(19)
(11)EP 3 609 591 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 18724316.7

(22)Date of filing:  09.04.2018
(51)International Patent Classification (IPC): 
B01D 3/00(2006.01)
(86)International application number:
PCT/IB2018/052458
(87)International publication number:
WO 2018/189651 (18.10.2018 Gazette  2018/42)

(54)

AN INLET DEVICE FOR SEPARATING PHASES OF A LIQUID STREAM IN A VESSEL AND METHOD INVOLVING SAME

EINLASSVORRICHTUNG ZUR TRENNUNG DER PHASEN EINES FLÜSSIGKEITSSTROMS IN EINEM GEFÄSS UND VERFAHREN DAMIT

DISPOSITIF D'ENTRÉE POUR SÉPARER DES PHASES D'UN FLUX DE LIQUIDE DANS UN RÉCIPIENT ET PROCÉDÉ IMPLIQUANT CELUI-CI


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.04.2017 US 201762484460 P

(43)Date of publication of application:
19.02.2020 Bulletin 2020/08

(73)Proprietor: Koch-Glitsch, LP
Wichita, KS 67220 (US)

(72)Inventors:
  • NIEUWOUDT, Izak
    Wichita, Kansas 67220 (US)
  • GRIESEL, Charles
    Wichita, Kansas 67220 (US)

(74)Representative: Ter Meer Steinmeister & Partner 
Patentanwälte mbB Nymphenburger Straße 4
80335 München
80335 München (DE)


(56)References cited: : 
WO-A2-2012/096935
US-A1- 2004 130 041
US-A1- 2016 288 019
CN-A- 106 512 484
US-A1- 2009 139 192
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS REFERENCE TO RELATED APPLICATIONS


    BACKGROUND OF THE INVENTION



    [0001] The present invention relates generally to vessels in which a gas phase is to be separated from a liquid phase in a fluid stream and, more particularly, to an inlet device for facilitating such separation and a method of using the inlet device to effect some separation of the gas phase from the liquid phase in the fluid stream.

    [0002] In many industrial processes, a fluid stream comprising a gas phase and a liquid phase is introduced into a vessel in which it is desirable to effect at least some separation of the gas phase from the liquid phase. Inlet devices of various types have been used to facilitate the separation of the phases. One type of inlet device uses one or more cyclones in which the fluid stream rotates or swirls to cause the heavier liquid phase to be flung against the cyclone wall and then flow downwardly to exit the open lower end of the cyclone. The lighter gas phase flows downwardly within the cyclone to the inlet of a center gas pipe, which is positioned above the lower end of the cyclone and below where the fluid stream is introduced into the cyclone. The gas pipe extends upwardly through the otherwise closed upper end of the cyclone so that the gas phase is able to ascend and then exit the cyclone after entering the center gas pipe. In order to prevent the gas phase from exiting the open lower end of the cyclone, the lower end is normally submerged in liquid to create a static head of liquid that resists against the breakout of the gas phase. If the static head of liquid is insufficient, the gas phase is able to exit through the open lower end of the cyclone, which causes an undesired entrainment of liquid within the gas flow. A need has thus developed for an improved inlet device in which there is less opportunity for undesired entrainment of liquid in the separated gas flow. The document US2009/139192 discloses an inlet line with a centrifugal separator for immiscible phases. It does not exhibit vertical lateral slots.

    [0003] The documents US2016/288019 and CN106512484 disclose separating devices by cyclonic effect. The latest, at least, is concerned by the problem of avoiding entrainment of liquid in the gas. They do not exhibit vertical lateral slots.

    [0004] The documents WO2012/096935 and US2004/130041 disclose separating trays comprising cans where a swirling movement is imparting to the mixture. The cans comprise lateral slots to allow the liquid to flow out. These documents are concerned with improving heat and mass transfer.

    SUMMARY OF THE INVENTION



    [0005] In one aspect, the present invention is directed to an inlet device for separating a gas phase from a liquid phase in a fluid stream when introduced radially into a vessel. The inlet device comprises a flow channel having an inlet end where the fluid stream enters the flow channel and outlet ends where separate portions of the fluid stream exit the flow channel, the outlet ends being spaced from the inlet end, and a separation can position at each of the outlet ends of the flow channel. Each of the separation cans comprises a cylindrical wall having an inner surface and an outer surface and forming an open interior region that is open at opposite upper and lower ends, an elongated inlet opening in the cylindrical wall and positioned adjacent one of the outlet ends of the flow channel to allow one of the portions of the fluid stream when it exits the outlet end of the flow channel to pass tangentially through the inlet opening in the cylindrical wall into the open interior region where it rotates or swirls within the open interior region to facilitate separation of the gas phase from the liquid phase in the fluid stream, and slots formed in the cylindrical wall to allow some of the liquid phase of the fluid stream when rotating or swirling within the open interior region to pass outwardly through the slots and exit the separation can while the separated gas phase flows upwardly and exits the separation can through the open upper end of the open interior region.

