(19)
(11)EP 3 621 173 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.01.2022 Bulletin 2022/01

(21)Application number: 18873941.1

(22)Date of filing:  15.10.2018
(51)International Patent Classification (IPC): 
H02J 7/00(2006.01)
H01M 10/42(2006.01)
G01R 31/36(2020.01)
B60L 58/22(2019.01)
(52)Cooperative Patent Classification (CPC):
Y02E 60/10; H02J 7/00; H01M 10/42; Y02T 10/92; H02J 7/00304; Y02T 10/70; B60L 58/22; G01R 31/36; H02J 7/0016
(86)International application number:
PCT/KR2018/012106
(87)International publication number:
WO 2019/088500 (09.05.2019 Gazette  2019/19)

(54)

CELL MODULE EQUALIZATION AND PRECHARGE DEVICE AND METHOD

ZELLENMODULAUSGLEICHS- UND VORLADEVORRICHTUNG UND -VERFAHREN

DISPOSITIF ET PROCÉDÉ D'ÉGALISATION ET DE PRÉCHARGE DE MODULES DE PILES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 06.11.2017 KR 20170146828

(43)Date of publication of application:
11.03.2020 Bulletin 2020/11

(73)Proprietor: LG Chem, Ltd.
Seoul 07336 (KR)

(72)Inventors:
  • SUNG, Chang Hyun
    Daejeon 34122 (KR)
  • LEE, Sang Hoon
    Daejeon 34122 (KR)
  • CHOI, Yean Sik
    Daejeon 34122 (KR)

(74)Representative: Plasseraud IP 
66, rue de la Chaussée d'Antin
75440 Paris Cedex 09
75440 Paris Cedex 09 (FR)


(56)References cited: : 
EP-A1- 2 993 074
KR-A- 20100 085 791
KR-A- 20160 024 254
US-A1- 2012 293 129
JP-B2- 5 704 063
KR-A- 20150 085 383
KR-A- 20160 099 357
  
  • MOORE S W SCHNEIDER P J: "A review of cell equalization methods for lithium ion and lithium polymer battery systems", SAE WORLD CONGRESS, XX, XX, 5 March 2001 (2001-03-05), pages 1-5, XP002954937,
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

[Technical Field]



[0001] This application claims priority to and the benefit of Korean Patent Application No. 10-2017-0146828 filed in the Korean Intellectual Property Office on November 6, 2017.

[0002] The present invention relates to a device and a method for equalizing and precharging a cell module, and more particularly, to a device and a method for equalizing and precharging a cell module, which may form a circuit for performing a corresponding operation by a converter unit by selectively connecting the converter unit and one or more cell modules by controlling a conduction state of a switching unit based on an operation which the converter intends to perform.

[Background Art]



[0003] In general, in a secondary battery, in environments requiring a high capacity, such as an electric vehicle, an energy storage system, and an interruptible power supply, one battery module can be used by connecting a plurality of unit secondary battery cells and in some cases, a plurality of battery modules may be connected and used.

[0004] When a plurality of battery modules is together used, voltages of the plurality of battery modules may be unbalanced due to various factors including production deviation occurring while producing the battery module, a temperature deviation of the battery module, and the like.

[0005] Meanwhile, when battery modules in which voltage is unbalanced are combined and used, available capacities and powers of the plurality of battery modules are reduced and aging of the battery module is accelerated, thereby shortening a lifespan of the battery module. In order to solve such a problem, an inter-module unbalance is diagnosed based on various state information such as voltage, current, and temperatures of respective individual modules when the plurality of battery modules is connected and used, and as a result, a deviation between the battery modules needs to be removed through a balancing operation.

[0006] In addition, in a battery management system in the related art such as EP2993074 and US2012/293129, various systems such as a system for measuring, monitoring, and diagnosing a state of a battery as well as balancing the battery are constructed in a complex manner, thereby increasing cost for configuring the system or a volume of the system.

[0007] Therefore, in order to solve a problem of the battery management system in the related art, the present inventor has developed a device and a method for equalizing and precharging a cell module, which allow a converter unit to perform various functions by controlling one switching unit by selectively connecting the converter unit and one or more cell modules by controlling a conduction state of the switching unit based on an operation which the converter unit intends to perform.

[Detailed Description of the Invention]


[Technical Problem]



[0008] The present invention is contrived to solve the aforementioned problem and the present invention provides a device and a method for equalizing and precharging a cell module, which may form a circuit for performing a corresponding operation by a converter unit by selectively connecting the converter unit and one or more cell modules by controlling a conduction state of a switching unit based on an operation which the converter intends to perform.

[Technical Solution]



[0009] A cell module equalizing and precharging device according to an embodiment of the present invention may include: a converter unit located between a battery including one or more cell modules and a load and performing a precharging operation and an equalizing operation; a switching unit connecting each of the one or more cell modules and the converter unit; and a control unit selectively forming a precharge circuit for performing the precharging operation or an equalizing circuit for performing the equalizing operation by controlling a conduction state of the switching unit based on an operation which the converter unit intends to perform.

[0010] In an embodiment, the converter unit may include an input terminal connected with the battery, a first output terminal connected with the load, and a second output terminal connected with the switching unit.

[0011] In an embodiment, when the converter unit intends to perform the precharging operation, the control unit may form the precharge circuit including the battery, the input terminal and the first output terminal by cutting off a connection between the second output terminal and the switching unit by controlling the switching unit.

