(19)
(11)EP 3 605 516 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
30.03.2022 Bulletin 2022/13

(21)Application number: 17898348.2

(22)Date of filing:  25.10.2017
(51)International Patent Classification (IPC): 
G09G 3/36(2006.01)
G11C 19/28(2006.01)
(52)Cooperative Patent Classification (CPC):
G09G 3/3677; G09G 2330/08; G11C 19/28; G09G 2310/0286
(86)International application number:
PCT/CN2017/107689
(87)International publication number:
WO 2018/176823 (04.10.2018 Gazette  2018/40)

(54)

GOA UNIT, DRIVE METHOD THEREFOR, GOA DRIVE CIRCUIT AND DISPLAY APPARATUS

GOA-EINHEIT, ANSTEUERUNGSVERFAHREN DAFÜR, GOA-TREIBERSCHALTUNG UND ANZEIGEVORRICHTUNG

UNITÉ GOA, PROCÉDÉ D'ATTAQUE CORRESPONDANT, CIRCUIT D'ATTAQUE ET APPAREIL D'AFFICHAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.03.2017 CN 201710203914

(43)Date of publication of application:
05.02.2020 Bulletin 2020/06

(73)Proprietors:
  • BOE Technology Group Co., Ltd.
    Beijing 100015 (CN)
  • Hefei Xinsheng Optoelectronics Technology Co., Ltd.
    Xinzhan Industrial Park Hefei Anhui 230012 (CN)

(72)Inventors:
  • XIONG, Xin
    Beijing 100176 (CN)
  • XIONG, Xiong
    Beijing 100176 (CN)
  • LIANG, Hengzhen
    Beijing 100176 (CN)
  • LIU, Rongcheng
    Beijing 100176 (CN)

(74)Representative: Klunker IP Patentanwälte PartG mbB 
Destouchesstraße 68
80796 München
80796 München (DE)


(56)References cited: : 
EP-A2- 0 177 247
WO-A1-2010/116778
CN-A- 105 976 755
US-A1- 2002 075 248
EP-A2- 0 909 975
CN-A- 104 866 141
CN-A- 105 976 755
US-A1- 2011 157 030
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to the technical field of display, and more particularly, to a GOA (Gate Driver on Array) driving circuit comprising a GOA unit having a self-repair function and a driving method thereof, and a display device comprising the GOA driving circuit.

    BACKGROUND



    [0002] At present, gate driving devices are generally formed on an array substrate of a liquid crystal display (LCD) by an array process, that is, a Gate Driver on Array (GOA) process. This integrating process saves costs and is a development trend of TFT-LCD in the future..

    [0003] GOA unit still has a lot of aspects that need improvement. At present, most of GOA unit output abnormalities are GOAunits with multiple outputs (Multi-Output). If the GOA unit can achieve the function of self-repairing Multi-Output through its own design, product yield is improved, product's anti-interference ability is improved, product quality and reliability is improved, on the other hand, design margin (Margin) is improved, thereby increasing design adjustability and reducing design difficulty.

    [0004] The GOA unit is intended to replace the function of the gate driver IC and achieve a reduction of cost. At present, the function of the GOA unit has not been as comprehensive and stable as that of the gate driver IC. Due to instability in the process and requirements for panel timing of customer system, GOA units are likely to cause abnormal outputs due to a variety of reasons, that is, Multi-Output conditions. Once Multiple-Output occurs, due to the cascade characteristics of GOA units, the operation of the entire GOA unit will be affected, which causes AD (Abnormal Display) failure. The existing design does not have a repair circuit for self-repairing Multi-Output, thus the GOA unit is extremely sensitive to abnormal operation signals and cannot repair it (it can be retrieved through reboot).

    [0005] EP 0 177 247 A2 discloses a thin-type LCD device, in which a display section is formed on a printed circuit board and has a matrix array of display cells, address lines connected to the row arrays of the display cells and data lines connected to the column arrays of the display cells.

    [0006] CN 105 976 755A discloses a display driving circuit and a control method thereof, and a display device, wherein the display driving circuit comprises a collector, a comparator, a timing controller, and a gate driver.

    [0007] EP 0 601 869 A2 discloses flat type display device and driving method and assembling method therefore, wherein the display device has a display panel board and a drive LSI for driving the display panel board.

    SUMMARY



    [0008] It is an object of the present invention to provide a GOA driving circuit comprising a GOA unit having a self-repair function and a driving method thereof, and a display device comprising the GOA driving circuit.

    [0009] The object is achieved by the features of the independent claims 1 and 11. Further embodiments are defined in the respective dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] 

    FIG. 1 shows a block diagram of a single GOA unit having a self-repair function but not forming part of the claimed invention;

    FIG. 2A shows a structure diagram of a single GOA unit having a self-repair function but not forming part of the claimed invention;

    FIG. 2B shows a detailed block diagram of the single GOA unit of FIG. 2A;

    FIG. 3 shows circuit diagram of a single GOA unit having a self-repair circuit (102) which forms part of GOA driving circuit of the present invention;

    FIG. 4 shows a timing diagram of the GOA unit of FIG. 3 having a self-repair function when the GOA unit is abnormal;

    FIG. 5 shows a timing diagram of the GOA unit of FIG. 3 unit having a self-repair function when the GOA unit is normal;

    FIG. 6 shows an overall structure of a GOA driving circuit according to the present invention;

    FIG. 7 shows a flowchart of a method of driving a GOA unit.


    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0011] The present disclosure will be fully described below with reference to the accompanying drawings. In the drawings, the components are exaggerated for clarity.

    [0012] Transistors used in all embodiments of the present invention may be thin film transistors or field effect transistors or other devices with the same characteristics. In the embodiment, the connection mode of the drain and the source of each transistor can be interchanged, and therefore, the drain and the source of each transistor in the embodiment of the present disclosure have no difference substantially. Here, only for distinguishing between two other electrodes except for the gate of the transistor, one of the electrodes is called a drain and the other is called a source. The thin film transistor used in the embodiment of the present disclosure may be an N-type transistor or a P-type transistor. In the embodiment of the present disclosure, when an N-type thin film transistor is used, the first electrode may be a source, and the second electrode may be a drain. In the following, an example in which the thin film transistor is an N-type transistor is described. That is, when the signal of the gate is high, the thin film transistor is turned on. It can be conceived that when a P-type transistor is used, the timing of the driving signal needs to be adjusted accordingly.

    [0013] FIG. 1 shows a block diagram of a single GOA unit having a self-repair function.

    [0014] As shown in FIG. 1, the GOA unit comprises a front-end GOA unit 101 and a repair circuit 102. In the GOA unit, a repair circuit 102 is added after the output terminal of the front-end GOA unit 101.

    [0015] The front-end GOA unit 101 is connected to a signal input terminal Input, a reset signal terminal RESET, a first power supply voltage terminal VSS, a second power supply voltage terminal VDD1, a third power supply voltage terminal VDD2, a clock signal terminal CLK, and a front-end output terminal. The front-end GOA unit 101 is configured to output the clock signal of the clock signal terminal CLK to the front-end output terminal when the input signal Input of the signal input terminal is at an active input level.

    [0016] The repair circuit 102 is connected to the front-end output terminal of the front-end GOA unit 101, a frame start signal STV, the first power supply voltage terminal VSS, and a output terminal of the GOA unit, and is configured to output a pulse at the front-end output terminal to the output terminal of the GOA unit when the frame start signal STV is at an active input level; and to make the output terminal of the GOA unit having no output so that the GOA unit is in a non-output state when the frame start signal STV is at an inactive input level. Thus, a GOA unit according to the present disclosure can filter out abnormal output and interference signal.

    [0017] Among them, the first power supply voltage terminal VSS is a low power supply voltage terminal. The second and third power supply voltage terminals VDD1 and VDD2 are high power supply voltage terminals.