    [0006] In another aspect, the present invention is directed to a vessel comprising a shell, an internal region defined by the shell, a radial feed nozzle in the shell, and an inlet device as described above that is positioned within the internal region and aligned with the radial inlet.

    [0007] In a further aspect, the present invention is directed to a method of separating a gas phase from a liquid phase in a fluid stream using an inlet device as described above. The method comprises the steps of flowing the fluid stream within the flow channel from the inlet end to the outlet ends, delivering separate portions of the fluid stream from the outlet ends to the separation cans through the inlet openings in the cylindrical walls of the separation cans, causing the separate portions of the fluid stream to rotate or swirl within the open interior regions so that a centrifugal force that results from the swirling of the separate portions of the fluid stream causes the liquid phase in the separate portions of the fluid stream to impact against the inner surfaces of the cylindrical walls and the gas phase to separate from the liquid phase and ascend upwardly, removing the liquid phase from the inner surfaces of the cylindrical walls through the slots in the cylindrical walls and through the open lower ends of the open interior regions, and removing the ascending gas phase through the open upper ends of the open interior regions.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] In the accompany drawings that form part of the specification and in which like reference numerals are used to indicate like components in the various views:

    Fig. 1 is a fragmentary, perspective view of a vessel in which a portion of a shell of the vessel is broken away to show an inlet device in accordance with one embodiment of the present invention;

    Fig. 2 is an enlarged, fragmentary view of a portion of the vessel shown in Fig. 1 and showing the inlet device from a different perspective than shown in Fig. 1;

    Fig. 3 is a top plan view of the portion of the vessel shown in Fig. 2;

    Fig. 4 is an elevation view of the portion of the vessel shown in Figs. 2 and 3;

    Fig. 5 is a top plan view of the portion of the vessel and inlet device shown in Figs. 2-4 and taken in horizontal section;

    Fig. 5a is a top plan view of a portion of the vessel and inlet device as shown in Fig. 5, but on an enlarged scale;

    Fig. 6 is a perspective view of the inlet device of Figs. 1-5;

    Fig. 7 is a further enlarged, fragmentary view of the inlet device shown in Fig. 6 and with a portion of a separation can broken away to show an internal swirler;

    Fig. 8 is a fragmentary view similar to that shown in Fig. 7, but showing a second embodiment of the inlet device employing a different separation can;

    Fig. 9 is a fragmentary view of a portion of a vessel in which a third embodiment of the inlet device is installed;

    Fig. 10 is a top plan view of the portion of the vessel and inlet device shown in Fig. 9;

    Fig. 11 is a top plan view of the vessel and inlet device shown in Figs. 9 and 10 and taken in horizontal section; and

    Fig. 12 is a fragmentary view similar to that shown in Fig. 9, but with a portion of an upper plate of the inlet device broken away.


    DETAILED DESCRIPTION



    [0009] Turning now to the drawings in greater detail and initially to Fig. 1, a vessel suitable for use in separation, mass transfer or heat exchange processes is represented generally by the numeral 10. The vessel 10 may include an upright or horizontal external shell 12 that may be generally cylindrical in configuration, although other configurations, including polygonal, are possible and are within the scope of the present invention. The shell 12 may be of any suitable diameter and height or length and may be constructed from one or more rigid materials that are desirably inert to, or are otherwise compatible with, the fluids and conditions present during operation of the vessel 10.

    [0010] The vessel 10 may be of a type used for separating or processing fluid streams, typically liquid or vapor streams, into heavier and lighter fractions and/or to obtain fractionation products or to otherwise cause mass transfer or heat exchange between the fluid streams. For example, the vessel 10 may be one in which crude atmospheric, lube vacuum, crude vacuum, fluid or thermal cracking fractionating, coker or visbreaker fractionating, coke scrubbing, reactor off-gas scrubbing, gas quenching, edible oil deodorization, pollution control scrubbing, or other processes occur.

    [0011] The shell 12 of the vessel 10 defines an open internal region 14 within which an inlet device 16 of the present invention is positioned to receive a fluid stream that enters the vessel 10 through a feed nozzle 18. The feed nozzle 18 is normally a radial feed nozzle and is connected to a feed line 19. The feed nozzle 18 may include a transition from a circular cross section of the feed line 19 to a square or rectilinear cross section. The vessel 10 may include other nozzles and lines, such as a lower takeoff line 20 for removing a liquid or heavier phase and an upper takeoff line 22 for removing a gas or lighter phase from the internal region 14 of the vessel 10.