[0012] In an embodiment, the control unit may acquire cell module information from the one or more cell modules and diagnose unbalance abnormality of the one or more cell modules based on the cell module information.

[0013] In an embodiment, when the converter unit intends to perform the equalizing operation, the control unit may form the equalizing circuit including the one or more cell modules of which unbalance abnormality is diagnosed, the input terminal, and the second output terminal by connecting the one or more cell modules of which unbalance abnormality is diagnosed and the second output terminal by controlling the switching unit.

[0014] In an embodiment, when recovery of energy from the one or more cell modules of which unbalance abnormality is diagnosed is required, the control unit may control the operation of the converter unit so as to transfer the energy of the one or more cell modules of which unbalance abnormality is diagnosed from the second output terminal to the input terminal.

[0015] In an embodiment, when transfer of the energy to the one or more cell modules of which unbalance abnormality is diagnosed is required, the control unit may control the operation of the converter unit so as to transfer the energy output from the battery from the input terminal to the second output terminal.

[0016] A cell module equalizing and precharging method according to an embodiment of the present invention may include: performing, by a converter unit located between a battery including one or more cell modules and a load, a precharging operation and an equalizing operation; connecting, by a switching unit, each of the one or more cell modules and the converter unit; and controlling a conduction state of the switching unit in order to selectively form a precharge circuit for performing the precharging operation or an equalizing circuit for performing the equalizing operation based on an operation which the converter unit intends to perform.

[0017] In an embodiment, the converter unit may include an input terminal connected with the battery, a first output terminal connected with the load, and a second output terminal connected with the switching unit.

[0018] In an embodiment, the controlling may include, when the converter unit intends to perform the precharging operation, forming the precharge circuit including the battery, the input terminal and the first output terminal by cutting off a connection between the second output terminal and the switching unit by controlling the switching unit.

[0019] In an embodiment, the controlling may include acquiring cell module information from the one or more cell modules and diagnosing unbalance abnormality of the one or more cell modules based on the cell module information.

[0020] In an embodiment, the controlling may further include, when the converter unit intends to perform the equalizing operation, forming the equalizing circuit including the one or more cell modules of which unbalance abnormality is diagnosed, the input terminal, and the second output terminal by connecting the one or more cell modules of which unbalance abnormality is diagnosed and the second output terminal by controlling the switching unit.

[0021] In an embodiment, the controlling may further include, when recovery of energy from the one or more cell modules of which unbalance abnormality is diagnosed is required, controlling the operation of the converter unit so as to transfer the energy of the one or more cell modules of which unbalance abnormality is diagnosed from the second output terminal to the input terminal.

[0022] In an embodiment, the controlling may further include, when transfer of the energy to the one or more cell modules of which unbalance abnormality is diagnosed is required, controlling the operation of the converter unit so as to transfer the energy output from the battery from the input terminal to the second output terminal.

[Advantageous Effects]



[0023] According to the present invention, a precharge circuit for a precharging operation or an equalization circuit for an equalization operation may be selectively formed by selectively connecting a converter unit and one or more cell modules by controlling a conduction state of a switching unit based on an operation which the converter intends to perform and various operations are performed by using one converter unit, thereby reducing a volume and a price of a system.

[Brief Description of Drawings]



[0024] 

FIG. 1 is a diagram schematically illustrating components of a cell module equalizing and precharging device 100 according to an embodiment of the present invention.

FIG. 2 is a diagram schematically illustrating a precharge circuit in the cell module equalizing and precharging device 100 according to an embodiment of the present invention.

FIGS. 3 and 4 are diagrams schematically illustrating an equalizing circuit in the cell module equalizing and precharging device 100 according to an embodiment of the present invention.

FIG. 5 is a flowchart for describing a series of processes of performing an equalizing operation of a cell module by using the cell module equalizing and precharging device 100 according to an embodiment of the present invention.

FIG. 6 is a flowchart for describing a series of processes of performing a precharging operation of the cell module by using the cell module equalizing and precharging device 100 according to an embodiment of the present invention.


[Best Mode]



[0025] Hereinafter, a preferred embodiment is presented in order to assist understanding of the present invention. However, the following embodiment is just provided to more easily understand the present invention and contents of the present invention are not limited by the embodiment.

[0026] FIG. 1 is a diagram schematically illustrating a cell module equalizing and precharging device 100 according to an embodiment of the present invention.

[0027] Referring to FIG. 1, the cell module equalizing and precharging device 100 according to an embodiment of the present invention may be configured to include a converter unit 110, a switching unit 120, and a control unit 130.

[0028] Here, the device 100 for equalizing and precharging a cell module illustrated in FIG. 1 follows an embodiment and it should be noted that components thereof are not limited to the embodiment illustrated in FIG. 1 and as necessary, the components may be replaced, added, modified, or deleted.

[0029] First, the converter unit 110 may be located between a battery 10 including one or more of cell modules 10-1 to 10-n and a load 20 and may perform a precharging operation or an equalizing operation. For example, when one or more cell modules 10-1 to 10-n are connected in series, the converter unit 110 may be located between the cell module 10-n located at a forefront end and the load 20. Further, the converter unit 110 may be connected with an anode switch 40a in parallel.

