(19)
(11)EP 3 626 561 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 18195249.0

(22)Date of filing:  18.09.2018
(51)International Patent Classification (IPC): 
B60T 13/66(2006.01)
B60T 13/68(2006.01)

(54)

REDUNDANT BRAKE SYSTEM FOR AN AUTONOMOUSLY DRIVEN VEHICLE

REDUNDANTES BREMSSYSTEM FÜR EIN AUTONOM ANGETRIEBENES FAHRZEUG

SYSTÈME DE FREINAGE REDONDANT POUR UN VÉHICULE À COMMANDE AUTONOME


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
25.03.2020 Bulletin 2020/13

(73)Proprietor: KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH
80809 München (DE)

(72)Inventors:
  • ADLER, Tamás
    2030 Érd (HU)
  • NEMETH, Huba
    1116 Budapest (HU)

(74)Representative: Prüfer & Partner mbB Patentanwälte · Rechtsanwälte 
Sohnckestraße 12
81479 München
81479 München (DE)


(56)References cited: : 
WO-A2-2009/152982
GB-A- 2 448 007
DE-A1-102015 011 296
US-A1- 2005 067 887
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to a redundant brake system for an autonomously driven vehicle, in particular to a redundant brake system for an autonomously driven transport vehicle, as e.g. a truck and trailer combination.

    [0002] The autonomous operation of transport vehicles is a new field of innovations. More sophisticated functions require special hardware infrastructure.

    [0003] Until now, in particular, commercial vehicle systems require the presence and attention of the driver. However, prospectively, a driver will be less involved into a driving control task of the vehicle. Therefore, autonomous systems are going to take over more significant driven functions which, however, requires increased reliability levels and consequently different types of system redundancies.

    [0004] Nowadays, commercial vehicles use electro-pneumatic or by-wire brake systems in which an electronic part of a control is realized as a single circuit control. In case of malfunction of the control electronics, nevertheless, the driver is able to control the pneumatic part of the brake system by foot because a two circuit pneumatic backup system is still available.

    [0005] GB 2 448 007 A discloses a braking system having braking demand signal generators, wherein an electrical connection between a first electrical braking demand signal generator and a first modulator is entirely separate from an electrical connection between a second electrical braking demand signal generator and a second modulator.

    [0006] However, in case of highly automated vehicles in which the driver is not anymore in the control loop or, is even not available or present in the vehicle, the above brake system would be unsatisfactory since there is no means which would substitute the brake control of the driver in case of malfunction of the single electronic control circuit.

    [0007] Therefore, the object underlying the invention is to provide a redundant brake system which enhances reliability in case of an autonomous operation of a vehicle.

    [0008] The object is achieved by a redundant brake system according to claim 1. Advantageous further developments are included in the dependent claims.

    [0009] According to an aspect of the invention, a redundant brake system for an autonomously driven vehicle comprises an electro-pneumatic service brake system, wherein the redundant brake system is provided with at least three control circuits for controlling the electro-pneumatic service brake system.

    [0010] By providing at least three control circuits, a reliability against malfunction is enhanced since in case of a single failure, the vehicle can be operated further on in a safe manner by still having a redundant system.

    [0011] In an advantageous implementation of the redundant brake system, the at least three control circuits are electrically supplied by at least three power sources.

    [0012] The reliability of the redundant brake system is further enhanced since the redundant brake system still has a redundant configuration even when a quite probable failure of a battery occurs.

    [0013] In a further advantageous implementation of the redundant brake system, the redundant brake system comprises a front axle brake actuator and a rear axle brake actuator, a front axle control valve for controlling the front axle brake actuator, a front axle pressure modulator for providing an appropriate front axle brake pressure to the front axle control valve, a rear axle pressure modulator for providing an appropriate rear axle brake pressure and for controlling the rear axle brake actuator, and at least a first control circuit comprising a first electronic brake control unit, a second control circuit comprising a second electronic brake control unit, and a third control circuit comprising an intelligent foot brake module, wherein the intelligent foot brake module comprises a control unit, a pressure control and modulation unit for actuating an adjustment of the intelligent foot brake module according to a brake pedal position for pre-setting a brake force, brake pedal position sensors configured to respectively control provide a driver's brake demand for the control units of the at least three control circuits, a pneumatic valve portion configured to pneumatically control the front axle pressure modulator and the rear axle pressure modulator, and wherein the redundant brake system is configured to control the front axle pressure modulator and the rear axle pressure modulator alternatively by the intelligent foot brake module in a pneumatic manner, by the first electronic brake control unit, or by the second electronic brake control unit, wherein power supply switches configured to switch a power supply of the front axle pressure modulator and of the rear axle pressure modulator between the first control circuit and the second control circuit are provided.

