(19)
(11)EP 3 606 268 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
31.03.2021 Bulletin 2021/13

(21)Application number: 18771818.4

(22)Date of filing:  22.02.2018
(51)Int. Cl.: 
H04L 5/00  (2006.01)
H04J 13/00  (2011.01)
(86)International application number:
PCT/CN2018/076981
(87)International publication number:
WO 2018/171373 (27.09.2018 Gazette  2018/39)

(54)

METHOD AND DEVICE FOR DETERMINING PREAMBLE SEQUENCE OF PHYSICAL RANDOM ACCESS CHANNEL

VERFAHREN UND VORRICHTUNG ZUR BESTIMMUNG EINER PRÄAMBELSEQUENZ EINES PHYSIKALISCHEN DIREKTZUGRIFFSKANALS

PROCÉDÉ ET DISPOSITIF POUR DÉTERMINER UNE SÉQUENCE DE PRÉAMBULE D'UN CANAL D'ACCÈS ALÉATOIRE PHYSIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 22.03.2017 CN 201710175422

(43)Date of publication of application:
05.02.2020 Bulletin 2020/06

(73)Proprietor: China Academy of Telecommunications Technology
Haidian District Beijing 100191 (CN)

(72)Inventors:
  • REN, Bin
    Beijing 100191 (CN)
  • DA, Ren
    Beijing 100191 (CN)
  • CHENG, Fang-Chen
    Beijing 100191 (CN)
  • TONY, Ekpenyong
    Beijing 100191 (CN)

(74)Representative: Nony 
11 rue Saint-Georges
75009 Paris
75009 Paris (FR)


(56)References cited: : 
CN-A- 101 594 168
CN-A- 106 464 627
US-A1- 2013 208 679
US-B1- 7 876 858
CN-A- 103 841 072
US-A1- 2010 278 137
US-A1- 2015 365 977
  
  • CATT: "On NR RACH Preamble Design", 3GPP DRAFT; R1-1704540, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE , vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407 29 March 2017 (2017-03-29), XP051252393, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL 1/TSGR1_88b/Docs/ [retrieved on 2017-03-29]
  • CATT: "NR RACH Preamble Design Consideration", 3GPP DRAFT; R1-1611373, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE , vol. RAN WG1, no. Reno, USA; 20161114 - 20161118 13 November 2016 (2016-11-13), XP051175354, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/Meetings_3GPP_ SYNC/RAN1/Docs/ [retrieved on 2016-11-13]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field



[0001] The present application relates to the field of wireless communications, and particularly to a method and device for determining a preamble sequence on a physical random access channel.

Background



[0002] In the study on a preamble sequence on a New Radio (NR) Physical Random Access Channel (PRACH) in a 5th-Generation (5G) mobile communication system, in order to further improve the performance of detecting a preamble, and to lower the probability that short preamble sequences collide with each other, a multi-stage (M-stage) preamble sequence has been designed, where an M-stage preamble sequence including M number of preamble sub-sequences is used for Msg1 transmission in a random access. A User Equipment (UE) selects an M-stage preamble sequence from a predefined or network-configured set of M-stage preamble sequences, and transmits it over a network-configured time-frequency resource. The network (a next-Generation Node B (gNB) or a Transmission and Reception Point (TRP)) detects the time-frequency resource respectively for M preamble sub-sequences in the M-stage preamble sequence. The M-stage preamble sequence can be detected correctly only if all of the M preamble sub-sequences are detected correctly.

[0003] Fig. 1 is a schematic diagram of an example of a designed M-stage preamble sequence on an NR-PRACH, where M=2, that is, a 2-stage preamble sequence includes two preamble sub-sequences (Preamble-1 and Preamble-2 as illustrated). There are respective Cyclic Prefixes (CPs) of two consecutive preamble sub-sequences (Preamble-1 and Preamble-2), and a Guard Time (GT) interval is reserved at the tail of the 2-stage preamble sequence. The respective preamble sub-sequences are selected separately by the UE to compose the 2-stage preamble sequence, transmitted as Msg1, and detected respectively at the network side. The 2-stage preamble sequence can be detected correctly only if both of the preamble sub-sequences are detected correctly.

[0004] For a root sequence on a PRACH , the root sequence is a Zadoff-Chu (ZC) sequence (simply a ZC root sequence), and since 64 preamble sequences of each cell are generated by cyclically shifting (Ncs, i.e., zero-correlation configuration) the ZC root sequence, and the preamble sequence of the UE is selected randomly, or allocated by the gNB, in order to alleviate the preamble sequences of the adjacent cells from interfering with each other, the indexes of ZC root sequences shall be planned correctly. The indexes of the ZC root sequences are planned by allocating them so that different preamble sequences are generated for the adjacent cells using the indexes to thereby avoid the adjacent cell with the same preamble sequence from interfering with each other.

[0005] A Zadoff-Chu (ZC) sequence with a root index uth is defined in Equation (1) of:



[0006] Where NZC represents the length of the ZC sequence, u represents the root index of the ZC sequence, j=sqrt(-1), and n represents the index of a sequence element. A random access preamble is obtained by cyclically shifting the ZC sequence with the root index uth in Equation (2) of:



[0007] Where Cv represents a cyclic shift, Cv = vNcs, and v represents the v -th cyclic shift Ncs in the range of 0,1,···,└NZC/NCS┘, where └·┘ represents rounding off.

