(19)
(11)EP 3 600 820 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.11.2021 Bulletin 2021/46

(21)Application number: 18718374.4

(22)Date of filing:  30.03.2018
(51)International Patent Classification (IPC): 
B29C 45/00(2006.01)
(52)Cooperative Patent Classification (CPC):
B29C 45/0003; B29C 45/0017; B65D 53/02; B29L 2031/565; B29C 45/1676; B65D 2543/00972; B29C 2045/1678
(86)International application number:
PCT/US2018/025325
(87)International publication number:
WO 2018/183791 (04.10.2018 Gazette  2018/40)

(54)

METHODS OF OVERMOLDING SOFTER MATERIAL WITH HARDER MATERIAL TO MANUFCATAURE A MOISTURE TIGHT CONTAINER ASSEMBLIES HAVING AN INTEGRADED LID

VERFAHREN ZUM ÜBERSPRITZEN EINES WEICHEN MATERIALS MIT EINEM HÄRTEREN MATERIAL ZUR HERSTELLUNG EINES FEUCHTIGKEITSDICHTEN BEHÄLTER MIT INTEGRIERTEM DECKEL

PROCEDE DE SURMOULAGE UN MATERIAU DOUX AVEC UN MATERIAU PLUS DUR PPOUR LA FABRICATION D'UN CONTENEUR ÉTANCHE DE HUMIDITE AVEC UN COUVERCLE INCORPORE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 31.03.2017 US 201762480070 P

(43)Date of publication of application:
05.02.2020 Bulletin 2020/06

(73)Proprietor: CSP Technologies, Inc.
Auburn, Alabama 36832 (US)

(72)Inventors:
  • HUBER, Donald
    Auburn, Alabama 36830 (US)
  • FREEDMAN, Jonathan R.
    Auburn, Alabama 36830 (US)
  • TIFFT, Brian
    Auburn, Alabama 36830 (US)
  • LUCAS, Franklin Lee, Jr.
    Opelika, Alabama 36801 (US)

(74)Representative: Maiwald Patent- und Rechtsanwaltsgesellschaft mbH 
Elisenhof Elisenstraße 3
80335 München
80335 München (DE)


(56)References cited: : 
EP-A2- 0 112 103
BE-A- 509 694
JP-A- H02 205 569
US-A1- 2010 140 116
WO-A1-2017/152189
DE-A1- 19 907 225
US-A- 4 308 965
US-A1- 2014 190 925
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Field of the Invention



    [0001] The present invention to a method of forming a moisture tight container assembly having a soft seal.

    2. Description of the Related Art



    [0002] Containers of various sizes which are designed to prevent moisture infiltration are commonly used in applications from storing sporting goods to medical supplies. Generally, the complexity, and correspondingly the cost, of such containers increases as the ability of such containers to resist moisture infiltration increases. A need exists for such containers which are highly resistant to moisture infiltration while also manufacturable at a reasonable cost. WO 2017/152189 discloses a container assembly made of a container connected via a hinge to a lid having an elastomeric ring seal. The assembly is manufactured in a multi-shot injection molding process. US 2014/190925 discloses a mold and a method for manufacturing an internally threaded lid having a flexible elastomeric annular seal inside. The lid assembly is made in one mold with a bi-injection method, while first injection molding the annular seal.

    [0003] In the field of diagnostic test strip packaging, it is known to store such strips in containers that form moisture tight seals between plastic (hard) surfaces. For example, a seal may be formed by a mating configuration between the skirt of a cap and the outer rim or lip of a container body. Such seals have proven generally effective and useful in providing a good shelf life to the strips. However, the manufacturing of such containers can result in an undesirably wide standard deviation in moisture tightness across a population of containers made during an automated injection molding process.

    [0004] The Applicant has determined that incorporating an elastomeric sealing member to provide a compression seal (soft seal) between the cap and the container body can help to reduce moisture vapor transmission into the container and also tighten the above-mentioned standard deviation. The Applicant has further uniquely determined that a hard sealing arrangement in series with the soft sealing arrangement can help maintain a compression seal formed by the soft sealing arrangement and improve moisture tightness of the container. However, incorporating such an elastomeric sealing member into the container design is not a simple endeavor. One challenge is that the interacting surfaces of the hard sealing arrangement must be free from scratches and parting lines, which would adversely affect integrity of the hard sealing arrangement. As a result of such requirement, removal of the injection molding core needed to form a cap and reinsertion of another core needed to form an elastomeric sealing element in the cap may result in scratching/scarring of a sealing surface on the skirt of the cap, thus creating a point for moisture ingress.

