekturfaktor bestimmt werden. Durch das Abschalten in den Pausen eines Pakets bzw. zwischen zwei aufeinander folgenden Paketen kann mit Vorteil erreicht werden, dass die Energieeffizienz des Funkempfängers und/oder des Funksender gesteigert wird. Damit ein Aufwachen zum richtigen Zeitpunkt erreicht werden kann, besteht die Möglichkeit den zeitlichen Korrekturfaktor zu verwenden. Somit kann beispielsweise ein möglicher Fehler in der Übertragungszeit bzw. ein Zeitfehler in einfacher Weise kompensiert werden.

[0017] Es besteht zweckmäßigerweise die Möglichkeit, dass der Funkempfänger aufgrund der Trägerfrequenz des Funksenders einen Unterschied zwischen dem Sender-Zeitgeber und dem Empfänger-Zeitgeber berechnet und daraus mindestens einen Korrekturfaktor berechnet. Um den Trägerfrequenzfehler zu bestimmen kann beispielsweise die Differenz der Trägerfrequenzen vom Funksender und vom Funkempfänger ermittelt werden.

[0018] Vorteilhafterweise kann aufgrund des Unterschieds zwischen dem Sender-Zeitgeber und dem Empfänger-Zeitgeber für jedes Teilpaket eine unterschiedliche Aufwachzeit berechnet werden. Ebenso vorteilhaft kann es sein, dass aufgrund des Unterschieds zwischen dem Sender-Zeitgeber und dem Empfänger-Zeitgeber für jedes Paket eine unterschiedliche Aufwachzeit berechnet wird. Es besteht die Möglichkeit, dass sich der Korrekturfaktor mit der Zeit verändert, so dass vorteilhafterweise für jedes Teilpaket bzw. jedes Paket eine individuelle Aufwachzeit berechnet werden kann.

[0019] Der Sender-Zeitgeber des Funksenders kann zweckmäßigerweise einen Schwingquarz sowie einen Hochfrequenz-Quarz umfassen. Ferner können ein Schwingquarz und ein Hochfrequenz-Quarz in Quarzoszillatoren eingesetzt sein.

[0020] Beim Schwingquarz kann es sich um einen Niederfrequenz-Quarz handeln, welcher zweckmäßigerweise als Zeitquarz bzw. Uhrenquarz ausgebildet sein kann. Das Verfahren kann damit die Kompensation von Quarztoleranzen ermöglichen. Vorteilhafterweise besteht nicht die Notwendigkeit besondere Anforderungen bezüglich Frequenzgenauigkeit und/oder Stabilität an die eingesetzten Quarze zu stellen. Dadurch wird mit Vorteil erreicht, dass das Verfahren kosteneffizient umgesetzt werden kann.

[0021] Im Funksender kann zweckmäßigerweise ein Schwingquarz im Quarzoszillator für die Zeitbasis eingesetzt sein. Der Hochfrequenz-Quarz und der Schwingquarz, insbesondere als Zeitquarz bzw. Uhrenquarz, können abgeglichen werden, indem die Anzahl der Schwingungen bzw. Ticks des Hochfrequnez-Quarzoszillators in einer oder mehreren Zeitperioden des Schwingquarzes gemessen wird. Damit kann ein Zusammenhang zwischen der Abweichung von der nominellen Frequenz und der nominellen zeitlichen Auflösung hergestellt werden. Somit besteht die Möglichkeit, dass die Trägerfrequenz und die Sendezeitpunkte der Daten und/oder die Trägerfrequenz und die Abtastrate der Daten und/oder die Sendezeitpunkte der Daten und die Abtastrate der Daten von demselben Taktgeber abhängen. Hierfür besteht beispielsweise die Möglichkeit einen Hochfrequenz-Quarz zu verwenden, von dem die Werte abgeleitet werden, oder z. B. ein gekoppeltes System aus Hochfrequenz-Quarz und Niederfrequenz-Quarz. Diese Kopplung kann beispielsweise durch eine hardwaretechnische Leitung zwischen den Quarzen realisiert werden oder z. B. durch ein gegenseitiges Messen der Quarze, wobei bei einem Versatz dieser kompensiert wird.

[0022] Das Verfahren kann zweckmäßigerweise folgende Verfahrensschritte umfassen:

eine Synchronisationssequenz wird vom Funksender auf einer Trägerfrequenz ausgesendet;

der Funkempfänger sucht in einem definierten Suchfenster nach möglichen Trägersignalen des Funksenders;

der Funkempfänger findet das Trägersignal des Funksenders;

der Funkempfänger ermittelt aus der empfangenen Synchronisationssequenz den Frequenzfehler und/oder den Zeitfehler des Funksenders.