[0030] Here, the precharging operation may mean an operation of equalizing voltage of a DC link capacitor 30 to voltage of the battery 10 by charging the DC link capacitor 30 with the voltage of the DC link capacitor 30 by charging a DC link capacitor 30 before operating main switches 40a and 40b in order to prevent fusion of the main switches 40a and 40b.

[0031] Here, the equalizing operation may mean an operation performed to equalize energy possessed by one or more cell modules 10-1 to 10-n. For example, the equalizing operation may be an operation of supplying the energy to a cell module which is insufficient in energy compared to other cell modules among one or more cell modules 10-1 to 10-n and an operation of recovering the energy from a cell module which is excessive in energy compared to other cell modules.

[0032] In an embodiment, the converter unit 110 may receive power from the battery 10 and transfer the received power to the DC link capacitor 30 or the cell modules 10-1 to 10-n having abnormality. To this end, the converter unit 110 may include an input terminal 110a connected to the battery 10 and receiving the power from the battery 10, a first output terminal 110b connected to the load 20 side and supplying the energy to the DC link capacitor 30, and a second output terminal 110c connected with a switching unit to be described below and supplying the power to the cell modules 10-1 to 10-n. As an example, the converter unit 110 may be a multiple output insulated bidirectional converter which may output one input value into a plurality of output values.

[0033] The multi output insulated bidirectional converter may be constituted by one input terminal and two output terminals and since the input terminal and the output terminal are insulated from each other to bidirectionally transfer the energy. Therefore, the energy supplied from the battery 10 may be provided to the cell modules 10-1 to 10-n which has relatively insufficient energy compared to other cell modules 10-1 to 10-n and the energy may be recovered from the cell modules 10-1 to 10-n which is excessive in energy.

[0034] The switching unit 120 may connect each of one or more cell modules 10-1 to 10-n and the converter unit 110. For example, as illustrated in FIG. 1, one side of the switching unit 120 may be connected with an anode terminal and a cathode terminal of each of one or more cell modules 10-1 to 10-n and the other side is connected with a second output terminal 110c of the converter unit 110 to connect each of one or more cell modules 10-1 to 10-n and the converter unit 110.

[0035] In an embodiment, the switching unit 120 may be a switch matrix and selectively connects the anode terminal and the cathode terminal of the cell modules 10-1 to 10-n selected through the control nit 130 to be described below to connect one or more cell modules 10-1 to 10-n and the converter unit 110.

[0036] In an embodiment, when the operation of the cell module equalizing and precharging device 100 according to an embodiment of the present invention starts and when an unbalance abnormality of one or more cell modules 10-1 to 10-n is not diagnosed, the switching unit 120 maintains an off state to cut off connection between one or more cell modules 10-1 to 10-n and the connector unit 110.

[0037] The control unit 130 may selectively form a precharge circuit for performing the precharging operation or an equalizing circuit for performing the equalizing operation by controlling the conduction state of the switching unit 120 based on the operation which the converter unit 110 intends to perform. Hereinafter, with reference to FIGS. 2 to 4, a configuration in which the control unit 130 forms the precharge circuit and the equalizing circuit will be described in detail.

[0038] FIG. 2 is a diagram schematically illustrating a precharge circuit in the cell module equalizing and precharging device 100 according to an embodiment of the present invention and FIGS. 3 and 4 are diagrams schematically illustrating an equalizing circuit in the cell module equalizing and precharging device 100 according to an embodiment of the present invention.

[0039] First, referring to FIG. 2, the control unit 130 may form the precharge circuit by controlling the switching unit 120 when the converter unit 110 intends to perform the precharging operation. For example, when the converter unit 110 intends to perform the precharging operation, the control unit 130 changes the conduction state of the cathode switch 40b of the main switches 40a and 40b to an on state and controls the conduction state of the switching unit 120 to cut off the connection between the second output terminal 110c and the switching unit 120. Therefore, the control unit 130 may form the precharge circuit which is a closed circuit including the battery 10, the input terminal 110a, the first output terminal 110b, the DC link capacitor 30, and the cathode switch 40b. Here, the power applied from the battery 10 may be applied to the DC link capacitor 30 through the first output terminal 110b of the converter unit 110 and the DC link capacitor 30 may be charged by using the applied power of the battery 10. Thereafter, when the voltage charged in the DC link capacitor 30 becomes equal to the voltage of the battery 10, the control unit 130 changes the conduction state of the cathode switch 40b to an ff state to short the precharge circuit, thereby stopping the precharging operation of the converter unit 110.

[0040] Next, referring to FIG. 3, the control unit 130 may form the equalizing circuit by controlling the switching unit 120 when the converter unit 110 intends to perform the equalizing operation. For example, the control unit 130 may acquire cell module information from one or more cell modules 10-1 to 10-n and diagnose the unbalance abnormality of one or more cell modules 10-1 to 10-n based on the acquired cell module information.

[0041] Here, the cell module information may mean information indicating states of one or more cell modules 10-1 to 10-n. For example, the cell module information may include at least any one of current, voltage, a temperature, a remaining capacity (SOC), and a remaining lifespan (SOH).

[0042] The control unit 130 may diagnose the unbalance abnormality of one or more cell modules 10-1 to 10-n based on the cell module information. Here, when the unbalance abnormality is diagnosed in an n-th cell module 10-n as in FIG. 3, the control unit 130 may connect the anode terminal and the cathode terminal of the n-th cell module 10-n and the second output terminal 110c of the converter unit 110 by controlling the switching unit 120. Therefore, the control unit 130 may form the equalizing circuit which is the closed circuit including the n-th cell module 10-n, the switching unit 120, the second output terminal 110c of the converter unit 110, and the input terminal 110a of the converter unit 110.