    [0005] In order to avoid such scratching/scarring of the hard surface of the cap, it would theoretically be preferred to first provide the elastomeric material in a mold cavity and then overmold the more rigid polymeric resin material of the cap onto the comparatively softer material. However, such a process was not heretofore possible using conventional injection molding techniques. In the injection molding field, it is known that one should shoot a softer and lower melt temperature plastic over a harder and higher melt temperature plastic. It has been believed that the process should not be done the other way around. This is due to the fact that the harder, higher melt temperature material would displace the softer, lower melt temperature material, if the softer material would be shot first in an overmolding process. However, due to the above-noted problems associated with injection molding a container and cap assembly having an elastomeric sealing element, there is a need for an overmolding process that permits shooting the harder material onto the softer material.

    SUMMARY OF THE INVENTION



    [0006] Accordingly, Applicants have devised inventive methods of overmolding which permit shooing the harder material onto the softer material.

    [0007] As one aspect of the invention, but not part of the claimed invention, a method of overmolding materials is provided. The method comprises: providing a first material in a groove in a first portion of a mold such that only a single surface of the first material is exposed to a vacant portion of the mold; providing, via an injection molding process, a second material in a liquid form in the vacant portion of the mold adjacent to, and in engagement with, the first material; and allowing the second material to solidify and become directly coupled to the first material thus forming a single component. The second material has one or both of: a greater hardness when solidified than the first material and/or a higher melting temperature than the first material.

    [0008] Providing a first material in a groove may comprise providing the first material in the groove via another injection molding process.

    [0009] The second material may be provided via the injection molding process so as to flow in a direction generally parallel to the single surface of the first material which is exposed.

    [0010] The method may further comprise removing the component from the mold.

    [0011] As another aspect of the invention, a method of forming a cap assembly for use with a container in forming a container assembly is provided. The cap assembly includes a seal formed from a first material and a cap formed from a second material having one or both of a greater hardness when solidified than the first material and/or a higher melting temperature than the first material. The method comprises: providing, in a mold having a portion which defines the shape of the cap, the first material in a groove in a first portion of the mold such that only a single surface of the first material is exposed to a vacant portion of the mold; providing, via an injection molding process, the second material in a liquid form in the vacant portion of the mold adjacent to, and in engagement with, the first material; and allowing the second material to solidify and become directly coupled to the first material, thus forming the cap assembly.

    [0012] Providing a first material in a groove may comprise providing the first material in the groove via another injection molding process.

    [0013] The second material may be provided via the injection molding process so as to flow in a direction generally parallel to the single surface of the first material which is exposed.

    [0014] The method may further comprise removing the cap assembly from the mold.

    [0015] The mold may further have a portion which defines the shape of the container; the method may further comprise: before providing the second material in the portion of the mold which defines the shape of the cap, providing, via the injection molding process, the second material in the liquid form in the portion of the mold which defines the shape of the container; and allowing the second material to solidify and become directly coupled to the first material thus forming the cap assembly.

    [0016] Optionally, in any embodiment, the second material solidifies and forms a container assembly in which the container is formed integrally with the cap.

    [0017] The method may further comprise removing the container assembly from the mold.

    [0018] As yet another aspect of the invention, a cap formed in accordance with any of the above methods is provided.

    [0019] As yet a further aspect of the invention, a container assembly formed in accordance with any of the above methods is provided.

    [0020] These and other objects, features, and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0021] The invention will be described in conjunction with the following drawings in which like reference numerals designate like elements and wherein:

    FIG. 1 is a sectional side elevation view of a container assembly in accordance with an exemplary embodiment of the present invention shown with a cap disposed in an open position;

    FIG. 2 is a top view of the container assembly of FIG. 1 shown with the cap disposed in an open position;

    FIG. 3 is a sectional side elevation view of the container assembly of FIGS. 1 and 2 shown with the cap disposed in a closed position;

    FIG. 4 is a partially schematic sectional view showing molds and cores used while a container assembly such as illustrated in FIG. 1 is formed during an injection molding process; and

    FIG. 5 is a detailed view of the portion of FIG. 4 indicated at 5.

    FIG. 6 is an enlarged cross sectional view of the container of FIG. 3 illustrating engagement of first and second seals in series to create a moisture tight seal.

    FIGS. 7A and 7B are schematic illustrations showing the soft seal of the cap immediately before engagement with the hard sealing surface of the body (FIG. 7A) followed by sealing engagement of the soft seal of the cap with the hard sealing surface of the body (FIG. 7B).


    DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS



    [0022] As used herein, the singular form of "a", "an", and "the" include plural references unless the context clearly dictates otherwise.

    [0023] As used herein, "and/or" means that either or both of the items separated by such terminology are involved. For example, the phrase "A and/or B" would mean A alone, B alone, or both A and B.

    [0024] As used herein, the statement that two or more parts or components are "coupled" shall mean that the parts are joined or operate together either directly or indirectly, i.e., through one or more intermediate parts or components, so long as a link occurs.

    [0025] As used herein, "directly coupled" means that two elements are directly in contact with each other. As used herein, "fixedly coupled" or "fixed" means that two components are coupled so as to move as one while maintaining a constant orientation relative to each other.

    [0026] As used herein, "about" in a phrase such as "disposed about [an element, point or axis]" or "extend about [an element, point or axis]" or "[X] degrees about an [an element, point or axis]," means encircle, extend around, or measured around. When used in reference to a measurement or in a similar manner, "about" means "approximately," i.e., in an approximate range relevant to the measurement as would be understood by one of ordinary skill in the art.

    [0027] As used herein, "generally" means "in a general manner" relevant to the term being modified as would be understood by one of ordinary skill in the art.

    [0028] As used herein, the word "unitary" means a component is created as a single piece or unit. That is, a component that includes pieces that are created separately and then coupled together as a unit is not a "unitary" component or body.

    [0029] As used herein, the statement that two or more parts or components "engage" one another shall mean that the parts exert a force against one another either directly or through one or more intermediate parts or components.

    [0030] As used herein, the term "number" shall mean one or an integer greater than one (i.e., a plurality).

    [0031] As used herein, the phrases "sealingly engage" or "sealing engagement" shall refer to elements which contact each other in a manner such that a generally moisture-tight seal is formed therebetween.

    [0032] Directional phrases used herein, such as, for example and without limitation, top, bottom, left, right, upper, lower, front, back, and derivatives thereof, relate to the orientation of the elements shown in the drawings and are not limiting upon the claims unless expressly recited therein.

    [0033] Generally speaking, as used herein, the term "moisture-tight" is defined as having a moisture ingress (after three days) of less than 1500 µg of water, in another embodiment, less than 500 µg of water, in a further embodiment, less than 300 µg of water, in yet another embodiment, less than 150 µg of water, as determined by the following test method: (a) place one gram plus or minus 0.25 grams of molecular sieve in the container and record the weight; (b) fully close the container; (c) place the closed container in an environmental chamber at conditions of 80% relative humidity and 72°F; (d) after one day, weigh the container containing the molecular sieve; (e) after four days, weigh the container containing the molecular sieve; and (f) subtract the first day sample from the fourth day sample to calculate the moisture ingress of the container in units of micrograms of water. A preferred rate of ingress of moisture into a moisture-tight sealed container produced according to an aspect of the disclosed concept is in the range of about 200-300 µg/day of water or less. A "moisture tight" seal therefore is a sealing engagement that alone, or in combination with additional sealing engagements, help to render a container "moisture tight" per the above definition.

    [0034] As used herein, the term "resealable" means the lid of the container can be opened or reopened and closed or reclosed many times (e.g. more than 10 times) and still retain its moisture-tight properties.

    [0035] Referring now to FIGS. 1 and 2, a moisture tight, resealable, container assembly 10 in accordance with an illustrative embodiment of the present invention is illustrated. Container assembly 10 includes a container 12 having a base 14, an internal cavity 16, an outer surface 18, an upper portion 20 and a lower portion 22. Container 12 further includes a rim 24 which projects radially outwardly at the upper portion 20. Container 12 may also include a flange 26, spaced a predetermined distance from rim 24, which projects radially outwardly from the outer surface 18 of the container 12.

    [0036] Continuing to refer to FIGS. 1 and 2, container assembly 10 further includes a cap assembly 29 including a cap 30 having a base 32 and a skirt 34 extending perpendicularly from base 32 around the outer periphery of base 32. A recess 36 is optionally formed in an inner wall 37 of skirt 34 at or near base 32. Cap 30 optionally further includes a thumb tab 38 for facilitating the opening and closing of container assembly 10. Cap 30 is coupled to container 12 by a hinge 40. Tab 38 and hinge 40 are preferably positioned on opposing ends of cap 30 and extend perpendicularly from skirt 34. Hinge 40 may also be attached to flange 26 of container 12. Hinge 40 optionally includes a recess 42 that functions as a bending point during the opening and closing of the container assembly 10. Hinge 40 optionally includes two elements, 40A and 40B, respectively, formed on either side of recess 42. First element 40A may be attached to flange 26 of container 12 (or another part of container 12) and second element 40B is attached to the cap 30. As will be discussed further below, in an exemplary embodiment of the disclosed concept, the elements of container 12 and cap assembly 29 discussed thus far are produced via an injection molding process. In the exemplary embodiment of FIGS. 1 and 2, container 12 and cap 30 are formed (via injection molding) from a plastic material as portions of a single unitary component. However, it is to be appreciated that such components may alternatively be formed separately without varying from the scope of the present invention.