[0023] Die vom Funksender ausgesandte Synchronisationssequenz wird vom Funkempfänger beispielsweise durch einen Frequenz-Sweep gesucht. Für den Frequenz-Sweep kann in einem definierten Suchfenster die Frequenz periodisch und/oder stetig in einem vorgegebenen Bereich durchlaufen werden. In einer bestimmten Suchbandbreite kann nach möglichen Trägersignalen des Funksenders gesucht werden. Der Funkempfänger findet das Trägersignal des Funksenders und empfängt damit auch die Synchronisationssequenz. Sofern ein Frequenzversatz zwischen der ausgesandten Trägerfrequenz des Funksenders und der vom Funkempfänger erwarteten Trägerfrequenz besteht, kann beispielsweise der Frequenzfehler zwischen Funksender und Funkempfänger bestimmt werden. Der Frequenzfehler kann somit bereits inhärent kompensiert werden. Ein Zeitfehler zwischen Funksender und Funkempfänger kann beispielsweise dadurch ermittelt werden, dass das Trägersignal des Funksenders den Funkempfänger nicht zum erwarteten Zeitpunkt erreicht.

[0024] Der Empfänger-Zeitgeber des Funkempfängers kann zweckmäßigerweise einen Schwingquarz sowie einen Hochfrequenz-Quarz umfassen. Der Schwingquarz kann zweckmäßigerweise als Zeitquarz bzw. Uhrenquarz ausgebildet sein. Das Verfahren kann Quarztoleranzen kompensieren, ohne dass besondere Anforderungen bezüglich Frequenzgenauigkeit und/oder Stabilität an die eingesetzten Quarze zu stellen sind. Dadurch wird mit Vorteil erreicht, dass das Verfahren kosteneffizient umgesetzt werden kann.

[0025] Zeitliche Abweichungen zwischen dem Funksender und dem Funkempfänger können sich in unterschiedlichen Abtastraten der beiden Kommunikationspartner niederschlagen. Um diese zeitlichen Abweichungen im Funkempfänger zu berücksichtigen besteht die Möglichkeit, dass ein zweistufiges Kalibrierungsverfahren durchgeführt wird.

[0026] Das Verfahren kann einen ersten Kalibrierungsschritt umfassen mit folgendem Verfahrensschritt:
Abgleich des Schwingquarzes des Empfänger-Zeitgebers mit dem Hochfrequenz-Quarz des Empfänger-Zeitgebers während der Hochfrequenz-Quarz aktiviert ist.

[0027] Der Hochfrequenz-Quarzoszillator ist beim Funkempfänger beispielsweise nur während des Empfangs bzw. während der Empfangsbereitschaft aktiviert. Der erste Kalibrierungsschritt erfolgt daher während der aktiven Zeit des Hochfrequenz-Quarzoszillators im Funkempfänger, wie beispielsweise während des Empfangs der Synchronisationssequenz des Funksenders. Vorteilhafterweise ist der Hochfrequenz-Quarzoszillator des Funkempfängers beim Empfang ohnehin aktiviert. Dadurch wird mit Vorteil erreicht, dass das Verfahren keine zusätzlichen Anforderungen an den Energiebedarf der Funkempfänger stellt. Das Verfahren kann somit energieeffizient durchgeführt werden. Es besteht ferner die Möglichkeit, dass der Funkempfänger in einer alternativen Ausgestaltung mit bidirektionalen Kommunikationsmitteln ausgestaltet ist. Hierbei kann der Hochfrequenz-Quarzoszillator auch beim Senden des Funkempfängers aktiviert sein, so dass auch ein Abgleich des Schwingquarzes mit dem Hochfrequenz-Quarz beim Senden möglich ist.

[0028] Beim Schwingquarz kann es sich zweckmäßigerweise um einen Uhrenquarz bzw. einen Zeitquarz handeln, so dass in der ersten Kalibrierungsstufe ein Abgleich von Uhrenquarz bzw. Zeitquarz und dem Hochfrequenz-Quarz stattfindet. Beispielsweise wird hierfür gezählt, wie viele Perioden des Hochfrequenz-Quarzes während einer Periode des Uhrenquarzes bzw. Zeitquarzes durchlaufen werden. Es besteht damit die Möglichkeit, dass der Schwingquarz, insbesondere als Uhrenquarz bzw. Zeitquarz, dafür verwendet wird, um die grobe zeitliche Rasterung bei der Zeitbestimmung vorzugeben, da bekannt ist, wie viele Perioden des Hochfrequenz-Quarzes einer Periode des Schwingquarzes entsprechen.