    [0018] FIG. 2A shows a structure diagram of a single GOA unit having a self-repair function.

    [0019] As shown in FIG. 2A, the front-end GOA unit 101 includes an input circuit 201, a reset circuit 202, a pull-down control circuit 203, a pull-down circuit 204, and an output circuit 205.

    [0020] The input circuit 201 is connected to the signal input terminal Input and a pull-up node PU, and is configured to transfer the received input signal to the pull-up node PU when the input signal Input of the signal input terminal is at an active input level.

    [0021] The reset circuit 202 is connected to the reset signal terminal RESET, the first power supply voltage terminal VSS, and the pull-up node PU, and is configured to pull down the pull-up signal at the pull-up node PU to the power supply voltage of the first power supply voltage terminal VSS, when the reset signal of the reset signal terminal RESET is at an active control level.

    [0022] The pull-down control circuit 203 is connected to the second power supply voltage terminal VDD1, the third power supply voltage terminal VDD2, the pull-up node PU, the pull-down nodes PD1 and PD2, and the first power supply voltage terminal VSS, and is configured to control whether the pull-down circuit 204 operates. For example, the pull-down control circuit 203 generates a pull-down signal having an inactive pull-down level at the pull-down node PD, when the pull-up signal at the pull-up node PU is at an active pull-up level; and provides the high-level voltage signal VDD1 or VDD2 to the pull-down nodes PD1 and PD2 in response to the high-level voltage signal VDD1 or VDD2, when the pull-up signal at the pull-up node PU is at an inactive pull-up level.

    [0023] The pull-down circuit 204 is connected to the pull-down node PD, the pull-up node PU, the first supply voltage terminal VSS, and the front-end output terminal, and is configured to pull down the front-end output terminal and the pull-up node PU to the power supply voltage of the first power supply voltage terminal VSS, when the pull-down signal at the pull-down node PD is at an active pull-down level.

    [0024] The output circuit 205 is connected to the clock signal terminal CLK, the pull-up node PU, and the front-end output terminal, and is configured to output the clock signal of the clock signal terminal CLK to the front-end output terminal when the pull-up signal at the pull-up node PU is at an active pull-up level.

    [0025] The repair circuit 102 is connected to the front-end output terminal, the frame start signal STV and the output terminal of the GOA unit, and is configured to output a pulse at the front-end output terminal to the output terminal of the GOA unit after the frame start signal STV comes, and in other time periods, to make the output terminal of the GOA unit having no output, so that the GOA unit is in a non-output state.

    [0026] FIG. 2B shows a detailed block diagram of the single GOA unit of FIG. 2A.

    [0027] As shown in FIG. 2B, the pull-down control circuit 203 includes a first pull-down control circuit 2031 and a second pull-down control circuit 2032, and the pull-down node PD includes a first pull-down node PD1 and a second pull-down node PD2.

    [0028] The pull-down circuit 204 includes a first pull-down circuit 2041 and a second pull-down circuit 2042.

    [0029] The first pull-down control circuit 2031 is connected to the second power supply voltage terminal VDD1, the pull-up node PU, the first pull-down node PD1, and the first power supply voltage terminal VSS, and is configured to control whether the first pull-down circuit 2041 operates. For example, the first pull-down control circuit 2031 generates a pull-down signal having an inactive pull-down level at the first pull-down node PD1, when the pull-up signal at the pull-up node PU is at an active pull-up level; and provides the high-level voltage signal VDD1 to the first pull-down nodes PD1 in response to the high-level voltage signal VDD1, when the pull-up signal at the pull-up node PU is at an inactive pull-up level.

    [0030] The second pull-down control circuit 2032 is connected to the third power supply voltage terminal VDD2, the pull-up node PU, the second pull-down node PD2, and the first power supply voltage terminal VSS, and is configured to control whether the second pull-down circuit 2042 operates. For example, the second pull-down control circuit 2032 generates a pull-down signal having an inactive pull-down level at the second pull-down node PD2, when the pull-up signal at the pull-up node PU is at an active pull-up level; and provides the high-level voltage signal VDD2 to the second pull-down nodes PD2 in response to the high-level voltage signal VDD2, when the pull-up signal at the pull-up node PU is at an inactive pull-up level.

    [0031] The first pull-down circuit 2041 is connected to the first pull-down node PD1, the pull-up node PU, the first power supply voltage terminal VSS, and the front-end output terminal, and is configured to pull down the front-end output terminal and the pull-up node PU to the power supply voltage of the first power supply voltage terminal VSS, when the pull-down signal at the first pull-down node PD1 is at an active pull-down level.

    [0032] The second pull-down circuit 2042 is connected to the second pull-down node PD, the pull-up node PU, the first power supply voltage terminal VSS, and the front-end output terminal, and is configured to pull down the front-end output terminal and the pull-up node PU to the power supply voltage of the first power supply voltage terminal VSS, when the pull-down signal at the second pull-down node PD2 is at an active pull-down level.

    [0033] FIG. 3 shows a circuit diagram of a single GOA unit having a self-repair circuit (102) which is part of the GOA driving circuit of the present inventiom.

    [0034] In the following, the transistors in FIG. 3 are all described as examples of an N-type transistor, which is turned on when the gate is input with a high level.

    [0035] As shown in FIG. 3, the input circuit 201 includes an input transistor M1, a gate and a first electrode of the input transistor M1 are respectively connected to the signal input terminal INPUT, and a second electrode of the input transistor M1 is connected to the pull-up node PU. When the input signal of the signal input terminal INPUT is at a high level, the input transistor M1 is turned on, and the input signal of the signal input terminal INPUT is transferred to the pull-up node PU. The specific implementation structure, control method, etc. of the input circuit 201 do not limit the embodiments of the present disclosure.

    [0036] The reset circuit 202 includes a reset transistor M2. A gate of the reset transistor M2 is connected to a reset signal terminal RESET, a first electrode of the reset transistor M2 is connected to the pull-up node PU, and a second electrode of the reset transistor M2 is connected to the first power supply voltage terminal VSS. When the reset signal at the reset signal terminal RESET is at the high level, the reset transistor M2 is turned on, and the pull-up signal at the pull-up node PU is pulled down to the power supply voltage of the first power supply voltage terminal VSS. The reset circuit 202 described above is only an example and it may have other structures.

    [0037] The pull-down control circuit 203 includes a first pull-down control circuit 2031 and a second pull-down control circuit 2032, and the pull-down node PD includes a first pull-down node PD1 and a second pull-down node PD2.

    [0038] The first pull-down control circuit 2031 includes a first pull-down control transistor M5, a second pull-down control transistor M6, a third pull-down control transistor M9, and a fourth pull-down control transistor M8. The gate of the first pull-down control transistor M5 is connected to the first pull-down control node PD_CN1, the first electrode of the first pull-down control transistor M5 is connected to the second power supply voltage terminal VDD1, and the second electrode of the first pull-down control transistor M5 is connected to the first pull-down node PD1; the gate of the second pull-down control transistor M6 is connected to the pull-up node PU, the first electrode of the second pull-down control transistor M6 is connected to the first pull-down node PD1, and the second electrode of the second pull-down control transistor M6 is connected to the first power supply voltage terminal VSS; and the gate and the first electrode of the third pull-down control transistor M9 are respectively connected to the second power supply voltage terminal VDD1, the second electrode of the third pull-down control transistor M9 is connected to the first pull-down control node PD_CN1; and the gate of the fourth pull-down control transistor M8 is connected to the pull-up node PU, the first electrode of the fourth pull-down control transistor M8 is connected to the first pull-down control node PD_CN1, and the second electrode of the fourth pull-down control transistor M8 is connected to the first power supply voltage terminal VSS.