    [0037] Container 12, cap 30 and hinge 40 may be made primarily from one or more injection moldable thermoplastic materials, including, for example, a polyolefin such as polypropylene or polyethylene. According to an optional embodiment, the container assembly 10 may be made from a mixture comprising primarily thermoplastic material and a very small proportion of thermoplastic elastomer material (wherein the final hardened product is essentially hard or incompressible). Optionally, a polymer construction of the container assembly 10 (other than seal 50, discussed below) may have up to 2% TPE by weight.

    [0038] In order to provide for an improved moisture tight seal between cap 30 and container 12, cap assembly 29 further includes a compressible seal 50 which is of similar shape as upper portion 20 of container 12 and cap 30 and which is formed from a softer material and/or a material having a lower melting point (e.g., a thermoplastic elastomer) than the material from which container 12 and cap 30 is formed. As used herein, the terms "elastomer" or "elastomeric material" are to be understood in a broad sense. A particularly preferred elastomer for seal 50 is a thermoplastic elastomer (TPE), optionally one having a Shore A hardness of from 20 to 50, preferably from 20 to 40, more preferably from 20 to 35. Alternatively, the terms "elastomer" or "elastomeric material" may include silicone rubbers or other preferably injection moldable soft and resilient materials appropriate for creating a compression seal against a comparatively harder (e.g., thermoplastic) surface. Formation of seal 50 is discussed in detail below.

    [0039] FIG. 3 illustrates a cross-sectional view of container assembly 10 in a closed position. In such closed position, skirt 34 of cap 30 overlies container 12 and rests upon flange 26 thereof. Rim 24 of container 12 is situated within, and sealingly engages recess 36 of inner wall 37 of skirt 34 of cap 30, thus creating a hard sealing arrangement (e.g., a thermoplastic-to-thermoplastic sealing engagement). Providing an additional sealing engagement is seal 50, which is compressed between base 32 of cap 30 and upper portion 20 of container 12, thus creating a soft-sealing arrangement. It is to be appreciated that container 12 can be sealed and/or resealed by applying, in a singular motion, downward pressure upon thumb tab 38 or base 32 of cap 30 to obtain a moisture tight seal. It is to be appreciated that in such closed position, the two different sealing arrangements, i.e., the aforementioned hard-sealing arrangement and soft-sealing arrangement, provide for an improved sealing arrangement over existing solutions. The hard sealing arrangement also provides a snap-fit closure arrangement, which provides closure force necessary to effectuate the soft sealing engagement and maintain the container assembly 10 in a closed position.

    [0040] In order to provide such improved moisture tight sealing, the interacting surfaces of the hard sealing arrangement, i.e., the surfaces of rim 24 of container 12 and recess 36 of lid 30, must be free from scratches and parting lines or else moisture can easily transfer past such hard seal. As a result of such requirement, seal 50 cannot be over-molded onto base 32 of cap 30, as removal of the core needed to form cap 30 and reinsertion of the other core needed to form seal 50 may result in scratching/scarring of the surface of recess 36, thus creating a point for moisture ingress. In order to avoid such scratching/scarring of the surface of recess 36 of cap 30, cap 30 is instead uniquely over-molded onto seal 50, an example of which is described below in conjunction with FIGS. 4 and 5.