[0008] A drawback in the prior art lies in that if a plurality of UEs transmits over the same time-frequency resource, then a preamble sequence may not be detected accurately in the existing M-stage preamble sequence solution. US 2013/0294240 A1 patent application discloses enhanced random access procedures for link-budget-limited user equipment (UE) devices. A user equipment device may transmit a first message containing a Physical Random Access Channel (PRACH). The PRACH contains instances of a Zadoff-Chu sequence, and may be transmitted repeatedly as part of a single random attempt, to facilitate correlation data combining at the base station. The available Zadoff-Chu sequences may be partitioned among a plurality of sets, each set being associated with a respective Doppler shift range (or frequency hop pattern or time repetition pattern). A UE device may signal Doppler shift (or other information) to the base station by selection of one of the sets. The first PRACH transmission and the following PRACH transmission may occur in consecutive subframes. A UE device may select from a special set of Zadoff-Chu sequences (different from a conventional set of sequences), to signal its status as a link-budget-limited device. US2010278137A1 discloses a method and apparatus of transmitting signals for segmented access in a communication system is disclosed. The method for transmitting signals from a user equipment in a communication system includes the steps of selecting a predetermined channel structure depending on location of the user equipment among available channels defined differently depending on the location of the user equipment within a cell, and transmitting signals using the selected channel structure. Also, a method for transmitting signals using sequences allocated differently depending on location of a user equipment within a cell is disclosed. The article in the name of CATT entitled: "On NR RACH Preamble Design", 3GPP DRAFT; R1-1704540 discloses the NR RACH preamble sequence design with the consideration of self-contained frame structure and dynamic TDD configuration, and analyzes the performance of multi-stage sequence and one stage sequence, and discloses the following observations:

Observation 1: the ZC sequence is suitable for preamble transmission irrespective of whether DFT-S-OFDM or CP-OFDM is the UL waveform.

Observation 2: NR RACH preamble option 4 with multi-stage sequence can be potentiallymore robust to frequency offset than LTE RACH preamble with one-stage sequence.

Observation 3: NR RACH preamble option 4 with 2-stage sequence can be achieve a better performance than LTE RACH preamble with one-stage sequence with high frequency offset.

Based on the analysis, R1-1704540 further discloses following proposes:

Proposal 1: Short preamble sequence should be considered for RAMsg1 to support dynamic TDD and self-contained structure in NR.

Proposal 2: Multi-stage short preamble sequence should be considered for RA Msg1 for better detection performance and low collision probability



[0009] A further document by CATT titled "NR RACH Preamble Design Consideration", 3GPP DRAFT; R1-1611373 discloses the techniques of transmitting short preamble sequences; in order to improve the collision probability, a multi-stage preamble sequence could be considered, wherein the UE would select a set of short preamble sequences transmitted in different time-frequency resources.

Summary



[0010] The embodiments, examples or aspects of the following description and drawings which are not covered by the appended claims are considered as not being part of the present invention. Embodiments of the application provide a method and device for determining a preamble sequence on a physical random access channel so as to address the problem in the prior art that an M-stage preamble sequence on an NR PRACH may not be detected accurately among a plurality of UEs.

[0011] In a first aspect, embodiments of the application provide a method executed at a network side for determining a preamble sequence on a PRACH, the method including:

in a first stage, receiving, from a plurality of user equipment, UEs, preamble sub-sequences of the first stage, and determining instances of time of the first stage at which the preamble sub-sequences of the first stage are detected in a detection window of the first stage;

in a second stage, receiving, from the plurality of UEs, preamble sub-sequences of the second stage, and determining instances of time of the second stage at which the respective preamble sub-sequences are detected in a detection window of the second stage; and

determining that a preamble sub-sequence of the first stage and a preamble sub-sequence of the second stage belong to a same preamble sequence according to the instances of time of the first stage at which said preamble sub-sequence of the first stage is detected in the first stage, and the instances of time of the second stage at which preamble sub-sequence of the second stage is detected in the second stage;

wherein said determining comprises:

determining an instance of time of the first stage at which said preamble sub-sequence of the first stage is detected in the first stage, and an instance of time of the second stage at which said preamble sub-sequence of the second stage is detected in the second stage;

if a difference between said instance of time of the first stage and said instance of time of the second stage is below a present difference threshold;

determining that said preamble sub-sequence of the first stage and said preamble sub-sequence of the second stage belong to the same preamble sequence.



[0012] Optionally the detection in the first and second stages is detection of ZC sequences.

[0013] Optionally a preamble sub-sequence of the first stage and a preamble sub-sequence of the second stage belonging to the same preamble sequence are sub-sequences of a same root sequence or sub-sequences of different root sequences.

[0014] Optionally the instances of time of the first and second stages at which the preamble sub-sequences of the first and second stages are detected in the detection windows of the first and second stages are detected at timing positions, respectively.