    [0039] The second pull-down control circuit 2032 includes a fifth pull-down control transistor M5', a sixth pull-down control transistor M6', a seventh pull-down control transistor M9', and an eighth pull-down control transistor M8'. The gate of the fifth pull-down control transistor M5' is connected to the second pull-down control node PD CN2, the first electrode of the fifth pull-down control transistor M5' is connected to the third power supply voltage terminal VDD2, and the second electrode of the fifth pull-down control transistor M5' is connected to the second pull-down node PD2; the gate of the sixth pull-down control transistor M6' is connected to the pull-up node PU, the first electrode of the sixth pull-down control transistor M6' is connected to the second pull-down node PD2, and the second electrode of the sixth pull-down control transistor M6' is connected to the first power supply voltage terminal VSS; the gate and the first electrode of the seventh pull-down control transistor M9' are respectively connected to the third power supply voltage terminal VDD2, and the second electrode of the seventh pull-down control transistor M9' is connected to the second pull-down control node PD_CN2; and the gate of the eighth pull-down control transistor M8' is connected to the pull-up node PU, the first electrode of the eighth pull-down control transistor M8' is connected to the second pull-down control node PD_CN2, and the second electrode of the eighth pull-down control transistor M8' is connected to the first power supply voltage terminal VSS.

    [0040] The pull-down circuit 204 includes a first pull-down circuit 2041 and a second pull-down circuit 2042.

    [0041] The first pull-down circuit 2041 includes a first node pull-down transistor M10 and a first output pull-down transistor M11. The gate of the first node pull-down transistor M10 and the gate of the first output pull-down transistor M11 are connected to the first pull-down node PD1. The second electrode of a node pull-down transistor M10 and the second electrode of the first output pull-down transistor M11 are connected to the first power supply voltage terminal VSS, the first electrode of the first node pull-down transistor M10 is connected to the pull-up node PU, and the first electrode of the first output pull-down transistor M11 is connected to the front-end output terminal. When the pull-down signal at the first pull-down node PD1 is at the high level, the first node pull-down transistor M10 and the first output pull-down transistor M11 are turned on, to pull down the pull-up node PU and the front-end output terminal to the power supply voltage of the first power supply voltage terminal VSS respectively.

    [0042] The second pull-down circuit 2042 includes a second node pull-down transistor M10' and a second output pull-down transistor M11'. The gate of the second node pull-down transistor M10' and the gate of the second output pull-down transistor M11' are connected to the second pull-down node PD2. The second electrode of the second node pull-down transistor M10' and the second electrode of the second output pull-down transistor M11' are connected to the first power supply voltage terminal VSS, the first electrode of the second node pull-down transistor M10' is connected to the pull-up node PU, and the first electrode of the second output pull-down transistor M11' is connected to the front-end output terminal. When the pull-down signal at the second pull-down node PD2 is at a high level, the second node pull-down transistor M10' and the second output pull-down transistor M11' are turned on, to pull down the pull-up node PU and the front-end output terminal to the power supply voltage of the first power supply voltage terminal VSS respectively.

    [0043] The pull-down control circuit 203 and the pull-down circuit 204 described above are merely examples, which may also have other structures.

    [0044] The output circuit 205 includes an output transistor M3 and a second capacitor C2. The gate of the output transistor M3 is connected to the pull-up node PU. The first electrode of the output transistor M3 is connected to the clock signal terminal CLK. The second electrode of the output transistor M3 is connected to the front-end output terminal; the first terminal of the second capacitor C2 is connected to the pull-up node PU, and the second terminal of the second capacitor C2 is connected to the front-end output terminal. When the pull-up signal at the pull-up node PU is at the high level, the output transistor M3 is turned on, and the second clock signal at the clock signal terminal CLK is output to the front-end output terminal.

    [0045] The above-described output circuit 205 is only an example, and it may also have other structures.

    [0046] The repair circuit 102 includes a first repair control transistor M12, a second repair control transistor M13 a third repair control transistor M14, and a first capacitor C1. The gate and the first electrode of the first repair control transistor M12 are connected to the frame start signal STV, and the second electrode of the first repair control transistor M12 ++-il is connected to the reset node RE. The gate of the second repair control transistor M13 is connected to the reset node RE, the first electrode of the second repair control transistor M13 is connected to the front-end output terminal, and the second electrode of the second repair control transistor M13 is connected to the output terminal of the GOA unit. The first terminal of the first capacitor C1 is connected to the reset node RE, and the second terminal of the first capacitor C1 is connected to the first electrode of the third repair control transistor M14 The gate of the third repair control transistor M14 is connected to the output terminal of the GOA unit at the next stage, and the second electrode of the third repair control transistor M14 is connected to the first power supply voltage terminal VSS.

    [0047] At the beginning of each frame, the frame start signal STV turns on the first repair control transistor M12 and charges the reset node RE of the GOA unit of each row of gates. When the front-end GOA unit outputs Multiple-Output, since the reset node RE is at high level at this time, the second repair control transistor M13 is turned on, and the output of the front-end output terminal of the first frame is normally output. After that the front-end output of a GOA unit outputs a pulse on the output terminal of the GOA unit, the output signal of the output terminal of the GOA unit at the next stage turns on the third repair control transistor M14, thereby pulling down the level of the reset node RE, turning off the second repair control transistor M13, and shielding other abnormal outputs, so as to achieve the self-repair function under abnormal output.

    [0048] The function of the repair circuit 102 according to the present invention is implemented as follows

    [0049] At the beginning of each frame, the frame start signal STV causes the first repair control transistor M12 of each row GOA unit to be turned on, charges the reset node RE, and maintains the high level through the first capacitor C1.

    [0050] The reset node RE is set to a high level so that the second repair control transistor M13 maintains an ON state.

    [0051] At this time, the output of the front-end output passes through the second repair control transistor M13 in the ON state, and outputs a pulse to the output terminal of the GOA unit.

    [0052] After the front-end output terminal outputs the pulse, the third repair control transistor M14 is turned on inversely, so as to pull down the voltage of the reset node RE.

    [0053] The voltage of the reset node RE is set low, turning off the second repair control transistor M13.

    [0054] Since the second repair control transistor M13 is turned off, the row GOA unit locks the non-output state before the next frame start signal STV arrives.

    [0055] FIG. 4 shows a timing diagram of the GOA unit of FIG. 3 unit having a self-repair function when the GOA unit is abnormal according to an embodiment of the present invention.

    [0056] FIG. 5 shows a timing diagram of the GOA unit of FIG.3 having a self-repair function when the GOA unit is normal according to an embodiment of the present invention.

    [0057] Referring to FIG. 4, the front-end output terminal of the front-end GOA unit outputs abnormally, that is, has a plurality of outputs. During the front-end output terminal outputs the first pulse, the STV turns on the first repair control transistor M12 to charge the reset node RE. The reset node RE is set to a high level so that the second repair control transistor M13 maintains an ON state. At this time, the output of the front-end output terminal passes through the second repair control transistor M13 in the ON state, and outputs a pulse to the output terminal of the GOA unit. After the front-end output terminal outputs the pulse, the third repair control transistor M14 is turned on inversely, so as to pull down the voltage of the reset node RE. The voltage of the reset node RE is set low, turning off the second repair control transistor M13. Therefore, the reset output terminal is in a non-output state until the next frame start signal STV arrives. Therefore, even if a Multi-Output malfunction appears at the front-end output terminal, the Multiple-Output problem can be repaired by the repair circuit.

    [0058] That is, a driving method of a GOA unit according to the present invention includes: outputting a pulse of a front-end output terminal of a front-end GOA unit to an output terminal of a GOA unit when a frame start signal is at an active input level, and making the output terminal of the GOA unit having no output so that the GOA unit is in a non-output state in response to a pulse from the output terminal of the GOA unit of the next stage when the frame start signal is at an inactive input level.