    [0014] By this configuration, two control circuits electrically controlling the appropriate brake pressures of the front axle brake and of the rear axle break and one control circuit pneumatically controlling the appropriate brake pressures of the front axle brake and of the rear axle break are provided. Therefore, due to a redundant provision of the electrically controlling control circuits and an additional provision of the pneumatically controlling control circuit functioning based on another physical principle, the reliability is further enhanced.

    [0015] In a further advantageous implementation of the redundant brake system, it comprises a trailer control module configured to control a trailer brake force of a trailer brake system connected to the trailer control module, wherein the trailer brake force is configured to be controlled alternatively by the first electronic brake control unit, by the second electronic brake control unit, or by the intelligent foot brake module.

    [0016] Due to this configuration, also the redundant brake system of the trailer can be controlled in a redundant manner, moreover, by providing different physical principles of the control circuits and, therefore, the reliability of the entire redundant brake system is enhanced.

    [0017] In a further advantageous implementation of the redundant brake system, the redundant brake system further comprises wheel-end sensors and signal switching devices, wherein the signal switching devices are configured to respectively switch a communication between the wheel-end sensors and a respective one of the rear axle pressure modulator and front axle pressure modulator, or between the wheel-end sensors and the intelligent foot brake module.

    [0018] By the provision of the signal switching devices, in normal operation, the signals of the wheel-end sensors, e.g. wheel speed, wear, etc., can be processed in the pressure modulators for providing an appropriate brake pressure, and, in case of a failure of the first and second control circuit, wherein the pressure modulators do not work, the signals are used by the intelligent foot brake module. Therefore the signals of the sensors can be processed in any condition of the redundant brake system.

    [0019] In a further implementation of the redundant brake system, in case of manual operation of the intelligent foot brake module, the redundant brake system is configured to operate all of the at least three control circuits.

    [0020] This configuration enables a manual operation of the vehicle while the safety standard is not deteriorated.

    [0021] In a further implementation of the redundant brake system, the at least three control circuits are configured to be actuated via independent circuit-external communication lines.

    [0022] Because of the actuation of the control circuits via independent circuit-external lines, e.g. a CAN bus, a failure of one of the control circuits does not prevent a transfer of the braking task to another one of the control circuits.

    [0023] In a further implementation of the redundant brake system, the brake control units are pairwise interlinked with each other by interlink communication lines.

    [0024] Due to pairwise interlinking the brake control units, a failure of one of the control units does not disturb a transfer of the braking task of another one of the control units.

    [0025] In the following, the invention is elucidated by means of an embodiment referring to the attached drawing.

    [0026] In particular,
    Fig. 1 shows a brake system architecture of an embodiment of a redundant brake system according to the invention.

    [0027] Fig. 1 shows a brake system architecture of an embodiment of a redundant brake system 1 according to the invention.

    [0028] The redundant brake system 1 includes an electro-pneumatic service brake system, wherein the redundant brake system 1 is provided with three control circuits for controlling the electro-pneumatic service brake system. In particular, the redundant brake system 1 comprises a redundant Electro-Pneumatic Module (rEPM) comprising two electronic control circuits and an intelligent Foot Brake Module (iFBM) comprising a pneumatic control circuit. In alternative embodiments, more than three control circuits can be provided.

    [0029] The three control circuits are electrically supplied by at least three power sources. A first control circuit is supplied by a first battery 2, a second control circuit is supplied by a second battery 3, and a third control circuit is supplied by a third battery 4. In an alternative embodiment, having more than three control circuits, not each of the control circuits has to be supplied by an own battery but at total quantity of batteries has to be sufficient. Moreover, alternatively, other power supplies than a battery, e.g., generators, are possible.

    [0030] In this embodiment, the redundant brake system 1 further comprises two front axle brake actuators 5, 5' and two rear axle brake actuators 6, 6'. The front axle brake actuators 5, 5' are respectively formed by a service brake chamber and the rear axle actuators 6, 6' are respectively formed by a spring brake combi cylinder, however, brake actuators of another type are possible. Further, in this embodiment, the redundant brake system 1 is provided with an electro-pneumatic park brake system, provided with an electro-pneumatic park brake controller 7, which also uses the spring brake combi cylinder. In alternative embodiments, however, the electro-pneumatic park brake system can be omitted. Furthermore, the redundant brake system 1 comprises two front axle control valves 8, 8' for controlling the front axle brake actuators 5, 5', a front axle pressure modulator 9 for providing an appropriate front axle brake pressure to the front axle control valves 8, 8', and a rear axle pressure modulator 10 for providing an appropriate rear axle brake pressure and for controlling the rear axle brake actuators 6, 6'. The quantity of these components in this embodiment is indicated for a vehicle, e.g. a tractor unit, which is provided with one front axle and one rear axle. In alternative embodiments, the quantity of these components depends on the quantity and configuration of the axles.