[0029] Vorteilhafterweise kann für eine Feineinstellung der Zeiteinheiten der Hochfrequenz-Quarz verwendet werden. Bei der Feineinstellung können somit Zeiteinheiten, welche kleiner sind als eine Periode des Schwingquarzes, insbesondere des Uhrenquarzes bzw. Zeitquarzes, durch den Hochfrequenz-Quarz bestimmt und eingestellt werden. Vorteilhafterweise ist der Hochfrequenz-Quarzoszillator ohnehin aktiviert, sofern die Feineinstellung unmittelbar vor einem Empfangsereignis stattfindet.

[0030] Zweckmäßigerweise kann der erste Kalibrierungsschritt zusätzlich folgenden Verfahrensschritt umfassen:
Aktivieren des Hochfrequenz-Quarzes des Empfänger-Zeitgebers.

[0031] Es besteht zweckmäßigerweise die Möglichkeit, dass der Korrekturfaktor aus mindestens zwei Korrekturfaktoren gebildet wird, wobei sich mindestens ein Korrekturfaktor aus dem Unterschied zwischen dem Sender-Zeitgeber und dem Empfänger-Zeitgeber, insbesondere aus einem Quarzfehler, ergibt sowie mindestens ein Korrekturfaktor aus dem Unterschied zwischen dem Schwingquarz des Empfänger-Zeitgebers und dem Hochfrequenz-Quarz des Empfänger-Zeitgebers. Mit einem Korrekturfaktor kann beispielsweise der Versatz kompensiert werden, der sich aus dem Unterschied zwischen den Taktgebern im Funksender und im Funkempfänger ergibt. Es kann zudem ein weiterer Versatz auftreten, welcher dadurch bedingt ist, dass die Taktgeber bzw. die Uhrenquarze im Funksender und im Funkempfänger über die Zeit, insbesondere über längere Zeit, auseinander laufen. Somit kann sich der Versatz zwischen Funksender und Funkempfänger über die Zeit verändern. Für diese zeitliche Veränderung kann beispielsweise ein weiterer Korrekturfaktor bestimmt werden.

[0032] Das Verfahren kann einen zweiten Kalibrierungsschritt umfassen mit folgenden Verfahrensschritten:

Bestimmen des Abtastratenfehlers des Funksenders durch Bestimmen der Abweichung der Trägerfrequenz des Funksenders;

Berechnung eines zeitlichen Korrekturfaktors anhand des Abtastratenfehlers zur Kompensation unterschiedlicher Abtastraten zwischen Funksender und Funkempfänger.



[0033] Von der Abweichung der Trägerfrequenz kann auf die Quarzfrequenz des Hochfrequenz-Quarzes des Funksenders geschlossen werden. Wobei durch die Quarzfrequenz des Hochfrequenz-Quarzes des Funksenders weiter der Abtastratenfehler des Funksenders bestimmt werden kann. Dies ist möglich, da im Funksender die Zeit, die Frequenz sowie die Abtastrate vom gleichen Zeitgeber bzw. Taktgeber abgeleitet werden. Zudem können die Pausen zwischen den Paketen sowie die Pausen innerhalb der Pakete vom gleichen Zeitgeber bzw. Taktgeber abgeleitet werden.. Die Abweichung der Trägerfrequenz des Funksenders kann dem Funkempfänger bereits durch den Empfang der Synchronisationssequenz bekannt sein.

[0034] Mit Kenntnis des Abtastratenfehlers des Funksenders besteht die Möglichkeit, dass im Funkempfänger ein zeitlicher Korrekturfaktor berechnet wird. Dieser zeitliche Korrekturfaktor gibt eine zeitliche Verschiebung des Empfangsfensters vor, so dass unterschiedliche Abtastraten vom Funksender und vom Funkempfänger im Funkempfänger kompensiert werden.

[0035] Zweckmäßigerweise kann es sich bei dem Funkübertragungssystem um ein Schmalbandsystem handeln. Schmalbandige Übertragungskanäle stellen bestimmte Anforderungen an die Genauigkeit der Frequenz und die Genauigkeit der Zeitbestimmung. Das Verfahren kann somit die Möglichkeit bieten, Frequenzfehler und/oder Zeitfehler und/oder Abtastratenfehler zu ermitteln und zu kompensieren, wodurch die Anforderungen eines Schmalbandsystems erfüllt werden können.