    [0041] Referring now to FIG. 4 and 5, an example of the injection molding process by which container assembly 10 is formed will be discussed. In an initial step, seal 50 is provided in a groove 100 of a first core member 101 which is placed in a mold assembly 102 (shown crosshatched in FIGS. 4 and 5). Seal 50 may be formed via injection molding or other suitable process and as previously discussed, is formed from a soft TPE material, optionally one having a Shore A hardness of from 20 to 50, preferably from 20 to 40, more preferably from 20 to 35 (once solidified). Seal 50 is provided in groove 100, such that only a single surface, i.e., surface 50A, thereof is exposed. Next, a supply of molten plastic, as shown generally by flow arrows F, is injected into mold assembly 102 via a port 103, optionally located near the portion of mold assembly 102 which corresponds to base 14 of container 12. After filling the portion of mold assembly 102 which corresponds to container 12 (i.e., the space around core 104), the supply F of molten plastic passes through the portion of mold assembly 102 which corresponds to hinge 40 and into the portion which corresponds to cap 30 and includes seal 50, such as schematically illustrated in FIG. 5. In filling out the remainder of mold assembly 102, the supply F of molten plastic flows generally parallel to the exposed surface 50A of seal 50, and thus generally does not disturb the previously formed seal while over-molding/bonding thereto. After mold assembly 102 has been filled, the molten plastic is allowed to cool/solidify, thus forming cap assembly 29 (i.e., the cap 30 with the seal 50) and container 12, which makes up the completed container assembly 10. The container assembly 10 is then removed from mold 102. Optionally, in an alternative embodiment, cap assembly is formed in a separate mold from container and subsequently assembled therewith.

    [0042] It is to be appreciated that conventional practice in injection molding is to mold a softer material onto a harder material as otherwise the harder material will tend to force the softer material out of the mold. However, according to the unique disclosed concept, by effectively shielding the softer material of seal 50 in groove 100 such that only surface 50A thereof is exposed, and then causing the supply F of harder plastic to pass generally parallel and adjacent to such surface, the harder plastic material which forms the remainder of container assembly 10 can be over-molded to seal 50, thus producing the unblemished surface of recess 36 previously discussed.

    [0043] As illustrated in FIG. 2, the cap 30, container 12 and seal 50 may be generally circular in shape. Alternatively, the cap 30, container 12 and seal 50 may be of non-circular shape, without regard to whether the shape is symmetrical or asymmetrical, without varying from the scope of the present invention. Other suitable shapes include square, triangle, ellipse, rectangle, trapezoid, and numerous others. For example, elliptical containers such as those disclosed in U.S. Pat. Pub. No. 20110127269, which is incorporated by reference herein in its entirety, may advantageously be molded according to concepts disclosed herein. If the assembly is provided with corners, they may be squared or rounded. It is contemplated that molding techniques according to the disclosed concept would be particularly useful in enhancing the sealing of non-round containers, which tend to be more difficult to render moisture tight using only more conventional hard seals (without a hard to soft compression seal).

    [0044] In an exemplary embodiment of the disclosed concept, the seal 50 has a vertical thickness of from 0.25 mm to 1.25 mm.

    [0045] The container assembly 10 may be generally of any desired size needed in order to house desired contents. Although shown as being integrally formed as a unitary element, it is to be appreciated that cap 30 and container 12 could also be formed as separate elements and then assembled together, as long as cap 30 and seal 50 are otherwise formed generally as described herein.

    [0046] An optional feature of the disclosed concept is now discussed. Referring to Fig 6, there is shown an enlarged view of a portion of the container assembly 10 shown in FIG. 3. Upper portion 20 of container 12 terminates at a top edge 211. The top edge 211 compresses seal 50 to provide a sealing engagement 264 when the container 10 assembly is closed, as discussed above. The compressible sealing surface 230 of the seal 50 is configured to be compressed by a comparatively hard upper surface 211 of the upper portion 20 of the container 12, when the container assembly 10 is closed. Seal 50 in the exemplary embodiment is optionally in the form of a ring. The term "ring" as used herein can refer to an annular round element with a central opening. However, a "ring" is not necessarily limited to such configuration and could include non-round configurations as well as elastomeric elements that are filled in, at least in part, in the center (i.e., where an opening of a ring may otherwise be). As such, a "ring" could include a disc-shaped elastomeric member, for example.

    [0047] FIGS. 7A and 7B are schematic illustrations showing the seal 50 immediately before engagement with the thermoplastic sealing surface of the body (FIG. 7A) followed by sealing engagement 264 of the seal 50 with the upper surface 211 of the container 12 (Fig. 7B, which is actually an enlarged view of FIG. 6). Vertical compression of the seal 50 causes a portion of the seal 50 to elastically and resiliently deform and expand radially into a void 280 provided between the container 12 and the lid 30. This operation is now explained in detail.

    [0048] Fig. 6 shows a partial enlarged cross section of the container assembly 10 with the lid 30 in the closed position. A sealing engagement 264 in the form of a compression seal provided between the upper surface 211 of the container 12 and the seal 50 causes the cross section of the seal 50 to appear slightly stepped or indented along the engagement surface 230 of the seal 50. For illustrative purposes, this indent is more clear and pronounced in the enlarged view shown in FIG. 7B. Fig. 7A shows the cross section of the seal 50 immediately before it contacts the upper surface 211 of the container 12 to form the sealing engagement 264. As shown in 7A, the seal 50, when not engaged with the upper surface 211, does not have such an indent. The indent in the engagement surface 230 of the seal 50 is the product of elastomeric deformation of the seal 50 resulting from sealing engagement 264 with the rim upper surface 211.

