(19)
(11)EP 3 623 582 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.02.2021 Bulletin 2021/07

(21)Application number: 19195497.3

(22)Date of filing:  05.09.2019
(51)Int. Cl.: 
F01D 11/08  (2006.01)
F01D 25/24  (2006.01)
F01D 25/00  (2006.01)

(54)

MULTI-PIECE CARRIER ASSEMBLY FOR MOUNTING CERAMIC MATRIX COMPOSITE SEAL SEGMENTS

MEHRTEILIGE TRÄGERANORDNUNG ZUR MONTAGE VON KERAMISCHEN MATRIXVERBUNDDICHTSEGMENTEN

ENSEMBLE DE SUPPORT MULTI-PIÈCES POUR LE MONTAGE DE SEGMENTS D'ÉTANCHÉITÉ COMPOSITES À MATRICE CÉRAMIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.09.2018 US 201816129294

(43)Date of publication of application:
18.03.2020 Bulletin 2020/12

(73)Proprietors:
  • Rolls-Royce plc
    London N1 9FX (GB)
  • Rolls-Royce Corporation
    Indianapolis IN 46225 (US)

(72)Inventors:
  • Walston, Jeffrey
    Indianapolis, IN Indiana 46220 (US)
  • Hurst, Andrew
    Derby, Derbyshire DE24 8BJ (GB)

(74)Representative: Rolls-Royce plc 
Intellectual Property Dept SinA-48 PO Box 31
Derby DE24 8BJ
Derby DE24 8BJ (GB)


(56)References cited: : 
EP-A1- 3 118 417
FR-A1- 3 056 632
EP-A1- 3 173 583
FR-A1- 3 064 022
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present disclosure relates generally to assemblies including ceramic matrix composite components, and more specifically to turbine shroud and other assemblies used in gas turbine engines.

    [0002] Engines, and particularly gas turbine engines, are used to power aircraft, watercraft, power generators and the like. Gas turbine engines typically include a compressor, a combustor, and a turbine. The compressor compresses air drawn into the engine and delivers high-pressure air to the combustor. The combustor is a component or area of a gas turbine engine where combustion takes place. In a gas turbine engine, the combustor receives high-pressure air and adds fuel to the air, which is burned to produce hot, high-pressure gas. After burning the fuel, the hot, high-pressure gas is passed from the combustor to the turbine. The turbine extracts work from the hot, high-pressure gas to drive the compressor and residual energy is used for propulsion or sometimes to drive an output shaft.

    [0003] Compressors and turbines typically include alternating stages of static vane assemblies and rotating wheel assemblies. The rotating wheel assemblies include disks carrying blades around their outer edges. When the rotating wheel assemblies turn, tips of the blades move along blade tracks included in static shrouds that are arranged around the rotating wheel assemblies. These static shrouds may be coupled to an engine case that surrounds the compressor, the combustor, and the turbine.

    [0004] FR3064022 describes a turbine ring assembly having a central shroud from which a first and a second radial clamp project and between which the fastening lugs of each ring section are maintained along with first and a second annular flange detachably fixed to the first radial clamp with the second annular flange comprising a support shroud projecting upstream in the axial direction and having a radial support in contact with the central shrouc EP3118417 discloses a turbine shroud comprising a plurality of carrier segments and a plurality of blade track segments comprising ceramic-matrix composite material and a plurality of impingement tubes, each impingement tube extending into one of the carrier segments.

    [0005] Some shrouds may be exposed to high temperatures from products of the combustion reaction in the combustor. These shroud assemblies can include components made from ceramic matrix composite (CMC) materials and metallic components. Still further, these shroud assemblies can take up a lot of axial space in the turbine engine. Accordingly, a carrier assembly is needed that accommodates smaller axial spaces and avoids or minimizes coupling stresses at the interface of the CMC and metallic components.

    [0006] The present invention refers to a turbine shroud in accordance with claim 1.

    [0007] Embodiments are in accordance with the appended claims 2-14.