[0036] Besonders zweckmäßig ist es, wenn es sich bei dem Funkübertragungssystem um ein System mit Frequenzsprungverfahren handelt. Ein mögliches Frequenzsprungverfahren bzw. Frequenzspreizverfahren für die drahtlose Datenübertragung stellt beispielsweise das Frequency Hopping Spread Spectrum (FHSS) dar. Bei einem Frequenzsprungverfahren gibt der im zweiten Kalibrierungsschritt bestimmte zeitliche Korrekturfaktor die zeitliche Verschiebung des Empfangsfensters pro Sprung bzw. "Hop" vor.

[0037] In einer möglichen Ausgestaltung kann das Verfahren in einem Funkübertragungssystem mit Splittingverfahren Anwendung finden. Ein mögliches Splittingverfahren ist in der DE 10 2011 082 098 B4 beschrieben.

[0038] Zweckmäßigerweise kann es sich beim Funksender um eine Basisstation und beim Funkempfänger um einen Verbrauchszähler handeln. Ferner besteht die Möglichkeit, dass der Funksender als Datensammler ausgestaltet ist. Der Verbrauchszähler ist zudem energieautark. Um einen energieautarken Verbrauchszähler zu realisieren kann dieser beispielsweise batteriebetrieben sein. Es ist damit vorteilhafterweise eine Möglichkeit geschaffen, eine Kompensation von Trägerfrequenzfehlern und/oder einen Abtastratenfehlern und/oder Fehlern in der Übertragungszeit bzw. Zeitfehlern im Verbrauchszähler durchzuführen.

[0039] Nebengeordnet beansprucht die vorliegende Erfindung zudem eine Anordnung eines Funkübertragungssystems bestehend aus einem Funksender und mindestens einem Funkempfänger, wobei der Funksender mindestens einen Sender-Zeitgeber mit Zeitmessmitteln zur Bestimmung von Sendezeitpunkten und/oder zur Bestimmung von Trägerfrequenzen und/oder zur Bestimmung von Abtrastraten umfasst, und der Funkempfänger mindestens einen Empfänger-Zeitgeber mit Zeitmessmitteln zur Bestimmung von Sendezeitpunkten und/oder zur Bestimmung von Trägerfrequenzen und/oder zur Bestimmung von Abtrastraten umfasst, wobei kennzeichnenderweise die Anordnung nach mindestens einem der vorhergehenden Verfahrensansprüche betreibbar ist.

Beschreibung der Erfindung anhand von Ausführunasbeispielen



[0040] Zweckmäßige Ausgestaltungen der vorliegenden Erfindung werden anhand von Zeichnungsfiguren nachstehend näher erläutert. Es zeigen:
Fig. 1
eine stark vereinfachte schematische Darstellung eines gattungsgemäßen Funkübertragungssystems;
Fig. 2
eine stark vereinfachte schematische Darstellung der Übertragung der Synchronisationssequenz;
Fig. 3
eine stark vereinfachte schematische Darstellung des Abgleichs des Schwingquarzes und des Hochfrequenz-Quarzes;
Fig. 4
eine stark vereinfachte schematische Darstellung der Bestimmung des Abtastratenfehlers.


[0041] Fig. 1 zeigt eine vereinfachte schematische Darstellung eines gattungsgemäßen Funkübertragungssystems. Das Funkübertragungssystem umfasst einen Funksender bzw. eine Basisstation B sowie einen Funkempfänger bzw. einen Verbrauchszähler V.

[0042] Die Basisstation B umfasst einen Sender-Zeitgeber ZS, welcher einen Hochfrequenz-Quarz HFQ, einen Niederfrequenz-Quarz LFQ sowie einen Mikrocontroller 12 umfasst. Der Hochfrequenz-Quarz wird z. B. mit einem Oszillator bei einer Frequenz von 40 MHz betrieben, wobei der Niederfrequenz-Quarz LFQ beispielsweise mit einem Oszillator bei einer Frequenz von 32 kHz betrieben wird. Der Niederfrequenz-Quarz LFQ kann dabei als Uhrenquarz bzw. als Zeitquarz verwendet werden. Der Hochfrequenz-Quarz HFQ sowie der Niederfrequenz-Quarz LFQ sind über einen Mikrocontroller 12 gekoppelt. Zum Abgleich der Quarze aufeinander kann beispielsweise der jeweils andere Quarz gemessen werden. Beispielsweise kann der Niederfrequenz-Quarz LFQ den Hochfrequenz-Quarz HFQ vermessen und einen möglichen Versatz, insbesondere einen zeitlichen Versatz, kompensieren. Die Basisstation B weist zudem ein Kommunikationsmodul 11 sowie eine Antenne 10 für die drahtlose Datenübertragung auf.