    [0059] Referring to FIG. 5, no abnormality appears at the front-end output terminal of the front-end GOA unit in FIG. 5. At this time, the reset output terminal maintains the normal output of the front-end output terminal.

    [0060] As can be seen from the timing diagrams of FIG. 4 and FIG. 5, the GOA unit with the self-repair function can well solve the problem of abnormal Multiple-Output.

    [0061] FIG. 6 shows the overall structure of a GOA driving circuit according to the present invention.

    [0062] The GOA driving circuit shown in FIG. 6 includes N GOA units connected in cascade which are the first GOA unit to the Nth GOA unit, where N is an integer greater than or equal to two. Each stage of GOA unit can employ the structure described above.

    [0063] Hereinto, in said N GOA units connected in cascade, the signal input terminal of the first GOA unit is connected to the frame start signal, and the reset signal terminal of the Nth GOA unit is connected to the frame start signal.

    [0064] The signal input terminal of each GOA unit of the second GOA unit to the Nth GOA unit is connected to the output terminal of the GOA unit at the previous stage adjacent thereto.

    [0065] The reset signal terminal of each GOA unit of the first GOA unit to the N-1th GOA unit is connected to the output terminal of the GOA unit at the next stage adjacent thereto.

    [0066] Hereinto, in the GOA driving circuit, the frame start signal is connected to each stage of GOA unit.

    [0067] The driving signal output terminal of the GOA unit at respective stage is connected to the gate line.

    [0068] The GOA driving circuit is connected to the corresponding gate line through the driving signal output terminal of the GOA unit at respective stage, and is configured to sequentially output the scanning signal to the corresponding gate line.

    [0069] The present invention also provides a display device including the GOA driving circuit described above.

    [0070] FIG. 7 shows a flowchart of a method of driving a GOA.

    [0071] The GOA unit includes a front-end GOA unit and a repair circuit. As shown in FIG. 7, in step S701, when the frame start signal is at an active input level, a pulse at the front-end output terminal of the front-end GOA unit is output to the output terminal of the GOA unit through the repair circuit.

    [0072] In step S702, when the frame start signal is at an inactive input level, the repair circuit makes the output terminal of the GOA unit having no output so that the GOA unit is in a non-output state.

    [0073] Hereinto, the frame start signal is at an active input level at the beginning of each frame.

    [0074] The present invention adds a self-repair structure to the existing GOA architecture, and outputs the front-end output in a rational and selective manner with three TFTs turned on and off, so as to eliminate Multiple-Output condition and shield abnormal interference signals; improve product quality, product yield and product reliability; improve design margin, reduce design difficulty; and achieve the GOA unit's self-repair function and anti-interference function by performing process on the signal output from the front-end output terminal.

    [0075] Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It should also be understood that terms such as those defined in a typical dictionary should be construed as having a meaning that is consistent with their meaning in the context of the related art without being interpreted in an idealized or overly formal sense, unless defined expressly herein.


    Claims

    1. A GOA driving circuit comprising N GOA units connected in cascade so as to respectively form N stages, said N GOA units being a first GOA unit to an Nth GOA unit, where N is an integer greater than or equal to two,
    wherein each of said GOA unit, comprises:

    a signal input terminal (INPUT), a reset signal terminal (RESET), a first power supply voltage terminal (VSS), a second power supply voltage terminal (VDD1), a third power supply voltage terminal (VDD2), a clock signal terminal (CLK), a frame start signal terminal (STV), a second input terminal (N+1 INPUT) and an output terminal,

    a front-end GOA unit (101) which is connected to the signal input terminal (INPUT), the reset signal terminal (RESET), the first power supply voltage terminal (VSS), the second power supply voltage terminal (VDD1), the third power supply voltage terminal (VDD2), the clock signal terminal (CLK), and a front-end output terminal, and is configured to output a clock signal at the clock signal terminal (CLK) to the front-end output terminal when an input signal at the signal input terminal (INPUT) is at an active input level; and

    a repair circuit (102) which is connected to the front-end output terminal, the frame start signal terminal, the first power supply voltage terminal, the second input terminal and the output terminal of the GOA unit, and is configured to output a pulse at the front-end output terminal to the output terminal of the GOA unit in response to receiving a frame start signal at an active input level at the frame start signal terminal; and to make the output terminal of the GOA unit having no output so that the GOA unit is in a non-output state in response to receiving a signal at an active input level at the second input terminal when the frame start signal is at an inactive input level; wherein the repair circuit comprises:

    a first repair control transistor (M12) having a gate and a first electrode respectively connected to the frame start signal terminal, and a second electrode connected to a reset node;

    a second repair control transistor (M13) having a gate connected to the reset node, a first electrode connected to the front-end output terminal, and a second electrode connected to the output terminal of the GOA unit;

    a first capacitor (C1) having a first terminal connected to the reset node; and

    a third repair control transistor (M14) having a gate connected to the second input terminal , a first electrode connected to a second terminal of the first capacitor, and a second electrode connected to the first power supply voltage terminal;

    wherein among said N GOA units connected in cascade, the signal input terminal of the first GOA unit and the reset signal terminal of the Nth GOA unit are connected to the frame start signal terminals of said N GOA units to receive the frame start signal, the signal input terminal of each GOA unit of the second GOA unit to the Nth GOA unit is connected to the output terminal of the GOA unit at the previous stage adjacent thereto, the reset signal terminal of each GOA unit of the first GOA unit to the N-1th GOA unit is connected to the output terminal of the GOA unit at the next stage adjacent thereto, and the second input terminal of each GOA unit of the first GOA unit to the N-1th GOA unit is connected to the output terminal of the GOA unit at the next stage adjacent thereto.


     
    2. The GOA driving circuit according to claim 1, wherein the front-end GOA unit (101) further comprises:

    an input circuit (201), which is connected to the signal input terminal (INPUT) and a pull-up node (PU), and is configured to transfer the received input signal to the pull-up node (PU) when the input signal of the signal input terminal (INPUT) is at an active input level;

    a reset circuit (202) which is connected to the reset signal terminal (RESET), the first power supply voltage terminal (VSS) and the pull-up node (PU), and is configured to pull-down the pull-up signal at the pull-up node (PU) to the power supply voltage at the first power supply voltage terminal (VSS) when the reset signal at the reset signal terminal (RESET) is at an active control level;

    a pull-down control circuit (203) which is connected to the second power supply voltage terminal (VDD1), the third power supply voltage terminal (VDD2), the pull-up node (PU), a pull-down node (PD), and the first power supply voltage terminal (VSS), and is configured to control whether a pull-down circuit (204) operates;

    the pull-down circuit (204) which is connected to the pull-down node (PD), the pull-up node (PU), the first power supply voltage terminal (VSS) and the front-end output terminal, and is configured to pull-down the voltages of the front-end output terminal and the pull-up node (PU) to the power supply voltage of the first power supply voltage terminal (VSS) when the pull-down signal at the pull-down node (PD) is at an active pull-down level; and

    an output circuit (205), which is connected to the clock signal terminal (CLK), the pull-up node (PU), and the front-end output terminal, and is configured to output the clock signal of the clock signal terminal (CLK) to the front-end output terminal when the pull-up signal at the pull-up node (PU) is at an active pull-up level.


     
    3. The GOA driving circuit according to claim 2, wherein the input circuit (201) comprises:
    an input transistor (M1) having a gate and a first electrode respectively connected to the signal input terminal, and a second electrode connected to a pull-up node.
     
    4. The GOA driving circuit according to claim 2, wherein the reset circuit (202) comprises:
    a reset transistor (M2) having a gate connected to the reset signal terminal, a first electrode connected to the pull-up node, and a second electrode connected to the first power supply voltage terminal.
     