    [0049] Notably, the seal 50 (e.g., in the form of a ring) is not bounded or blocked by any structure on either an immediate right side 50R or left side 50L thereof. As such, when the seal 50 is compressed vertically, a portion thereof elastically expands or migrates radially outward (towards the left), inward (towards the right) or both. A void 280 is provided, e.g., between the seal 50 and the skirt 34 of the lid 30 to provide "living space" for the seal material to radially expand when engaged. Figure 7B illustrates the radially expanded portion 50E of the seal (shown expanded in direction E of Fig. 7B), occupying a portion of the void 280. To the extent such expansion appears in the Figures to be exaggerated compared to actual implementation, it is merely for illustrative purposes. This radial expansion into the void feature provides at least two important functions.

    [0050] First, it results in tempering the vertical spring force between the elastomer and the rim. While it is desired that some slight spring force is provided to strengthen or reinforce the sealing engagement 264, excessive spring force may tend to reduce the opening force to an extent that the container may inadvertently pop open. A balance must be struck between a desirably low opening force on the one hand (especially for elderly and/or diabetic users) and an opening force that is so low that it can result in inadvertent container openings, e.g., via common pressure variations that may occur within the container during transport. When the soft material (e.g., elastomer) of seal 50 is permitted to expand radially, the vertical spring force may thus be provided at an acceptable level.

    [0051] The second important function is that the surface area of contact between the respective sealing surfaces of the sealing engagement 264 increases via radial expansion of the relatively soft material of the seal 50. This increase of the soft-to-hard (e.g., elastomer-to-thermoplastic) sealing surface area provides a more robust seal at the site of seal engagement 264.

    [0052] In the molding art, methods according to optional aspects of the disclosed concept enable one to provide the seal 50 without it being bounded, blocked or reinforced on either an immediate right side 50R or left side 50L thereof, e.g., by a thermoplastic extension on the lid 30 or other structure.

    [0053] Optionally, a container assembly according to any embodiment of the disclosed concept may be advantageously used to house diagnostic test strips, drug delivery strips, biologic compositions, supplements, pharmaceuticals or any other product sensitive to moisture. Optionally, a container assembly according to any embodiment may include therein a desiccant material (e.g., in the form of a desiccant entrained polymer, preferably a three-phase desiccant entrained polymer) to absorb moisture in the internal cavity. The term "three phase polymer" refers to a desiccant entrained polymer comprising a base polymer, desiccant and channeling agent, e.g., as described in U.S. Pat. Nos. 5,911,937, 6,080,350, 6,124,006, 6,130,263, 6,194,079, 6,214,255, 6,486,231, 7,005,459, and U.S. Pat. Pub. No. 2016/0039955, each of which is incorporated herein by reference as if fully set forth. Advantageously, in an optional aspect of the invention, the soft-to-hard seal in combination with the hard-to-hard seal (in series) reliably reduces moisture ingress. This, in turn, permits reduced use of such desiccant material, resulting in lower manufacturing costs. Optionally, a desiccant entrained polymer insert may be assembled to or co-molded with the container.

    EXAMPLES



    [0054] The invention will be illustrated in more detail with reference to the following Examples, but it should be understood that the present invention is not deemed to be limited thereto.

    Example 1



    [0055] Tests were run to measure moisture ingress of 24ml vials according to the container embodiment shown in Figs. 1-3 and made according to injection molding processes discussed herein (Group A). Ambient conditions were set at 30°C and 80% relative humidity. There were 48 such containers in the tested population. These moisture ingress results were compared against testing data gathered from testing a population of 7553 containers (Group B) that were identical in material respects to the containers of Group A, except the containers of Group B only included a hard seal (plastic-to-plastic) - without the additional (soft) seal (elastomer-to-plastic). The following table shows a side-by-side comparison of the data collected.
    GroupMean Ingress (µg/day)Standard Deviation (µg/day)Sample Size
    A 399.8 22.61 48
    B 440.9 105.5 7553


    [0056] As the data show, the addition of the second seal resulted in a meaningful reduction of the mean ingress and a surprisingly significant reduction in the standard deviation of moisture ingress. This significant reduction in standard deviation is notable and important from a production standpoint. Essentially, the soft seal in combination with the hard seal allows for a much more controlled and predictable (i.e., lower variation) in moisture ingress so that container moisture budgets can be much more precisely met. This allows for a reduction in desiccant material necessary per vial and hence a reduction in production costs associated with the reduced amount of desiccant material.