[0015] In a second aspect, embodiments of the application provide a network side device for determining a preamble sequence on a PRACH , the network side device including:

in a first stage, a time determining module configured to receive preamble sub-sequences of the first stage, and determine instances of time of the first stage at which the preamble sub-sequences of the first stage are detected in a detection window of the first stage; and in a second stage, receive preamble sub-sequences of the second stage, and determine instances of time of the second stage at which the preamble sub-sequences of the second stage are detected in the detection window of the second stage; and

a sequence determining module configured to determine that a preamble sub-sequence of the first stage and a preamble sub-sequence of the second stage belong to a same preamble sequence according to the instances of time of the first stage at which said preamble sub-sequence of the first stage is detected in the first stage, and the instances of time of the second stage at which the preamble sub-sequence of the second stage is detected in the second stage;

wherein said sequence determining module is further configured:

to determine an instance of time at which said preamble sub-sequence of the first stage is detected in the first stage, and to determine an instance of time of the second stage at which said preamble sub-sequence of the second stage is detected in the second stage; and,

if a difference between said instance of time of the first stage and said instance of time of the second stage is below a present difference threshold;

to determine that said preamble sub-sequence of the first stage and said preamble sub-sequence of the second stage belong to the same preamble sequence.



[0016] Optionally the time determining module is further configured to determine the instances of time of the first and second stages at which said preamble sub-sequences of the first and second stages are detected in a ZC, sequences of the first and second stages, respectively.

[0017] Optionally a preamble sub-sequence of the first stage and a preamble sub-sequence of the second stage belonging to the same preamble sequence are sub-sequences of a same root sequence or sub-sequences of different root sequences.

[0018] Optionally the time determining module is further configured to detect the instances of time of the first and second stages at which the preamble sub-sequences of the first and second stages are detected in the detection windows of the first and second stages at timing positions, respectively.

[0019] Advantageous effects of the application are as follows:
In the technical solutions according to the embodiments of the application, since there is a relationship between the instances of time at which preamble sub-sequences belonging to the same preamble sequence are received, whether respective detected preamble sub-sequences belong to the same preamble sequence can be determined according to the relationship between their instances of time, that is, when a relative timing difference between preamble sub-sequences of a plurality of UEs received by the network is more than an estimated relative timing difference between preamble sub-sequences of some UE, whether they belong to the same preamble sequence can be determined to thereby avoid the problem in the prior art that if a plurality of UEs transmits over the same time-frequency resource, then an M-stage on an NR PRACH preamble sequence may not be detected accurately, and the reliability of the preamble sequence solution can be guaranteed in effect.

Brief Description of the Drawings



[0020] The drawings described here are intended to provide further understanding of the application, and constitute a part of the specification, and the exemplary embodiments of the application, and the description thereof are intended to set forth the application, but not to limit the application unduly.

Fig. 1 is a schematic diagram of an example of the designed M-stage preamble sequence on an NR-PRACH in the prior art, where M=2.

Fig. 2 is a schematic flow chart of a method for determining a preamble sequence on a PRACH according to some embodiments of the application.

Fig. 3A and Fig. 3B are schematic diagrams of a 2-stage preamble sequence receiver for detecting based upon an estimated relative timing position according to some embodiments of the application.

Fig. 4 is a schematic structural diagram of a device for determining a preamble sequence on a PRACH according to some embodiments of the application.

Fig. 5 is a schematic structural diagram of a network-side device according to some embodiments of the application.


Detailed Description of the Embodiments



[0021] A drawback in the prior art lies in that if a plurality of UEs transmits over the same time-frequency resource, then a preamble sequence may not be detected accurately in the existing M-stage preamble sequence solution. This will be described below taking M=2 as an example.

[0022] For example, two UEs in a system transmit 2-stage preamble sequences over the same time-frequency resource. The UE 1 selects a 2-stage preamble sequence (a, b), where a and b are preamble sub-sequences in the first stage (stage-one) and in the second stage (stage-two), respectively; and the UE 2 selects a 2-stage preamble sequence (c, d), where c and d are preamble sub-sequences in the stage-one and in the stage-two, respectively. A network detects the preamble sub-sequences a and c in two stage-one, and the preamble sub-sequences b and d in two stage-2. At this time, four possible 2-stage preamble sequences, i.e., (a, b), (a, d), (c, b), and (c, d), are generated. The network cannot correctly determine the 2-stage preamble sequences really transmitted by the UE1 and the UE2 at this time, so the 2-stage preamble sequences of the UEs may not be detected accurately.

[0023] In view of this, the technical solutions according to the embodiments of the application are intended to address the problem in the prior art that an M-stage (Multi-stage) preamble sequence of an NR PRACH may not be detected accurately among a plurality of UEs. In these solutions, a combination of M-stage preamble sequences is determined based upon estimated elative timing positions of all the M-stage preamble sub-sequences to thereby avoid the problem that if a plurality of UEs transmits over the same time-frequency resource, then an M-stage preamble sequence may not be detected accurately. Particular implementations of the application will be described below with reference to the drawings.

[0024] Fig. 2 is a schematic flow chart of a method for determining a preamble sequence on a PRACH, and as illustrated, the method can include the following steps.

[0025] The step 201 is, in a previous stage, to receive respective preamble sub-sequences, and to determine the instances of time at which the respective preamble sub-sequences are detected in a detection window.

[0026] The step 202 is, in a current stage, to receive respective preamble sub-sequences, and to determine the instances of time at which the respective preamble sub-sequences are detected in the detection window.

