(19)
(11)EP 3 587 327 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
14.10.2020 Bulletin 2020/42

(21)Application number: 18305826.2

(22)Date of filing:  28.06.2018
(51)International Patent Classification (IPC): 
B66B 5/18(2006.01)

(54)

ELECTRONIC SAFETY ACTUATOR ELECTROMAGNETIC GUIDANCE

ELEKTROMAGNETISCHE FÜHRUNG FÜR ELEKTRONISCHEN SICHERHEITSAUSLÖSER

GUIDAGE ÉLECTROMAGNÉTIQUE D'ACTIONNEUR DE SÉCURITÉ ÉLECTRONIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
01.01.2020 Bulletin 2020/01

(73)Proprietor: Otis Elevator Company
Farmington, Connecticut 06032 (US)

(72)Inventors:
  • Fauconnet Aurelien
    Gien, 45500 (FR)
  • Sirigu Gerard
    Gien, 45500 (FR)

(74)Representative: Schmitt-Nilson Schraud Waibel Wohlfrom Patentanwälte Partnerschaft mbB 
Pelkovenstraße 143
80992 München
80992 München (DE)


(56)References cited: : 
US-A1- 2012 043 167
US-A1- 2017 066 627
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The following description relates to elevator systems and, more specifically, to elevator systems having electronic safety actuators (ESAs).

    [0002] Elevator systems generally make use of governor systems to monitor the rate of descent of an elevator car and to engage safety devices in an event the elevator car descends at an excessive speed. A typical governor system would be responsive to elevator car speeds through couplings, such as a governor sheave coupled to a rope that is attached to an elevator car, whereby the rope transmits elevator car speed to the governor. When a predetermined speed is exceeded, conventional actuators, such as centrifugal flyweights, trigger a first set of switches. If the car speed continues to increase, additional mechanics engage to impede elevator car movement.

    [0003] US 2017/0066627 A1 shows a housing assembly for a safety actuation device, the assembly including a mounting plate, a first channel wall and a second channel wall extending substantially perpendicular from the mounting plate, the first channel wall including a first channel wall interior surface, and the second channel wall including a second channel wall interior surface, wherein the first channel wall is positioned substantially parallel to the second channel wall to form a channel therebetween, and at least one guide device affixed to the first channel wall interior surface and the second channel wall interior surface.

    [0004] In modern elevator systems, ESAs may replace governor systems and operate by electronically engaging safeties. The safeties are normally maintained at a distance from guiderail blades so that the elevator cars can move freely. This distance maintenance may be provided by gibs or rollers. While the gibs or rollers can provide guidance for the ESAs, they are prone to wear over time and may produce undesirable noise and vibration.

    [0005] According to an aspect of the disclosure, an elevator car is provided and includes a car frame which translates along a guide rail during ascents or descents, a safety disposed along the car frame to selectively engage with the guide rail to selectively permit vertical elevator car movement, an electronic safety actuator (ESA) and a control system. The ESA is configured to actuate the safety and includes an ESA body secured to the car frame with horizontal maneuverability and defining a groove through which the guide rail translates during the vertical elevator car movement, a magnetic guide operably disposed within the groove to exert magnetic force on the guide rail and a sensor disposed within the groove to sense horizontal distance between the guide rail and corresponding portions of the ESA body. The control system is configured to control the magnetic guide to exert a magnetic force in accordance with reading of the sensor to maneuver the ESA body horizontally.

    [0006] In accordance with additional embodiments, the car frame, the safety and the ESA are provided in sets on opposite elevator car sides.

    [0007] In accordance with additional embodiments, the ESA includes a linkage coupled to the ESA body and the safety for actuation of the safety.

    [0008] In accordance with additional embodiments, the ESA body defines horizontal grooves through which a fastener extends into the car frame.

    [0009] In accordance with additional embodiments, the magnetic guide includes one or more electro-magnets respectively disposed in at least one of an upper portion of the groove, a lower portion of the groove and a middle portion of the groove.

    [0010] In accordance with additional embodiments, the magnetic guide further includes one or more permanent magnets respectively disposed to magnetically oppose the one or more electro-magnets.

    [0011] In accordance with additional embodiments, the magnetic guide includes one or more electro-magnets disposed in an upper portion of the groove and one or more electro-magnets disposed in a lower portion of the groove.

    [0012] In accordance with additional embodiments, the magnetic guide includes one or more permanent magnets disposed in the upper portion of the groove to magnetically oppose the one or more permanent magnets therein and one or more permanent magnets disposed in the lower portion of the groove to magnetically oppose the one or more permanent magnets therein.

    [0013] In accordance with additional embodiments, the magnetic guide includes a first pair of magnetic guides disposed on opposite sides of an upper portion of the groove and a second pair of magnetic guides disposed on opposite sides of a lower portion of the groove.

    [0014] In accordance with additional embodiments, the control system is configured to control the magnetic guide to increase the magnetic force when the readings of the sensor are indicative of the horizontal distance decreasing. According to an aspect of the disclosure, an electronic safety actuator (ESA) is provided for actuating an elevator car safety. The ESA includes an ESA body vertically secured to the elevator car with horizontal maneuverability, the ESA body defining a groove through which a guide rail, along which the elevator car moves vertically, is translatable, a magnetic guide operably disposed within the groove to exert magnetic force on the guide rail, a sensor disposed within the groove to sense horizontal distance between the guide rail and corresponding portions of the ESA body and a control system configured to control the magnetic guide to exert the magnetic force in accordance with readings of the sensor to maneuver the ESA body horizontally.

    [0015] In accordance with additional embodiments, the ESA body is formed to define horizontal grooves through which a fastener extends.

    [0016] In accordance with additional embodiments, the magnetic guide includes one or more electro-magnets respectively disposed in at least one of an upper portion of the groove, a lower portion of the groove and a middle portion of the groove.

    [0017] In accordance with additional embodiments, the magnetic guide further includes one or more permanent magnets respectively disposed to magnetically oppose the one or more electro-magnets.

    [0018] In accordance with additional embodiments, the magnetic guide includes one or more electro-magnets disposed in an upper portion of the groove and one or more electro-magnets disposed in a lower portion of the groove.

    [0019] In accordance with additional embodiments, the magnetic guide includes one or more permanent magnets disposed in the upper portion of the groove to magnetically oppose the one or more permanent magnets therein and one or more permanent magnets disposed in the lower portion of the groove to magnetically oppose the one or more permanent magnets therein.

    [0020] In accordance with additional embodiments, the magnetic guide includes a first pair of magnetic guides disposed on opposite sides of an upper portion of the groove and a second pair of magnetic guides disposed on opposite sides of a lower portion of the groove.

    [0021] In accordance with additional embodiments, the control system is configured to control the magnetic guide to increase the magnetic force when the readings of the sensor are indicative of the horizontal distance decreasing.

    [0022] According to an aspect of the disclosure, a method of operating an electronic safety actuator (ESA) of an elevator car is provided. The method includes disposing a guide rail for translation within a groove defined in an ESA body, which is vertically secured to the elevator car with horizontal maneuverability, generating magnetic forces that are directed horizontally to maintain respective distances between the guide rail and complementary surfaces of the ESA body, sensing the respective distances and controlling the generating of the magnetic forces to maneuver the ESA body horizontally to maintain the respective distances.

    [0023] In accordance with additional embodiments, the generating of the magnetic forces includes at least one of generating repulsive magnetic forces in opposite horizontal directions at an upper portion of the groove, generating repulsive magnetic forces in opposite horizontal directions at a lower portion of the groove and generating repulsive magnetic forces in opposite horizontal directions at a middle portion of the groove.

    [0024] These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.

    [0025] The subject matter, which is regarded as the disclosure, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages of the disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:

    FIG. 1 is a perspective view of an elevator system in accordance with embodiments;

    FIG. 2 is a perspective view of an elevator system with electronically actuated safeties in accordance with embodiments;

    FIG. 3 is a perspective view of a safety and an electronic safety actuator (ESA) associated with the safety in accordance with embodiments;

    FIG. 4 is an elevational view of the safety and the ESA of FIG. 3;

    FIG. 5 is a perspective view of a portion of the ESA of FIG. 3;

    FIG. 6 is an axial view of the ESA of FIG. 3;

    FIG. 7 is a schematic diagram of a control system in accordance with embodiments; and

    FIG. 8 is a flow diagram illustrating a method of operating an elevator system in accordance with embodiments.



    [0026] These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.

    [0027] As will be described below, generally reduced-contact levitation of an ESA body relative to guide rails is provided by the control of electro-magnetic forces by electro-magnetic actuators (EMAs). One or more position sensors (e.g., inductive sensors) are used to determine a distance between each EMA and the corresponding guide rail and the control system modifies / modulates the force of each EMA accordingly in order to avoid an incident in which any ESA body touches the guide rail and to guarantee that a certain amount of clearance is maintained.

    [0028] FIG. 1 is a perspective view of an elevator system 101 including an elevator car 103, a counterweight 105, a roping 107, a guide rail 109, a machine 111, a position encoder 113, and a controller 115. The elevator car 103 and counterweight 105 are connected to each other by the roping 107. The roping 107 may include or be configured as, for example, ropes, steel cables, and/or coated-steel belts. The counterweight 105 is configured to balance a load of the elevator car 103 and is configured to facilitate movement of the elevator car 103 concurrently and in an opposite direction with respect to the counterweight 105 within an elevator shaft 117 and along the guide rail 109.

    [0029] The roping 107 engages the machine 111, which is part of an overhead structure of the elevator system 101. The machine 111 is configured to control movement between the elevator car 103 and the counterweight 105. The position encoder 113 may be mounted on an upper sheave of a speed-governor system 119 and may be configured to provide position signals related to a position of the elevator car 103 within the elevator shaft 117. In other embodiments, the position encoder 113 may be directly mounted to a moving component of the machine 111, or may be located in other positions and/or configurations as known in the art.

    [0030] The controller 115 is located, as shown, in a controller room 121 of the elevator shaft 117 and is configured to control the operation of the elevator system 101, and particularly the elevator car 103. For example, the controller 115 may provide drive signals to the machine 111 to control the acceleration, deceleration, leveling, stopping, etc. of the elevator car 103. The controller 115 may also be configured to receive position signals from the position encoder 113. When moving up or down within the elevator shaft 117 along guide rail 109, the elevator car 103 may stop at one or more landings 125 as controlled by the controller 115. Although shown in a controller room 121, those of skill in the art will appreciate that the controller 115 can be located and/or configured in other locations or positions within the elevator system 101.

    [0031] The machine 111 may include a motor or similar driving mechanism. In accordance with embodiments of the disclosure, the machine 111 is configured to include an electrically driven motor. The power supply for the motor may be any power source, including a power grid, which, in combination with other components, is supplied to the motor.

    [0032] Although shown and described with a roping system, elevator systems that employ other methods and mechanisms of moving an elevator car within an elevator shaft, such as hydraulic and/or ropeless elevators, may employ embodiments of the present disclosure. FIG. 1 is merely a non-limiting example presented for illustrative and explanatory purposes.

    [0033] With reference to FIG. 2, an elevator car 201 is provided and may be generally configured in a similar manner as the elevator car 103 of the elevator system 101 of FIG. 1. Thus, the elevator car 201 includes a platform 202, a ceiling 203 and car frame structures 204 and 205 on either side of the elevator car 201 to maintain the ceiling 203 above the platform 202. In one embodiment, any number or position of car frame structures 204 and 205 may be employed. The elevator car 201 moves from one floor to another in a building or structure along guide rails 210. In most instances, the elevator car 201 has a body, which includes the platform 202, the ceiling 203 and the car frame structures 204 and 205 and is configured to accommodate one or more passengers and baggage. The elevator car 201 may also include doors which open and close to permit entry and exit from the interior and a control panel that allows the passengers to input commands.

    [0034] In an event the elevator car 201 begins to ascend or descend too quickly, the elevator car 201 also has safety features that can be engaged to slow the elevator car 201 down or to stop it altogether.

    [0035] With continued reference to FIG. 2 and with additional reference to FIGS. 3-6, the safety features include safeties 230 and electrical safety actuators (ESAs) 240.

    [0036] The safeties 230 may each be affixed to the first and second car frame structures 204 and 205 at the opposite sides of the elevator car 201 (although it is to be understood that the safeties 230 can be affixed to a same side or to adjacent sides of the elevator car 201 and that multiple safeties 230 can be affixed to a particular side of the elevator car 201) so that each safety 230 is at least proximate to a corresponding guide rail 210. Each safety 230 is configured engage with the corresponding guide rail 210 or to remain disengaged from the corresponding guide rail 210. When it is engaged, the safety 230 impedes movement of the elevator car 201 along the corresponding guide rail 210 and, when disengaged, the safety 230 permits movement of the elevator car 201 along the corresponding guide rail 210. The safeties 230 are normally disengaged.

    [0037] The safeties 230 each include a safety body 231, a channel 232 that is defined through the safety body 231 and one or more wedge elements 233. When installed, the corresponding guide rail 210 extends into and through the channel 232 so that the guide rail 210 can translate within the channel 232 as the elevator car 201 ascends or descends. The wedge elements 233 are disposed in or proximate to the channel 232. When the safety 230 occupies the unengaged position, the wedge elements 233 do not engage or at least do not forcefully engage with the portion of the guide rail 210 in the channel 222 via a safety roller or wedge 251 of an ESAtie rod 250 (to be described further below). When the safety 230 occupies the engaged position, the wedge elements 233 engage with the portion of the guide rail 210 in a forceful manner via the safety roller or wedge 251 that is sufficient to impede or prevent the elevator car 201 from ascending or descending. Such engagement is typically frictional and sufficient to slow or stop the elevator car 201 (particularly when each safety 230 occupies the engaged position).

    [0038] While the wedge elements 233 can be provided as one or more wedge elements 233, the following description will relate only to the case in which a single wedge element 233 is provided in each safety 230. This is done for purposes of clarity and brevity and is not intended to otherwise limit the scope of the disclosure.

    [0039] The ESAs 240 are respectively coupled to corresponding safeties 230 by the ESA tie rods 250. Each ESA tie rod 250 includes an elongate member 252, an ESA pad 253 at a first end of the elongate member 252 and the safety roller or wedge 251 at a second end of the elongate member. Each ESA 240 includes one or more electromagnetic actuators that are configured to deploy the ESA pad 253 toward the corresponding guide rail 210 when the elevator car 201 ascends or descends excessively fast. As shown in FIG. 4, the deployed ESA pad 253 becomes electromagnetically secured to the corresponding guide rail 210 and causes the ESA tie rod 250 to become elevated relative to the safety 230 and the ESA 240. The results in the safety roller or wedge 251 becoming frictionally wedged between the wedge element 233 and the proximal portion of the guide rail 210. The frictional contact between the wedge element 233, the safety roller or wedge 251 and the corresponding guide rail 210 is sufficient to slow or brake the elevator car 201.

    [0040] Each ESA 240 is thus configured to actuate the corresponding safety 230 by deploying the ESA pad 253 toward the corresponding guide rail 210 and includes an ESA body 241. The ESA body 241 is secured to the corresponding one of the first and second car frame structures 204 and 205. The securing of the ESA body 241 is accomplished so as to prevent vertical movement of the ESA body 241 relative to the corresponding one of the first and second car frame structures 204 and 205 while allowing for lateral or horizontal movement of the ESA body 241 relative to the corresponding one of the first and second car frame structures 204 and 205. That is, the ESA body 241 is vertically secured to the corresponding one of the first and second car frame structures 204 and 205 with lateral or horizontal maneuverability.

    [0041] As shown in FIG. 5 and, in accordance with embodiments, the lateral or horizontal maneuverability is provided by the ESA body 241 being formed to define lateral or horizontal grooves 242. Fasteners 243 extend through these lateral or horizontal grooves 242 and are tightened onto the corresponding one of the first and second car frame structures 204 and 205 such that the ESA body 241 can move laterally or horizontally in one direction until the fasteners 243 abut first ends of the lateral or horizontal grooves 242 and in an opposite direction until fasteners 243 abut second ends of the lateral or horizontal grooves 242.

    [0042] As shown in FIGS. 4-6 and, in accordance with embodiments, the ESA body 241 is further formed to define a guide rail groove 244, which generally aligns with the channel 232 of the corresponding safety 230. The guide rail groove 244 extends along a substantial length of the ESA body 241 and is receptive of the guide corresponding guide rail 210 (see FIG. 3). The guide rail groove 244 has an upper portion 245, a lower portion 246, a middle portion 2456 between the upper portion 245 and the lower portion 246, a first side 247 and a second side 248. A horizontal distance between the first side 247 and the second side 248 is greater than a thickness of the corresponding guide rail 210 such that the corresponding guide rail 210 can translate through the guide rail groove 244 without coming into contact with either the first side 247 or the second side 248.

    [0043] With continued reference to FIGS. 3-6 and with additional reference to FIG. 7, each ESA 240 further includes magnetic guides 260, sensors 270 and a control system 280 (see FIG. 7). The magnetic guides 260 are operably disposed within the guide rail groove 244 to exert magnetic forces on the corresponding guide rail 210. The sensors 270 are operably disposed within the guide rail groove 244 to sense lateral or horizontal distances between the corresponding guide rail 210 and the first sand second sides 247 and 248 of the ESA body 241. The control system 280 is configured to control the magnetic guides 260 to exert the magnetic forces in accordance with readings of the sensors 270 to maneuver the ESA body 241 in lateral or horizontal directions to thereby maintain the lateral or horizontal distances between the corresponding guide rail 210 and the first sand second sides 247 and 248 of the ESA body 241.

    [0044] The magnetic guides 260 may include one or more electro-magnets (261-264EM in FIG. 4) respectively disposed in at least one of the upper portion 245 of the guide rail groove 244, the lower portion 246 of the guide rail groove 244 and the middle portion 2456 of the guide rail groove 244. In some embodiments, the magnetic guides 260 may further include one or more permanent magnets (261-264P in FIG. 4) respectively disposed to magnetically oppose the one or more electro-magnets (261-264EM in FIG. 4).

    [0045] The magnetic guides 260 may be provided as first and second sets of magnetic guides. Alternatively, a single set of magnetic guides 260, or two or more sets of magnetic guides may be employed.

    [0046] In an exemplary case, a first set of magnetic guides may be operably disposed within the upper portion 245 of the guide rail groove 244 and include an upper, first electro-magnetic guide 261EM that is disposed on the first side 247 and an upper, second electro-magnetic guide 262EM that is disposed on the second side 248. A second set of magnetic guides may be operably disposed within the lower portion 246 of the guide rail groove 244 and include a lower, first electro-magnetic guide 263EM that is disposed on the first side 247 and a lower, second electro-magnetic guide 264EM that is disposed on the second side 248. Each magnetic guide 260 may include a ferromagnetic core 2601 and windings 2602 that are energizable to generate the magnetic force.

    [0047] The sensors 270 may be provided as an upper sensor 271 that is operably disposed within the upper portion 245 of the guide rail groove 244 and a lower sensors 272 that is operably disposed within the lower portion 246 of the guide rail groove 244.

    [0048] In accordance with further embodiments, additional sensors 270 could be provided as well. For example, two upper sensors 271 and two lower sensors 272 could be provided on either side of the guide rail groove 244 for additional sensing capability or redundancy.

    [0049] The upper, first electro-magnetic guide 261EM can exert a repulsive magnetic force toward the corresponding guide rail 210, which can be directed and magnified so as to maintain a distance between the corresponding guide rail 210 and the first side 247 in the upper portion 245. The upper, second electro-magnetic guide 262EM can exert a repulsive magnetic force toward the corresponding guide rail 210, which can be directed and magnified so as to maintain a distance between the corresponding guide rail 210 and the second side 248 in the upper portion 245. Thus, the upper, first electro-magnetic guide 261EM and the upper, second electro-magnetic guide 262EM cooperatively operate to maintain the corresponding guide rail 210 substantially close to a center portion between the first and second sides 247 and 248 in the upper portion 245.

    [0050] The lower, first electro-magnetic guide 263EM can exert a repulsive magnetic force toward the corresponding guide rail 210, which can be directed and magnified so as to maintain a distance between the corresponding guide rail 210 and the first side 247 in the lower portion 246. The lower, second electro-magnetic guide 264EM can exert a repulsive magnetic force toward the corresponding guide rail 210, which can be directed and magnified so as to maintain a distance between the corresponding guide rail 210 and the second side 248 in the lower portion 246. Thus, the lower, first electro-magnetic guide 263 and the lower, second electro-magnetic guide 264EM cooperatively operate to maintain the corresponding guide rail 210 substantially close to a center portion between the first and second sides 247 and 248 in the lower portion 246.

    [0051] In accordance with further embodiments, fewer or additional magnetic guides 260 could be provided. For example, one or more electro-magnetic guides could be operably disposed in the middle portion 2456 of the guide rail groove 244 in a similar manner as described above. As another example, the upper, first electro-magnetic guide 261EM could be paired with only the lower, second electro-magnetic guide 264EM. In such cases, the upper, first electro-magnetic guide 261EM and the lower, second electro-magnetic guide 264EM act in concert with one another to generate repulsive and/or attractive magnetic forces that maintain the corresponding guide rail 210 substantially close to a center portion between the first and second sides 247 and 248 in the upper and lower portions 245 and 246.

    [0052] To the extent that one or more of the magnetic guides 260 is a permanent magnet, the permanent magnet can be operably disposed to oppose the magnetic force applied to the corresponding guide rail 210 by one or more proximal electro-magnetic guides. For example, the upper, first electro-magnetic guide 261EM could be opposed by the upper, second permanent magnetic guide 262P and the lower, first electro-magnetic guide 263EM could be opposed by the lower, second permanent magnetic guide 264P. In such cases, the upper, first electro-magnetic guide 261EM and the lower, first electro-magnetic guide 263EM act in concert against the opposing forces of the upper, second permanent magnetic guide 262P and the lower, second permanent magnetic guide 264P to generate repulsive magnetic forces that maintain the corresponding guide rail 210 substantially close to a center portion between the first and second sides 247 and 248 in the upper and lower portions 245 and 246.

    [0053] As shown in FIG. 7, the control system 280 includes a processing unit 281, a memory unit 282, a networking unit 283, by which the processing unit 281 communicates with the sensors 270, and a servo control unit 284, by which the processing unit 281 instructs and controls operations of the magnetic guides 260. The memory unit 282 has executable instructions stored thereon, which are readable and executable by the processing unit 281. When the executable instructions are read and executed by the processing unit 281, the executable instructions cause the processing unit 281 to receive readings from the sensors 270 and to control the magnetic guides 260 to exert the magnetic forces toward the corresponding guide rail 210 in accordance with readings of the sensors 270 to maneuver the ESA body 241 in lateral or horizontal directions to thereby maintain the lateral or horizontal distances between the corresponding guide rail 210 and the first sand second sides 247 and 248 of the ESA body 241.

    [0054] For example, in an event that the processing unit 281 determines from the readings of the upper sensor 271 that the corresponding guide rail 210 has drifted toward the first side 247 such that the distance between the corresponding guide rail 210 and the first side 247 is less than a predefined distance threshold, processing unit 281 will effectively cause the upper, first magnetic guide 261 to increase the repulsive magnetic force exerted onto the corresponding guide rail 210 as compared to the repulsive force exerted onto the corresponding guide rail 210 by the upper, second magnetic guide 262. This will have the effect of driving the ESA body 241 in the lateral or horizontal directions along the lateral or horizontal grooves 242 toward re-centering the corresponding guide rail 210 in the upper portion 245 of the guide rail groove 244. Similarly, in an event that the processing unit 281 determines from the readings of the upper sensor 271 that the corresponding guide rail 210 has drifted toward the second side 248 such that the distance between the corresponding guide rail 210 and the second side 248 is less than a predefined distance threshold, processing unit 281 will effectively cause the upper, second magnetic guide 262 to increase the repulsive magnetic force exerted onto the corresponding guide rail 210 as compared to the repulsive force exerted onto the corresponding guide rail 210 by the upper, first magnetic guide 261. Again, this will have the effect of driving the ESA body 241 in the lateral or horizontal directions along the lateral or horizontal grooves 242 toward re-centering the corresponding guide rail 210 in the upper portion 245 of the guide rail groove 244.

    [0055] With reference to FIG. 8, a method of operating an ESA of an elevator car is provided. As shown in FIG. 8, the method includes vertically securing an ESA body to the elevator car with lateral or horizontal maneuverability (801) and disposing a guide rail for translation within a groove defined in an ESA body (802). The method further includes generating magnetic forces that are directed laterally or horizontally to maintain respective horizontal distances between the guide rail and complementary surfaces of the ESA body (803), sensing the respective distances (804), determining whether the respective distances have decreased (805) and, in an event the respective distances have decreased, controlling the generating of the magnetic forces to maneuver the ESA body laterally to reset the respective horizontal distances (806).

    [0056] Technical effects and benefits of the present disclosure are the elimination of the wear and tear and the noise or vibration of gibs or rollers that are normally used to maintain ESA clearance from guide rails. In addition, the ESA guidance system can be independent of elevator speed and may allow for increased high speed displacement (e.g., in excess of 20 m/s).

    [0057] While the disclosure is provided in detail in connection with only a limited number of embodiments, it should be readily understood that the disclosure is not limited to such disclosed embodiments. Additionally, while various embodiments of the disclosure have been described, it is to be understood that the exemplary embodiment(s) may include only some of the described exemplary aspects. Accordingly, the disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.


    Claims

    1. An electronic safety actuator (240) for actuating an elevator car safety (230), the electronic safety actuator (240) comprising:

    an electronic safety actuator body (241) vertically secured to the elevator car (201) with horizontal maneuverability,

    the electronic safety actuator body (241) defining a groove (244) through which a guide rail (210), along which the elevator car (201) moves vertically, is translatable;

    characterized by

    a magnetic guide (260) operably disposed within the groove (244) to exert magnetic force on the guide rail (210);

    a sensor (270) disposed within the groove (244) to sense horizontal distance between the guide rail (210) and corresponding portions of the electronic safety actuator body (241); and

    a control system (280) configured to control the magnetic guide (260) to exert the magnetic force in accordance with readings of the sensor (270) to maneuver the electronic safety actuator body (241) horizontally.


     
    2. The electronic safety actuator (240) according to claim 1, wherein the electronic safety actuator body (241) is formed to define horizontal grooves (242) through which a fastener (243) extends.
     
    3. The electronic safety actuator (240) according to claim 1 or 2, wherein the magnetic guide (260) comprises one or more electro-magnets (261-264EM) respectively disposed in at least one of an upper portion (245) of the groove (244), a lower portion (246) of the groove (244) and a middle portion (2456) of the groove (244).
     
    4. The electronic safety actuator (240) according to any of claims 1 to 3, wherein the magnetic guide (260) further comprises one or more permanent magnets (261-264P) respectively disposed to magnetically oppose the one or more electro-magnets (261-264EM).
     
    5. The electronic safety actuator (240) according to any of claims 1 to 4, wherein the magnetic guide (260) comprises:

    one or more electro-magnets (261-264EM) disposed in an upper portion (245) of the groove (244); and

    one or more electro-magnets (261-264EM) disposed in a lower portion (246) of the groove (244).


     
    6. The electronic safety actuator (240) according to any of claims 1 to 5, wherein the magnetic guide (260) comprises:

    one or more permanent magnets (261-264P) disposed in the upper portion (245) of the groove (244) to magnetically oppose the one or more permanent magnets (261-264P) therein; and

    one or more permanent magnets (261-264P) disposed in the lower portion (246) of the groove (244) to magnetically oppose the one or more permanent magnets (261-264P) therein.


     
    7. The electronic safety actuator (240) according to any of claims 1 to 6, wherein the magnetic guide (260) comprises:

    a first pair of magnetic guides (260) disposed on opposite sides of an upper portion (245) of the groove (244); and

    a second pair of magnetic guides (260) disposed on opposite sides of a lower portion (246) of the groove (244).


     
    8. The electronic safety actuator (240) according to any of claims 1 to 7, wherein the control system (280) is configured to control the magnetic guide (260) to increase the magnetic force when the readings of the sensor (270) are indicative of the horizontal distance decreasing.

     
    9. An elevator car (201) comprising:

    a car frame (204, 205) which translates along a guide rail (210) during ascents or descents;

    a safety (230) disposed along the car frame (204, 205) to selectively engage with the guide rail (210) to selectively permit vertical elevator car movement;

    an electronic safety actuator (240) according to any of claims 1 to 8, wherein the electronic safety actuator (240) is configured to actuate the safety (230) and comprises:

    an electronic safety actuator body (241) secured to the car frame with horizontal maneuverability and defining a groove (244) through which the guide rail (210) translates during the vertical elevator car movement;

    a magnetic guide (260) operably disposed within the groove (244) to exert magnetic force on the guide rail (210); and

    a sensor (270) disposed within the groove (244) to sense horizontal distance between the guide rail (210) and corresponding portions of the electronic safety actuator body (241); and

    a control system (280) configured to control the magnetic guide (260) to exert a magnetic force in accordance with reading of the sensor (270) to maneuver the electronic safety actuator body (241) horizontally.


     
    10. The elevator car according to claim 9, wherein the car frame (204, 205), the safety (230) and the electronic safety actuator (240) are provided in sets on opposite elevator car sides.
     
    11. The elevator car according to claim 9 or 10, wherein the electronic safety actuator (240) comprises a linkage coupled to the electronic safety actuator body (241) and the safety (230) for actuation of the safety (230).
     
    12. A method of operating an electronic safety actuator (240) of an elevator car (201), the method comprising:

    disposing a guide rail (210) for translation within a groove (244) defined in an electronic safety actuator body (241), which is vertically secured to the elevator car (201) with horizontal maneuverability;

    generating magnetic forces that are directed horizontally to maintain respective distances between the guide rail (210) and complementary surfaces of the electronic safety actuator body (241);

    sensing the respective distances; and

    controlling the generating of the magnetic forces to maneuver the electronic safety actuator body (241) horizontally to maintain the respective distances.


     
    13. The method according to claim 12, wherein the generating of the magnetic forces comprises at least one of:

    generating repulsive magnetic forces in opposite horizontal directions at an upper portion (245) of the groove (244);

    generating repulsive magnetic forces in opposite horizontal directions at a lower portion (246) of the groove (244); and

    generating repulsive magnetic forces in opposite horizontal directions at a middle portion (2456) of the groove (244).


     


    Ansprüche

    1. Elektronischer Sicherheitsauslöser (240) zum Betätigen einer Aufzugskabinensicherung (230), wobei der elektronische Sicherheitsauslöser (240) Folgendes umfasst:

    einen Körper (241) des elektronischen Sicherheitsauslösers, der mit einer horizontalen Manövrierbarkeit vertikal an der Aufzugskabine (201) gesichert ist,

    wobei der Körper (241) des elektronischen Sicherheitsauslösers eine Nut (244) definiert, durch die eine Führungsschiene (210), entlang der sich die Aufzugskabine (201) vertikal bewegt, übersetzt werden kann;

    gekennzeichnet durch

    eine magnetische Führung (260), die betriebsmäßig in der Nut (244) angeordnet ist, um eine Magnetkraft auf die Führungsschiene (210) auszuüben;

    einen Sensor (270), der in der Nut (244) angeordnet ist, um eine horizontale Entfernung zwischen der Führungsschiene (210) und entsprechenden Abschnitten des Körpers (241) des elektronischen Sicherheitsauslösers zu erfassen; und

    ein Steuersystem (280), das konfiguriert ist, um die magnetische Führung (260) zu steuern, um die Magnetkraft entsprechend Messwerten des Sensors (270) auszuüben, um den Körper (241) des elektronischen Sicherheitsauslösers horizontal zu manövrieren.


     
    2. Elektronischer Sicherheitsauslöser (240) nach Anspruch 1, wobei der Körper (241) des elektronischen Sicherheitsauslösers gebildet ist, um horizontale Nuten (242) zu definieren, durch die sich ein Befestigungsmittel (243) erstreckt.
     
    3. Elektronischer Sicherheitsauslöser (240) nach Anspruch 1 oder 2, wobei die magnetische Führung (260) einen oder mehrere Elektromagneten (261-264EM) umfasst, die jeweils in zumindest einem von einem oberen Abschnitt (245) der Nut (244), einem unteren Abschnitt (246) der Nut (244) und einem mittleren Abschnitt (2456) der Nut (244) angeordnet sind.
     
    4. Elektronischer Sicherheitsauslöser (240) nach einem der Ansprüche 1 bis 3, wobei die magnetische Führung (260) ferner einen oder mehrere Dauermagneten (261-264P) umfasst, die jeweils angeordnet sind, um dem einen oder den mehreren Elektromagneten (261-264EM) magnetisch entgegenzuwirken.
     
    5. Elektronischer Sicherheitsauslöser (240) nach einem der Ansprüche 1 bis 4, wobei die magnetische Führung (260) Folgendes umfasst:

    einen oder mehrere Elektromagneten (261-264EM), die in einem oberen Abschnitt (245) der Nut (244) angeordnet sind; und

    einen oder mehrere Elektromagneten (261-264EM), die in einem unteren Abschnitt (246) der Nut (244) angeordnet sind.


     
    6. Elektronischer Sicherheitsauslöser (240) nach einem der Ansprüche 1 bis 5, wobei die magnetische Führung (260) Folgendes umfasst:

    einen oder mehrere Dauermagneten (261-264P), die in dem oberen Abschnitt (245) der Nut (244) angeordnet sind, um dem einen oder den mehreren Dauermagneten (261-264P) darin magnetisch entgegenzuwirken; und

    einen oder mehrere Dauermagneten (261-264P), die in dem unteren Abschnitt (246) der Nut (244) angeordnet sind, um dem einen oder den mehreren Dauermagneten (261-264P) darin magnetisch entgegenzuwirken.


     
    7. Elektronischer Sicherheitsauslöser (240) nach einem der Ansprüche 1 bis 6, wobei die magnetische Führung (260) Folgendes umfasst:

    ein erstes Paar von magnetischen Führungen (260), die auf gegenüberliegenden Seiten eines oberen Abschnitts (245) der Nut (244) angeordnet sind; und

    ein zweites Paar von magnetischen Führungen (260), die auf gegenüberliegenden Seiten eines unteren Abschnitts (246) der Nut (244) angeordnet sind.


     
    8. Elektronischer Sicherheitsauslöser (240) nach einem der Ansprüche 1 bis 7, wobei das Steuersystem (280) konfiguriert ist, um die magnetische Führung (260) zu steuern, um die Magnetkraft zu erhöhen, wenn die Messwerte des Sensors (270) angeben, dass die horizontale Entfernung abnimmt.
     
    9. Aufzugskabine (201), umfassend:

    einen Kabinenrahmen (204, 205), der während Auffahrten und Abfahrten entlang einer Führungsschiene (210) übersetzt wird;

    eine Sicherung (230), die entlang des Kabinenrahmens (204, 205) angeordnet ist, um selektiv in die Führungsschiene (210) einzugreifen, um selektiv eine vertikale Aufzugskabinenbewegung zu ermöglichen;

    einen elektronischen Sicherheitsauslöser (240) nach einem der Ansprüche 1 bis 8, wobei der elektronische Sicherheitsauslöser (240) konfiguriert ist, um die Sicherung (230) zu betätigen, und Folgendes umfasst:

    einen Körper (241) des elektronischen Sicherheitsauslösers, der mit einer horizontalen Manövrierbarkeit vertikal an dem Kabinenrahmen gesichert ist und eine Nut (244) definiert, durch welche die Führungsschiene (210) während der vertikalen Aufzugskabinenbewegung übersetzt wird;

    eine magnetische Führung (260), die betriebsmäßig in der Nut (244) angeordnet ist, um eine Magnetkraft auf die Führungsschiene (210) auszuüben; und

    einen Sensor (270), der in der Nut (244) angeordnet ist, um eine horizontale Entfernung zwischen der Führungsschiene (210) und entsprechenden Abschnitten des Körpers (241) des elektronischen Sicherheitsauslösers zu erfassen; und

    ein Steuersystem (280), das konfiguriert ist, um die Magnetführung (260) zu steuern, um eine Magnetkraft entsprechend einem Messwert des Sensors (270) auszuüben, um den Körper (241) des elektronischen Sicherheitsauslösers horizontal zu manövrieren.


     
    10. Aufzugskabine nach Anspruch 9, wobei der Kabinenrahmen (204, 205), die Sicherung (230) und der elektronische Sicherheitsauslöser (240) in Sätzen auf gegenüberliegenden Aufzugskabinenseiten bereitgestellt sind.
     
    11. Aufzugskabine nach Anspruch 9 oder 10, wobei der elektronische Sicherheitsauslöser (240) eine Verbindung umfasst, die zur Betätigung der Sicherung (230) an den Körper (241) des elektronischen Sicherheitsauslösers und die Sicherung (230) gekoppelt ist.
     
    12. Verfahren zum Betätigen eines elektronischen Sicherheitsauslösers (240) einer Aufzugskabine (201), wobei das Verfahren Folgendes umfasst:

    Anordnen einer Führungsschiene (210) zur Übersetzung in einer Nut (244), die in einem Körper (241) des elektronischen Sicherheitsauslösers definiert ist, der mit horizontaler Manövrierbarkeit vertikal an der Aufzugskabine (201) gesichert ist;

    Erzeugen von Magnetkräften, die horizontal gerichtet sind, um entsprechende Entfernungen zwischen der Führungsschiene (210) und komplementären Flächen des Körpers (241) des elektronischen Sicherheitsauslösers aufrechtzuerhalten;

    Erfassen der entsprechenden Entfernungen; und

    Steuern des Erzeugens der Magnetkräfte, um den Körper (241) des elektronischen Sicherheitsauslösers horizontal zu manövrieren, um die entsprechenden Entfernungen aufrechtzuerhalten.


     
    13. Verfahren nach Anspruch 12, wobei das Erzeugen der Magnetkräfte zumindest eines von Folgenden umfasst:

    Erzeugen von Abstoßungsmagnetkräften in gegenüberliegende horizontale Richtungen an einem oberen Abschnitt (245) der Nut (244);

    Erzeugen von Abstoßungsmagnetkräften in gegenüberliegende horizontale Richtungen an einem unteren Abschnitt (246) der Nut (244); und

    Erzeugen von Abstoßungsmagnetkräften in gegenüberliegende horizontale Richtungen an einem mittleren Abschnitt (2456) der Nut (244).


     


    Revendications

    1. Actionneur de sécurité électronique (240) pour actionner une sécurité (230) de cabine d'ascenseur, l'actionneur de sécurité électronique (240) comprenant :

    un corps (241) d'actionneur de sécurité électronique fixé verticalement sur la cabine d'ascenseur (201) avec une manœuvrabilité horizontale,

    le corps (241) d'actionneur de sécurité électronique définissant une rainure (244) à travers laquelle un rail de guidage (210), le long duquel la cabine d'ascenseur (201) se déplace verticalement, peut être déplacé ;

    caractérisé par

    un guide électromagnétique (260) disposé de manière fonctionnelle dans la rainure (244) pour exercer une force électromagnétique sur le rail de guidage (210) ;

    un capteur (270) disposé dans la rainure (244) pour détecter la distance horizontale entre le rail de guidage (210) et les parties correspondantes du corps (241) d'actionneur de sécurité ; et

    un système de commande (280) configuré pour commander le guide électromagnétique (260) pour exercer la force électromagnétique conformément aux lectures du capteur (270) pour manœuvrer horizontalement le corps (241) d'actionneur de sécurité électronique.


     
    2. Actionneur de sécurité électronique (240) selon la revendication 1, dans lequel le corps (241) d'actionneur de sécurité électronique est formé pour définir des rainures horizontales (242) à travers lesquelles une attache (243) s'étend.
     
    3. Actionneur de sécurité électronique (240) selon la revendication 1 ou 2, dans lequel le guide électromagnétique (260) comprend un ou plusieurs électro-aimants (261-264EM) respectivement disposés dans au moins l'une d'une partie supérieure (245) de la rainure (244), une partie inférieure (246) de la rainure (244) et une partie médiane (2456) de la rainure (244).
     
    4. Actionneur de sécurité électronique (240) selon l'une quelconque des revendications 1 à 3, dans lequel le guide électromagnétique (260) comprend en outre un ou plusieurs aimants permanents (261-264P) respectivement disposés pour s'opposer de manière électromagnétique à un ou plusieurs électro-aimants (261-264EM).
     
    5. Actionneur de sécurité électronique (240) selon l'une quelconque des revendications 1 à 4, dans lequel le guide électromagnétique (260) comprend :

    un ou plusieurs électro-aimants (261-264EM) disposés dans une partie supérieure (245) de la rainure (244) ; et

    un ou plusieurs électro-aimants (261-264EM) disposés dans une partie inférieure (246) de la rainure (244).


     
    6. Actionneur de sécurité électronique (240) selon l'une quelconque des revendications 1 à 5, dans lequel le guide électromagnétique (260) comprend :

    un ou plusieurs aimants permanents (261-264P) disposés dans la partie supérieure (245) de la rainure (244) pour s'opposer de manière électromagnétique aux un ou plusieurs aimants permanents (261-264P) qui s'y trouvent ; et

    un ou plusieurs aimants permanents (261-264P) disposés dans la partie inférieure (246) de la rainure (244) pour s'opposer de manière électromagnétique aux un ou plusieurs aimants permanents (261-264P) qui s'y trouvent.


     
    7. Actionneur de sécurité électronique (240) selon l'une quelconque des revendications 1 à 6, dans lequel le guide électromagnétique (260) comprend :

    une première paire de guides électromagnétiques (260) disposée sur les côtés opposés d'une partie supérieure (245) de la rainure (244) ; et

    une seconde paire de guides électromagnétiques (260) disposée sur les côtés opposés d'une partie inférieure (246) de la rainure (244).


     
    8. Actionneur de sécurité électronique (240) selon l'une quelconque des revendications 1 à 7, dans lequel le système de commande (280) est configuré pour commander le guide électromagnétique (260) pour augmenter la force magnétique lorsque les lectures du capteur (270) indiquent la diminution de la distance horizontale.
     
    9. Cabine d'ascenseur (201) comprenant :

    un cadre de cabine (204, 205) qui se déplace le long d'un rail de guidage (210) pendant des montées ou des descentes ;

    une sécurité (230) disposée le long du cadre de cabine (204, 205) pour entrer sélectivement en prise avec le rail de guidage (210) pour sélectivement permettre le mouvement vertical de la cabine d'ascenseur ;

    un actionneur de sécurité électronique (240) selon l'une quelconque des revendications 1 à 8, dans lequel l'actionneur de sécurité électronique (240) est configuré pour actionner la sécurité (230) et comprend :

    un corps (241) d'actionneur de sécurité électronique fixé au cadre de la cabine avec une manœuvrabilité horizontale et définissant une rainure (244) à travers laquelle le rail de guidage (210) se déplace pendant le mouvement vertical de la cabine d'ascenseur ;

    un guide électromagnétique (260) disposé de manière fonctionnelle dans la rainure (244) pour exercer une force électromagnétique sur le rail de guidage (210) ; et

    un capteur (270) disposé dans la rainure (244) pour détecter la distance horizontale entre le rail de guidage (210) et les parties correspondantes du corps (241) de l'actionneur de sécurité ; et

    un système de commande (280) configuré pour commander le guide électromagnétique (260) pour exercer une force électromagnétique conformément à la lecture du capteur (270) pour manœuvrer horizontalement le corps (241) d'actionneur de sécurité électronique.


     
    10. Cabine d'ascenseur selon la revendication 9, dans laquelle le cadre de la cabine (204, 205), la sécurité (230) et l'actionneur de sécurité électronique (240) sont fournis en ensembles sur les côtés opposés de la cabine d'ascenseur.
     
    11. Cabine d'ascenseur selon la revendication 9 ou 10, dans laquelle l'actionneur de sécurité électronique (240) comprend un raccordement couplé au corps (241) d'actionneur de sécurité électronique et la sécurité (230) pour activer la sécurité (230) .
     
    12. Procédé de fonctionnement d'un actionneur de sécurité électronique (240) d'une cabine d'ascenseur (201), le procédé comprenant :

    la disposition d'un rail de guidage (210) pour le déplacement dans une rainure (244) définie dans un corps (241) d'actionneur de sécurité électronique qui est fixé verticalement à la cabine d'ascenseur (201) avec une manœuvrabilité horizontale ;

    la génération de forces électromagnétiques qui sont dirigées horizontalement pour maintenir des distances respectives entre le rail de guidage (210) et des surfaces complémentaires du corps (241) de l'actionneur de sécurité électronique ;

    la détection des distances respectives ; et

    la commande de la génération des forces électromagnétiques pour manœuvrer le corps (241) d'actionneur de sécurité électronique horizontalement afin de maintenir les distances respectives.


     
    13. Procédé selon la revendication 12, dans lequel la génération des forces électromagnétiques comprend au moins un parmi :

    la génération de forces électromagnétiques répulsives dans des directions horizontales opposées sur une partie supérieure (245) de la rainure (244) ;

    la génération de forces électromagnétiques répulsives dans des directions horizontales opposées sur une partie inférieure (246) de la rainure (244) ; et

    la génération de forces électromagnétiques répulsives dans des directions horizontales opposées sur une partie centrale (2456) de la rainure (244).


     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description