    [0008] In a further embodiment, a gas turbine engine includes the turbine shroud.

    [0009] Other features of the present disclosure will become more apparent from the following description of the illustrative embodiments.

    Fig. 1 is a perspective cut-away view of a turbine engine showing that the engine includes a turbine arranged aft of a compressor, and a combustor to receive hot, high pressure air produced in the compressor and combustor;

    Fig. 2 is a sectional view of a portion of the turbine of Fig. 1 showing a turbine and a radially spaced turbine shroud;

    Fig. 3 is an enlarged view of the turbine shroud of Fig. 2 showing a multi-piece carrier, a blade track segment, and a mount assembly coupling the multi-piece carrier and the blade track segment;

    Fig. 4 shows a perspective view of an assembled turbine shroud of Figs. 2-3;

    Fig. 5 is an exploded assembly view of the turbine shroud segment of Fig. 4 showing that a mount assembly of the turbine shroud segment includes fore and aft bodies of the multi-piece carrier, attachment pins, axial stop pins, and pilot features;

    Fig. 6 is a sectional view taken along line 6-6 of Fig. 4 showing the pilot feature and the pilot receiver in the fore body of the multi-piece carrier, the pilot receiver in the fore body and the closed face receiver in the aft body;

    Fig. 7 is a sectional view taken along 7-7 of Fig. 6 showing the pilot feature contacts the pilot receiver prior to the attachment pin contacting the receiver during assembly of the shroud; and

    Fig. 8 is a sectional view taken along 8-8 of Fig. 6 showing a fastener extending through an opening in the fore and aft bodies of the carrier.



    [0010] For the purposes of promoting an understanding of the principles of the disclosure, reference will now be made to a number of illustrative embodiments illustrated in the drawings and specific language will be used to describe the same.

    [0011] The arrangement of an illustrative gas turbine engine 10 is shown in Fig. 1. The gas turbine engine 10 includes a fan 12, a compressor 14, a combustor 16, and a turbine 18. Fan 12 is driven by turbine 18 and provides thrust for propelling an air vehicle. The compressor 14 compresses and delivers air to the combustor 16. Combustor 16 mixes fuel with the compressed air and ignites the fuel. The hot, high - pressure products of the combustion reaction are directed into the turbine 18 to cause the turbine 18 to rotate about central axis 11 to drive compressor 14 and fan 12.

    [0012] Turbine 18 includes at least one turbine wheel assembly 19, and a turbine shroud 20 positioned to surround the turbine wheel assembly 19 as shown in Figs. 1 and 2. The turbine shroud 20 is coupled to outer case 30 of the gas turbine engine. The turbine wheel assembly 19 includes a plurality of blades 13 coupled to a rotor disk for rotation therewith. The hot, high-pressure combustion products from the combustor 16 are directed toward blades 13 along flow path 17 and push the blades 13.

    [0013] The turbine shroud 20 extends around the turbine wheel assembly 19. Turbine shroud is made up of a number of shroud segments 22, as shown in Figs. 4 and 5, for example. Each segment 22 extends part-way around the central axis and cooperate to surround the turbine wheel assembly 19. Shroud segments 22 are sealed against one another, such as by strip seal members, to provide a continuous turbine shroud 20.

    [0014] Each shroud segment 22 includes a blade track segment 40, a multi-piece carrier and a mount assembly that couples the blade track segment 40 to the multi-piece carrier as shown in Figs. 3-5. Blade track segment 40 is a ceramic matrix composite component configured to directly face the high temperatures of the primary has path. Blade track segment 40 is formed to include a runner 39 and an attachment feature 41. The attachment feature 41 is defined to include two attachment posts 56, 58 positioned circumferentially spaced apart from one another and extending radially out from an exterior surface of the runner 39. The attachment posts 56, 58 are extend parallel to each other and are positioned part-way across the runner 39 in an axial direction. Each attachment post 56, 58 is formed to include an axially-extending eyelet 34. In an alternative embodiment, the attachment feature may be a hanger to couple to the fore and aft bodies of the multi-piece carrier as part of a hanger system. Additionally, other attachment features and configurations can be used.