    5. The GOA driving circuit according to claim 2, wherein

    the pull-down control circuit (203) comprises a first pull-down control circuit (2031) and a second pull-down control circuit (2032), and

    the pull-down node (PD) includes a first pull-down node (PD1) and a second pull-down node (PD2).


     
    6. The GOA driving circuit according to claim 5, wherein the first pull-down control circuit (2031) comprises:

    a first pull-down control transistor (M5) having a gate connected to a first pull-down control node, a first electrode connected to the second power supply voltage terminal, and a second electrode connected to the first pull-down node;

    a second pull-down control transistor (M6) having a gate connected to the pull-up node, a first electrode connected to the first pull-down node, and a second electrode connected to the first power supply voltage terminal;

    a third pull-down control transistor (M9) having a gate and a first electrode respectively connected to the second power supply voltage terminal, and a second electrode connected to the first pull-down control node; and

    a fourth pull-down control transistor (M8) having a gate connected to the pull-up node, a first electrode connected to the first pull-down control node, and a second electrode connected to the first power supply voltage terminal,

    the second pull-down control circuit (2032) includes:

    a fifth pull-down control transistor (M5') having a gate connected to the second pull-down control node, a first electrode connected to the third power supply voltage terminal, and a second electrode connected to the second pull-down node;

    a sixth pull-down control transistor (M6') having a gate connected to the pull-up node, a first electrode connected to the second pull-down node, and a second electrode connected to the first power supply voltage terminal;

    a seventh pull-down control transistor (M7') having a gate and a first electrode respectively connected to the third power supply voltage terminal, and a second electrode connected to the second pull-down control node; and

    an eighth pull-down control transistor (M8') having a gate connected to the pull-up node, a first electrode connected to the second pull-down control node, and a second electrode connected to the first power supply voltage terminal.


     
    7. The GOA driving circuit according to claim 2, wherein the pull-down circuit (204) includes a first pull-down circuit (2041) and a second pull-down circuit (2042).
     
    8. The GOA driving circuit according to claim 7, wherein the first pull-down circuit (2041) comprises:

    a first node pull-down transistor (M10) having a gate connected to the first pull-down node, a first electrode connected to the pull-up node, and a second electrode connected to the first power supply voltage terminal; and

    a first output pull-down transistor (M11) having a gate connected to the first pull-down node, a first electrode connected to the front-end output terminal, and a second electrode connected to the first power supply voltage terminal,

    the second pull-down circuit (2042) includes:

    a second node pull-down transistor (M10') having a gate connected to the second pull-down node, a first electrode connected to the pull-up node, and a second electrode connected to the first power supply voltage terminal; and

    a second output pull-down transistor (M11') having a gate connected to the second pull-down node, a first electrode connected to the front-end output terminal, and a second electrode connected to the first power supply voltage terminal.


     
    9. The GOA driving circuit according to claim 2, wherein the output circuit (205) comprises:

    an output transistor (M3) having a gate connected to the pull-up node, a first electrode connected to the clock signal terminal, and a second electrode connected to the front-end output terminal; and

    a second capacitor (C2) having a first terminal connected to the pull-up node and a second terminal connected to the front-end output terminal.


     
    10. The GOA driving circuit according to any one of claims 1-9, wherein at the beginning of each frame, the frame start signal (STV) is at an active input level.
     
    11. A driving method of the GOA driving circuit of claim 1, the method comprising:
    providing the signal input terminal of the first GOA unit of the GOA driving circuit and the frame start signal terminals (STV) of the N GOA units with a frame start signal, wherein the frame start signal is at an active input level at a beginning of each frame.
     
    12. A display device, comprising a GOA driving circuit according to any one of claims 1-10.
     


    Ansprüche

    1. GOA-Ansteuerschaltung mit N GOA-Einheiten, die in Kaskade geschaltet sind, um jeweils N Stufen zu bilden, wobei die N GOA-Einheiten eine erste GOA-Einheit bis zu einer N-ten GOA-Einheit sind, wobei N eine ganze Zahl größer oder gleich zwei ist,
    wobei jede der GOA-Einheiten aufweist:

    einen Signaleingangsanschluss (INPUT), einen Rücksetzsignalanschluss (RESET), einen ersten Energieversorgungsspannungsanschluss (VSS), einen zweiten Energieversorgungsspannungsanschluss (VDD1), einen dritten Energieversorgungsspannungsanschluss (VDD2), einen Taktsignalanschluss (CLK), einen Frame-Startsignalanschluss (STV), einen zweiten Eingangsanschluss (N+1 INPUT) und einen Ausgangsanschluss,

    eine Front-End-GOA-Einheit (101), die mit dem Signaleingangsanschluss (INPUT), dem Rücksetzsignalanschluss (RESET), dem ersten Energieversorgungsspannungsanschluss (VSS), dem zweiten Energieversorgungsspannungsanschluss (VDD1), dem dritten Energieversorgungsspannungsanschluss (VDD2), dem Taktsignalanschluss (CLK) und einem Front-End-Ausgangsanschluss verbunden ist und konfiguriert ist, ein Taktsignal an dem Taktsignalanschluss (CLK) an den Front-End-Ausgangsanschluss auszugeben, wenn ein Eingangssignal an dem Signaleingangsanschluss (INPUT) einen aktiven Eingangspegel aufweist; und

    eine Reparaturschaltung (102), die mit dem Front-End-Ausgangsanschluss, dem Frame-Startsignalanschluss, dem ersten Energieversorgungsspannungsanschluss, dem zweiten Eingangsanschluss und dem Ausgangsanschluss der GOA-Einheit verbunden ist und konfiguriert ist, einen Impuls an dem Front-End-Ausgangsanschluss an den Ausgangsanschluss der GOA-Einheit als Reaktion auf den Empfang eines Frame-Startsignals mit einem aktiven Eingangspegel an dem Frame-Startsignalanschluss auszugeben; und den Ausgangsanschluss der GOA-Einheit nichts auszugeben zu lassen, sodass sich die GOA-Einheit als Reaktion auf den Empfang eines Signals mit einem aktiven Eingangspegel an dem zweiten Eingangsanschluss in einem Nicht-Ausgabezustand befindet, wenn sich das Frame-Startsignal auf einem inaktiven Eingangspegel befindet; wobei die Reparaturschaltung aufweist:

    einen ersten Reparatursteuertransistor (M12) mit einem Gate und einer ersten Elektrode, die jeweils mit dem Frame-Startsignalanschluss verbunden sind, und einer zweiten Elektrode, die mit einem Rücksetzknoten verbunden ist;

    einen zweiten Reparatursteuertransistor (M13) mit einem Gate, das mit dem Rücksetzknoten verbunden ist, einer ersten Elektrode, die mit dem Front-End-Ausgangsanschluss verbunden ist, und einer zweiten Elektrode, die mit dem Ausgangsanschluss der GOA-Einheit verbunden ist;

    einen ersten Kondensator (C1) mit einem ersten Anschluss, der mit dem Rücksetzknoten verbunden ist; und

    einen dritten Reparatursteuertransistor (M14) mit einem Gate, das mit dem zweiten Eingangsanschluss verbunden ist, einer ersten Elektrode, die mit einem zweiten Anschluss des ersten Kondensators verbunden ist, und einer zweiten Elektrode, die mit dem ersten Energieversorgungsspannungsanschluss verbunden ist;

    wobei unter den N GOA-Einheiten, die in Kaskade geschaltet sind, der Signaleingangsanschluss der ersten GOA-Einheit und der Rücksetzsignalanschluss der N-ten GOA-Einheit mit den Frame-Startsignalanschlüssen der N GOA-Einheiten verbunden sind, um das Frame-Startsignal zu empfangen, wobei der Signaleingangsanschluss jeder GOA-Einheit von der zweiten GOA-Einheit bis zur N-ten GOA-Einheit mit dem Ausgangsanschluss der GOA-Einheit in der ihr benachbarten vorherigen Stufe verbunden ist, der Rücksetzsignalanschluss jeder GOA-Einheit der ersten GOA-Einheit bis zur N-1-ten GOA-Einheit mit dem Ausgangsanschluss der GOA-Einheit in der dazu benachbarten nächsten Stufe verbunden ist, und der zweite Eingangsanschluss jeder GOA-Einheit der ersten GOA-Einheit bis zur N-1-ten GOA-Einheit mit dem Ausgangsanschluss der GOA-Einheit in der dazu benachbarten nächsten Stufe verbunden ist.