    Example 2



    [0057] Tests were run to measure moisture ingress of 17ml vials according to the container embodiment shown in Figs. 1-3 and made according to injection molding processes disclosed herein (Group A'). Ambient conditions were set at 30°C and 70% relative humidity. There were 144 such containers in the tested population. These moisture ingress results were compared against testing data gathered from testing a population of 2923 containers (Group B') that were identical in material respects to the containers of Group A', except the containers of Sample B' only included a hard seal (plastic-to-plastic) - without the additional (soft) seal (elastomer-to-plastic). The following table shows a side-by-side comparison of the data collected.
    SampleMean Ingress (µg/day)Standard Deviation (µg/day)Sample Size
    A' 305.4 20.54 144
    B' 420.7 76.91 2923


    [0058] As with Example 1, the data show that addition of the soft seal to assemblies having the hard seal resulted in a meaningful reduction of the mean ingress and a surprisingly significant reduction in the standard deviation of moisture ingress.

    [0059] It should be noted that nominal volumetric measurements with reference to diagnostic test strip vials are approximate and generally understood in the industry. For example, a "17 mL" vial may vary slightly from that precise volumetric measurement as may a "24 mL" vial. These vial volumes are well understood in the industry. To address this issue, for some embodiments, a volumetric range is provided, e.g., a container having an internal volume of 12 mL to 30 mL.

    [0060] Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the scope of the appended claims.


    Claims

    1. A method of forming a cap assembly (29) for use with a container (12) in forming a container assembly (10), the cap assembly (29) including a seal (50) formed from a first material (50) and a cap (30) formed from a second material (F) having one or both of a greater hardness when solidified than the first material (50) and/or a higher melting temperature than the first material (50), the method comprising:

    providing, in a mold (102) having a portion which defines the shape of the cap assembly (29), the first material (50) in a groove (100) in a first portion (101) of the mold (102) such that only a single surface (50A) of the first material (50) is exposed to a vacant portion of the mold (102);

    wherein the mold (102) further has a portion which defines the shape of the container (12);

    providing, via an injection molding process, the second material (F) in liquid form in the portion of the mold (102) which defines the shape of the container (12),

    providing the second material (F) in liquid form in the vacant portion of the mold (102), which defines the shape of the cap (30) adjacent to, and in engagement with, the first material (50);

    allowing the second material (F) to solidify and become directly coupled to the first material (50), thus forming the cap assembly (29), and

    allowing the second material (F) to solidify, thus forming the container assembly (10) in which the container (12) is formed integrally with the cap (30).


     
    2. The method of claim 1, wherein providing a first material (50) in a groove (100) comprises providing the first material (50) in the groove (100) via another injection molding process.
     
    3. The method of any of claims 1 or 2, wherein the first material (50) is an elastomeric material that is injected in liquid form into the groove (100) in the first portion (101) of the mold (102).
     
    4. The method of claim 3, wherein the second material (F) is a plastic material, optionally a polyolefin, which has a greater hardness when solidified than the first material (50).
     
    5. The method of any of claims 1 to 4, wherein the second material (F) is provided via the injection molding process so as to flow in a direction generally parallel to the single surface (50A) of the first material (50) which is exposed
     


    Ansprüche

    1. Verfahren zur Herstellung einer Kappenbaugruppe (29) zur Verwendung mit einem Behälter (12) bei der Herstellung einer Behälterbaugruppe (10), wobei die Kappenbaugruppe (29) eine Dichtung (50) aufweist, die aus einem ersten Material (50) gebildet ist, und eine Kappe (30), die aus einem zweiten Material (F) gebildet ist, das eines oder beide von einer größeren Härte, wenn erstarrt, als das erste Material (50) und/oder eine höhere Schmelztemperatur als das erste Material (50) aufweist, wobei das Verfahren umfasst:

    in einem Formwerkzeug (102), das einen Teil aufweist, der die Form der Kappenbaugruppe (29) definiert, Bereitstellen des ersten Materials (50) in einer Rille (100) in einem ersten Teil (101) des Formwerkzeugs (102), so dass nur eine einzige Oberfläche (50A) des ersten Materials (50) gegenüber einem unbesetzten Teil des Formwerkzeugs (102) freiliegt;

    wobei das Formwerkzeug (102) ferner einen Teil aufweist, der die Form des Behälters (12) definiert;

    druch ein Spritzgussverfahren Bereitstellen des zweiten Materials (F) in flüssiger Form in dem Teil des Formwerkzeugs (102), der die Form des Behälters (12) definiert;