    [0015] Multi-piece carrier is a metallic support component configured to interface with other metallic components spaced from the primary gas path of the engine 10. The multi-piece carrier assembly includes a first body 24 and second body 26 located axially aft the first body 24. Alternatively, the multi-piece carrier may comprise circumferentially adjacent first and second bodies 24, 26 that are attached with the features mount assembly and attachment features disclosed in Figs. 3-5. The mount assembly includes one or more attachment pins 28, axial stop pins 38 and pilot features 44.

    [0016] As shown in Figs. 3 and 5, fore body 24 is formed to include a plurality of blind holes, or closed-faced receivers 30 spaced circumferentially about the fore body 24 sized to receive one end of an attachment pin 28. Aft body is formed to include a plurality of blind holes, or closed-faced receivers 46 spaced circumferentially about the aft body 26 and sized to receive an opposite end of an attachment pin 28. Aft body 26 may further be formed to include additional blind holds including pilot feature receivers 46 and stop pin receivers 36. Fore and aft bodies 24, 26 have planar mating surfaces 29, 27 to be press fit in confronting relation when assembled as shown in Fig. 4.

    [0017] In illustrative embodiments, as shown in Fig. 3, each eyelet 34 of the blade track segment 40 is sized to receive a respective attachment pin 28. Attachment posts 56, 58 are located so that each eyelet 34 is axially aligned with a closed-faced receiver 30, 32 in each of the fore and aft bodies 24, 26 of the multi-piece carrier. Attachment pin 28 extends from aft body receiver 32 through eyelet 34 and into fore body receiver 30 in an assembled state. Axial stop pin 38 extends from aft body stop pin receiver 36 into an open cavity 62 of the fore body 24 that receives the attachment posts 56, 58. Axial stop pin 38 abuts a wall 60 of a post 56 located radially exterior to the eyelet 34 and attachment pin 28. Axial stop pin 38 may include a stop platform 42 received in the aft body receiver 36 to prevent the pin from extending further into the aft body receiver 36, and have a length to maintain appropriate axial spacing between the fore body 24, the aft body 26 and the blade track segment 40.

    [0018] As illustrated in Figs. 3-5, none of the attachment pins 28, the axial stop pins 38, or pilot features 44 of the mount assembly extend completely through the fore body 24 or aft body 26 of the multi-piece carrier. Each attachment pin 28, axial stop pin 38 and pilot feature 44 is positioned entirely within cavity 62 formed by coupling the fore body 24, the aft body 26 and the blade track segment 40.

    [0019] In some embodiments, the mount assembly further includes pilot features 44 spaced circumferentially about the shroud segment 22 to provide alignment during assembly. Pilot features may be a close tolerance dowel pin 47 or a diamond head dowel pin 45 as shown in Fig. 5 or some combination of both. Diamond head dowel pin 45 has a diamond shaped cross section and is oriented with the largest radius or axis of the diamond oriented parallel to the engine radial direction so that the pilot feature 44 will provide precise radial alignment of the forward and aft bodies 24, 26 of the multi-piece carrier. Diamond head dowel pin 45 provides precise radial alignment while tolerating a larger mismatch in circumferential alignment, which allows the multi-piece carrier to be machined to looser tolerances in the circumferential direction and adds assembly tolerance of differential thermal growth of the forward and aft bodies 24, 26.

    [0020] Figs. 6 and 7 illustrate the relative position of pilot feature 44 relative to attachment pin 28 and axial stop pin 38 during assembly of the fore and aft bodies 24, 26. For the purposes of clarity blade track segment 40 is not shown, but would be positioned in cavity 62 as shown in Fig. 3. One end of pilot feature 44 extends into aft pilot receiver 46 of aft body 26 and an opposite end extends into pilot receiver 48.