[0043] Next, referring to FIG. 4, the control unit 130 may form the equalizing circuit by a method which is the same as the method. For example, when the unbalance abnormality occurs in a second cell module 10-2, the control unit 130 may connect the anode terminal and the cathode terminal of the second cell module 10-2 and the second output terminal 110c of the converter unit 110 by controlling the switching unit 120. Therefore, the control unit 130 may form the equalizing circuit which is the closed circuit including the second cell module 10-2, the switching unit 120, the second output terminal 110c of the converter unit 110, and the input terminal 110a of the converter unit 110.

[0044] In an embodiment, when the energy needs to be transferred to the cell modules 10-1 to 10-n of which balance abnormality is diagnosed, the control unit 130 may control the operation of the converter unit 110 so that the energy output from the battery 10 is transferred from the input terminal 110a to the second output terminal 110c. For example, referring to FIG. 3, when the energy of the n-th cell module 10-n is insufficient compared to the energy of other cell modules 10-1 to 10-3, the control unit 130 transfers the energy of the battery 10 input into the input terminal 110a to the second output terminal 110c by controlling the operation of the converter unit 110 and provides the energy of the battery 10 transferred to the second output terminal 110c to the n-th cell module 10-n to charge the n-th cell module 10-n with the insufficient energy, thereby solving the unbalance abnormality.

[0045] In an embodiment, when recovery of the energy is required from one or more cell modules 10-1 to 10-n of which balance abnormality is diagnosed, the control unit 130 may control the operation of the converter unit 110 so that the energy of one or more cell modules 10-1 to 10-n of which unbalance abnormality is diagnosed is transferred from the second output terminal 110c to the input terminal 110a. For example, referring to FIG. 4, when the energy of the second cell module 10-2 is more than the energy of other cell modules 10-1, and 10-3 to 10-n, the control unit 130 transfers the energy of the second cell module 10-2 to the second output terminal 110c by controlling the operation of the converter unit 110 and transfers the transferred energy of the second cell module 10-2 to the battery 10 through the input terminal 110a to consume excessive energy of the second cell module 10-2, thereby solving the unbalance abnormality. Hereinafter, referring to FIGS. 5 and 6, a cell module equalizing and precharging method according to an embodiment of the present invention will be described.

[0046] FIG. 5 is a flowchart for describing a series of processes of performing an equalizing operation of a cell module by using the cell module equalizing and precharging device 100 according to an embodiment of the present invention and FIG. 6 is a flowchart for describing a series of processes of performing a precharging operation of the cell module by using the cell module equalizing and precharging device 100 according to an embodiment of the present invention.

[0047] First, referring to FIG. 5, the conduction state of the switching unit is maintained to the off state and the cell module information is acquired from one or more cell modules (S110). An unbalance is diagnosed with respect to one or more cell modules based on the cell module information acquired in step S110 (S120). In this case, when there is no unbalance abnormality, the unbalance abnormality of one or more cell modules is continuously monitored by returning to step S110. However, when the unbalance abnormality occurs, the cell module of which unbalance abnormality is diagnosed and the second output terminal are connected by controlling the switching unit and an equalizing circuit including the cell module of which unbalance abnormality is diagnosed, the switching unit, the second output terminal, the input terminal, and the battery is formed through the connection. The energy is transferred to or recovered from the cell module of which unbalance abnormality is diagnosed by using the equalizing circuit formed in steps S130 and S140 (S150).

[0048] Next, referring to FIG. 6, when the precharging operation is intended to be performed, the conduction state of the cathode switch is changed to the on state (S210). Thereafter, the connection between the switching unit and the second output terminal is cut off by controlling the switching unit and a precharge circuit is generated, which includes the battery, the input terminal of the converter unit, the first output terminal, the DC link capacitor, and the cathode switch (S220 and S230). The energy of the battery is transferred to the DC link capacitor by performing the precharging operation through the precharge circuit formed in steps S220 and S230 to charge the DC link capacitor (S240).

[0049] The aforementioned cell module equalizing and precharging method is described with reference to the flowcharts presented in the drawings. The method has been shown and described by a series of blocks for easy description, but it is to be understood that the present invention is not limited to the order of the blocks, and that some blocks may be generated in different orders from and concurrently with other blocks as shown and described in the present specification, and various other branches, flow paths, and orders of blocks may be implemented to achieve the same or similar result. In addition, all illustrated blocks may not be required for the implementation of the method described in the present specification.


Claims

1. A cell module equalizing and precharging device comprising:

a converter unit (110) located between a battery (10) including more than one cell module (10-1), wherein each of the more than one cell modules (10-1) has an anode terminal and a cathode terminal, and a load (20), and configured to perform a precharging operation and an equalizing operation;

a switching unit (120) for selectively connecting one or more of the more than one cell modules (10-1) and the converter unit (110); and

a control unit (130) selectively forming a precharge circuit for performing the precharging operation or an equalizing circuit for performing the equalizing operation by controlling a conduction state of the switching unit (120) based on an operation which the converter unit (110) intends to perform;

wherein the converter unit (110) includes

an input terminal (110a) connected with the anode of the battery (10),

a first output terminal (110b) connected with the load (20), and

a second output terminal (110c) connected with the switching unit (120);

wherein one side of the switching unit (120) is connected with an anode terminal and a cathode terminal of each of the more than one cell modules (10-1) and another side is connected with the second output terminal (110c) of the converter unit (110).