    Bereitstellen des zweiten Materials (F) in flüssiger Form in dem unbesetzten Teil des Formwerkzeugs (102), der die Form der Kappe (30) definiert, benachbart zu und in Eingriff mit dem ersten Material (50);

    Erlauben, dass das zweite Material (F) erstarrt und direkt an das erste Material (50) gekoppelt wird, um die Kappenbaugruppe (29) zu bilden, und

    Erlauben, dass das zweite Material (F) erstarrt, um die Behälterbaugruppe (10) zu bilden, wobei der Behälter (12) integral mit der Kappe (30) gebildet wird.


     
    2. Verfahren gemäß Anspruch 1, wobei Bereitstellen eines ersten Materials (50) in einer Rille (100) Bereitstellen des ersten Materials (50) in der Rille (100) durch ein weiteres Spritzgussverfahren umfasst.
     
    3. Verfahren gemäß einem der Ansprüche 1 und 2, wobei das erste Material (50) ein Elastomermaterial ist, das in flüssiger Form in die Rille (100) in dem ersten Teil (101) des Formwerkzeugs (102) eingespritzt wird.
     
    4. Verfahren gemäß Anspruch 3, wobei das zweite Material (F) ein Kunststoffmaterial, gegebenenfalls ein Polyolefin, ist, das, wenn erstarrt, eine größere Härte als das erste Material (50) aufweist.
     
    5. Verfahren gemäß einem der Ansprüche 1 bis 4, wobei das zweite Material (F) durch das Spritzgussverfahren bereitgestellt wird, um in einer Richtung allgemein parallel zu der einzelnen freiliegenden Oberfläche (50A) des ersten Materials (50) zu fließen.
     


    Revendications

    1. Procédé de formation d'un ensemble capuchon (29) destiné à être utilisé avec un conteneur (12) pour former un ensemble conteneur (10), l'ensemble capuchon (29) comprenant un joint d'étanchéité (50) formé à partir d'un premier matériau (50) et un capuchon (30) formé à partir d'un second matériau (F) ayant une ou les deux d'une dureté supérieure, lorsqu'il est solidifié, à celle du premier matériau (50), et/ou d'une température de fusion supérieure à celle du premier matériau (50), le procédé comprenant :

    la fourniture, dans un moule (102) ayant une partie qui définit la forme de l'ensemble capuchon (29), du premier matériau (50) dans une rainure (100) dans une première partie (101) du moule (102) de sorte que seule une surface unique (50A) du premier matériau (50) est exposée à une partie vide du moule (102) ;

    le moule (102) ayant en outre une partie qui définit la forme du conteneur (12) ;

    la fourniture, par l'intermédiaire d'un procédé de moulage par injection, du second matériau (F) sous forme liquide dans la partie du moule (102) qui définit la forme du conteneur (12),

    la fourniture du second matériau (F) sous forme liquide dans la partie vide du moule (102), qui définit la forme du capuchon (30) de façon adjacente à, et en prise avec, le premier matériau (50) ;

    le fait de permettre au second matériau (F) de se solidifier et d'être directement couplé au premier matériau (50), formant ainsi l'ensemble capuchon (29), et

    le fait de permettre au second matériau (F) de se solidifier, formant ainsi l'ensemble conteneur (10) dans lequel le conteneur (12) est formé d'un seul tenant avec le capuchon (30).


     
    2. Procédé selon la revendication 1, la fourniture d'un premier matériau (50) dans une rainure (100) comprenant la fourniture du premier matériau (50) dans la rainure (100) par l'intermédiaire d'un autre procédé de moulage par injection.
     
    3. Procédé selon l'une quelconque des revendications 1 ou 2, le premier matériau (50) étant un matériau élastomère qui est injecté sous forme liquide dans la rainure (100) dans la première partie (101) du moule (102).
     
    4. Procédé selon la revendication 3, le second matériau (F) étant un matériau plastique, éventuellement une polyoléfine, ayant une dureté supérieure, lorsqu'il est solidifié, à celle du premier matériau (50).
     
    5. Procédé selon l'une quelconque des revendications 1 à 4, le second matériau (F) étant fourni par l'intermédiaire du procédé de moulage par injection de manière à s'écouler dans une direction généralement parallèle à la surface unique (50A) du premier matériau (50) qui est exposée.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description