    [0021] Pilot feature 44 may be press fit into aft pilot receiver 46 for assembly and mating of the fore and aft bodies 24, 26 of the multi-piece carrier. Attachment pin 28 and axial stop pin 38 may also be press fit or otherwise mounted to respective aft body receivers 36, 32. In this embodiment, axial stop pin 38 extends the shortest relative distance axially from the mating face 27 of the aft body 26. Attachment pin 28 extends the longest relative distance axially from the mating face 27 of the aft body 26. Pilot feature 44 extends a length from the mating face 27 of the aft body 26 that is shorter than the attachment pin 28 and longer than the axial stop pin 38. As seen in Figs. 6 and 7, pilot feature 44 will be the first to contact the fore body 24 at the pilot receiver 48 to align the aft body 26 and fore body 24 during coupling, while the attachment pin 28 is axially spaced from the receiver 30.

    [0022] Fig. 8 shows an exemplary fastening mechanism for fastening the fore body 24 to the aft body 26 once the shroud segment 22 is assembled. Fastener 49, such as a bolt or screw may extend through an opening 50 in the fore body 24 that aligns with an opening 52 in the aft body. Insert 54 may be provided to extend between fore and aft bodies 24, 26, and into aft body opening 52. Insert 54 facilitates thread 64 engagement and antirotation of fastener 49 and preserves threaded features in the aft body 26. Damaged, worn, or oxidized fasteners 49 or inserts 54 can be removed and replaced while leaving forward and aft bodies 24, 26 intact and capable of being reused with replacements fasteners 49 or inserts 54. In some embodiments, the fastening direction could be reversed so that the fasteners 49 are first inserted through the aft opening 52 and axially forward through the fore opening 50, with threads 64 of the insert 54 extending into the fore opening 50. In this embodiment, fastener 49 may be sized and threaded to engage corresponding threads 64 on the insert 54.

    [0023] In a method of assembling the shroud segment 22, each of the attachment pins 28, pilot features 44, and axial stop pins 38 may be press fit or otherwise coupled in respective aft body receivers 32, 46, 36. In some embodiments, insert 54, is coupled to extend into an opening 52. Blade track segment 40 may be positioned relative to fore body 24 so that the attachment posts 56, 58 extend into cavity 62.

    [0024] Optionally one or more seal elements (not shown) is positioned on a radially outer surface of the blade track segment 40 for sealing engagement between the blade track segment 40 and the fore and aft bodies 24, 26. Aft body 26 may be axially moved toward fore body 24 so that the pilot feature 44 extends through the fore body pilot receiver 48, attachment feature 41 extends through the eyelet 34 and subsequently into the receiver 30, and axial stop pin 38 contacts wall 60 of attachment posts 56, preventing further axial movement toward the fore body 24. Subsequently, fastener 49 may be inserted through openings 50, 52 and insert 54 to fasten the fore body 24 to the aft body 26.

    [0025] In CMC, high-pressure seals segments, the space claim associated with these components within a turbine engine is at a premium. Therefore, there is a need to dispose a CMC high-pressure seals segments in a turbine section in a compact manner. Previous large pin attachments have drawbacks including a relatively large axial space requirement associated with bolt heads, nuts, and minimum threaded length requirements as well as axial carrier material required to support spot faces for fastener interfaces. In the large pin attachments, there are minimum threaded length requirements for bolt tension in order to provide an effective seal against heat. This seal becomes less effective over the bolt life. One of the drawbacks of a large pin design is the need to seal all through-holes associated with the fasteners to satisfy secondary airflow requirements.

    [0026] In smaller engines, accommodating space requirements for large pin through-bolt assemblies is a challenge. However, the large pin attachment assembly cannot be used in a smaller axial space as the CMC attachment features would have to become prohibitively small, and would drive attachment stresses to unacceptable maximums.

    [0027] Therefore, as disclosed, the large pin through-bolt connection is replaced by an axially-captured close tolerance, tight limit, or press fit attachment pin in a multi-piece carrier assembly. This assembly alleviates the axial space claim requirements. Additionally, the assembly reduces the total number of sealed interfaces required by the through-bolts in the state of the art and replaces them with fewer larger fasteners as disclosed in Figs. 5-8.