[0043] Der Verbrauchszähler V umfasst einen Empfänger-Zeitgeber ZE, welcher einen Hochfrequenz-Quarz HFQ, einen Niederfrequenz-Quarz LFQ sowie einen Mikrocontroller 12 umfasst. Der Hochfrequenz-Quarz wird z. B. mit einem Oszillator bei einer Frequenz von 40 MHz betrieben, wobei der Niederfrequenz-Quarz LFQ beispielsweise mit einem Oszillator bei einer Frequenz von 32 kHz betrieben wird. Der Niederfrequenz-Quarz LFQ kann dabei als Uhrenquarz bzw. als Zeitquarz verwendet werden. Der Hochfrequenz-Quarz HFQ sowie der Niederfrequenz-Quarz LFQ sind über einen Mikrocontroller 12 gekoppelt. Zum Abgleich der Quarze aufeinander kann beispielsweise der jeweils andere Quarz gemessen werden. Beispielsweise kann der Niederfrequenz-Quarz LFQ den Hochfrequenz-Quarz HFQ vermessen und einen möglichen Versatz, insbesondere einen zeitlichen Versatz, beispielsweise im Uplink vom Verbrauchszähler V zur Basisstation B, kompensieren. Ferner weist der Verbrauchszähler V ein Kommunikationsmodul 11 sowie eine Antenne 10 für den Empfang einer drahtlosen Datenübertragung auf. Der Verbrauchszähler V ist als Funkempfänger E zudem energieautark.

[0044] Weiter zeigt Fig. 1 die Aussendung einer Synchronisationssequenz 20 von der Basisstation B auf einer Trägerfrequenz 21. Der Verbrauchszähler V sucht in einem definierten Suchfenster nach möglichen Trägersignalen auf einer Trägerfrequenz 21 der Basisstation B. Der Verbrauchszähler V findet das Trägersignal auf einer Trägerfrequenz 21. Bei Vorliegen eines Frequenzfehlers zwischen Basisstation B und Verbrauchszähler V stimmt die von der Basisstation B ausgesandte Trägerfrequenz 21 nicht mit der vom Verbrauchszähler V erwarteten Trägerfrequenz 22 überein. Bei dem Funkübertragungssystem in Fig. 1 kann es sich zudem um ein Schmalbandsystem handeln.

[0045] In Fig. 2 ist eine vereinfachte schematische Darstellung der Übertragung der Synchronisationssequenz 20 gezeigt. Zunächst wird die Synchronisationssequenz 20 von der Basisstation B auf einer Trägerfrequenz 21 ausgesendet. Anschließend sucht der Verbrauchszähler V in einem definierten Suchfenster nach möglichen Trägersignalen der Basisstation B. Nachdem der Verbrauchszähler V das Trägersignal auf einer Trägerfrequenz 21 der Basisstation B gefunden hat, vergleicht der Verbrauchszähler V die empfangene Trägerfrequenz 21 mit der erwarteten Trägerfrequenz 22. Dadurch kann der Verbrauchszähler V zwischen der empfangen Trägerfrequenz 21 und der erwarteten Trägerfrequenz 22 den Frequenzversatz bzw. den Frequenzfehler Δf ermitteln. Damit besteht die Möglichkeit den Frequenzfehler Δf zwischen Basisstation B und Verbrauchszähler V im Verbrauchszähler V inhärent zu kompensieren.

[0046] Sofern im Verbrauchzähler V die Sendezeitpunkte der Basisstation B bekannt sind, kann durch den Empfangszeitpunkt einer Synchronisationssequenz 20 auf einer bestimmten Trägerfrequenz 21 ein Zeitfehler der Basisstation bezüglich des Verbrauchszählers V im Verbrauchszähler V bestimmt werden.