 
2. The cell module equalizing and precharging device (100) of claim 1, wherein when the converter unit (110) intends to perform the precharging operation, the control unit (130) is configured to form the precharge circuit including the battery (10), the input terminal (110a) and the first output terminal (110b) by cutting off a connection between the second output terminal (110c) and the switching unit (120) by controlling the switching unit (120).
 
3. The cell module equalizing and precharging device (100) of claim 1, wherein the control unit (130) is configured to acquire cell module information from the more than one cell modules (10-1) and to diagnose unbalance abnormality of one or more cell modules (10-1) based on the cell module information.
 
4. The cell module equalizing and precharging device (100) of claim 3, wherein when the converter unit (110) intends to perform the equalizing operation, the control unit (130) is configured to form the equalizing circuit including the one or more cell modules (10-1) of which unbalance abnormality is diagnosed, the input terminal (110a), and the second output terminal (110c) by connecting the more than one cell modules (10-1) of which unbalance abnormality is diagnosed and the second output terminal (110c) by controlling the switching unit(120).
 
5. The cell module equalizing and precharging device (100) of claim 4, wherein when recovery of energy from the one or more cell modules (10-1) of which unbalance abnormality is diagnosed is required, the control unit (130) is configured to control the operation of the converter unit (110) so as to transfer the energy of the one or more cell modules (10-1) of which unbalance abnormality is diagnosed from the second output terminal (110b) to the input terminal (110a).
 
6. The cell module equalizing and precharging device (100) of claim 4, wherein when transfer of the energy to the one or more cell modules (10-1) of which unbalance abnormality is diagnosed is required, the control unit (130) is configured to control the operation of the converter unit (110) so as to transfer the energy output from the battery (10) from the input terminal (110a) to the second output terminal (110c).
 
7. A cell module equalizing and precharging method comprising:

performing, by a converter unit (110) located between a battery (10) including more than one cell modules (10-1), wherein each of the more than one cell modules (10-1) has an anode terminal and a cathode terminal, and a load (20), a precharging operation and an equalizing operation;

selectively connecting, by a switching unit (120), one or more of the more than one cell modules (10-1) and the converter unit (110); and

controlling a conduction state of the switching unit (120) in order to selectively form a precharge circuit for performing the precharging operation or an equalizing circuit for performing the equalizing operation based on an operation which the converter unit(110) intends to perform;

wherein the converter unit(110) includes

an input terminal (110a) connected with the anode of the battery (10),

a first output terminal (110b) connected with the load (20), and a second output terminal (110c) connected with the switching unit (120);

wherein one side of the switching unit (120) is connected with an anode terminal and a cathode terminal of each of the more than one cell modules (10-1) and another side is connected with the second output terminal (110c) of the converter unit (110),

wherein the controlling includes, when the converter unit(110) intends to perform the precharging operation, forming the precharge circuit including the battery (10), the input terminal (110a) and the first output terminal (110b) by cutting off a connection between the second output terminal (110c) and the switching unit (120) by controlling the switching unit (120);

wherein the controlling includes acquiring cell module information from the more than one cell modules (10-1) and diagnosing unbalance abnormality of one or more cell modules (10-1) based on the cell module information and then when the converter unit(110) intends to perform the equalizing operation, forming the equalizing circuit including the one or more cell modules (10-1)of which unbalance abnormality is diagnosed, the input terminal (110a), and the second output terminal (110c) by connecting the more than one cell modules (10-1) of which unbalance abnormality is diagnosed and the second output terminal (110c) by controlling the switching unit (120).


 
8. The cell module equalizing and precharging method of claim 7, wherein the controlling further includes, when the converter unit(110) intends to perform the equalizing operation, when recovery of energy from the one or more cell modules (10-1) of which unbalance abnormality is diagnosed is required, controlling the operation of the converter unit (110) so as to transfer the energy of the one or more cell modules (10-1) of which unbalance abnormality is diagnosed from the second output terminal (110c) to the input terminal (110a).
 
9. The cell module equalizing and precharging method of claim 7, wherein the controlling further includes, when the converter unit(110) intends to perform the equalizing operation, when transfer of the energy to the one or more cell modules (10-1) of which unbalance abnormality is diagnosed is required, controlling the operation of the converter unit (110) so as to transfer the energy output from the battery (10) from the input terminal (110a) to the second output terminal (110c).
 