[0027] The step 203 is to determine preamble sub-sequences belonging to a same preamble sequence according to the instances of time at which the respective preamble sub-sequences are detected in the current stage, and the instances of time at which the respective preamble sub-sequences are detected in the previous stage.

[0028] In some embodiments, the detection window is a ZC sequence detection window.

[0029] In some embodiments, the ZC sequence detection window is a ZC sequence detection window of a same root sequence, or a ZC sequence detection window of different root sequences.

[0030] In some embodiments, the instances of time at which the respective preamble sub-sequences are detected in the detection window are detected at timing positions.

[0031] In some embodiments, determining preamble sub-sequences belonging to the same preamble sequence according to the instances of time at which the respective preamble sub-sequences are detected in the current stage, and the instances of time at which the respective preamble sub-sequences are detected in the previous stage includes: determining an instance of time at which a preamble sub-sequence is detected in the current stage, and an instance of time at which some preamble sub-sequence as preamble sub-sequences belonging to the same preamble sequence in response to that a difference between the instance of time at which the preamble sub-sequence is detected in the current stage, and the instance of time at which some preamble sub-sequence is detected in the previous stage is below a preset difference threshold.

[0032] In some embodiments, the preset difference threshold can be determined according to a product precision, or a resolution of a timing position of a user equipment in a cell in a real application, or can be customized.

[0033] An example will be described below.

[0034] This example will be described based upon estimated relative timing positions of preamble sub-sequences in a 2-stage preamble sequence, but can be extended as appropriate to preamble sub-sequences in an M-stage preamble.

[0035] Fig. 3A and Fig. 3B are schematic diagrams of a 2-stage preamble sequence receiver detecting based upon an estimated relative timing position according to some embodiments of the application, and as illustrated, the UE 1 selects a 2-stage preamble sequence (a, b), and the UE 2 selects a 2-stage preamble sequence (c, d). In a ZC sequence detection window of the first stage, the network detects the two sub-sequences a and c respectively at timing positions T2 and T5, and records the timing positions t(1, 1)=T2 and t(1, 2)=T5.

[0036] In a particular implementation, a timing position can be detected by determining the ratio of the maximum of related power in the detection window to noise power as a detection variable, comparing the detection variable with a pre-calculated detection threshold, and if the detection variable at some timing position Tn is above the detection threshold, then determining that a sub-sequence is detected at Tn; otherwise, determining that no sub-sequence is detected at Tn.

[0037] In a ZC sequence detection window of the second stage, the network detects the two sub-sequences b and d respectively at the timing positions T2 and T5, and records the timing positions t(2, 1)=T2 and t(2, 2)=T5.

[0038] The network side calculates a relative timing difference between t(1, 1) and t(2, 1) as delta_t1=abs(t(1, 1) -t(2, 1)), and compares the difference with a preset difference threshold JW, and if delta_t1 is below JW, then the network side will determine that the sub-sequences a and b corresponding to these two timing positions belong to the same 2-stage preamble sequence, that is, Pre_UE1=(a, b).

[0039] Alike the network side calculates a relative timing difference between t(1, 2) and t(2, 2) as delta_t2=abs(t(1, 2) -t(2, 2)), and compares the difference with the preset difference threshold JW, and if delta_t2 is below JW, then the network side will determine that the sub-sequences c and d corresponding to these two timing positions belong to the same 2-stage preamble sequence, that is, Pre_UE1=(c, d).

[0040] At this time, the preamble sequence can be detected accurately at the network side.

[0041] In some embodiments, the ZC sequence detection windows may or may not be of the same root sequence.

[0042] Based upon the same inventive idea, embodiments of the application further provides a device for determining a preamble sub-sequence on a PRACH, and since the device addresses the problem under a similar principle to the method for determining a preamble sub-sequence on a PRACH, reference can be made to the implementation of the method for some embodiments of the device, and a repeated description thereof will be omitted here.

[0043] Fig. 4 is a schematic structural diagram of a device for determining a preamble sequence on a PRACH according to an embodiment of the application, and as illustrated, the device can include:

in a previous stage, a time determining module 401 is configured to receive respective preamble sub-sequences, and determine instances of time at which the respective preamble sub-sequences are detected in a detection window; and in a current stage, receive respective preamble sub-sequences, and determine instances of time at which the respective preamble sub-sequences are detected in the detection window; and

a sequence determining module 402 is configured to determine preamble sub-sequences belonging to a same preamble sequence according to the instances of time at which the respective preamble sub-sequences are detected in the current stage, and the instances of time at which the respective preamble sub-sequences are detected in the previous stage.



[0044] In some embodiments, the time determining module is further configured to determine the instances of time at which the respective preamble sub-sequences are detected in a ZC sequence detection window.

[0045] In some embodiments, the ZC sequence detection window is a ZC sequence detection window of a same root sequence, or a ZC sequence detection window of different root sequences.

[0046] In some embodiments, the time determining module is further configured to detect the instances of time at which the respective preamble sub-sequences are detected in the detection window at timing positions.

[0047] In some embodiments, the sequence determining module is further configured to determine an instance of time at which a preamble sub-sequence is detected in the current stage, and an instance of time at which some preamble sub-sequence as preamble sub-sequences belonging to the same preamble sequence in response to that a difference between the instance of time at which the a preamble sub-sequence is detected in the current stage, and the instance of time at which the some preamble sub-sequence is detected in the previous stage is below a preset difference threshold.

[0048] For the sake of a convenient description, the respective components of the devices above have been described respectively as respective functional modules or units. Of course, the functions of the respective modules or units can be performed in the same one or more pieces of software or hardware in some embodiments of the application.

[0049] The technical solutions according to the embodiments of the application can be implemented as follows.

[0050] Fig. 5 is a schematic structural diagram of a network-side device according to embodiments of the application, and as illustrated, the device includes:

a processor 500 is configured to read and execute program in a memory 520 to:

determine instances of time at which respective preamble sub-sequences are detected in a detection window; and

determine preamble sub-sequences belonging to a same preamble sequence according to the instances of time at which the respective preamble sub-sequences are detected in the current stage, and the instances of time at which the respective preamble sub-sequences are detected in the previous stage; and

a transceiver 510 is configured to transmit and receive data under the control of the processor 500 is configured to:

receive the respective preamble sub-sequences in the previous stage; and

receive the respective preamble sub-sequences in the current stage.



[0051] In some embodiments, the detection window is a ZC sequence detection window.

[0052] In some embodiments, the ZC sequence detection window is a ZC sequence detection window of a same root sequence, or a ZC sequence detection window of different root sequences.

[0053] In some embodiments, the instances of time at which the respective preamble sub-sequences are detected in the detection window are detected at timing positions.

[0054] In some embodiments, determining preamble sub-sequences belonging to the same preamble sequence according to the instances of time at which the respective preamble sub-sequences are detected in the current stage, and the instances of time at which the respective preamble sub-sequences are detected in the previous stage includes: determining an instance of time at which a preamble sub-sequence is detected in the current stage, and an instance of time at which some preamble sub-sequence as preamble sub-sequences belonging to the same preamble sequence in response to that a difference between the instance of time at which the preamble sub-sequence is detected in the current stage, and the instance of time at which the some preamble sub-sequence is detected in the previous stage is below a preset difference threshold.

[0055] Here in Fig. 5, the bus architecture can include any number of any number of interconnecting buses and bridges to particularly link together various circuits including one or more processors represented by the processor 500, and one or more memories represented by the memory 520. The bus architecture can further link together various other circuits, e.g., a peripheral device, a manostat, a power management circuit, etc., all of which are well known in the art, so a further description thereof will be omitted in this context. The bus interface 540 serves as an interface. The transceiver 510 can be a number of elements, e.g., a transmitter and a receiver, which are units for communication with various other devices over a transmission medium. The processor 500 is responsible for managing the bus architecture and performing normal processes, and the memory 520 can store data for use by the processor 500 in performing the operations.

[0056] The embodiments of the application provide a readable storage medium which is a nonvolatile storage medium including program codes configured to cause a computing device to perform the method above for determining a preamble sequence on a PRACH according to the embodiments of the application, upon being executed on the computing device.

[0057] In summary, the technical solutions according to the embodiments of the application can avoid the problem in the prior art that if a plurality of UEs transmits over the same time-frequency resource, then an M-stage preamble sequence on an NR PRACH may not be detected accurately. When a relative timing difference between preamble sub-sequences of the UEs received by the network is more than an estimated relative timing difference between preamble sub-sequences of some UE, the reliability of the preamble sequence solution can be guaranteed in effect.

[0058] Those skilled in the art shall appreciate that the embodiments of the application can be embodied as a method, a system or a computer program product. Therefore the application can be embodied in the form of an all-hardware embodiment, an all-software embodiment or an embodiment of software and hardware in combination. Furthermore the application can be embodied in the form of a computer program product embodied in one or more computer useable storage mediums (including but not limited to a disk memory, an optical memory, etc.) in which computer useable program codes are contained.

[0059] The application has been described in a flow chart and/or a block diagram of the method, the device (system) and the computer program product according to the embodiments of the application. It shall be appreciated that respective flows and/or blocks in the flow chart and/or the block diagram and combinations of the flows and/or the blocks in the flow chart and/or the block diagram can be embodied in computer program instructions. These computer program instructions can be loaded onto a general-purpose computer, a specific-purpose computer, an embedded processor or a processor of another programmable data processing device to produce a machine so that the instructions executed on the computer or the processor of the other programmable data processing device create means for performing the functions specified in the flow(s) of the flow chart and/or the block(s) of the block diagram.

[0060] These computer program instructions can also be stored into a computer readable memory capable of directing the computer or the other programmable data processing device to operate in a specific manner so that the instructions stored in the computer readable memory create an article of manufacture including instruction means which perform the functions specified in the flow(s) of the flow chart and/or the block(s) of the block diagram.

[0061] These computer program instructions can also be loaded onto the computer or the other programmable data processing device so that a series of operational steps are performed on the computer or the other programmable data processing device to create a computer implemented process so that the instructions executed on the computer or the other programmable device provide steps for performing the functions specified in the flow(s) of the flow chart and/or the block(s) of the block diagram.

[0062] Evidently those skilled in the art can make various modifications and variations to the application without departing from the scope of the application. Thus the application is also intended to encompass these modifications and variations thereto so long as the modifications and variations come into the scope of the claims appended to the application.


Claims

1. A method executed at a network side for determining a preamble sequence on a Physical Random Access Channel, PRACH, characterized in that, the method comprising:

in a first stage, eceiving (201), from a plurality of user equipment, UEs, preamble sub-sequences of the first stage, and determining instances of time of the first stage at which the preamble sub-sequences of the first stage are detected in a detection window of the first stage;

in a second stage, receiving (202), from the plurality of UEs, preamble sub-sequences of the second stage, and determining instances of time of the second stage at which the preamble sub-sequences of the second stage are detected in a detection window of the second stage; and

determining (203) that a preamble sub-sequence of the first stage and a preamble sub-sequence of the second stage belong to a same preamble sequence according to the instances of time of the first stage at which said preamble sub-sequence of the first stage is detected in the first stage, and the instances of time of the second stage at which the preamble sub-sequence of the second stage is detected in the second stage;

wherein said determining (203) comprises:

determining an instance of time of the first stage at which said preamble sub-sequence of the first stage is detected in the first stage, and an instance of time of the second stage at which said preamble sub-sequence of the second stage is detected in the second stage characterized by

if a difference between said instance of time of the first stage and said instance of time of the second stage is below a present difference threshold;
determining that said preamble sub-sequence of the first stage and said preamble sub-sequence of the second stage belong to the same preamble sequence.


 
2. The method according to claim 1, wherein the detection in the first and second stages is detection of Zadoff-Chu, ZC, sequences.
 
3. The method according to claim 2, wherein a preamble sub-sequence of the first stage and a preamble sub-sequence of the second stage belonging to the same preamble sequence are sub-sequences of a same root sequence or sub-sequences of different root sequences.
 
4. The method according to claim 1, wherein the instances of time of the first and second stages at which the preamble sub-sequences of the first and second stages are detected in the detection windows of the first and second stages are detected at timing positions, respectively.
 
5. A network side device for determining a preamble sequence on a Physical Random Access Channel, PRACH, characterized in that, the network side device comprising:

in a first stage, a time determining module configured to receive (201) preamble sub-sequences of the first stage, and determine instances of time of the first stage at which the preamble sub-sequences of the first stage are detected in a detection window of the first stage; and in a second stage, receive (202) preamble sub-sequences of the second stage, and determine instances of time of the second stage at which the preamble sub-sequences of the second stage are detected in a detection window of the second stage; and

a sequence determining module configured to determine (203) that a preamble sub-sequence of the first stage and a preamble sub-sequence of the second stage belong to a same preamble sequence according to the instances of time of the first stage at which said preamble sub-sequence of the first stage is detected in the first stage, and the instances of time of the second stage at which the preamble sub-sequence of the second stage is detected in the second stage;

wherein said sequence determining module is further configured:
to determine an instance of time at which said preamble sub-sequence of the first stage is detected in the first stage, and to determine an instance of time of the second stage at which said preamble sub-sequence of the second stage is detected in the second stage; characterized in that the sequence determining module is further configured to:
if a difference between said instance of time of the first stage and said instance of time of the second stage is below a present difference threshold;
determine that said preamble sub-sequence of the first stage and said preamble sub-sequence of the second stage belong to the same preamble sequence.


 
6. The device according to claim 5, wherein the time determining module (401) is further configured to determine the instances of time of the first and second stages at which said preamble sub-sequences of the first and second stages are detected in a Zadoff-Chu, ZC, sequences of the first and second stages, respectively.
 
7. The device according to claim 6, wherein a preamble sub-sequence of the first stage and a preamble sub-sequence of the second stage belonging to the same preamble sequence are sub-sequences of a same root sequence or sub-sequences of different root sequences.
 
8. The device according to claim 5, wherein the time determining module (401) is further configured to detect the instances of time of the first and second stages at which the preamble sub-sequences of the first and second stages are detected in the detection windows of the first and second stages at timing positions, respectively.
 


Ansprüche

1. Verfahren, ausgeführt auf einer Netzseite, zum Bestimmen einer Präambelsequenz auf einem physischen Erstzugriffskanal, PRACH, dadurch gekennzeichnet, dass das Verfahren Folgendes umfasst:

in einer ersten Stufe, Empfangen (201), von einer Vielzahl von Benutzergeräten, UEs, von Präambeluntersequenzen der ersten Stufe, und Bestimmen von Zeitpunkten der ersten Stufe, zu welchen die Präambeluntersequenzen der ersten Stufe in einem Detektionsfenster der ersten Stufe detektiert werden;

in einer zweiten Stufe, Empfangen (202), von der Vielzahl von UEs von Präambeluntersequenzen der zweiten Stufe, und Bestimmen von Zeitpunkten der zweiten Stufe, zu welchen die Präambeluntersequenzen der zweiten Stufe in einem Detektionsfenster der zweiten Stufe detektiert werden; und

Bestimmen (203), dass eine Präambeluntersequenz der ersten Stufe und eine Präambeluntersequenz der zweiten Stufe zu einer selben Präambelsequenz gehören, gemäß den Zeitpunkten der ersten Stufe, zu denen die Präambeluntersequenz der ersten Stufe in der ersten Stufe detektiert wird, und den Zeitpunkten der zweiten Stufe, zu denen die Präambeluntersequenz der zweiten Stufe in der zweiten Stufe detektiert wird;

wobei das Bestimmen (203) Folgendes umfasst:

Bestimmen eines Zeitpunkts der ersten Stufe, zu welchem die Präambeluntersequenz der ersten Stufe in der ersten Stufe detektiert wird, und eines Zeitpunkts der zweiten Stufe, zu dem die Präambeluntersequenz der zweiten Stufe in der zweiten Stufe detektiert wird;

gekennzeichnet durch,

falls eine Differenz zwischen dem Zeitpunkt der ersten Stufe und dem Zeitpunkt der zweiten Stufe unter einer derzeitigen Differenzschwelle liegt,

Bestimmen, dass die Präambeluntersequenz der ersten Stufe und die Präambeluntersequenz der zweiten Stufe zu derselben Präambelsequenz gehören.


 
2. Verfahren nach Anspruch 1, wobei die Detektion in der ersten und der zweiten Stufe Detektion von Zadoff-Chu-Sequenzen bzw. ZC-Sequenzen ist.
 
3. Verfahren nach Anspruch 2, wobei eine Präambeluntersequenz der ersten Stufe und eine Präambeluntersequenz der zweiten Stufe, die zu derselben Präambelsequenz gehören, Untersequenzen einer selben Root-Sequenz oder Untersequenzen von verschiedenen Root-Sequenzen sind.
 
4. Verfahren nach Anspruch 1, wobei die Zeitpunkte der ersten Stufe und der zweiten Stufe, zu denen die Präambeluntersequenzen der ersten und der zweiten Stufe in den Detektionsfenstern der ersten und der zweiten Stufe detektiert werden, jeweils an Timingpositionen detektiert werden.
 
5. Netzseitenvorrichtung zum Bestimmen einer Präambelsequenz auf einem physischen Erstzugriffskanal, PRACH, dadurch gekennzeichnet, dass die Netzseitenvorrichtung Folgendes umfasst:

in einer ersten Stufe, ein Zeitbestimmungsmodul, ausgelegt zum Empfangen (201), von Präambeluntersequenzen der ersten Stufe, und Bestimmen von Zeitpunkten der ersten Stufe, zu welchen die Präambeluntersequenzen der ersten Stufe in einem Detektionsfenster der ersten Stufe detektiert werden, und in einer zweiten Stufe, Empfangen (202) von Präambeluntersequenzen der zweiten Stufe, und Bestimmen von Zeitpunkten der zweiten Stufe, zu welchen die Präambeluntersequenzen der zweiten Stufe in einem Detektionsfenster der zweiten Stufe detektiert werden; und

ein Sequenzbestimmungsmodul, ausgelegt zum Bestimmen (203), dass eine Präambeluntersequenz der ersten Stufe und eine Präambeluntersequenz der zweiten Stufe zu einer selben Präambelsequenz gehören, gemäß den Zeitpunkten der ersten Stufe, zu denen die Präambeluntersequenz der ersten Stufe in der ersten Stufe detektiert wird, und den Zeitpunkten der zweiten Stufe, zu denen die Präambeluntersequenz der zweiten Stufe in der zweiten Stufe detektiert wird;

wobei das Sequenzbestimmungsmodul ferner ausgelegt ist zum:

Bestimmen eines Zeitpunkts, zu welchem die Präambeluntersequenz der ersten Stufe in der ersten Stufe detektiert wird, und Bestimmen eines Zeitpunkts der zweiten Stufe, zu dem die Präambeluntersequenz der zweiten Stufe in der zweiten Stufe detektiert wird;

dadurch gekennzeichnet, dass das Sequenzbestimmungsmodul ferner ausgelegt ist zum:

falls eine Differenz zwischen dem Zeitpunkt der ersten Stufe und dem Zeitpunkt der zweiten Stufe unter einer derzeitigen Differenzschwelle liegt,

Bestimmen, dass die Präambeluntersequenz der ersten Stufe und die Präambeluntersequenz der zweiten Stufe zu derselben Präambelsequenz gehören.


 
6. Vorrichtung nach Anspruch 5, wobei das Zeitbestimmungsmodul (401) ferner ausgelegt ist zum Bestimmen der Zeitpunkte der ersten und der zweiten Stufe, zu denen die Präambeluntersequenzen der ersten und der zweiten Stufe jeweils in Zadoff-Chu-Sequenzen bzw. ZC-Sequenzen der ersten und der zweiten Stufe detektiert werden.
 
7. Vorrichtung nach Anspruch 6, wobei eine Präambeluntersequenz der ersten Stufe und eine Präambeluntersequenz der zweiten Stufe, die zu derselben Präambelsequenz gehören, Untersequenzen einer selben Root-Sequenz oder Untersequenzen von verschiedenen Root-Sequenzen sind.
 
8. Vorrichtung nach Anspruch 5, wobei das Zeitbestimmungsmodul (401) ferner ausgelegt ist zum Detektieren der Zeitpunkte der ersten Stufe und der zweiten Stufe, zu denen die Präambeluntersequenzen der ersten und der zweiten Stufe in den Detektionsfenstern der ersten und der zweiten Stufe detektiert werden, jeweils an Timingpositionen.
 


Revendications

1. Procédé exécuté du côté réseau pour déterminer une séquence de préambule sur un canal d'accès aléatoire physique, PRACH, caractérisé en ce que le procédé comprend les étapes suivantes :

dans une première étape, émettre (201), depuis une pluralité d'équipements utilisateurs, UE, des sous-séquences de préambule de la première étape, et déterminer des instances temporelles de la première étape auxquelles les sous-séquences de préambule de la première étape sont détectées dans une fenêtre de détection de la première étape ;

dans une deuxième étape, recevoir (202), de la part de la pluralité des UE, des sous-séquences de préambule de la deuxième étape, et déterminer les instances temporelles de la deuxième étape à laquelle les sous-séquences de préambule de la deuxième étape sont détectées dans une fenêtre de détection de la deuxième étape ; et

déterminer (203) qu'une sous-séquence de préambule de la première étape et une sous-séquence de préambule de la deuxième étape appartiennent à une même séquence de préambule selon les instances temporelles de la première étape où ladite sous-séquence de préambule de la première étape est détectée dans la première étape, et les instances temporelles de la deuxième étape où la sous-séquence de préambule de la deuxième étape est détectée dans la deuxième étape ;

où ladite détermination (203) comprend les étapes suivantes :

déterminer une instance temporelle de la première étape à laquelle ladite sous-séquence de préambule de la première étape est détectée dans la première étape, et une instance temporelle de la deuxième étape à laquelle ladite sous-séquence de préambule de la deuxième étape est détectée dans la deuxième étape,

la détermination étant caractérisée par l'étape suivante :

si une différence entre ladite instance temporelle de la première étape et ladite instance temporelle de la deuxième étape est inférieure à un présent seuil de différence ;

déterminer que ladite sous-séquence de préambule de la première étape et ladite sous-séquence de préambule de la deuxième étape appartiennent à la même séquence de préambule.


 
2. Procédé selon la revendication 1, dans lequel la détection dans les première et deuxième étapes est la détection de séquences de Zadoff-Chu, ZC.
 
3. Procédé selon la revendication 2, dans lequel une sous-séquence de préambule de la première étape et une sous-séquence de préambule de la deuxième étape appartenant à la même séquence de préambule sont des sous-séquences d'une même séquence racine ou des sous-séquences de séquences racines différentes.
 
4. Procédé selon la revendication 1, dans lequel les instances temporelles des première et deuxième étapes auxquelles les sous-séquences de préambule des première et deuxième étapes sont détectées dans les fenêtres de détection des première et deuxième étapes sont respectivement détectées à des positions temporelles.
 
5. Dispositif côté réseau pour déterminer une séquence de préambule sur un canal d'accès aléatoire physique, PRACH, caractérisé en ce que le dispositif côté réseau comprend :

dans une première étape, un module de détermination de temps configuré pour recevoir (201) des sous-séquences de préambule de la première étape, et déterminer des instances temporelles de la première étape auxquelles les sous-séquences de préambule de la première étape sont détectées dans une fenêtre de détection de la première étape ; et dans une deuxième étape, recevoir (202) des sous-séquences de préambule de la deuxième étape, et déterminer les instances temporelles de la deuxième étape auxquelles les sous-séquences de préambule de la deuxième étape sont détectées dans une fenêtre de détection de la deuxième étape ; et

un module de détermination de séquence configuré pour déterminer (203) qu'une sous-séquence de préambule de la première étape et une sous-séquence de préambule de la deuxième étape appartiennent à une même séquence de préambule selon les instances temporelles de la première étape auxquelles ladite sous-séquence de préambule de la première étape est détectée dans la première étape, et les instances temporelles de la deuxième étape auxquelles la sous-séquence de préambule de la deuxième étape est détectée dans la deuxième étape ;

où ledit module de détermination de séquence est en outre configuré :

pour déterminer une instance temporelle à laquelle ladite sous-séquence de préambule de la première étape est détectée dans la première étape, et pour déterminer une instance temporelle de la deuxième étape à laquelle ladite sous-séquence de préambule de la deuxième étape est détectée dans la deuxième étape ;

caractérisé en ce que le module de détermination de séquence est en outre configuré pour :

si une différence entre ladite instance temporelle de la première étape et ladite instance temporelle de la deuxième étape est inférieure à un présent seuil de différence ;

déterminer que ladite sous-séquence de préambule de la première étape et ladite sous-séquence de préambule de la deuxième étape appartiennent à la même séquence de préambule.


 
6. Dispositif selon la revendication 5, dans lequel le module de détermination de temps (401) est en outre configuré pour déterminer les instances temporelles des première et deuxième étapes auxquelles lesdites sous-séquences de préambule des première et deuxième étapes sont détectées dans des séquences de Zadoff-Chu, ZC, des première et deuxième étapes, respectivement.
 
7. Dispositif selon la revendication 6, dans lequel une sous-séquence de préambule de la première étape et une sous-séquence de préambule de la deuxième étape appartenant à la même séquence de préambule sont des sous-séquences d'une même séquence racine ou des sous-séquences de séquences racine différentes.
 
8. Dispositif selon la revendication 5, dans lequel le module de détermination de temps (401) est en outre configuré pour détecter les instances temporelles des première et deuxième étapes auxquelles les sous-séquences de préambule des première et deuxième étapes sont respectivement détectées dans les fenêtres de détection des première et deuxième étapes à des positions temporelles.
 




Drawing












REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description