[0047] In Fig. 3 ist eine vereinfachte schematische Darstellung des Abgleichs des Schwingquarzes SQ und des Hochfrequenz-Quarzes HFQ dargestellt. Beim Schwingquarz SQ kann es sich zweckmäßigerweise um einen Niederfrequenz-Quarz LFQ handeln. In einem ersten Kalibrierungsschritt wird der Schwingquarz SQ, insbesondere in der Ausgestaltung als Uhrenquarz bzw. Zeitquarz, des Empfänger-Zeitgebers ZE mit dem Hochfrequenz-Quarz HFQ des Empfänger-Zeitgebers ZE abgeglichen. Für einen Abgleich ist der Hochfrequenz-Quarzoszillator HFQ aktiviert. Dabei kann der Hochfrequenz-Quarzoszillator HFQ zum Zeitpunkt des Abgleichs ohnehin aktiviert sein, da dieser während des Empfangs bzw. während der Empfangsbereitschaft aktiviert ist. Ferner besteht die Möglichkeit den Hochfrequenz-Quarzoszillator HFQ für den Abgleich zu aktivieren. Die Schwingungsperioden des Schwingquarzes SQ sind länger als die Schwingungsperioden des Hochfrequenz-Quarzes HFQ. Für den Abgleich wird gezählt, wie viele Perioden des Hochfrequenz-Quarzes HFQ während einer Periode des Schwingquarzes SQ, insbesondere in der Ausgestaltung als Uhrenquarz bzw. Zeitquarz durchlaufen werden. Durch den Schwingquarz SQ kann somit die grobe zeitliche Rasterung 25 bei der Zeitbestimmung vorgegeben werden. Für die Einteilung des feinen Zeitrasters 26 besteht die Möglichkeit den Hochfrequenz-Quarz HFQ zu verwenden. Damit können in einer Feineinstellung Zeiteinheiten eingeteilt werden, welche kleiner als eine Periode des Schwingquarzes SQ sind. Somit kann die Zeitreferenz des Schwingquarzes SQ und die Hochfrequenzreferenz des Hochfrequenz-Quarzes HFQ aufeinander kalibriert werden.

[0048] Fig. 4 zeigt eine vereinfachte schematische Darstellung der Bestimmung des Abtastratenfehlers. In einem zweiten Kalibrierungsschritt wird die Abweichung der Trägerfrequenz 21 der Basisstation B von der vom Verbrauchszähler V erwarteten Trägerfrequenz 22 bestimmt. Von der Abweichung der Trägerfrequenz 21 kann der Verbrauchszähler V wiederum auf die Quarzfrequenz des Hochfrequenz-Quarzes HFQ der Basisstation B schließen. Sofern die Quarzfrequenz des Hochfrequenz-Quarzes HFQ im Verbrauchszähler V vorliegt, kann daraus der Abtastratenfehler der Basisstation B im Verbrauchszähler V bestimmt werden. Das Diagramm in Fig. 4 ist für ein Funkübertragungssystem mit Frequenzsprungverfahren aufgetragen. Die Trägerfrequenz 21 wechselt hier frequentiv und diskret, was durch die einzelnen Sprünge bzw. "Hops" dargestellt wird. Die Sequenz der Frequenzwechsel wird beispielsweise durch Pseudozufallszahlen bestimmt. Die Nutzdaten können erst schmalbandig moduliert werden, um dann auf bestimmte Frequenzen hoch gemischt zu werden. Auf der Empfängerseite wird ein Frequenz-Synthesizer dem Empfangsmodulator vorgeschalten, welcher die Spreizung rückgängig macht und anschließend konventionell demoduliert. Sofern die Abtastrate 30 der Basisstation B nicht mit der Abtastrate 31 des Verbrauchszählers V übereinstimmt, kommt es zu einem Abtastratenfehler Δt. Durch den Abtastratenfehler Δt kann es zu Fehlern in der Signalverarbeitung kommen. Beispielsweise besteht die Möglichkeit, dass Symbole innerhalb eines Sprunges bzw. Hops im Trägersignal der Basisstation B im Verbrauchszähler V nicht korrekt abgetastet werden können. Die Abtastung im Verbrauchszähler V kann beispielsweise auf einem Frequenzsprung bzw. Frequenzhop zeitlich zu früh stattfinden, was dazu führt, dass die letzten gesendeten Symbole auf dieser Frequenz bzw. diesem Frequenzsprung nicht mehr abgetastet werden. Dasselbe gilt dann, wenn die Abtastung zeitlich zu spät stattfindet, so dass die Symbole am Anfang eines Frequenzsprungs bzw. Frequenzhops nicht abgetastet werden. Um diese fehlerhafte Abtastung zu korrigieren bzw. zu kompensieren, wird ein zeitlicher Korrekturfaktor im Verbrauchszähler V berechnet. Für die Berechnung wird der Abtastratenfehler Δt zwischen der Abtastrate 30 der Basisstation B und der Abtastrate 31 des Verbrauchszählers V verwendet. Durch den zeitlichen Korrekturfaktor wird sichergestellt, dass Anfang und Ende der Abtastung eines Frequenzsprungs bzw. Frequenzhops des Verbrauchszähler V und der Basisstation B aufeinander fallen. Dadurch kann der Funkempfänger E auch in der Frequenz verschoben aufwachen, um die vom Funksender S ausgesendeten Pakete genau zu treffen.