     
    2. GOA-Ansteuerungsschaltung nach Anspruch 1, wobei die GOA-Einheit (101) am Front-End ferner aufweist:

    eine Eingangsschaltung (201), die mit dem Signaleingangsanschluss (INPUT) und einem Pull-up-Knoten (PU) verbunden ist und konfiguriert ist, das empfangene Eingangssignal an den Pull-up-Knoten (PU) zu übertragen, wenn das Eingangssignal des Signaleingangsanschlusses (INPUT) einen aktiven Eingangspegel aufweist;

    eine Rücksetzschaltung (202), die mit dem Rücksetzsignalanschluss (RESET), dem ersten Energieversorgungsspannungsanschluss (VSS) und dem Pull-up-Knoten (PU) verbunden ist und konfiguriert ist, das Pull-up-Signal am Pull-up-Knoten (PU) auf die Energieversorgungsspannung am ersten Energieversorgungsspannungsanschluss (VSS) herunterzuziehen, wenn das Rücksetzsignal am Rücksetzsignalanschluss (RESET) auf einem aktiven Steuerpegel ist;

    eine Pull-down-Steuerschaltung (203), die mit dem zweiten Energieversorgungsspannungsanschluss (VDD1), dem dritten Energieversorgungsspannungsanschluss (VDD2), dem Pull-up-Knoten (PU), einem Pull-down-Knoten (PD) und dem ersten Energieversorgungsspannungsanschluss (VSS) verbunden ist und konfiguriert ist, zu steuern, ob eine Pull-down-Schaltung (204) arbeitet;

    die Pull-down-Schaltung (204), die mit dem Pull-down-Knoten (PD), dem Pull-up-Knoten (PU), dem ersten Energieversorgungsspannungsanschluss (VSS) und dem Front-End-Ausgangsanschluss verbunden ist und konfiguriert ist, die Spannungen des Front-End-Ausgangsanschlusses und des Pull-up-Knotens (PU) auf die Energieversorgungsspannung des ersten Energieversorgungsspannungsanschlusses (VSS) herunterzuziehen, wenn das Pull-down-Signal am Pull-down-Knoten (PD) einen aktiven Pull-down-Pegel aufweist; und

    eine Ausgangsschaltung (205), die mit dem Taktsignalanschluss (CLK), dem Pull-up-Knoten (PU) und dem Front-End-Ausgangsanschluss verbunden ist und konfiguriert ist, das Taktsignal des Taktsignalanschlusses (CLK) an den Front-End-Ausgangsanschluss auszugeben, wenn das Pull-up-Signal am Pull-up-Knoten (PU) auf einem aktiven Pull-up-Pegel ist.


     
    3. GOA-Ansteuerschaltung nach Anspruch 2, wobei die Eingangsschaltung (201) aufweist:
    einen Eingangstransistor (M1) mit einem Gate und einer ersten Elektrode, die jeweils mit dem Signaleingangsanschluss verbunden sind, und einer zweiten Elektrode, die mit einem Pull-up-Knoten verbunden ist.
     
    4. GOA-Ansteuerschaltung nach Anspruch 2, wobei die Rücksetzschaltung (202) aufweist:
    einen Rücksetztransistor (M2) mit einem Gate, das mit dem Rücksetzsignalanschluss verbunden ist, einer ersten Elektrode, die mit dem Pull-up-Knoten verbunden ist, und einer zweiten Elektrode, die mit dem ersten Energieversorgungsspannungsanschluss verbunden ist.
     
    5. GOA-Ansteuerschaltung nach Anspruch 2, wobei

    die Pull-down-Steuerschaltung (203) eine erste Pull-down-Steuerschaltung (2031) und eine zweite Pull-down-Steuerschaltung (2032) aufweist, und

    der Pull-down-Knoten (PD) einen ersten Pull-down-Knoten (PD1) und einen zweiten Pull-down-Knoten (PD2) aufweist.


     
    6. GOA-Ansteuerschaltung nach Anspruch 5, wobei die erste Pull-down-Steuerschaltung (2031) aufweist:

    einen ersten Pull-down-Steuertransistor (M5) mit einem Gate, das mit einem ersten Pull-down-Steuerknoten verbunden ist, einer ersten Elektrode, die mit dem zweiten Energieversorgungsspannungsanschluss verbunden ist, und einer zweiten Elektrode, die mit dem ersten Pull-down-Knoten verbunden ist;

    einen zweiten Pull-down-Steuertransistor (M6) mit einem Gate, das mit dem Pull-up-Knoten verbunden ist, einer ersten Elektrode, die mit dem ersten Pull-down-Knoten verbunden ist, und einer zweiten Elektrode, die mit dem ersten Energieversorgungsspannungsanschluss verbunden ist;

    einen dritten Pull-down-Steuertransistor (M9) mit einem Gate und einer ersten Elektrode, die jeweils mit dem zweiten Energieversorgungsspannungsanschluss verbunden sind, und einer zweiten Elektrode, die mit dem ersten Pull-down-Steuerknoten verbunden ist; und

    einen vierten Pull-down-Steuertransistor (M8) mit einem Gate, das mit dem Pull-up-Knoten verbunden ist, einer ersten Elektrode, die mit dem ersten Pull-down-Steuerknoten verbunden ist, und einer zweiten Elektrode, die mit dem ersten Energieversorgungsspannungsanschluss verbunden ist,

    wobei die zweite Pull-down-Steuerschaltung (2032) aufweist:

    einen fünften Pull-down-Steuertransistor (M5') mit einem Gate, das mit dem zweiten Pull-down-Steuerknoten verbunden ist, einer ersten Elektrode, die mit dem dritten Energieversorgungsspannungsanschluss verbunden ist, und einer zweiten Elektrode, die mit dem zweiten Pull-down-Knoten verbunden ist;

    einen sechsten Pull-down-Steuertransistor (M6') mit einem Gate, das mit dem Pull-up-Knoten verbunden ist, einer ersten Elektrode, die mit dem zweiten Pull-down-Knoten verbunden ist, und einer zweiten Elektrode, die mit dem ersten Energieversorgungsspannungsanschluss verbunden ist;

    einen siebten Pull-down-Steuertransistor (M7') mit einem Gate und einer ersten Elektrode, die jeweils mit dem dritten Energieversorgungsspannungsanschluss verbunden sind, und einer zweiten Elektrode, die mit dem zweiten Pull-down-Steuerknoten verbunden ist; und

    einen achten Pull-down-Steuertransistor (M8') mit einem Gate, das mit dem Pull-up-Knoten verbunden ist, einer ersten Elektrode, die mit dem zweiten Pull-down-Steuerknoten verbunden ist, und einer zweiten Elektrode, die mit dem ersten Energieversorgungsspannungsanschluss verbunden ist.


     
    7. GOA-Ansteuerschaltung nach Anspruch 2, wobei die Pull-down-Schaltung (204) eine erste Pull-down-Schaltung (2041) und eine zweite Pull-down-Schaltung (2042) aufweist.
     