    [0012] Other components of the vessel 10 that may be present, such as reflux stream lines, reboilers, condensers, vapor horns, liquid distributors, and the like, are not illustrated in the figures because they are conventional in nature and an illustration of these components is not believed to be necessary for an understanding of the present invention.

    [0013] Turning additionally to Figs. 2-7, the inlet device 16 extends horizontally within the internal region 14 and is positioned in alignment with the feed nozzle 18. The inlet device 16 comprises a flow channel 24 (Figs. 4-7) and a plurality of separation cans 26 (e.g., 26a, 26b, 26c) that are connected to and are in fluid communication with the flow channel 24. Separation cans 26a, 26b and 26c are arranged on opposite sides of the flow channel 24. The flow channel 24 has an inlet end 28 where the fluid stream enters the flow channel 24. The inlet end 28 abuts an inner surface 30 of the shell 12. The flow channel 24 includes a plurality of outlet ends 32 (e.g., 32a, 32b, and 32c) that are spaced in a downstream flow direction from the inlet end 28.

    [0014] The flow channel 24 is formed by an upper plate 34, a lower plate 36, two side walls 38, and an end wall 40 that are interconnected to form a generally box-shaped plenum. Each of the side walls 38 comprises individual divider segments 42 (e.g., 42a, 42b, and 42c) that extend in the direction of the flow of the fluid stream when it enters the inlet device 16 through the inlet end 28. The first divider segment 42a of each of the two sidewalls 38 extends from the shell 12 to the first separation can 26a that is positioned closest to the inlet end 28 of the flow channel 24. The second divider segment 42b extends between the first separation can 26a and the second separation can 26b. The third divider segments 42c similarly extends from the second separation can 26b to the third separation can 26c. The divider segments 42a, 42b, and 42c are in a staggered relationship to each other so that the flow channel 24 has a progressively narrower width in the direction of flow of the fluid stream. The divider segments 42b and 42c each have a U-shaped leading edge that is inwardly spaced from and overlaps a trailing portion of the adjacent, upstream divider segments 42a and 42b, respectively. The end wall 40 has a similar U-shaped leading edge that is inwardly spaced from and overlaps a trailing portion of the divider segments 42c. This arrangement of the divider segments 42a, 42b, and 42c and the end wall 40 creates sub-passageways 44a, 44b, and 44c that respectively lead to the outlet ends 32a, 32b, and 32c and the separation cans 26a, 26b, and 26c. In one embodiment, the sub-passageways 44a, 44b, and 44c are of generally equal cross-sectional area so that the fluid stream may be divided into roughly equal portions for flow through each of the sub-passageways 44a, 44b, and 44c. While a total of six separations cans 26a, 26b, and 26c have been shown, it is to be understood that a greater number of separation cans or fewer separation cans may be used.

    [0015] Each of the separation cans 26a, 26b, and 26c is open at its top and bottom and comprises a wall 46 that is normally cylindrical and forms an open interior region 48 that is open at opposite upper and lower ends 50 and 52, respectively. A vertically-elongated inlet opening 54 (Figs. 5 and 5a) is formed in the cylindrical wall 46 and is positioned adjacent and in alignment with the outlet end 32a, 32b, or 32c of the flow channel 24 so that the portion of the fluid stream flowing through the sub-passageway 44a, 44b, or 44c exits the outlet end 32a, 32b, or 32c and passes into the separation can 26a, 26b, or 26c through the inlet opening 54 along a flow path that is tangential to the cylindrical wall 46. As a result of this tangential flow path, the fluid stream rotates or swirls within the open interior region 48 within the separation can 26a, 26b, or 26c to facilitate a separation of some or all of the gas phase from the liquid phase in the fluid stream, thereby creating a heavier fraction and a lighter fraction of the fluid stream. In one embodiment, the inlet opening 54 has a height that is less than that of the cylindrical wall 46 and is at least partially positioned in a lower portion of the cylindrical wall 46. As one example, the inlet opening 54 has a height that is between 25 and 75% or between 40 and 60% of the height of the cylindrical wall 46. The inlet opening 54 may extend upwardly from near the lower end of the cylindrical wall 46.

    [0016] Slots 56 are positioned in spaced apart relationship in the cylindrical wall 46 to allow some of the liquid phase in the fluid stream when swirling within the open interior region 48 to pass outwardly through the slots 56 and exit the separation can 26a, 26b, or 26c while the separated gas phase flows upwardly and exits the separation can 26a, 26b, or 26c through the open upper end 50 of the open interior region 48. The slots 56 are normally placed in a uniform pattern along substantially the entire height and circumference of the cylindrical wall 46. In one embodiment, the slots 56 are arranged in a number of circumferential rows that are vertically spaced apart. Each of the slots 56 may be vertically-elongated with a height that is much greater than its width, e.g. the height is 10, 20, 30 or more times the width. In the embodiment shown in Fig. 8, the slots 56 include tabs 58 that are bent outwardly from a leading edge that is positioned upstream in relation to the rotational direction of liquid flow within the cylindrical wall 46.