BEZUGSZEICHENLISTE



[0049] 
B
Basisstation
V
Verbrauchszähler
S
Funksender
E
Funkempfänger
ZS
Sender-Zeitgeber
ZE
Empfänger-Zeitgeber
SQ
Schwingquarz
LFQ
Niederfrequenz-Quarz
HFQ
Hochfrequenz-Quarz
10
Antenne
11
Kommunikationsmodul
12
Mikrocontroller
20
Synchronisationssequenz
21
vom Funksender gesendete Trägerfrequenz
22
vom Funkempfänger erwartete Trägerfrequenz
23
Trägerfrequenz mit zeitlichem Korrekturfaktor
Δf
Frequenzfehler
25
grobes Zeitraster
26
feines Zeitraster
30
Abtastrate des Funksenders
31
Abtastrate des Funkempfängers
Δt
Abtastratenfehler



Ansprüche

1. Verfahren zum Betrieb eines Funkübertragungssystems mit einem Funksender (S) und mindestens einem Funkempfänger (E), wobei

der Funksender (S)

mindestens einen Sender-Zeitgeber (ZS), insbesondere einen Taktgeber, umfasst, und

zur Übertragung von Daten ein Paket und/oder ein Teilpaket und/oder eine Mehrzahl an Paketen nacheinander sendet, wobei

die Trägerfrequenz und die Sendezeitpunkte der Daten und/oder

die Trägerfrequenz und die Abtastrate der Daten und/oder

die Sendezeitpunkte der Daten und die Abtastrate der Daten vom Sender-Zeitgeber (ZS), insbesondere von einem Taktgeber, abhängen, und

der Funkempfänger (E)
mindestens einen Empfänger-Zeitgeber (ZE), insbesondere einen Taktgeber, mit Zeitmessmitteln zur Bestimmung von Sendezeitpunkten und/oder zur Bestimmung von Trägerfrequenzen und/oder zur Bestimmung von Abtrastraten umfasst,
dadurch gekennzeichnet, dass

der insbesondere energieautarke Funkempfänger (E) aufgrund der empfangenen Daten einen Fehler, insbesondere einen Trägerfrequenzfehler und/oder einen Abtastratenfehler und/oder einen Fehler in der Übertragungszeit abschätzt und daraus einen Zeitfehler ermittelt, wobei auf Basis des Zeitfehlers ein zeitlicher Korrekturfaktor zur Kompensation bestimmt wird.


 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
der Funksender (S) ein Paket zerstückelt als Teilpakete sendet, indem mindestens zwei Pausen innerhalb des Pakets eingelegt werden, wobei die Pausen aus demselben Sender-Zeitgeber (ZS) generiert werden, aus dem die Trägerfrequenz generiert wird, wobei insbesondere vorgesehen ist, dass sich der Funkempfänger (E) und/oder der Funksender (S) in den Pausen des Pakets abschalten, insbesondere in einen Sleep-Modus gehen, um Energie zu sparen und das Aufwachen unter anderem durch den zeitlichen Korrekturfaktor bestimmt wird.
 
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
sich der Funkempfänger (E) und/oder der Funksender (S) zwischen zwei aufeinanderfolgenden Paketen abschalten, insbesondere in einen Sleep-Modus gehen, um Energie zu sparen und das Aufwachen für ein nächstes Paket unter anderem durch den zeitlichen Korrekturfaktor bestimmt wird.
 
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
der Funkempfänger (E) aufgrund der Trägerfrequenz des Funksenders (S) einen Unterschied zwischen dem Sender-Zeitgeber (ZS) und dem Empfänger-Zeitgeber (ZE) berechnet und daraus mindestens einen Korrekturfaktor berechnet.
 