Ansprüche

1. Zellenmodulausgleichs- und Vorladevorrichtung, umfassend:

eine Wandlereinheit (110), die sich zwischen einer Batterie (10) mit mehr als einem Zellenmodul (10-1), wobei jedes des mehr als einen Zellenmoduls (10-1) einen Anodenschluss und einen Kathodenanschluss aufweist, und einer Beladung (20) befindet, und dazu eingerichtet ist, einen Vorladevorgang und einen Ausgleichsvorgang durchzuführen;

eine Schalteinheit (120) zum selektiven Verbinden des einen oder der mehreren des mehr als einen Zellenmoduls (10-1) und der Wandlereinheit (110); und

eine Steuereinheit (130), die selektiv eine Vorladeschaltung zum Durchführen des Vorladevorgangs oder eine Ausgleichsschaltung zum Durchführen des Ausgleichsvorgangs ausbildet, durch Steuern eines Leitungszustands der Schalteinheit (120), basierend auf einem Vorgang, den die Wandlereinheit (110) ausführen soll,

wobei die Wandlereinheit (110) einschließt:

einen Eingangsanschluss (110a), der mit der Anode der Batterie (10) verbunden ist,

einen ersten Ausgangsanschluss (110b), der mit der Beladung (20) verbunden ist, und

einen zweiten Ausgangsanschluss (110c), der mit der Schalteinheit (120) verbunden ist;

wobei eine Seite der Schalteinheit (120) mit einem Anodenanschluss und einem Kathodenanschluss von jedem des mehr als einen Zellenmoduls (10-1) und eine andere Seite mit dem zweiten Ausgangsanschluss (110c) der Wandlereinheit (110) verbunden ist.


 
2. Zellenmodulausgleichs- und Vorladevorrichtung (100) nach Anspruch 1, wobei, wenn die Wandlereinheit (110) den Vorladevorgang durchführen soll, die Steuereinheit (130) dazu eingerichtet ist, die Vorladeschaltung einschließlich der Batterie (10), des Eingangsanschlusses (110a) und des ersten Ausgangsanschlusses (110b) durch Abtrennen einer Verbindung zwischen dem zweiten Ausgangsanschluss (110c) und der Schalteinheit (120) durch Steuern der Schalteinheit (120) zu bilden.
 
3. Zellenmodulausgleichs- und Vorladevorrichtung (100) nach Anspruch 1, wobei die Steuereinheit (130) dazu eingerichtet ist, Zellenmodulinformationen von dem mehr als einen Zellenmodul (10-1) zu erfassen und eine Ungleichgewichtsanomalie des einen der der mehreren Zellenmodule (10-1) zu diagnostizieren, basierend auf den Zellenmodulinformationen.
 
4. Zellenmodulausgleichs- und Vorladevorrichtung (100) nach Anspruch 3, wobei, wenn die Wandlereinheit (110) den Ausgleichsvorgang durchführen soll, die Steuereinheit (130) dazu eingerichtet ist, die Ausgleichsschaltung zu bilden, die das eine oder die mehreren Zellenmodule (10-1), bei denen eine Ungleichgewichtsanomalie diagnostiziert ist, den Eingangsanschluss (110a) und den zweiten Ausgangsanschluss (110c) umfasst, durch Verbinden des mehr als einen Zellenmoduls (10-1), bei dem eine Ungleichgewichtsanomalie diagnostiziert ist, und des zweiten Ausgangsanschlusses (110c) durch Steuern der Schalteinheit (120).
 
5. Zellenmodulausgleichs- und Vorladevorrichtung (100) nach Anspruch 4, wobei, wenn eine Energierückgewinnung von dem einen oder den mehreren Zellenmodulen (10-1), bei denen eine Ungleichgewichtsanomalie diagnostiziert ist, erforderlich ist, die Steuereinheit (130) dazu eingerichtet ist, den Vorgang der Wandlereinheit (110) zu steuern, um die Energie des einen oder der mehreren Zellenmodule (10-1), bei denen eine Ungleichgewichtsanomalie diagnostiziert ist, vom zweiten Ausgangsanschluss (110b) zum Eingangsanschluss (110a) zu übertragen.
 
6. Zellenmodulausgleichs- und Vorladevorrichtung (100) nach Anspruch 4, wobei, wenn eine Energieübertragung an das eine oder die mehreren Zellenmodule (10-1), bei denen eine Ungleichgewichtsanomalie diagnostiziert ist, erforderlich ist, die Steuereinheit (130) dazu eingerichtet ist, den Betrieb der Wandlereinheit (110) zu steuern, um die Energieabgabe von der Batterie (10) vom Eingangsanschluss (110a) zum zweiten Ausgangsanschluss (110c) zu übertragen.
 
7. Verfahren zum Ausgleichen und Vorladen eines Zellenmoduls, umfassend:

Durchführen eines Vorladevorgangs und eines Ausgleichsvorgangs durch eine Wandlereinheit (110), die sich zwischen einer Batterie (10) mit mehr als einem Zellenmodul (10-1), wobei jedes des mehr als einen Zellenmoduls (10-1) einen Anodenschluss und einen Kathodenanschluss aufweist, und einer Beladung (20) befindet,

Selektives Verbinden durch eine Schalteinheit (120) von einem oder mehren des mehr als einen Zellenmoduls (10-1) und der Wandlereinheit (110); und