    [0017] As can best be seen in Figs. 3 and 7, each of the separation cans 26a, 26b, and 26c may include a swirler 60 that is positioned within the cylindrical wall 46 to maintain the rotational momentum of the fluid stream as it releases some of its liquid phase and rises under the influence of the gas phase within the open interior region 48. The swirler 60 may take different forms, such as radially-extending blades 62 that are angled upwardly in the rotational direction of fluid flow. In one embodiment, the swirler 60 is positioned at or slightly above an upper edge of the inlet opening 54.

    [0018] The separation cans 26a, 26b, and 26c may also include a drip ring 64 that is positioned at the open upper end 50 of the open interior region 48 and extends outwardly beyond an outer surface 66 of the cylindrical wall 46 and inwardly within an inner surface 68 of the cylindrical wall 46. The drip ring 64 functions to impede continued upward momentum of the liquid phase as it flows upwardly along the outer surface 66 and the inner surface 68. The drip ring 64 may have an inverted U-shape to transition the upward momentum of the liquid phase to a downward momentum.

    [0019] An alternate embodiment of the inlet device is shown in Figs. 9-12, in which the same reference numerals preceded by the prefix "1" are used to indicate like components to those shown in Figs. 1-8. The inlet device 116 differs from inlet device 16 in that the flow channel 124 is split to create two branches 125a and 125b and unequal numbers of separation cans 126 are positioned on opposite sides of each branch 125a and 125b. The inlet device 116 is thus able to accommodate a greater volumetric flow of the liquid stream.

    [0020] The present invention is also directed to a method of separating the gas phase from the liquid phase in the fluid stream using the inlet device 16, 116. The method includes the steps of introducing the fluid stream radially into the vessel 10, 110 and the inlet device 16, 116 through the feed nozzle 18, 118 and then flowing the fluid stream within the flow channel 24, 124 from the inlet end 28, 128 to the outlet ends 32, 132. Separate portions of the fluid stream are then delivered from the outlet ends 32, 132 to the separation cans 26, 126 through the inlet openings 54, 154 in the cylindrical walls 46, 146 of the separation cans 26, 126. The tangential delivery of the fluid stream within the cylindrical walls 46, 146 causes the separate portions of the fluid stream to rotate or swirl within the open interior regions 48, 148 so that a centrifugal force that results from the swirling of the separate portions of the fluid stream causes the liquid phase in the separate portions of the fluid stream to impact against the inner surfaces 68, 168 of the cylindrical walls 46, 146 and the gas phase to separate from the liquid phase and ascend upwardly. The liquid phase is then removed from the inner surfaces 68, 168 of the cylindrical walls 46, 146 through the slots 56, 156 in the cylindrical walls 46, 146 and through the open lower ends 52, 152 of the open interior regions 48, 148. The open lower ends 46, 146 are spaced above any level of liquid that may be present beneath the inlet devices 16, 116 so that the exiting liquid may freely descend to a liquid collector or other internal device that may be present within the vessel 10, 110. The ascending gas phase is removed through the open upper ends 50, 150 of the open interior regions 48, 148 without having to first navigate downwardly to enter a center gas pipe as is required by some conventional inlet devices.

    [0021] The method step of causing separate portions of the fluid stream to rotate or swirl is achieved by flowing the separate portions of the fluid stream in a tangential direction to the cylindrical walls as the separate portions of the fluid stream are delivered from the outlet ends 32, 132 of the flow channels 24, 124 through the inlet openings 54, 154 in the cylindrical walls 46, 146 and by causing the ascending fluid stream to pass through the swirler 60, 160 as some of the liquid phase is separated and the lighter fluid stream ascends within the open interior region 48, 148. The method of using the inlet devices 16 and 116 does not require that the lower ends 52, 152 of the open interior region 48, 148 be submerged within a liquid to create a static head that impedes breakthrough of the gas phase as is required by some conventional inlet devices.

    [0022] From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objectives hereinabove set forth together with other advantages that are inherent to the structure.


    Claims

    1. An inlet device (16) for separating a gas phase from a liquid phase in a fluid stream when introduced radially into a vessel, (10) said inlet device comprising:

    a flow channel (24) having an inlet end (28) where the fluid stream enters the flow channel and outlet ends (32) where separate portions of the fluid stream exit the flow channel, the outlet ends being spaced from the inlet end;

    a separation can (26) position at each of the outlet ends of the flow channel, each of the separation cans comprising:

    a cylindrical wall (46) having an inner surface and an outer surface and forming an open interior region (48) that is open at opposite upper and lower ends; (50 and 52)

    an elongated inlet opening (54) in the cylindrical wall and positioned adjacent one of the outlet ends of the flow channel to allow one of the portions of the fluid stream when it exits the outlet end of the flow channel to pass tangentially through the inlet opening in the cylindrical wall into the open interior region where it swirls within the open interior region to facilitate separation of the gas phase from the liquid phase in the fluid stream; and

    slots (56) formed in the cylindrical wall to allow some of the liquid phase of the fluid stream when swirling within the open interior region to pass outwardly through the slots and exit the separation can while the separated gas phase flows upwardly and exits the separation can through the open upper end of the open interior region.


     
    2. The inlet device of claim 1, including ones of said separations cans positioned along opposite sides of said flow channel.
     
    3. The inlet device of claim 1, including dividers positioned in said flow channel for separating said fluid stream into said separate portions.
     
    4. The inlet device of claim 1, including a swirler positioned in the open interior region in each of the separation cans.
     
    5. The inlet device of claim 1, including a drip ring positioned at the open upper end of the open interior region and extending outwardly beyond the outer surface of the cylindrical wall of the separation can to impede an upward momentum of liquid when flowing upwardly along said outer surface.
     
    6. The inlet device of claim 1, wherein said elongated inlet opening in the cylindrical wall of the separation can is positioned within a lower portion of the cylindrical wall.
     
    7. The inlet device of claim 1, including tabs associated with said slots in the cylindrical wall of the separation can.
     
    8. The inlet device of claim 1, wherein said flow channel is divided into branches and ones of said separation cans are positioned along opposite sides of each of said branches.
     
    9. The inlet device of claim 1, wherein said flow channel is formed by an upper wall, a lower wall, and side walls that are joined together.
     
    10. A vessel comprising a shell, an internal region defined by the shell, a radial feed nozzle in the shell, and an inlet device of claim 1 positioned in the internal region and aligned with the radial inlet.
     
    11. The vessel of claim 10, including ones of said separations cans positioned along opposite sides of said flow channel.
     
    12. The vessel of claim 10, including dividers positioned in said flow channel for separating said fluid stream into said separate portions.
     
    13. The vessel of claim 10, including a swirler positioned in the open interior region in each of the separation cans.
     
    14. The vessel of claim 10, including a drip ring positioned at the open upper end of the open interior region and extending outwardly beyond the outer surface of the cylindrical wall of the separation can to impede an upward momentum of liquid when flowing upwardly along said outer surface.
     
    15. The vessel of claim 10, wherein said elongated inlet opening in the cylindrical wall of the separation can is positioned within a lower portion of the cylindrical wall.
     
    16. The vessel of claim 10, wherein said flow channel is divided into branches and ones of said separation cans are positioned along opposite sides of each of said branches.
     
    17. A method of separating a gas phase from a liquid phase in a fluid stream using an inlet device of claim 1, comprising the steps of:

    flowing the fluid stream within the flow channel from the inlet end to the outlet ends;

    delivering separate portions of the fluid stream from the outlet ends to the separation cans through the inlet openings in the cylindrical walls of the separation cans;

    causing the separate portions of the fluid stream to swirl within the open interior regions so that a centrifugal force that results from the swirling of the separate portions of the fluid stream causes the liquid phase in the separate portions of the fluid stream to impact against the inner surfaces of the cylindrical walls and the gas phase to separate from the liquid phase and ascend upwardly;

    removing the liquid phase from the inner surfaces of the cylindrical walls through the slots in the cylindrical walls and through the open lower ends of the open interior regions; and

    removing the ascending gas phase through the open upper ends of the open interior regions.


     
    18. The method of claim 17, wherein said step of causing separate portions of the fluid stream to swirl comprises flowing said separate portions of the fluid stream in a tangential direction to the cylindrical walls during said step of delivering separate portions of the fluid stream from the outlet ends through the inlet openings in the cylindrical walls.
     
    19. The method of claim 18, wherein said step of causing separate portions of the fluid stream to swirl additionally comprises flowing the separate portions of the fluid stream through a swirler in each of the open interior regions.
     
    20. The method of claim 18, wherein the open lower ends of the open interior regions are not submerged in liquid during said step of removing the liquid phase.
     


    Ansprüche

    1. Einlassvorrichtung (16) zum Trennen einer Gasphase von einer Flüssigphase in einem Fluidstrom, wenn sie radial in ein Gefäß (10) eingeführt wird, wobei die Einlassvorrichtung umfasst:

    einen Strömungskanal (24) mit einem Einlassende (28), an dem der Fluidstrom in den Strömungskanal eintritt, und Auslassenden (32), an denen getrennte Abschnitte des Fluidstroms den Strömungskanal verlassen, wobei die Auslassenden von dem Einlassende beabstandet sind;

    eine Position einer Trenndose (26) an jedem der Auslassenden des Strömungskanals, wobei jede der Trenndosen umfasst:

    eine zylindrische Wand (46), die eine innere Oberfläche und eine äußere Oberfläche aufweist und einen offenen inneren Bereich (48) bildet, der an gegenüberliegenden oberen und unteren Enden: (50 und 52) offen ist;

    eine längliche Einlassöffnung (54) in der zylindrischen Wand und angrenzend an eines der Auslassenden des Strömungskanals positioniert, um zu ermöglichen, dass einer der Abschnitte des Fluidstroms, wenn er aus dem Auslassende des Strömungskanals austritt, tangential durch die Einlassöffnung in der zylindrischen Wand in den offenen inneren Bereich passiert, wo er innerhalb des offenen inneren Bereichs verwirbelt, um die Trennung der Gasphase von der Flüssigphase in dem Fluidstrom zu erleichtern; und

    Schlitze (56), die in der zylindrischen Wand ausgebildet sind, um zu ermöglichen, dass ein Teil der Flüssigphase des Fluidstroms beim Verwirbeln innerhalb des offenen inneren Bereichs nach außen durch die Schlitze passiert und die Trenndose verlässt, während die getrennte Gasphase nach oben strömt und die Trenndose durch das offene obere Ende des offenen inneren Bereichs verlässt.


     
    2. Einlassvorrichtung nach Anspruch 1, die eine der Trenndosen, die entlang gegenüberliegenden Seiten des Strömungskanals angeordnet sind, einschließt.
     
    3. Einlassvorrichtung nach Anspruch 1, die in dem Strömungskanal positionierte Teiler zum Trennen des Fluidstroms in die getrennten Abschnitte einschließt.
     
    4. Einlassvorrichtung nach Anspruch 1, die einen in dem offenen inneren Bereich in jeder der Trenndosen positionierten Verwirbler einschließt.
     
    5. Einlassvorrichtung nach Anspruch 1, die einen an dem offenen oberen Ende des offenen inneren Bereichs positionierten und sich nach außen über die äußere Oberfläche der zylindrischen Wand der Trenndose erstreckenden Tropfring einschließt, um einen Aufwärtsimpuls der Flüssigkeit beim Aufwärtsströmen entlang der äußeren Oberfläche zu verhindern.
     
    6. Einlassvorrichtung nach Anspruch 1, wobei die längliche Einlassöffnung in der zylindrischen Wand der Trenndose innerhalb eines unteren Abschnitts der zylindrischen Wand angeordnet ist.
     
    7. Einlassvorrichtung nach Anspruch 1, die Laschen, die mit den Schlitzen in der zylindrischen Wand der Trenndose verbunden sind, einschließt.
     
    8. Einlassvorrichtung nach Anspruch 1, wobei der Strömungskanal in Zweige unterteilt ist und eine der Trenndosen entlang gegenüberliegenden Seiten jedes der Zweige angeordnet ist.
     
    9. Einlassvorrichtung nach Anspruch 1, wobei der Strömungskanal durch eine obere Wand, eine untere Wand und Seitenwände, die miteinander verbunden sind, gebildet wird.
     
    10. Gefäß, das einen Mantel, einen durch den Mantel definierten inneren Bereich, eine radiale Zufuhrdüse in dem Mantel und eine Einlassvorrichtung nach Anspruch 1 umfasst, die in dem inneren Bereich positioniert und mit dem radialen Einlass ausgerichtet ist.
     
    11. Gefäß nach Anspruch 10, das eine der Trenndosen, die entlang gegenüberliegenden Seiten des Strömungskanals angeordnet sind, einschließt.
     
    12. Gefäß nach Anspruch 10, das in dem Strömungskanal positionierte Teiler zum Trennen des Fluidstroms in die getrennten Abschnitte einschließt.
     
    13. Gefäß nach Anspruch 10, das einen in dem offenen inneren Bereich in jeder der Trenndosen positionierten Verwirbler einschließt.
     
    14. Gefäß nach Anspruch 10, das einen an dem offenen oberen Ende des offenen inneren Bereichs positionierten und sich nach außen über die äußere Oberfläche der zylindrischen Wand der Trenndose erstreckenden Tropfring einschließt, um einen Aufwärtsimpuls der Flüssigkeit beim Aufwärtsströmen entlang der äußeren Oberfläche zu verhindern.
     
    15. Gefäß nach Anspruch 10, wobei die längliche Einlassöffnung in der zylindrischen Wand der Trenndose innerhalb eines unteren Abschnitts der zylindrischen Wand angeordnet ist.
     
    16. Gefäß nach Anspruch 10, wobei der Strömungskanal in Zweige unterteilt ist und eine der Trenndosen entlang gegenüberliegenden Seiten jedes der Zweige angeordnet ist.
     
    17. Verfahren zum Trennen einer Gasphase von einer Flüssigphase in einem Fluidstrom unter Verwendung einer Einlassvorrichtung nach Anspruch 1, umfassend die Schritte:

    Leiten des Fluidstroms innerhalb des Strömungskanals von dem Einlassende zu den Auslassenden;

    Zuführen getrennter Abschnitte des Fluidstroms von den Auslassenden zu den Trenndosen durch die Einlassöffnungen in den zylindrischen Wänden der Trenndosen;

    Bewirken, dass die getrennten Abschnitte des Fluidstroms innerhalb der offenen inneren Bereiche verwirbeln, so dass eine Zentrifugalkraft, die aus der Verwirbelung der getrennten Abschnitte des Fluidstroms resultiert, bewirkt, dass die Flüssigphase in den getrennten Abschnitten des Fluidstroms gegen die inneren Oberflächen der zylindrischen Wände prallt und die Gasphase sich von der Flüssigphase trennt und nach oben steigt;

    Entfernen der Flüssigphase von den inneren Oberflächen der zylindrischen Wände durch die Schlitze in den zylindrischen Wänden und durch die offenen unteren Enden der offenen inneren Bereiche; und

    Entfernen der aufsteigenden Gasphase durch die offenen oberen Enden der offenen inneren Bereiche.


     
    18. Verfahren nach Anspruch 17, wobei der Schritt des Bewirkens des Verwirbelns getrennte Abschnitte des Fluidstroms das Leiten der getrennten Abschnitte des Fluidstroms in einer tangentialen Richtung zu den zylindrischen Wänden während des Schritts des Zuführens getrennter Abschnitte des Fluidstroms von den Auslassenden durch die Einlassöffnungen in den zylindrischen Wänden umfasst.
     
    19. Verfahren nach Anspruch 18, wobei der Schritt des Bewirkens des Verwirbelns getrennter Abschnitte des Fluidstroms zusätzlich das Leiten der getrennten Abschnitte des Fluidstroms durch einen Verwirbler in jedem der offenen inneren Bereiche umfasst.
     
    20. Verfahren nach Anspruch 18, wobei die offenen unteren Enden der offenen inneren Bereiche während des Schritts des Entfernens der Flüssigphase nicht in Flüssigkeit eingetaucht sind.
     


    Revendications

    1. Dispositif d'entrée (16) pour séparer une phase gazeuse d'une phase liquide dans un courant de fluide lorsqu'il est introduit radialement dans un récipient, (10) ledit dispositif d'entrée comprenant :

    un canal d'écoulement (24) présentant une extrémité d'entrée (28) où le courant de fluide entre dans le canal d'écoulement et les extrémités de sortie (32) où des parties séparées du courant de fluide sortent du canal d'écoulement, les extrémités de sortie étant espacées de l'extrémité d'entrée ;

    une boîte de séparation (26) placée à chacune des extrémités de sortie du canal d'écoulement, chacune des boîtes de séparation comprenant :

    une paroi cylindrique (46) présentant une surface interne et une surface externe et formant une région intérieure ouverte (48) ouverte à des extrémités supérieure et inférieure opposées : (50 et 52) ;

    une ouverture d'entrée allongée (54) dans la paroi cylindrique et positionnée de manière adjacente à l'une des extrémités de sortie du canal d'écoulement pour permettre à l'une des parties du courant de fluide lorsqu'il sort de l'extrémité de sortie du canal d'écoulement de passer tangentiellement à travers l'ouverture d'entrée dans la paroi cylindrique dans la région intérieure ouverte lorsqu'il tourbillonne dans la région intérieure ouverte afin de faciliter la séparation de la phase gazeuse de la phase liquide dans le courant de fluide ; et

    des fentes (56) formées dans la paroi cylindrique pour permettre à une partie de la phase liquide du courant de fluide lors du tourbillonnement à l'intérieur de la région interne ouverte de passer vers l'extérieur à travers les fentes et de sortir de la boîte de séparation alors que la phase gazeuse séparée s'écoule vers le haut et sort de la boîte de séparation à travers l'extrémité supérieure ouverte de la région intérieure ouverte.


     
    2. Dispositif d'entrée selon la revendication 1, incluant certaines desdites boîtes de séparation positionnées le long de côtés opposés dudit canal d'écoulement.
     
    3. Dispositif d'entrée selon la revendication 1, incluant des diviseurs positionnés dans ledit canal d'écoulement pour séparer ledit courant de fluide dans lesdites parties séparées.
     
    4. Dispositif d'entrée selon la revendication 1, incluant un dispositif de tourbillonnement positionné dans la région intérieure ouverte dans chacun des boîtes de séparation.
     
    5. Dispositif d'entrée selon la revendication 1, incluant un anneau d'égouttement positionné au niveau de l'extrémité supérieure ouverte de la région intérieure ouverte et s'étendant vers l'extérieur au-delà de la surface externe de la paroi cylindrique de la boîte de séparation afin d'empêcher un moment ascendant de liquide lorsqu'il s'écoule vers le haut le long de ladite surface extérieure.
     
    6. Dispositif d'entrée selon la revendication 1, dans lequel ladite ouverture d'entrée allongée dans la paroi cylindrique de la boîte de séparation est positionnée à l'intérieur d'une partie inférieure de la paroi cylindrique.
     
    7. Dispositif d'entrée selon la revendication 1, comprenant des pattes associées auxdites fentes dans la paroi cylindrique de la boîte de séparation.
     
    8. Dispositif d'entrée selon la revendication 1, dans lequel ledit canal d'écoulement est divisé en ramifications et certaines desdits boîtes de séparation sont positionnées le long de côtés opposés de chacune desdites ramifications.
     
    9. Dispositif d'entrée selon la revendication 1, dans lequel ledit canal d'écoulement est formé par une paroi supérieure, une paroi inférieure, et des parois latérales qui sont reliées ensemble.
     
    10. Récipient comprenant une coque, une région interne définie par la coque, une buse d'alimentation radiale dans la coque, et un dispositif d'entrée selon la revendication 1 positionné dans la région interne et aligné avec l'entrée radiale.
     
    11. Récipient selon la revendication 10, incluant certaines desdites boîtes de séparation positionnées le long de côtés opposés dudit canal d'écoulement.
     
    12. Récipient selon la revendication 10, incluant des séparateurs positionnés dans ledit canal d'écoulement pour séparer ledit courant de fluide dans lesdites parties séparées.
     
    13. Récipient selon la revendication 10, incluant un dispositif de tourbillonnement positionné dans la région intérieure ouverte dans chacune des boîtes de séparation.
     
    14. Récipient selon la revendication 10, incluant un anneau d'égouttement positionné au niveau de l'extrémité supérieure ouverte de la région intérieure ouverte et s'étendant vers l'extérieur au-delà de la surface externe de la paroi cylindrique de la boîte de séparation pour empêcher un moment du liquide vers le haut lorsqu'il s'écoule vers le haut le long de ladite surface extérieure.
     
    15. Récipient selon la revendication 10, dans lequel ladite ouverture d'entrée allongée dans la paroi cylindrique de la boîte de séparation est positionnée à l'intérieur d'une partie inférieure de la paroi cylindrique.
     
    16. Récipient selon la revendication 10, dans lequel ledit canal d'écoulement est divisé en ramifications et certaines desdites boîtes de séparation sont positionnées le long de côtés opposés de chacune desdites ramifications.
     
    17. Procédé de séparation d'une phase gazeuse d'une phase liquide dans un courant de fluide à l'aide d'un dispositif d'entrée selon la revendication 1, comprenant les étapes consistant à :

    faire s'écouler le courant de fluide dans le canal d'écoulement depuis l'extrémité d'entrée vers les extrémités de sortie ;

    fournir des parties séparées du courant de fluide depuis les extrémités de sortie vers les boîtes de séparation à travers les ouvertures d'entrée dans les parois cylindriques des boîtes de séparation ;

    amener les parties séparées du courant de fluide à tourbillonner à l'intérieur des régions intérieures ouvertes de sorte qu'une force centrifuge qui résulte du tourbillonnement des parties séparées du courant de fluide amène la phase liquide dans les parties séparées du courant de fluide à heurter les surfaces intérieures des parois cylindriques et la phase gazeuse à se séparer de la phase liquide et à monter vers le haut ;

    éliminer la phase liquide des surfaces internes des parois cylindriques à travers les fentes dans les parois cylindriques et à travers les extrémités inférieures ouvertes des régions intérieures ouvertes ; et

    retirer la phase gazeuse ascendante à travers les extrémités supérieures ouvertes des régions intérieures ouvertes.


     
    18. Procédé selon la revendication 17, dans lequel ladite étape consistant à amener des parties séparées du courant de fluide à un tourbillon comprend l'écoulement desdites parties séparées du courant de fluide dans une direction tangentielle aux parois cylindriques pendant ladite étape de fourniture de parties séparées du courant de fluide à partir des extrémités de sortie à travers les ouvertures d'entrée dans les parois cylindriques.
     
    19. Procédé selon la revendication 18, dans lequel ladite étape consistant à amener des parties séparées du courant de fluide à tourbillonner comprend en outre l'écoulement des parties séparées du courant de fluide à travers un dispositif de tourbillonnement dans chacune des régions intérieures ouvertes.
     
    20. Procédé selon la revendication 18, dans lequel les extrémités inférieures ouvertes des régions intérieures ouvertes ne sont pas immergées dans le liquide pendant ladite étape d'élimination de la phase liquide.
     




    Drawing












































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description