    8. GOA-Ansteuerschaltung nach Anspruch 7, wobei die erste Pull-down-Schaltung (2041) Folgendes aufweist:

    einen ersten Knoten-Pull-down-Transistor (M10) mit einem Gate, das mit dem ersten Pull-down-Knoten verbunden ist, einer ersten Elektrode, die mit dem Pull-up-Knoten verbunden ist, und einer zweiten Elektrode, die mit dem ersten Energieversorgungsspannungsanschluss verbunden ist; und

    einen ersten Pull-down-Ausgangstransistor (M11) mit einem Gate, das mit dem ersten Pull-down-Knoten verbunden ist, einer ersten Elektrode, die mit dem Front-End-Ausgangsanschluss verbunden ist, und einer zweiten Elektrode, die mit dem ersten Energieversorgungsspannungsanschluss verbunden ist,

    wobei die zweite Pull-down-Schaltung (2042) aufweist:

    einen zweiten Knoten-Pull-down-Transistor (M10') mit einem Gate, das mit dem zweiten Pull-down-Knoten verbunden ist, einer ersten Elektrode, die mit dem Pull-up-Knoten verbunden ist, und einer zweiten Elektrode, die mit dem ersten Energieversorgungsspannungsanschluss verbunden ist; und

    einen zweiten Ausgangs-Pull-down-Transistor (M11') mit einem Gate, das mit dem zweiten Pull-down-Knoten verbunden ist, einer ersten Elektrode, die mit dem Front-End-Ausgangsanschluss verbunden ist, und einer zweiten Elektrode, die mit dem ersten Energieversorgungsspannungsanschluss verbunden ist.


     
    9. GOA-Ansteuerschaltung nach Anspruch 2, wobei die Ausgangsschaltung (205) aufweist:

    einen Ausgangstransistor (M3) mit einem Gate, das mit dem Pull-up-Knoten verbunden ist, einer ersten Elektrode, die mit dem Taktsignalanschluss verbunden ist, und einer zweiten Elektrode, die mit dem Front-End-Ausgangsanschluss verbunden ist; und

    einen zweiten Kondensator (C2) mit einem ersten Anschluss, der mit dem Pull-up-Knoten verbunden ist, und einem zweiten Anschluss, der mit dem Front-End-Ausgangsanschluss verbunden ist.


     
    10. GOA-Ansteuerschaltung nach einem der Ansprüche 1 bis 9, wobei zu Beginn eines jeden Frames das Frame-Startsignal (STV) auf einem aktiven Eingangspegel liegt.
     
    11. Ansteuerungsverfahren für die GOA-Ansteuerungsschaltung nach Anspruch 1, wobei das Verfahren aufweist:
    Versorgen des Signaleingangsanschlusses der ersten GOA-Einheit der GOA-Ansteuerschaltung und der Frame-Startsignalanschlüsse (STV) der N GOA-Einheiten mit einem Frame-Startsignal, wobei sich das Frame-Startsignal zu Beginn jedes Frames auf einem aktiven Eingangspegel befindet.
     
    12. Anzeigevorrichtung mit einer GOA-Ansteuerschaltung nach einem der Ansprüche 1-10.
     


    Revendications

    1. Circuit de pilotage de GOA comprenant N unités de GOA qui sont connectées en cascade de manière à former respectivement N étages, lesdites N unités de GOA étant une première unité de GOA à une N-ième unité de GOA, où N est un entier supérieur ou égal à deux ;
    dans lequel chacune desdites unités de GOA comprend :

    une borne d'entrée de signal (INPUT), une borne de signal de réinitialisation (RESET), une première borne de tension d'alimentation (VSS), une deuxième borne de tension d'alimentation (VDD1), une troisième borne de tension d'alimentation (VDD2), une borne de signal d'horloge (CLK), une borne de signal de début de trame (STV), une seconde borne d'entrée (N+1 INPUT) et une borne de sortie ;

    une unité de GOA d'extrémité avant (101) qui est connectée à la borne d'entrée de signal (INPUT), à la borne de signal de réinitialisation (RESET), à la première borne de tension d'alimentation (VSS), à la deuxième borne de tension d'alimentation (VDD1), à la troisième borne de tension d'alimentation (VDD2), à la borne de signal d'horloge (CLK) et à une borne de sortie d'extrémité avant, et qui est configurée pour émettre en sortie un signal d'horloge au niveau de la borne de signal d'horloge (CLK) sur la borne de sortie d'extrémité avant lorsqu'un signal d'entrée au niveau de la borne d'entrée de signal (INPUT) est à un niveau d'entrée actif ; et

    un circuit de réparation (102) qui est connecté à la borne de sortie d'extrémité avant, à la borne de signal de début de trame, à la première borne de tension d'alimentation, à la seconde borne d'entrée et à la borne de sortie de l'unité de GOA, et qui est configuré pour émettre en sortie une impulsion au niveau de la borne de sortie d'extrémité avant sur la borne de sortie de l'unité de GOA en réponse à la réception d'un signal de début de trame à un niveau d'entrée actif au niveau de la borne de signal de début de trame ; et pour faire en sorte que la borne de sortie de l'unité de GOA ne présente pas de sortie de telle sorte que l'unité de GOA soit dans un état de non émission en sortie en réponse à la réception d'un signal à un niveau d'entrée actif au niveau de la seconde borne d'entrée lorsque le signal de début de trame est à un niveau d'entrée inactif ; dans lequel le circuit de réparation comprend :

    un premier transistor de commande de réparation (M12) qui comporte une grille et une première électrode qui sont respectivement connectées à la borne de signal de début de trame et une seconde électrode qui est connectée à un nœud de réinitialisation ;

    un deuxième transistor de commande de réparation (M13) qui comporte une grille qui est connectée au nœud de réinitialisation, une première électrode qui est connectée à la borne de sortie d'extrémité avant et une seconde électrode qui est connectée à la borne de sortie de l'unité de GOA ;

    un premier condensateur (C1) qui comporte une première borne qui est connectée au nœud de réinitialisation ; et

    un troisième transistor de commande de réparation (M14) qui comporte une grille qui est connectée à la seconde borne d'entrée, une première électrode qui est connectée à une seconde borne du premier condensateur et une seconde électrode qui est connectée à la première borne de tension d'alimentation ;

    dans lequel, parmi lesdites unités de GOA qui sont connectées en cascade, la borne d'entrée de signal de la première unité de GOA et la borne de signal de réinitialisation de la N-ième unité de GOA sont connectées aux bornes de signal de début de trame desdites N unités de GOA pour recevoir le signal de début de trame, la borne d'entrée de signal de chaque unité de GOA de la deuxième unité de GOA à la N-ième unité de GOA est connectée à la borne de sortie de l'unité de GOA au niveau de l'étage précédent qui lui est adjacent, la borne de signal de réinitialisation de chaque unité de GOA de la première unité de GOA à la (N - 1)-ième unité de GOA est connectée à la borne de sortie de l'unité de GOA au niveau de l'étage suivant qui lui est adjacent, et la seconde borne d'entrée de chaque unité de GOA de la première unité de GOA à la (N - 1)-ième unité de GOA est connectée à la borne de sortie de l'unité de GOA au niveau de l'étage suivant qui lui est adjacent.


     
    2. Circuit de pilotage de GOA selon la revendication 1, dans lequel l'unité de GOA d'extrémité avant (101) comprend en outre :

    un circuit d'entrée (201) qui est connecté à la borne d'entrée de signal (INPUT) et à un nœud d'excursion haute (PU), et qui est configuré pour transférer le signal d'entrée reçu sur le nœud d'excursion haute (PU) lorsque le signal d'entrée de la borne d'entrée de signal (INPUT) est à un niveau d'entrée actif ;

    un circuit de réinitialisation (202) qui est connecté à la borne de signal de réinitialisation (RESET), à la première borne de tension d'alimentation (VSS) et au nœud d'excursion haute (PU), et qui est configuré pour soumettre à une excursion basse le signal d'excursion haute au niveau du nœud d'excursion haute (PU) selon la tension d'alimentation au niveau de la première borne de tension d'alimentation (VSS) lorsque le signal de réinitialisation au niveau de la borne de signal de réinitialisation (RESET) est à un niveau de commande actif ;

    un circuit de commande d'excursion basse (203) qui est connecté à la deuxième borne de tension d'alimentation (VDD1), à la troisième borne de tension d'alimentation (VDD2), au nœud d'excursion haute (PU), à un nœud d'excursion basse (PD) et à la première borne de tension d'alimentation (VSS), et qui est configuré pour commander si oui ou non un circuit d'excursion basse (204) fonctionne ;

    le circuit d'excursion basse (204) qui est connecté au nœud d'excursion basse (PD), au nœud d'excursion haute (PU), à la première borne de tension d'alimentation (VSS) et à la borne de sortie d'extrémité avant, et qui est configuré pour soumettre à une excursion basse les tensions de la borne de sortie d'extrémité avant et du nœud d'excursion haute (PU) selon la tension d'alimentation de la première borne de tension d'alimentation (VSS) lorsque le signal d'excursion basse au niveau du nœud d'excursion basse (PD) est à un niveau d'excursion basse actif ; et

    un circuit de sortie (205) qui est connecté à la borne de signal d'horloge (CLK), au nœud d'excursion haute (PU) et à la borne de sortie d'extrémité avant, et qui est configuré pour émettre en sortie le signal d'horloge de la borne de signal d'horloge (CLK) sur la borne de sortie d'extrémité avant lorsque le signal d'excursion haute au niveau du nœud d'excursion haute (PU) est à un niveau d'excursion haute actif.


     
    3. Circuit de pilotage de GOA selon la revendication 2, dans lequel le circuit d'entrée (201) comprend :
    un transistor d'entrée (M1) qui comporte une grille et une première électrode qui sont respectivement connectées à la borne d'entrée de signal et une seconde électrode qui est connectée à un nœud d'excursion haute.
     
    4. Circuit de pilotage de GOA selon la revendication 2, dans lequel le circuit de réinitialisation (202) comprend :
    un transistor de réinitialisation (M2) qui comporte une grille qui est connectée à la borne de signal de réinitialisation, une première électrode qui est connectée au nœud d'excursion haute et une seconde électrode qui est connectée à la première borne de tension d'alimentation.
     
    5. Circuit de pilotage de GOA selon la revendication 2, dans lequel :

    le circuit de commande d'excursion basse (203) comprend un premier circuit de commande d'excursion basse (2031) et un second circuit de commande d'excursion basse (2032) ; et

    le nœud d'excursion basse (PD) inclut un premier nœud d'excursion basse (PD1) et un second nœud d'excursion basse (PD2).


     
    6. Circuit de pilotage de GOA selon la revendication 5, dans lequel :
    le premier circuit de commande d'excursion basse (2031) comprend :

    un premier transistor de commande d'excursion basse (M5) qui comporte une grille qui est connectée à un premier nœud de commande d'excursion basse, une première électrode qui est connectée à la deuxième borne de tension d'alimentation et une seconde électrode qui est connectée au premier nœud d'excursion basse ;

    un deuxième transistor de commande d'excursion basse (M6) qui comporte une grille qui est connectée au nœud d'excursion haute, une première électrode qui est connectée au premier nœud d'excursion basse et une seconde électrode qui est connectée à la première borne de tension d'alimentation ;

    un troisième transistor de commande d'excursion basse (M9) qui comporte une grille et une première électrode qui sont respectivement connectées à la deuxième borne de tension d'alimentation et une seconde électrode qui est connectée au premier nœud de commande d'excursion basse ; et

    un quatrième transistor de commande d'excursion basse (M8) qui comporte une grille qui est connectée au nœud d'excursion haute, une première électrode qui est connectée au premier nœud de commande d'excursion basse et une seconde électrode qui est connectée à la première borne de tension d'alimentation ; et

    le second circuit de commande d'excursion basse (2032) inclut :

    un cinquième transistor de commande d'excursion basse (M5') qui comporte une grille qui est connectée au second nœud de commande d'excursion basse, une première électrode qui est connectée à la troisième borne de tension d'alimentation et une seconde électrode qui est connectée au second nœud d'excursion basse ;

    un sixième transistor de commande d'excursion basse (M6') qui comporte une grille qui est connectée au nœud d'excursion haute, une première électrode qui est connectée au second nœud d'excursion basse et une seconde électrode qui est connectée à la première borne de tension d'alimentation ;

    un septième transistor de commande d'excursion basse (M7') qui comporte une grille et une première électrode qui sont respectivement connectées à la troisième borne de tension d'alimentation et une seconde électrode qui est connectée au second nœud de commande d'excursion basse ; et

    un huitième transistor de commande d'excursion basse (M8') qui comporte une grille qui est connectée au nœud d'excursion haute, une première électrode qui est connectée au second nœud de commande d'excursion basse et une seconde électrode qui est connectée à la première borne de tension d'alimentation.


     
    7. Circuit de pilotage de GOA selon la revendication 2, dans lequel le circuit d'excursion basse (204) inclut un premier circuit d'excursion basse (2041) et un second circuit d'excursion basse (2042).
     
    8. Circuit de pilotage de GOA selon la revendication 7, dans lequel :
    le premier circuit d'excursion basse (2041) comprend :

    un premier transistor d'excursion basse de nœud (M10) qui comporte une grille qui est connectée au premier nœud d'excursion basse, une première électrode qui est connectée au nœud d'excursion haute et une seconde électrode qui est connectée à la première borne de tension d'alimentation ; et

    un premier transistor d'excursion basse de sortie (M11) qui comporte une grille qui est connectée au premier nœud d'excursion basse, une première électrode qui est connectée à la borne de sortie d'extrémité avant et une seconde électrode qui est connectée à la première borne de tension d'alimentation ; et

    le second circuit d'excursion basse (2042) inclut :

    un second transistor d'excursion basse de nœud (M10') qui comporte une grille qui est connectée au second nœud d'excursion basse, une première électrode qui est connectée au nœud d'excursion haute et une seconde électrode qui est connectée à la première borne de tension d'alimentation ; et

    un second transistor d'excursion basse de sortie (M11) qui comporte une grille qui est connectée au second nœud d'excursion basse, une première électrode qui est connectée à la borne de sortie d'extrémité avant et une seconde électrode qui est connectée à la première borne de tension d'alimentation.


     
    9. Circuit de pilotage de GOA selon la revendication 2, dans lequel le circuit de sortie (205) comprend :

    un transistor de sortie (M3) qui comporte une grille qui est connectée au nœud d'excursion haute, une première électrode qui est connectée à la borne de signal d'horloge et une seconde électrode qui est connectée à la borne de sortie d'extrémité avant ; et

    un second condensateur (C2) qui comporte une première borne qui est connectée au nœud d'excursion haute et une seconde borne qui est connectée à la borne de sortie d'extrémité avant.


     
    10. Circuit de pilotage de GOA selon l'une quelconque des revendications 1 à 9, dans lequel, au commencement de chaque trame, le signal de début de trame (STV) est à un niveau d'entrée actif.
     
    11. Procédé de pilotage du circuit de pilotage de GOA selon la revendication 1, le procédé comprenant :
    l'application, sur la borne d'entrée de signal de la première unité de GOA du circuit de pilotage de GOA et sur les bornes de signal de début de trame (STV) des N unités de GOA, d'un signal de début de trame, dans lequel le signal de début de trame est à un niveau d'entrée actif à un commencement de chaque trame.
     
    12. Dispositif d'affichage, comprenant un circuit de pilotage de GOA selon l'une quelconque des revendications 1 à 10.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description