Steuern eines Leitungszustands der Schalteinheit (120), um selektiv eine Vorladeschaltung zum Durchführen des Vorladevorgangs oder eine Ausgleichsschaltung zum Durchführen des Ausgleichsvorgangs auszubilden, basierend auf einem Vorgang, den die Wandlereinheit (110) ausführen soll,

wobei die Wandlereinheit (110) einschließt:

einen Eingangsanschluss (110a), der mit der Anode der Batterie (10) verbunden ist,

einen ersten Ausgangsanschluss (110b), der mit der Beladung (20) verbunden ist, und

einen zweiten Ausgangsanschluss (110c), der mit der Schalteinheit (120) verbunden ist;

wobei eine Seite der Schalteinheit (120) mit einem Anodenanschluss und einem Kathodenanschluss von jedem des mehr als einen Zellenmoduls (10-1) und eine andere Seite mit dem zweiten Ausgangsanschluss (110c) der Wandlereinheit (110) verbunden ist,

wobei das Steuern umfasst, wenn die Wandlereinheit (110) den Vorladevorgang durchführen soll, Bilden der Vorladeschaltung einschließlich der Batterie (10), des Eingangsanschlusses (110a) und des ersten Ausgangsanschlusses (110b) durch Abtrennen einer Verbindung zwischen dem zweiten Ausgangsanschluss (110c) und der Schalteinheit (120) durch Steuern der Schalteinheit (120),

wobei das Steuern umfasst, Erfassen von Zellenmodulinformationen von dem mehr als einen Zellenmodul (10-1) und Diagnostizieren einer Ungleichgewichtsanomalie von einem oder mehr Zellenmodulen (10-1), basierend auf den Zellenmodulinformationen, und dann, wenn die Wandlereinheit (110) den Ausgleichsvorgang durchführen soll, Bilden der Ausgleichsschaltung einschließlich des einen oder der mehreren Zellenmodule (10-1), bei denen die Ungleichgewichtsanomalie diagnostiziert ist, des Eingangsanschlusses (110a) und des zweiten Ausgangsanschlusses (110c), durch Verbinden des mehr als einen Zellenmoduls (10-1), bei dem Ungleichgewichtsanomalie diagnostiziert ist, und des zweiten Ausgangsanschlusses (110c) durch Steuern der Schalteinheit (120).


 
8. Verfahren zum Ausgleichen und Vorladen eines Zellenmoduls nach Anspruch 7, wobei das Steuern ferner umfasst, wenn die Wandlereinheit (110) den Ausgleichsvorgang durchführen soll, wenn eine Energierückgewinnung von dem einen oder den mehreren Zellenmodulen (10-1), bei denen eine Ungleichgewichtsanomalie diagnostiziert ist, erforderlich ist, Steuern des Vorgangs der Wandlereinheit (110), um die Energie des einen oder der mehreren Zellenmodule (10-1), bei denen eine Ungleichgewichtsanomalie diagnostiziert ist, vom zweiten Ausgangsanschluss (110c) zum Eingangsanschluss (110a) zu übertragen.
 
9. Verfahren zum Ausgleichen und Vorladen eines Zellenmoduls nach Anspruch 7, wobei das Steuern ferner umfasst, wenn die Wandlereinheit (110) den Ausgleichsvorgang durchführen soll, wenn eine Energieübertragung von dem einen oder den mehreren Zellenmodulen (10-1), bei denen eine Ungleichgewichtsanomalie diagnostiziert ist, erforderlich ist, Steuern des Betriebs der Wandlereinheit (110), um die Energieabgabe von der Batterie (10) vom Eingangsanschluss (110a) zum zweiten Ausgangsanschluss (110c) zu übertragen.
 


Revendications

1. Dispositif d'équilibrage et de précharge de modules de cellules comprenant :

une unité de conversion (110) située entre une batterie (10) incluant une pluralité de modules de cellules (10-1), dans lequel chacun parmi la pluralité de modules de cellules (10-1) comporte une borne d'anode et une borne de cathode, et une charge (20), et configuré pour réaliser une opération de précharge et une opération d'équilibrage ;

une unité de commutation (120) pour relier sélectivement un ou plusieurs parmi la pluralité de modules de cellules (10-1) et l'unité de conversion (110) ; et

une unité de commande (130) formant sélectivement un circuit de précharge pour réaliser l'opération de précharge ou un circuit d'équilibrage pour réaliser l'opération d'équilibrage par la commande d'un état de conduction de l'unité de commutation (120) sur la base d'une opération que l'unité de conversion (110) a l'intention de réaliser ;

dans lequel l'unité de conversion (110) inclut :

une borne d'entrée (110a) reliée à l'anode de la batterie (10),

une première borne de sortie (110b) reliée à la charge (20), et

une seconde borne de sortie (110c) reliée à l'unité de commutation (120) ;

dans lequel un côté de l'unité de commutation (120) est relié à une borne d'anode et

une borne de cathode de chacun parmi la pluralité de modules de cellules (10-1) et un autre côté est relié à la seconde borne de sortie (110c) de l'unité de conversion (110).


 
2. Dispositif d'équilibrage et de précharge de modules de cellules (100) selon la revendication 1, dans lequel, lorsque l'unité de conversion (110) a l'intention de réaliser l'opération de précharge, l'unité de commande (130) est configurée pour former le circuit de précharge incluant la batterie (10), la borne d'entrée (110a) et la première borne de sortie (110b) en coupant une liaison entre la seconde borne de sortie (110c) et l'unité de commutation (120) par la commande de l'unité de commutation (120).
 
3. Dispositif d'équilibrage et de précharge de modules de cellules (100) selon la revendication 1, dans lequel l'unité de commande (130) est configurée pour acquérir des informations de modules de cellules auprès de la pluralité de modules de cellules (10-1) et pour diagnostiquer une anomalie de déséquilibre d'un ou plusieurs modules de cellules (10-1) sur la base des informations de modules de cellules.
 
4. Dispositif d'équilibrage et de précharge de modules de cellules (100) selon la revendication 3, dans lequel, lorsque l'unité de conversion (110) a l'intention de réaliser l'opération d'équilibrage, l'unité de commande (130) est configurée pour former le circuit d'équilibrage incluant les un ou plusieurs modules de cellules (10-1) desquels une anomalie de déséquilibre est diagnostiquée, la borne d'entrée (110a) et la seconde borne de sortie (110c) en reliant les un ou plusieurs modules de cellules (10-1) desquels une anomalie de déséquilibre est diagnostiquée et la seconde borne de sortie (110c) par la commande de l'unité de commutation (120).
 
5. Dispositif d'équilibrage et de précharge de modules de cellules (100) selon la revendication 4, dans lequel, lorsqu'une récupération d'énergie des un ou plusieurs modules de cellules (10-1) desquels une anomalie de déséquilibre est diagnostiquée est exigée, l'unité de commande (130) est configurée pour commander l'opération de l'unité de conversion (110) de manière à transférer l'énergie des un ou plusieurs modules de cellules (10-1) desquels une anomalie de déséquilibre est diagnostiquée depuis la seconde borne de sortie (110b) à la borne d'entrée (110a).
 
6. Dispositif d'équilibrage et de précharge de modules de cellules (100) selon la revendication 4, dans lequel, lorsqu'un transfert de l'énergie aux un ou plusieurs modules de cellules (10-1) desquels une anomalie de déséquilibre est diagnostiquée est exigé, l'unité de commande (130) est configurée pour commander l'opération de l'unité de conversion (110) de manière à transférer l'énergie délivrée de la batterie (10) de la borne d'entrée (110a) à la seconde borne de sortie (110c).
 
7. Procédé d'équilibrage et de précharge de modules de cellules comprenant :

la réalisation, par une unité de conversion (110) située entre une batterie (10) incluant une pluralité de modules de cellules (10-1), dans lequel chacun parmi la pluralité de modules de cellules (10-1) comporte une borne d'anode et une borne de cathode, et une charge (20), d'une opération de précharge et d'une opération d'équilibrage ;

la liaison sélective, par une unité de commutation (120), d'un ou plusieurs parmi la pluralité de modules de cellules (10-1) et de l'unité de conversion (110) ; et

la commande d'un état de conduction de l'unité de commutation (120) afin de former sélectivement un circuit de précharge pour réaliser l'opération de précharge ou un circuit d'équilibrage pour réaliser l'opération d'équilibrage sur la base d'une opération que l'unité de conversion (110) a l'intention de réaliser ;

dans lequel l'unité de conversion (110) inclut :

une borne d'entrée (110a) reliée à l'anode de la batterie (10),

une première borne de sortie (110b) reliée à la charge (20), et

une seconde borne de sortie (110c) reliée à l'unité de commutation (120) ;

dans lequel un côté de l'unité de commutation (120) est relié à une borne d'anode et une borne de cathode de chacun parmi la pluralité de modules de cellules (10-1) et un autre côté est relié à la seconde borne de sortie (110c) de l'unité de conversion (110), dans lequel la commande inclut, lorsque l'unité de conversion (110) a l'intention de réaliser l'opération de précharge, la formation du circuit de précharge incluant la batterie (10), la borne d'entrée (110a) et la première borne de sortie (110b) en coupant une liaison entre la seconde borne de sortie (110c) et l'unité de commutation (120) par la commande de l'unité de commutation (120) ;

dans lequel la commande inclut l'acquisition d'informations de modules de cellules auprès de la pluralité de modules de cellules (10-1) et le diagnostic d'une anomalie de déséquilibre d'un ou plusieurs modules de cellules (10-1) sur la base des informations de modules de cellules, puis, lorsque l'unité de conversion (110) a l'intention de réaliser l'opération d'équilibrage, la formation du circuit d'équilibrage incluant les un ou plusieurs modules de cellules (10-1) desquels une anomalie de déséquilibre est diagnostiquée, la borne d'entrée (110a) et la seconde borne de sortie (110c) en reliant les un ou plusieurs modules de cellules (10-1) desquels une anomalie de déséquilibre est diagnostiquée et la seconde borne de sortie (110c) par la commande de l'unité de commutation (120).


 
8. Procédé d'équilibrage et de précharge de modules de cellules selon la revendication 7, dans lequel la commande inclut en outre, lorsque l'unité de conversion (110) a l'intention de réaliser l'opération d'équilibrage, lorsqu'une récupération d'énergie des un ou plusieurs modules de cellules (10-1) desquels une anomalie de déséquilibre est diagnostiquée est exigée, la commande de l'opération de l'unité de conversion (110) de manière à transférer l'énergie des un ou plusieurs modules de cellules (10-1) desquels une anomalie de déséquilibre est diagnostiquée depuis la seconde borne de sortie (110c) à la borne d'entrée (110a).
 
9. Procédé d'équilibrage et de précharge de modules de cellules selon la revendication 7, dans lequel la commande inclut en outre, lorsque l'unité de conversion (110) a l'intention de réaliser l'opération d'équilibrage, lorsqu'un transfert de l'énergie aux un ou plusieurs modules de cellules (10-1) desquels une anomalie de déséquilibre est diagnostiquée est exigé, la commande de l'opération de l'unité de conversion (110) de manière à transférer l'énergie délivrée de la batterie (10) de la borne d'entrée (110a) à la seconde borne de sortie (110c).
 




Drawing























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description