    [0028] While the disclosed reduction in axial space claim is provided in the disclosure by an axially segmented multi-piece carrier, it may also be accomplished via a circumferentially segmented carrier as well with first and second bodies circumferentially aligned. The disclosed embodiments describe a fore and aft body of a carrier that is joined via a press fit. This permits a single continuous precision grinding operation to from the mating faces which decreases manufacturing time and cost required to achieve necessary machining tolerances and accuracy. Alternatively, a gasket may be provided in a recess formed in one of the bodies that interfaces with a surface of the aft body.

    [0029] While the disclosure has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described and that all changes and modifications that come within the scope of the claims are desired to be protected.


    Claims

    1. A turbine shroud (20) adapted to be mounted outward of blades (13) included in a turbine wheel assembly (19), the turbine shroud (20) comprising:

    a blade track segment (40) comprising ceramic matrix composite materials, the blade track segment (40) including a runner (39) that extends partway around a central axis (11) to face a primary gas path of a gas turbine engine (10) and an attachment feature (41),

    characterized in that the shroud comprises a multi-piece carrier having a forward body (24) and an aft body (26) comprising metallic materials and configured to be mounted to other metallic components within the gas turbine engine (10) and coupled together at mating faces (29, 27) of each of the forward and aft bodies (24, 26), and

    a mount assembly configured to couple with the attachment feature (41), and having an axial stop pin (38) that is fitted in a closed-face receiver (36) of the aft body (26) of the multi-piece carrier and contacts a wall (60) of the attachment feature (41), wherein the attachment feature (41) includes an eyelet (34) formed therethrough, the axial stop pin (38) abuts the wall (60) of the attachment feature (41) located radially exterior to the eyelet (34), and the axial stop pin (38) has a length to maintain appropriate axial spacing between the fore body (24), the aft body (26) and the blade track segment (40).


     
    2. The turbine shroud (20) of claim 1, wherein the mount assembly further comprises an attachment pin (28) that is fitted in a closed-face receiver (30, 32) of each of the forward and aft bodies (24, 26) of the multi-piece carrier and extends through the eyelet (34) .
     
    3. The turbine shroud (20) of claim 2, wherein the mount assembly further comprises a pilot feature (44) fitted in a closed-face receiver (46) of the aft body (26) of the multi-piece carrier and configured to align with and extend into a closed-face receiver (48) in the forward body (24) of the multi-piece carrier.
     
    4. The turbine shroud (20) of claim 3, wherein the pilot feature (44) is further configured to contact the closed-face receiver (48) of the forward body (24) of the multi-piece carrier prior to the attachment pin (28) contacting the closed-face receiver (30) of the multi-piece carrier during installation.
     
    5. The turbine shroud (20) of claim 3 or 4, wherein the pilot feature (44) extends a distance from the mating face (27) of the aft body (26) that is shorter than a distance that the attachment pin (28) extends from the mating face (27) of the aft body (26).
     
    6. The turbine shroud (20) of any one of claims 3 to 5, wherein the pilot feature (44) has a diamond-shaped or close-tolerance cross-section.
     
    7. The turbine shroud (20) of any preceding claim, wherein the attachment feature (41) further includes an attachment post (56), and wherein the eyelet (34) is formed through the attachment post (56).
     
    8. The turbine shroud (20) of any preceding claim, wherein the mating faces (29, 27) of the forward and aft bodies (24, 26) are each planar.
     
    9. The turbine shroud (20) of any preceding claim, further comprising a fastener (49) that couples and extends through openings (50, 52) in the forward and aft bodies (24, 26).
     
    10. The turbine shroud (20) of claim 9, further comprising a helical insert (54) configured to be press fit into the opening (52) in the aft body (26) and to receive and contact the fastener (49).
     
    11. The turbine shroud (20) of any one of claims 2 to 10, wherein the attachment pin (28) is fitted in the closed-face receivers (30, 32) of the forward and aft bodies (24, 26) and the eyelet (34) in one of a close tolerance, tight limit, or press fit attachment.
     
    12. The turbine shroud (20) of preceding claim, wherein the axial stop pin (38) extends from the closed-face receiver (36) of the aft body (26) into an open cavity (62) of the forward body (24).
     
    13. The turbine shroud (20) of any preceding claim, wherein the axial stop pin (38) includes a stop platform (42) received in the closed-face receiver (36) of the aft body (26) to prevent the axial stop pin (38) from extending further into the closed-face receiver (36).
     
    14. A gas turbine engine (10) comprising the turbine shroud (20) of any preceding claim.
     


    Ansprüche

    1. Turbinendeckband (20), das angepasst ist, um außerhalb der Schaufeln (13) montiert zu werden, die in einer Turbinenradanordnung (19) enthalten sind, wobei das Turbinendeckband (20) umfasst:

    ein Schaufelbahnsegment (40), das Keramikmatrix-Verbundwerkstoffe umfasst, wobei das Schaufelbahnsegment (40) einen Läufer (39), der sich teilweise um eine Mittelachse (11) erstreckt, um einem Primärgasweg eines Gasturbinentriebwerks (10) zugewandt zu sein, und ein Befestigungsmerkmal (41) enthält,

    dadurch gekennzeichnet, dass das Deckband einen mehrteiligen Träger mit einem vorderen Körper (24) und einem hinteren Körper (26) umfasst, die metallische Materialien umfassen und konfiguriert sind, um an anderen metallischen Komponenten innerhalb des Gasturbinentriebwerks (10) montiert und an Paarungsflächen (29, 27) jedes des vorderen und des hinteren Körpers (24, 26) miteinander gekoppelt zu werden, und

    eine Montageanordnung, die konfiguriert ist, um mit dem Befestigungsmerkmal (41) gekoppelt zu werden, und einen axialen Anschlagstift (38) aufweist, der in eine Aufnahme (36) mit geschlossener Fläche des hinteren Körpers (26) des mehrteiligen Trägers eingepasst ist und eine Wand (60) des Befestigungsmerkmals (41) berührt, wobei das Befestigungsmerkmal (41) eine dahindurch ausgebildete Öse (34) enthält, wobei der axiale Anschlagstift (38) an der Wand (60) des Befestigungsmerkmals (41) anliegt, das sich radial außerhalb der Öse (34) befindet, und der axiale Anschlagstift (38) eine Länge aufweist, um einen angemessenen axialen Abstand zwischen dem vorderen Körper (24), dem hinteren Körper (26) und dem Schaufelsegment (40) aufrechtzuerhalten.


     
    2. Turbinendeckband (20) nach Anspruch 1, wobei die Montageanordnung ferner einen Befestigungsstift (28) umfasst, der in eine Aufnahme (30, 32) mit geschlossener Fläche von jedem des vorderen und des hinteren Körpers (24, 26) des mehrteiligen Trägers eingepasst ist und sich durch die Öse (34) erstreckt.
     
    3. Turbinendeckband (20) nach Anspruch 2, wobei die Montageanordnung ferner ein Pilotmerkmal (44) umfasst, das in eine Aufnahme (46) mit geschlossener Fläche des hinteren Körpers (26) des mehrteiligen Trägers eingepasst ist und konfiguriert ist, um sich an einer Aufnahme (48) mit geschlossener Fläche in dem vorderen Körper (24) des mehrteiligen Trägers auszurichten und sich in diese zu erstrecken.
     
    4. Turbinendeckband (20) nach Anspruch 3, wobei das Pilotmerkmal (44) ferner konfiguriert ist, um die Aufnahme (48) mit geschlossener Fläche des vorderen Körpers (24) des mehrteiligen Trägers zu berühren, bevor der Befestigungsstift (28) die Aufnahme (30) mit geschlossener Fläche des mehrteiligen Trägers während der Installation berührt.
     
    5. Turbinendeckband (20) nach Anspruch 3 oder 4, wobei sich das Pilotmerkmal (44) um einen Abstand von der Paarungsfläche (27) des hinteren Körpers (26) erstreckt, der kürzer ist als ein Abstand, den sich der Befestigungsstift (28) von der Paarungsfläche (27) des hinteren Körpers (26) erstreckt.
     
    6. Turbinendeckband (20) nach einem der Ansprüche 3 bis 5, wobei das Pilotmerkmal (44) einen rautenförmigen oder einen Querschnitt mit enger Toleranz aufweist.
     
    7. Turbinendeckband (20) nach einem der vorhergehenden Ansprüche, wobei das Befestigungsmerkmal (41) ferner einen Befestigungspfosten (56) umfasst und wobei die Öse (34) durch den Befestigungspfosten (56) ausgebildet ist.
     
    8. Turbinendeckband (20) nach einem der vorhergehenden Ansprüche, wobei die Paarungsflächen (29, 27) des vorderen und des hinteren Körpers (24, 26) jeweils planar sind.
     
    9. Turbinendeckband (20) nach einem der vorhergehenden Ansprüche, ferner umfassend ein Befestigungselement (49), das die Öffnungen (50, 52) in dem vorderen und dem hinteren Körper (24, 26) koppelt und sich durch diese erstreckt.
     
    10. Turbinendeckband (20) nach Anspruch 9, ferner umfassend einen spiralförmigen Einsatz (54), der konfiguriert ist, um in die Öffnung (52) in dem hinteren Körper (26) eingepresst zu werden und das Befestigungselement (49) aufzunehmen und zu berühren.
     
    11. Turbinendeckband (20) nach einem der Ansprüche 2 bis 10, wobei der Befestigungsstift (28) in die Aufnahme (30, 32) mit geschlossener Fläche des vorderen und des hinteren Körpers (24, 26) und der Öse (34) in einer engen Toleranz, engen Grenze oder Presspassung eingepasst wird.
     
    12. Turbinendeckband (20) nach einem vorhergehenden Anspruch, wobei sich der axiale Anschlagstift (38) von der Aufnahme (36) mit geschlossener Fläche des hinteren Körpers (26) in einen offenen Hohlraum (62) des vorderen Körpers (24) erstreckt.
     
    13. Turbinendeckband (20) nach einem der vorhergehenden Ansprüche, wobei der axiale Anschlagstift (38) eine Anschlagplattform (42) enthält, die in der Aufnahme (36) mit geschlossener Fläche des hinteren Körpers (26) aufgenommen ist, um zu verhindern, dass sich der axiale Anschlagstift (38) weiter in die Aufnahme (36) mit geschlossener Fläche erstreckt.
     
    14. Gasturbinentriebwerk (10), umfassend das Turbinendeckband (20) nach einem vorhergehenden Anspruch.
     


    Revendications

    1. Carénage de turbine (20) adapté pour être monté à l'extérieur d'aubes (13) comprises dans un ensemble de roue de turbine (19), le carénage de turbine (20) comprenant :

    un segment de piste d'aube (40) comprenant des matériaux composites à matrice céramique, le segment de piste d'aube (40) comprenant un patin (39) qui s'étend à mi-chemin autour d'un axe central (11) pour faire face à un chemin de gaz primaire d'un moteur à turbine à gaz (10) et un élément de fixation (41),

    caractérisé en ce que le carénage comprend un support multipièce possédant un corps avant (24) et un corps arrière (26) comprenant des matériaux métalliques et conçu pour être monté sur d'autres composants métalliques dans le moteur à turbine à gaz (10) et couplés ensemble au niveau de faces d'accouplement (29, 27) de chacun des corps avant et arrière (24, 26), et

    un ensemble de montage conçu pour se coupler à l'élément de fixation (41), et possédant une broche d'arrêt axiale (38) qui est ajustée dans un récepteur à face fermée (36) du corps arrière (26) du support multipièce et est en contact avec une paroi (60) de l'élément de fixation (41), ledit élément de fixation (41) comprenant un œillet (34) formé à travers celui-ci, ladite broche d'arrêt axiale (38) étant en butée contre la paroi (60) de l'élément de fixation (41) situé radialement à l'extérieur de l'œillet (34), et ladite broche d'arrêt axiale (38) possédant une longueur pour maintenir un espacement axial approprié entre le corps avant (24), le corps arrière (26) et le segment de piste d'aube (40).


     
    2. Carénage de turbine (20) selon la revendication 1, ledit ensemble de montage comprenant en outre une broche de fixation (28) qui est ajustée dans un récepteur à faces fermées (30, 32) de chacun des corps avant et arrière (24, 26) du support multipièce et s'étend à travers l'œillet (34).
     
    3. Carénage de turbine (20) selon la revendication 2, ledit ensemble de montage comprenant en outre un élément pilote (44) ajusté dans un récepteur à faces fermées (46) du corps arrière (26) du support multipièce et conçu pour s'aligner avec un récepteur à faces fermées (48), et s'étendre dans celui-ci, dans le corps avant (24) du support multipièce.
     
    4. Carénage de turbine (20) selon la revendication 3, ledit élément pilote (44) étant en outre conçu pour venir en contact avec le récepteur à faces fermées (48) du corps avant (24) du support multipièce avant que la broche de fixation (28) ne soit en contact avec le récepteur à faces fermées (30) du support multipièce durant l'installation.
     
    5. Carénage de turbine (20) selon la revendication 3 ou 4, ledit élément pilote (44) s'étendant sur une distance à partir de la face d'accouplement (27) du corps arrière (26) qui est plus courte qu'une distance sur laquelle la broche de fixation (28) s'étend à partir de la face d'accouplement (27) du corps arrière (26).
     
    6. Carénage de turbine (20) selon l'une quelconque des revendications 3 à 5, ledit élément pilote (44) possédant une section transversale en forme de losange ou à tolérance étroite.
     
    7. Carénage de turbine (20) selon l'une quelconque des revendications précédentes, ledit élément de fixation (41) comprenant en outre un montant de fixation (56), et ledit œillet (34) étant formé à travers le montant de fixation (56).
     
    8. Carénage de turbine (20) selon l'une quelconque des revendications précédentes, lesdites faces d'accouplement (29, 27) des corps avant et arrière (24, 26) étant chacune planes.
     
    9. Carénage de turbine (20) selon l'une quelconque des revendications précédentes, comprenant en outre un dispositif de fixation (49) qui couple des ouvertures (50, 52) dans les corps avant et arrière (24, 26) et s'étend à travers celles-ci.
     
    10. Carénage de turbine (20) selon la revendication 9, comprenant en outre un insert hélicoïdal (54) conçu pour être ajusté serré dans l'ouverture (52) dans le corps arrière (26) et pour recevoir et entrer en contact avec le dispositif de fixation (49).
     
    11. Carénage de turbine (20) selon l'une quelconque des revendications 2 à 10, ladite broche de fixation (28) étant ajustée dans les récepteurs à faces fermées (30, 32) des corps avant et arrière (24, 26) et l'œillet (34) dans l'une d'une fixation à tolérance étroite, à limite courte ou à ajustement serré.
     
    12. Carénage de turbine (20) selon la revendication précédente, ladite broche d'arrêt axiale (38) s'étendant à partir du récepteur à faces fermées (36) du corps arrière (26) jusque dans une cavité ouverte (62) du corps avant (24).
     
    13. Carénage de turbine (20) selon l'une quelconque des revendications précédentes, ladite broche d'arrêt axiale (38) comprenant une plate-forme d'arrêt (42) reçue dans le récepteur à faces fermées (36) du corps arrière (26) pour empêcher la broche d'arrêt axiale (38) de s'étendre plus loin dans le récepteur à faces fermées (36).
     
    14. Moteur à turbine à gaz (10) comprenant le carénage de turbine (20) selon l'une quelconque des revendications précédentes.
     




    Drawing















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description