5. Verfahren nach Anspruch 2 und 4, dadurch gekennzeichnet, dass
aufgrund des Unterschieds zwischen dem Sender-Zeitgeber (ZS) und dem Empfänger-Zeitgeber (ZE) für jedes Teilpaket eine unterschiedliche Aufwachzeit berechnet wird.
 
6. Verfahren nach Anspruch 3 und 4, dadurch gekennzeichnet, dass
aufgrund des Unterschieds zwischen dem Sender-Zeitgeber (ZS) und dem Empfänger-Zeitgeber (ZE) für jedes Paket eine unterschiedliche Aufwachzeit berechnet wird.
 
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sender-Zeitgeber (ZS) einen Schwingquarz (SQ) sowie einen Hochfrequenz-Quarz (HFQ) umfasst, wobei insbesondere vorgesehen ist, dass der Schwingquarz (SQ) vom Hochfrequenz-Quarz (HFQ) abgeleitet ist.
 
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass

eine Synchronisationssequenz (20) vom Funksender (S) auf einer Trägerfrequenz (21) ausgesendet wird;

der Funkempfänger (E) in einem definierten Suchfenster nach möglichen Trägersignalen des Funksenders (S) sucht;

der Funkempfänger (E) das Trägersignal des Funksenders (S) findet;

der Funkempfänger (E) aus der empfangenen Synchronisationssequenz (20) den Frequenzfehler und/oder den Zeitfehler des Funksenders (S) ermittelt.


 
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Empfänger-Zeitgeber (ZE) einen Schwingquarz (SQ) sowie einen Hochfrequenz-Quarz (HFQ) umfasst.
 
10. Verfahren nach Anspruch 8 und 9, dadurch gekennzeichnet, dass ein erster Kalibrierungsschritt folgenden Verfahrensschritt umfasst:
Abgleich des Schwingquarzes (SQ) des Empfänger-Zeitgebers (ZE) mit dem Hochfrequenz-Quarz (HFQ) des Empfänger-Zeitgebers (ZE) während der Hochfrequenz-Quarz (HFQ) aktiviert ist, wobei insbesondere vorgesehen ist, dass für eine Feineinstellung der Zeiteinheiten der Hochfrequenz-Quarz (HFQ) verwendet wird.
 
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der erste Kalibrierungsschritt zusätzlich folgenden Verfahrensschritt umfasst:
Aktivieren des Hochfrequenz-Quarzes (HFQ) des Empfänger-Zeitgebers (ZE).
 
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
der Korrekturfaktor aus mindestens zwei Korrekturfaktoren gebildet wird, wobei sich mindestens ein Korrekturfaktor aus dem Unterschied zwischen dem Sender-Zeitgeber (ZS) und dem Empfänger-Zeitgeber (ZE), insbesondere aus einem Quarzfehler, ergibt sowie mindestens ein Korrekturfaktor aus dem Unterschied zwischen dem Schwingquarz (SQ) des Empfänger-Zeitgebers (ZE) und dem Hochfrequenz-Quarz (HFQ) des Empfänger-Zeitgebers (ZE).
 
13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass ein zweiter Kalibrierungsschritt folgende Verfahrensschritte umfasst:

Bestimmen des Abtastratenfehlers des Funksenders (S) durch Bestimmen der Abweichung der Trägerfrequenz (21) des Funksenders (S);

Berechnung eines zeitlichen Korrekturfaktors anhand des Abtastratenfehlers zur Kompensation unterschiedlicher Abtastraten zwischen Funksender (S) und Funkempfänger (E).


 
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Funkübertragungssystem um ein Schmalbandsystem und/oder um ein System mit Frequenzsprungverfahren handelt.
 
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Funksender (S) eine Basisstation (B) und der Funkempfänger (E) ein Verbrauchszähler (V) ist.
 
16. Anordnung eines Funkübertragungssystems bestehend aus einem Funksender (S) und mindestens einem Funkempfänger (E), wobei

der Funksender (S)
mindestens einen Sender-Zeitgeber (ZS), insbesondere einen Taktgeber, umfasst, und

der Funkempfänger (E)
mindestens einen Empfänger-Zeitgeber (ZE) mit Zeitmessmitteln zur Bestimmung von Sendezeitpunkten und/oder zur Bestimmung von Trägerfrequenzen und/oder zur Bestimmung von Abtrastraten umfasst,
dadurch gekennzeichnet, dass
die Anordnung nach mindestens einem der vorhergehenden Verfahrensansprüche betreibbar ist.


 




Zeichnung













Recherchenbericht









Recherchenbericht




Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente