(19)
(11)EP 3 586 375 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 18710271.0

(22)Date of filing:  27.02.2018
(51)International Patent Classification (IPC): 
H01L 31/0296(2006.01)
(86)International application number:
PCT/US2018/019848
(87)International publication number:
WO 2018/157106 (30.08.2018 Gazette  2018/35)

(54)

PHOTOVOLTAIC DEVICES INCLUDING GROUP V DOPED THIN FILM STACKS

FOTOVOLTAIKVORRICHTUNGEN MIT GRUPPE-V-DOTIERTEN DÜNNSCHICHTSTAPELN

DISPOSITIFS PHOTOVOLTAÏQUES COMPRENANT DES EMPILEMENTS DE COUCHES MINCES DE DOPAGE DE GROUPE V


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 27.02.2017 US 201762464127 P

(43)Date of publication of application:
01.01.2020 Bulletin 2020/01

(60)Divisional application:
20174225.1

(73)Proprietor: First Solar, Inc
Tempe, AZ 85281 (US)

(72)Inventors:
  • GROVER, Sachit
    Perrysburg, OH 43551 (US)
  • LEE, Chungho
    Perrysburg, OH 43551 (US)
  • LI, Xiaoping
    Perrysburg, OH 43551 (US)
  • LU, Dingyuan
    Perryburg, OH 43551 (US)
  • MALIK, Roger
    Perrysburg, OH 43551 (US)
  • XIONG, Gang
    Perrysburg, OH 43551 (US)

(74)Representative: D Young & Co LLP 
120 Holborn
London EC1N 2DY
London EC1N 2DY (GB)


(56)References cited: : 
US-A1- 2010 015 753
US-A1- 2011 277 812
  
  • JONATHAN D. POPLAWSKY ET AL: "Structural and compositional dependence of the CdTexSe1-x alloy layer photoactivity in CdTe-based solar cells", NATURE COMMUNICATIONS, vol. 7, 27 July 2016 (2016-07-27), page 12537, XP055473821, DOI: 10.1038/ncomms12537
  • COLEGROVE ERIC ET AL: "Arsenic doped heteroepitaxial CdTe by MBE for applications in thin-film photovoltaics", 2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), IEEE, 8 June 2014 (2014-06-08), pages 3261-3265, XP032660018, DOI: 10.1109/PVSC.2014.6925632
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND



[0001] The present specification generally relates to the use of p-type dopants in thin film photovoltaic devices and, more specifically, to the use of group V p-type dopants in thin film photovoltaic devices.

[0002] A photovoltaic device generates electrical power by converting light into direct current electricity using semiconductor materials that exhibit the photovoltaic effect. Certain types of semiconductor material can be difficult to manufacture. For example, thin film layers provided adjacent to semiconductor material can lead to inoperability or instability of the photovoltaic device. The use of group V elements as a dopant for a p-type semiconductor can be particularly difficult.

[0003] Accordingly, a need exists for alternative thin film stacks for use in thin film photovoltaic devices incorporating group V p-type dopants.

[0004] The article by Poplawsky et al., "Structural and compositional dependence of the CdTexSe1-x alloy layer photoactivity in CdTe-based solar cells", published in Nature Communications, 7:12357 on 27 July 2016, discloses CdTe/CdSe thin film absorbers doped with copper.

SUMMARY



[0005] The embodiments provided herein relate to thin-film stacks for use with group V dopants. These and additional features provided by the embodiments described herein will be more fully understood in view of the following detailed description, in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS



[0006] The embodiments set forth in the drawings are illustrative and exemplary in nature and not intended to limit the subject matter defined by the claims. The following detailed description of the illustrative embodiments can be understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:

FIG. 1 schematically depicts a photovoltaic device according to one or more embodiments shown and described herein;

FIG. 2 schematically depicts a substrate according to one or more embodiments shown and described herein;

FIG. 3 schematically depicts a photovoltaic device according to one or more embodiments shown and described herein; and

FIGS. 4 and 5 schematically depict film stacks for forming absorber layers of photovoltaic devices according to one or more embodiments shown and described herein.


DETAILED DESCRIPTION



[0007] The present invention is defined by the scope of the appended claims. Thin film photovoltaic devices can include multiple layers created on a substrate (or superstrate). For example, a photovoltaic device can include a barrier layer, a transparent conductive oxide (TCO) layer, a buffer layer, an absorber layer, and a back contact layer formed in a stack on a substrate. Each layer may in turn include more than one layer or film. For example, absorber layer can be formed from a plurality of semiconductor layers.

[0008] Referring now to FIG. 1, an embodiment of a photovoltaic device 100 is schematically depicted. The photovoltaic device 100 can be configured to receive light and transform light into electrical signals, e.g., photons can be absorbed from the light and transformed into electrical signals via the photovoltaic effect. Accordingly, the photovoltaic device 100 can define an energy side 102 configured to be exposed to a light source such as, for example, the sun. The photovoltaic device 102 can also define an opposing side 104 offset from the energy side 102. It is noted that the term "light" can refer to various wavelengths of the electromagnetic spectrum such as, but not limited to, wavelengths in the ultraviolet (UV), infrared (IR), and visible portions of the electromagnetic spectrum. The photovoltaic device 100 can include a plurality of layers disposed between the energy side 102 and the opposing side 104. As used herein, the term "layer" can refer to a thickness of material provided upon a surface. Additionally, each layer can cover all or any portion of the surface.

[0009] The photovoltaic device 100 can include a substrate 110 configured to facilitate the transmission of light into the photovoltaic device 100. The substrate 110 can be disposed at the energy side 102 of the photovoltaic device 100. Referring collectively to FIGS. 1 and 2, the substrate 110 can have a first surface 112 substantially facing the energy side 102 of the photovoltaic device 100 and a second surface 114 substantially facing the opposing side 104 of the photovoltaic device 100. One or more layers of material can be disposed between the first surface 112 and the second surface 114 of the substrate 110.

[0010] Referring collectively to FIGS. 1 and 2, the substrate 110 can include a transparent layer 120 having a first surface 122 substantially facing the energy side 102 of the photovoltaic device 100 and a second surface 124 substantially facing the opposing side 104 of the photovoltaic device 100. The transparent layer 120 can be formed from a substantially transparent material such as, for example, glass. Suitable glass can include soda-lime glass, or any glass with reduced iron content. The transparent layer 120 can have any suitable transmittance, including about 250 nm to about 1,300 nm in some embodiments. The transparent layer 120 may also have any suitable transmission percentage, including, for example, more than about 50% in one embodiment, more than about 60% in another embodiment, more than about 70% in yet another embodiment, more than about 80% in a further embodiment, or more than about 85% in still a further embodiment. In one embodiment, transparent layer 120 can be formed from a glass with about 90% transmittance. Optionally, the substrate 110 can include a coating 126 applied to the first surface 122 of the transparent layer 120. The coating 126 can be configured to interact with light or to improve durability of the substrate 110 such as, but not limited to, an antireflective coating, an antisoiling coating, or a combination thereof.

[0011] Referring again to FIG. 1, the photovoltaic device 100 can include a barrier layer 130 configured to mitigate diffusion of contaminants (e.g. sodium) from the substrate 110, which could result in degradation or delamination. The barrier layer 130 can have a first surface 132 substantially facing the energy side 102 of the photovoltaic device 100 and a second surface 134 substantially facing the opposing side 104 of the photovoltaic device 100. In some embodiments, the barrier layer 130 can be provided adjacent to the substrate 110. For example, the first surface 132 of the barrier layer 130 can be provided upon the second surface 114 of the substrate 100.

[0012] Generally, the barrier layer 130 can be substantially transparent, thermally stable, with a reduced number of pin holes and having high sodium-blocking capability, and good adhesive properties. Alternatively or additionally, the barrier layer 130 can be configured to apply color suppression to the light. The barrier layer 130 can include one or more layers of suitable material, including, but not limited to, tin oxide, silicon dioxide, aluminum-doped silicon oxide, silicon oxide, silicon nitride, or aluminum oxide. The barrier layer 130 can have any suitable thickness bounded by the first surface 132 and the second surface 134, including, for example, more than about 500 Å in one embodiment, more than about 750 Å in another embodiment, or less than about 1200 Å in a further embodiment.

[0013] Referring still to FIG. 1, the photovoltaic device 100 can include a transparent conductive oxide (TCO) layer 140 configured to provide electrical contact to transport charge carriers generated by the photovoltaic device 100. The TCO layer 140 can have a first surface 142 substantially facing the energy side 102 of the photovoltaic device 100 and a second surface 144 substantially facing the opposing side 104 of the photovoltaic device 100. In some embodiments, the TCO layer 140 can be provided adjacent to the barrier layer 130. For example, the first surface 142 of the barrier layer 140 can be provided upon the second surface 134 of the barrier layer 130. Generally, the TCO layer 140 can be formed from one or more layers of n-type semiconductor material that is substantially transparent and has a wide band gap. Specifically, the wide band gap can have a larger energy value compared to the energy of the photons of the light, which can mitigate undesired absorption of light. The TCO layer 140 can include one or more layers of suitable material, including, but not limited to, tin dioxide, doped tin dioxide (e.g., F-SnO2), indium tin oxide, or cadmium stannate.

[0014] The photovoltaic device 100 can include a buffer layer 150 configured to provide an insulating layer between the TCO layer 140 and any semiconductor layers. The buffer layer 150 can have a first surface 152 substantially facing the energy side 102 of the photovoltaic device 100 and a second surface 154 substantially facing the opposing side 104 of the photovoltaic device 1 00. In some embodiments, the buffer layer 150 can be provided adjacent to the TCO layer 140. For example, the first surface 152 of the buffer layer 150 can be provided upon the second surface 144 of the TCO layer 140. The buffer layer 150 may include material having higher resistivity than the TCO later 140, including, but not limited to, intrinsic tin dioxide, zinc magnesium oxide (e.g., Zn1-xMgxO), silicon dioxide (SnO2), aluminum oxide (Al2O3), aluminum nitride (AlN), zinc tin oxide, zinc oxide, tin silicon oxide, or a combination thereof. Generally, the material of the buffer layer 150 can be configured to substantially match the band gap of an adjacent semiconductor layer (e.g., an absorber). The buffer layer 150 may have any suitable thickness between the first surface 152 and the second surface 154, including, for example, more than about 100 Å in one embodiment, between about 100 Å and about 800 Å in another embodiment, or between about 150 Å and about 600 Å in a further embodiment.

[0015] The photovoltaic device 100 can include an absorber layer 160 configured to form a p-n junction within the photovoltaic device 100. Accordingly, absorbed photons of the light can free electron-hole pairs and generate carrier flow, which can yield electrical power. The absorber layer 160 can have a first surface 162 substantially facing the energy side 102 of the photovoltaic device 100 and a second surface 164 substantially facing the opposing side 104 of the photovoltaic device 100. A thickness of the absorber layer 160 can be defined between the first surface 162 and the second surface 164. The thickness of the absorber layer 160 can be between about 0.5 µm to about 10 µm such as, for example, between about 1 µm to about 7 µm in one embodiment, or between about 2 µm to about 5 µm in another embodiment. The absorber layer 160 can further include a midpoint 165 located in the middle of the thickness of the absorber layer 160, i.e., located at the 50% location between the first surface 162 and the second surface 164 of the absorber layer 160.

[0016] Referring still to FIG. 1, the absorber layer 160 can be formed from a p-type semiconductor material having an excess of positive charge carriers, i.e., holes. The absorber layer 160 comprises cadmium, selenium and tellurium, is formed from a plurality of semiconductor layers, and comprises a doped layer comprising cadmium selenide or cadmium telluride. In embodiments where the absorber layer 160 comprises selenium and cadmium, the atomic percent of the selenium can be greater than about 0 atomic percent and less than about 20 atomic percent compared to cadmium. It is noted that the atomic percent described herein is representative of the entirety of the absorber layer 160, the atomic percentage of material at a particular location within the absorber layer 160 can vary with thickness compared to the overall composition of the absorber layer 160. It is noted that the concentration of tellurium can vary through the thickness of the absorber layer 160. For example, when the absorber layer 160 comprises a ternary of cadmium, selenium, and tellurium (CdSexTe1-x), x can vary in the absorber layer 160 with distance from the first surface 162 of the absorber layer 160.

[0017] According to the embodiments provided herein, the absorber layer 160 is doped with a dopant configured to manipulate the charge carrier concentration. The absorber layer is doped with a group V dopant such as, for example, arsenic, phosphorous, antimony, or a combination thereof. The total dosage of the group V dopant within the absorber layer 160 can be controlled. In some embodiments, the total dosage of the group V dopant in the absorber layer 160 is greater than about 0 atomic % and less than about atomic 0.1 %, such as, for example, greater than about 0.001 atomic % and less than about 0.05 atomic % in one embodiment. Alternatively or additionally, the percent concentration profile of the group V dopant through the thickness of the absorber layer 160. Specifically, the amount of the group V dopant can vary with distance from the first surface 162 of the absorber layer 160. Furthermore, the concentration of oxygen in the absorber layer 160 can be controlled. Specifically, an average concentration of oxygen in the absorber layer 160, measured between the first surface 162 of the absorber layer 160 and the midpoint 165 of the absorber layer 160, can be less or equal to about 3x1017cm-3 such as, for example, less than or equal to about 2x1017cm-3 in one embodiment, between about 5x1015cm-3 and about 3x1017cm-3 in another embodiment, or between about 5x1015cm-3 and about 2x1017cm-3 in a further embodiment. It is noted that the average concentration of oxygen was determined using Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS).

[0018] In some embodiments, the absorber layer 160 can include absorber buffer interface region 166 formed adjacent to the first surface 162 of the absorber layer 160, and a bulk portion 168 from adjacent to the absorber buffer interface region 166, i.e., between the absorber buffer interface region 166 and the second surface 164 of the absorber layer 160. For example, the absorber buffer interface region 166 can span the first 10% of the thickness of the absorber layer 160 from the first surface 162 and the bulk portion 168 can span the remainder of the thickness of the absorber layer 160. In embodiments where the group V dopant comprises arsenic, the percent concentration profile of arsenic in the absorber buffer interface region 166 can differ from the percent concentration profile of arsenic in the bulk portion 168.

[0019] Referring still to FIG. 1, the p-n junction can be formed by providing the absorber layer 160 sufficiently close to a portion of the photovoltaic device 100 having an excess of negative charge carriers, i.e., electrons. In some embodiments, the absorber layer 160 can be provided adjacent to n-type semiconductor material. Alternatively, one or more intervening layers can be provided between the absorber layer 160 and n-type semiconductor material. In some embodiments, the absorber layer 160 can be provided adjacent to the buffer layer 150. For example, the first surface 162 of the absorber layer 160 can be provided upon the second surface 154 of the buffer layer 150.

[0020] Referring now to FIG. 3, in some embodiments, a photovoltaic device 200 can include a window layer 170 comprising n-type semiconductor material. The absorber layer 160 can be formed adjacent to the window layer 170. The window layer 170 can have a first surface 172 substantially facing the energy side 102 of the photovoltaic device 100 and a second surface 174 substantially facing the opposing side 104 of the photovoltaic device 100. In some embodiments, the window layer 170 can be positioned between the absorber layer 160 and the TCO layer 140. In one embodiment, the window layer 170 can be positioned between the absorber layer 160 and the buffer layer 150. The window layer 170 can include any suitable material, including, for example, cadmium sulfide, zinc sulfide, cadmium zinc sulfide, zinc magnesium oxide, or any combination thereof.

[0021] Referring collectively to FIGS. 1 and 3, the photovoltaic device 100 can include a back contact layer 180 configured to mitigate undesired alteration of the group V dopant and to provide electrical contact to the absorber layer 160. The back contact layer 180 can have a first surface 182 substantially facing the energy side 102 of the photovoltaic device 100 and a second surface 184 substantially facing the opposing side 104 of the photovoltaic device 100. A thickness of the back contact layer 180 can be defined between the first surface 182 and the second surface 184. The thickness of the back contact layer 180 can be between about 5 nm to about 200 nm such as, for example, between about 10 nm to about 50 nm in one embodiment.

[0022] In some embodiments, the back contact layer 180 can be provided adjacent to the absorber layer 160. For example, the first surface 182 of the back contact layer 180 can be provided upon the second surface 164 of the absorber layer 160. In some embodiments, the back contact layer 180 can be substantially copper free, i.e., can be formed from materials that do not include copper. Without being bound to theory, it is believed that copper can interfere with group V dopants (e.g., arsenic). Specifically, the back contact layer 180 can include any suitable material such as, for example, nitrogen-doped zinc telluride (ZnTe), or the like.

[0023] The photovoltaic device 100 can include a conducting layer 190 configured to provide electrical contact with the absorber layer 160. The back conducting layer 190 can have a first surface 192 substantially facing the energy side 102 of the photovoltaic device 100 and a second surface 194 substantially facing the opposing side 104 of the photovoltaic device 100. In some embodiments, the conducting layer 190 can be provided adjacent to the back contact layer 180. For example, the first surface 192 of the conducting layer 190 can be provided upon the second surface 184 of the back contact layer 180. The conducting layer 190 can include any suitable conducting material such as, for example, molybdenum nitride (MoNx) doped with aluminum, molybdenum, or the like.

[0024] The photovoltaic device 100 can include a back support 196 configured to cooperate with the substrate 110 to form a housing for the photovoltaic device 100. The back support 196 can be disposed at the opposing side 102 of the photovoltaic device 100. For example, the back support 196 can be formed adjacent to conducting layer 190. The back support 196 can include any suitable material, including, for example, glass (e.g., soda-lime glass).

[0025] Referring collectively to FIGS. 4 and 5, the absorber layer 160 can be formed from a plurality of semiconductor layers 210. For example, the semiconductor layers 210 can be provided as a stack of thin films deposited upon one another using any known deposition technique, including vapor transport deposition. Each of the semiconductor layers 210 can include any suitable p-type semiconductor material, including, for example, semiconductor materials formed from cadmium, tellurium, selenium, sulfur, or any combination thereof. In some embodiments, the material composition of the semiconductor layers 210 can vary. After deposition, the semiconductor layers 210 can be annealed, which can cause the semiconductor layers 210 to diffuse into one another to form a blended material composition having the characteristics described above with respect to the absorber layer 160. In some embodiments, one or more of the semiconductor layers 210 can be provided as a doped layer, i.e., doped with a group V dopant as described herein. In further embodiments, a majority of the absorber layer 160 can be formed from the doped layer, i.e., the doped layer can be the thickest of the semiconductor layers 210.

[0026] With reference to FIG. 4, in some embodiments, the semiconductor layers 210 can comprise a first semiconductor layer 212, a second semiconductor layer 214, and a third semiconductor layer 216. The first semiconductor layer 212 can be the layer nearest to the first surface 162 of the absorber layer 160. The third semiconductor layer 216 can be the layer nearest to the second surface 164 of the absorber layer 160. The second semiconductor layer 214 can be positioned between the first semiconductor layer 212 and the third semiconductor layer 216. In one embodiment, the first semiconductor layer 212 can comprise cadmium selenide (CdSe), the second semiconductor layer 214 can comprise cadmium telluride (CdTe), and the third semiconductor layer 216 can comprise cadmium telluride (CdTe) doped with arsenic. The third semiconductor layer 216 can be the thickest layer, and the second semiconductor layer 214 can be thicker than the first semiconductor layer 212. For example, a ratio of the thickness of the third semiconductor layer 216 to the first semiconductor layer 212 can be greater than about 4 such as, for example, greater than about 6 in one embodiment, or greater than about 8 in another embodiment. A ratio of the thickness of the second semiconductor layer 214 to the first semiconductor layer 212 can be greater than about 1.1 and less than about 10 such as, for example, greater than about 1.25 and less than about 5 in one embodiment.

[0027] In another embodiment, the first semiconductor layer 212 can comprise cadmium telluride (CdTe), the second semiconductor layer 214 can comprise cadmium selenide (CdSe), and the third semiconductor layer 216 can comprise cadmium telluride (CdTe) doped with arsenic. The third semiconductor layer 216 can be the thickest layer, and the second semiconductor layer 214 can be thicker than the first semiconductor layer 212.

[0028] In yet another embodiment, the first semiconductor layer 212 can comprise a ternary of cadmium, selenium and tellurium (e.g., CdSexTe1-x,), the second semiconductor layer 214 can comprise cadmium telluride (CdTe), and the third semiconductor layer 216 can comprise cadmium telluride (CdTe) doped with arsenic. The third semiconductor layer 216 can be the thickest layer, and the first semiconductor layer 212 can be thicker than the second semiconductor layer 214.

[0029] In an example which does not embody the present invention, the first semiconductor layer 212 can comprise cadmium sulfide (CdS), the second semiconductor layer 214 can comprise cadmium telluride (CdTe), and the third semiconductor layer 216 can comprise cadmium telluride (CdTe) doped with arsenic. The third semiconductor layer 216 can be the thickest layer, and the second semiconductor layer 214 can be thicker than the first semiconductor layer 212.

[0030] Referring still to FIG. 4, in some embodiments, the first semiconductor layer 212 can comprise cadmium telluride (CdTe), the second semiconductor layer 214 can comprise cadmium selenide (CdSe) doped with arsenic, and the third semiconductor layer 216 can comprise cadmium telluride (CdTe). Alternatively, the third semiconductor layer 216 can comprise cadmium telluride (CdTe) doped with arsenic. The third semiconductor layer 216 can be the thickest layer, and the second semiconductor layer 214 can be thicker than the first semiconductor layer 212. For example, a ratio of the thickness of the third semiconductor layer 216 to the first semiconductor layer 212 can be greater than about 10 such as, for example, greater than about 20 in one embodiment, or greater than about 25 in another embodiment. A ratio of the thickness of the second semiconductor layer 214 to the first semiconductor layer 212 can be greater than about 1.1 and less than about 10 such as, for example, greater than about 1.25 and less than about 5 in one embodiment.

[0031] According to the embodiments provided herein, the first semiconductor layer 212 can comprise cadmium telluride (CdTe), the second semiconductor layer 214 can comprise cadmium selenide (CdSe), and the third semiconductor layer 216 can comprise cadmium telluride (CdTe) doped with arsenic. The third semiconductor layer 216 can be the thickest layer, and the second semiconductor layer 214 can be thicker than the first semiconductor layer 212. For example, a ratio of the thickness of the third semiconductor layer 216 to the first semiconductor layer 212 can be greater than about 10, and a ratio of the thickness of the second semiconductor layer 214 to the first semiconductor layer 212 can be greater than about 1.1 and less than about 10.

[0032] With reference to FIG. 5, in some embodiments, the semiconductor layers 220 can comprise a first semiconductor layer 222, and a second semiconductor layer 224. The first semiconductor layer 222 can be the layer nearest to the first surface 162 of the absorber layer 160. The second semiconductor layer 224 can be the layer nearest to the second surface 164 of the absorber layer 160. In one embodiment, the first semiconductor layer 222 can comprise cadmium selenide (CdSe) doped with arsenic, and the second semiconductor layer 224 can comprise cadmium telluride (CdTe) doped with arsenic. The second semiconductor layer 224 can be thicker than the first semiconductor layer 222. For example, a ratio of the thickness of the second semiconductor layer 224 to the first semiconductor layer 222 can be greater than about 6 such as, for example, greater than about 8 in one embodiment, or greater than about 10 in another embodiment.

[0033] In another embodiment, the first semiconductor layer 222 can comprise cadmium selenide (CdSe), and the second semiconductor layer 224 can comprise cadmium telluride (CdTe) doped with arsenic. The second semiconductor layer 224 can be thicker than the first semiconductor layer 222. For example, a ratio of the thickness of the second semiconductor layer 224 to the first semiconductor layer 222 can be greater than about 7 such as, for example, greater than about 9 in one embodiment, or greater than about 10 in another embodiment.

[0034] It should now be understood that the embodiments described herein relate to thin film photovoltaic devices and thin film stacks for use with photovoltaic devices that facilitate the use of group V dopants within p-type semiconductor materials. The described film stacks can provide for operational group V doped p-type CdTe solar devices. Moreover, the back contacts described herein can be provided with copper free material to improve the stability of the dopants.

[0035] According to the embodiments provided herein, a method for forming a photovoltaic device can include depositing a plurality of semiconductor layers. The plurality of semiconductor layers can include a doped layer that is doped with a group V dopant. The doped layer can include cadmium selenide or cadmium telluride. The method can include annealing the plurality of semiconductor layers to form an absorber layer. The absorber layer can include cadmium, selenium, and tellurium. A total dosage of the group V dopant in the absorber layer can be greater than 0 atomic % and less than 0.1 atomic %.

[0036] In a further embodiment, a photovoltaic device can include an absorber layer and a back contact layer. The absorber layer can have a first surface facing an energy side of the photovoltaic device and a second surface facing an opposing side of the photovoltaic device. The absorber layer includes cadmium, tellurium and selenium. The absorber layer is doped with a group V dopant. The back contact layer can be provided upon the second surface of the absorber layer. The back contact layer can include nitrogen-doped zinc telluride.

[0037] In another embodiment, a photovoltaic device can include an absorber layer and a back contact layer. The absorber layer can have a first surface facing an energy side of the photovoltaic device and a second surface facing an opposing side of the photovoltaic device. The absorber layer can include cadmium and tellurium. The absorber layer can be doped with a group V dopant. The back contact layer can be provided upon the second surface of the absorber layer. The back contact layer can be substantially free of copper.

[0038] In yet another embodiment, photovoltaic device can include a buffer layer and an absorber layer. The buffer layer can have a first surface facing an energy side of the photovoltaic device and a second surface facing an opposing side of the photovoltaic device. The absorber layer can be provided upon the second surface of the buffer layer. The absorber layer can be formed from a plurality of semiconductor layers. The plurality of semiconductor layers can include a doped layer comprising cadmium and tellurium. The doped layer can be doped with a group V dopant.

[0039] It is noted that the terms "substantially" and "about" may be utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. These terms are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.


Claims

1. A photovoltaic device comprising:

a buffer layer (150) having a first surface (152) facing an energy side of the photovoltaic device and a second surface (154) facing an opposing side of the photovoltaic device; and

an absorber layer (160) provided upon the second surface of the buffer layer, wherein:

the absorber layer comprises cadmium, selenium, and tellurium, and

a total dosage of the group V dopant in the absorber layer is greater than 0% and less than 0.1 %

the absorber layer is formed from a plurality of semiconductor layers,

the plurality of semiconductor layers comprises a doped layer comprising cadmium selenide or cadmium telluride, and

the doped layer is doped with a group V dopant.


 
2. The photovoltaic device of claim 1, wherein the absorber layer has a first surface (162) nearest an energy side of the photovoltaic device, and wherein an average concentration of oxygen in the absorber layer measured between a first surface of the absorber layer and a midpoint of the absorber layer is less than 3x1017cm-3.
 
3. The photovoltaic device of claim 1 or claim 2, comprising a back contact layer (180) adjacent to the absorber layer, wherein the back contact is substantially free of copper.
 
4. The photovoltaic device of claim 3, wherein the back contact layer comprises nitrogen-doped zinc telluride.
 
5. The photovoltaic device of claim 4, comprising a conducting layer (190) adjacent to the back contact layer.
 
6. The photovoltaic device of any of claims 1-5, wherein the plurality of semiconductor layers are deposited upon a buffer layer, and the absorber layer has a first surface adjacent to the buffer layer.
 
7. The photovoltaic device of claim 6, wherein:

an absorber buffer interface region is formed adjacent to the first surface of the absorber layer;

a percent concentration profile of the Group V dopant is formed in the absorber layer with distance from the first surface of the absorber layer; and

the percent concentration profile of arsenic at the absorber buffer interface differs from the percent concentration profile of arsenic in a bulk portion of the absorber layer.


 
8. The photovoltaic device of any of claim 6 or claim 7, wherein the buffer layer comprises intrinsic tin dioxide, zinc magnesium oxide, silicon dioxide, aluminum oxide, aluminum nitride, or a combination thereof.
 
9. The photovoltaic device of any of claims 1-8, wherein the group V dopant is arsenic.
 
10. The photovoltaic device of any of claims 1-9, wherein a majority of the absorber layer is formed from the doped layer.
 
11. The photovoltaic device of any of claims 1-10, wherein the absorber layer has a thickness between about 0.5 µm to about 10 µm.
 
12. The photovoltaic device of any of claims 1-11, wherein the group V dopant comprises arsenic, phosphorous, antimony, or a combination thereof.
 
13. The photovoltaic device of any of claims 1-12, wherein the absorber layer comprises a ternary of cadmium, selenium, and tellurium.
 
14. The photovoltaic device of any of claims 1-13, wherein the absorber layer comprises greater than about 0 atomic percent and less than about 20 atomic percent of selenium compared to cadmium.
 
15. The photovoltaic device of any of claims 1-14, wherein an average concentration of oxygen in the absorber layer measured between a first surface of the absorber layer and a midpoint of the absorber layer is less than 3x1017cm-3.
 


Ansprüche

1. Photovoltaikvorrichtung, umfassend:

eine Pufferschicht (150) mit einer ersten Oberfläche (152), die einer Energieseite der Photovoltaikvorrichtung zugewandt ist, und eine zweite Oberfläche (154), die einer gegenüberliegenden Seite der Photovoltaikvorrichtung zugewandt ist; und

eine Absorberschicht (160), die auf der zweiten Oberfläche der Pufferschicht bereitgestellt ist, wobei:

die Absorberschicht Cadmium, Selen und Tellur umfasst und

die Gesamtdosierung des Gruppe-V-Dotierstoffs in der Absorberschicht größer als 0 % und kleiner als 0,1 % ist,

die Absorberschicht aus einer Vielzahl von Halbleiterschichten gebildet ist,

die Vielzahl von Halbleiterschichten eine dotierte Schicht umfassend Cadmiumselenid oder Cadmiumtellurid umfasst, und

die dotierte Schicht mit einem Gruppe-V-Dotierstoff dotiert ist.


 
2. Pholtovoltaikvorrichtung gemäß Anspruch 1, wobei die Absorberschicht eine erste Oberfläche (162) nächstliegend zu einer Energieseite der Photovoltaikvorrichtung aufweist, und wobei die mittlere Konzentration von Sauerstoff in der Absorberschicht, gemessen zwischen einer ersten Oberfläche der Absorberschicht und einem Mittelpunkt der Absorberschicht, kleiner als 3 x 1017 cm-3 ist.
 
3. Photovoltaikvorrichtung gemäß Anspruch 1 oder Anspruch 2, umfassend eine rückseitige Kontaktschicht (180) benachbart zu der Absorberschicht, wobei der rückseitige Kontakt im Wesentlichen frei von Kupfer ist.
 
4. Photovoltaikvorrichtung gemäß Anspruch 3, wobei die rückseitige Kontaktschicht stickstoffdotiertes Zinktellurid umfasst.
 
5. Photovoltaikvorrichtung gemäß Anspruch 4, umfassend eine Leiterschicht (190) benachbart zu der rückseitigen Kontaktschicht.
 
6. Photovoltaikvorrichtung gemäß einem der Ansprüche 1-5, wobei die Vielzahl von Halbleiterschichten auf einer Pufferschicht aufgebracht ist und die Absorberschicht eine erste Oberfläche benachbart zu der Pufferschicht aufweist.
 
7. Photovoltaikvorrichtung gemäß Anspruch 6, wobei:

ein Absorber-Puffer-Grenzflächenbereich benachbart zu der ersten Oberfläche der Absorberschicht gebildet ist;

in der Absorberschicht ein Prozentkonzentrationsprofil des Gruppe-V-Dotierstoffs mit einem Abstand von der ersten Oberfläche der Absorberschicht gebildet ist; und das Prozentkonzentrationsprofil von Arsen an der Absorber-Puffer-Grenzfläche von dem Prozentkonzentrationsprofil von Arsen in einem Massivteil der Absorberschicht verschieden ist.


 
8. Photovoltaikvorrichtung gemäß Anspruch 6 oder Anspruch 7, wobei die Pufferschicht intrinsisches Zinndioxid, Zinkmagnesiumoxid, Siliciumdioxid, Aluminiumoxid, Aluminiumnitrid oder eine Kombination davon umfasst.
 
9. Photovoltaikvorrichtung gemäß einem der Ansprüche 1-8, wobei der Gruppe-V-Dotierstoff Arsen ist.
 
10. Photovoltaikvorrichtung gemäß einem der Ansprüche 1-9, wobei ein Großteil der Absorberschicht aus der dotierten Schicht gebildet ist.
 
11. Photovoltaikvorrichtung gemäß einem der Ansprüche 1-10, wobei die Absorberschicht eine Dicke von zwischen etwa 0,5 µm und etwa 10 µm aufweist.
 
12. Photovoltaikvorrichtung gemäß einem der Ansprüche 1-11, wobei der Gruppe-V-Dotierstoff Arsen, Phosphor, Antimon oder eine Kombination davon umfasst.
 
13. Photovoltaikvorrichtung gemäß einem der Ansprüche 1-12, wobei die Absorberschicht einen Dreistoff aus Cadmium, Selen und Tellur umfasst.
 
14. Photovoltaikvorrichtung gemäß einem der Ansprüche 1-13, wobei die Absorberschicht mehr als etwa 0 Atomprozent und weniger als etwa 20 Atomprozent Selen im Vergleich zu Cadmium umfasst.
 
15. Photovoltaikvorrichtung gemäß einem der Ansprüche 1-14, wobei die mittlere Konzentration von Sauerstoff in der Absorberschicht, gemessen zwischen einer ersten Oberfläche der Absorberschicht und einem Mittelpunkt der Absorberschicht, kleiner als 3 x 1017 cm-3 ist.
 


Revendications

1. Dispositif photovoltaïque comprenant :

une couche tampon (150) ayant une première surface (152) tournée vers un côté énergie du dispositif photovoltaïque et une deuxième surface (154) tournée vers un côté opposé du dispositif photovoltaïque ; et

une couche d'absorbeur (160) disposée sur la deuxième surface de la couche tampon, dans lequel :

la couche d'absorbeur comprend du cadmium, du sélénium et du tellure, et

une teneur totale du dopant du groupe V dans la couche d'absorbeur est supérieure à 0 % et inférieure à 0,1 %,

la couche d'absorbeur est constituée d'une pluralité de couches semi-conductrices,

la pluralité de couches semi-conductrices comprend une couche dopée comprenant du séléniure de cadmium ou du tellurure de cadmium, et

la couche dopée est dopée avec un dopant du groupe V.


 
2. Dispositif photovoltaïque de la revendication 1, dans lequel la couche d'absorbeur a une première surface (162) la plus proche d'un côté énergie du dispositif photovoltaïque, et dans lequel une concentration moyenne d'oxygène dans la couche d'absorbeur mesurée entre une première surface de la couche d'absorbeur et un milieu de la couche d'absorbeur est inférieure à 3×1017 cm-3.
 
3. Dispositif photovoltaïque de la revendication 1 ou la revendication 2, comprenant une couche de contact arrière (180) adjacente à la couche d'absorbeur, le contact arrière étant sensiblement dépourvu de cuivre.
 
4. Dispositif photovoltaïque de la revendication 3, dans lequel la couche de contact arrière comprend du tellurure de zinc dopé à l'azote.
 
5. Dispositif photovoltaïque de la revendication 4, comprenant une couche conductrice (190) adjacente à la couche de contact arrière.
 
6. Dispositif photovoltaïque de l'une quelconque des revendications 1 à 5, dans lequel la pluralité de couches semi-conductrices sont déposées sur une couche tampon, et la couche d'absorbeur a une première surface adjacente à la couche tampon.
 
7. Dispositif photovoltaïque de la revendication 6, dans lequel :

une région d'interface absorbeur-tampon est formée au voisinage de la première surface de la couche d'absorbeur ;

un profil de pourcentage de concentration du dopant du groupe V est formé dans la couche d'absorbeur avec la distance depuis la première surface de la couche d'absorbeur ; et

le profil de pourcentage de concentration d'arsenic à l'interface absorbeur-tampon diffère du profil de pourcentage de concentration d'arsenic dans une partie volumique de la couche d'absorbeur.


 
8. Dispositif photovoltaïque de la revendication 6 ou la revendication 7, dans lequel la couche tampon comprend du dioxyde d'étain intrinsèque, de l'oxyde de zinc et de magnésium, du dioxyde de silicium, de l'oxyde d'aluminium, du nitrure d'aluminium, ou une combinaison de ceux-ci.
 
9. Dispositif photovoltaïque de l'une quelconque des revendications 1 à 8, dans lequel le dopant du groupe V est l'arsenic.
 
10. Dispositif photovoltaïque de l'une quelconque des revendications 1 à 9, dans lequel une majorité de la couche d'absorbeur est formée à partir de la couche dopée.
 
11. Dispositif photovoltaïque de l'une quelconque des revendications 1 à 10, dans lequel la couche d'absorbeur a une épaisseur comprise entre environ 0,5 µm et environ 10 µm.
 
12. Dispositif photovoltaïque de l'une quelconque des revendications 1 à 11, dans lequel le dopant du groupe V comprend de l'arsenic, du phosphore, de l'antimoine, ou une combinaison de ceux-ci.
 
13. Dispositif photovoltaïque de l'une quelconque des revendications 1 à 12, dans lequel la couche d'absorbeur comprend un composé ternaire de cadmium, sélénium et tellure.
 
14. Dispositif photovoltaïque de l'une quelconque des revendications 1 à 13, dans lequel la couche d'absorbeur comprend plus d'environ 0 pour cent en atomes et moins d'environ 20 pour cent en atomes de sélénium par rapport au cadmium.
 
15. Dispositif photovoltaïque de l'une quelconque des revendications 1 à 14, dans lequel une concentration moyenne d'oxygène dans la couche d'absorbeur mesurée entre une première surface de la couche d'absorbeur et un milieu de la couche d'absorbeur est inférieure à 3×1017 cm-3.
 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description