    [0031] Furthermore, the first control circuit comprises a first electronic brake control unit 11, the second control circuit comprises a second electronic brake control unit 12, and the third control circuit comprising a intelligent foot brake module 13.

    [0032] The intelligent foot brake module 13 comprises a foot brake control unit 14 and a pressure control and modulation unit 15 configured to actuate an adjustment of the intelligent foot brake module 13 corresponding to a brake pedal position for pre-setting a brake force. By the pressure control and modulation unit 15, the intelligent foot brake module 13 can be actuated similar to a pneumatic actuator included in the pressure control and modulation unit 15. The driven pressure by the pressure control and modulation unit 15 is proportional to a pedal stroke.

    [0033] Further, the intelligent foot brake module 13 comprises brake pedal position sensors 16, 17, 18 configured to respectively provide a driver's brake demand for the control units 11, 12, 14 of the control circuits, and a pneumatic valve portion 19 configured to pneumatically control the front axle pressure modulator 9 and the rear axle pressure modulator 10.

    [0034] The redundant brake system 1 is configured to control the front axle pressure modulator 9 and the rear axle pressure modulator 10 alternatively by the intelligent foot brake module 13 in a pneumatic manner, by the first electronic brake control unit 11 in an electronic manner, or by the second electronic brake control unit 12 in an electronic manner, wherein power supply switches 23, 23' configured to respectively switch a power supply of the front axle pressure modulator 9 and of the rear axle pressure modulator 10 between the first control circuit and the second control circuit are provided.

    [0035] In alternative embodiments, the redundant brake system 1 can be configured in another manner and components provided in this embodiment can be omitted and other components can be included as appropriate.

    [0036] Furthermore, the redundant brake system 1 comprises a trailer control module 24 configured to control a trailer brake force of a trailer brake system connected to the trailer control module 24, wherein, depending of a condition of the first control circuit, the trailer brake force is configured to be controlled alternatively by the first electronic brake control unit 11, by the second electronic brake control unit 12, or by the intelligent foot brake module 13. In an alternative embodiment, e.g. a single lorry without the option to attach a trailer, the trailer control module 24 is omitted.

    [0037] Moreover, the redundant brake system 1 comprises wheel-end sensors 25, 25', 25", 25"', and signal switching devices 26, 26', 26", 26'". The signal switching devices 26, 26', 26", 26"' are configured to switch a communication between the wheel-end sensors 25, 25', 25", 25'" and a respective one of the rear axle pressure modulator 9 and front axle pressure modulator 10, or between the wheel-end sensors 25, 25', 25", 25'" and the intelligent foot brake module 13. During normal operation, the signal switching devices 26, 26', 26", 26"' provide a communication between the signal switching devices 26, 26', 26", 26'" and the respective one of the rear axle pressure modulator 9 and front axle pressure modulator 10, however, in case of malfunction of the first and second control circuit, the signal switching devices 26, 26', 26", 26"' provide a communication between the wheel-end sensors 25, 25', 25", 25'" and the intelligent foot brake module 13.

    [0038] The three control circuits are configured to be actuated via independent circuit-external communication lines 27, 28, 29. In an alternative embodiment, the control circuits can be actuated via communication lines included in the control circuits. The brake control units 11, 12, 14 are pairwise interlinked with each other by interlink communication lines 20, 21, 22. In an alternative embodiment, the brake control units can also be serially interlinked by, e.g., a bus system.

    [0039] In use, in normal operation without any malfunction of anyone of the control circuits, the redundant brake system 1 operates by using the first control circuit including the first brake control unit 11 which controls the two front axle control valves 8, 8', and via a specific switching position of the power supply switches 23, 23', the front axle pressure modulator 9 and rear axle pressure modulator 10. Furthermore, the brake system of the trailer is controlled via the trailer control module 24.

    [0040] In case of a failure of the first control circuit, the second circuit of the redundant electro-pneumatic module continues the control of the redundant brake system 1. Thereby, via a specific switching position of the power supply switches 23, 23', merely the front axle pressure modulator 9 and rear axle pressure modulator 10 are controlled.

    [0041] In case of a malfunction of the redundant electro-pneumatic module, i.e. of the first control circuit and of the second control circuit including their batteries 2, 3, 4, the intelligent foot brake module, i.e. the third control circuit, takes over the task of controlling the redundant brake system 1.

    [0042] Then, in case of braking, the driven pressure of the pressure modulator unit 15 of the intelligent foot brake module 13 generates an artificial pedal stroke. Further operation is similar to a conventional foot brake module. The driven pressure by the intelligent foot brake module 13 is actuating backup ports of the pressure modulators 9, 10. Because, due to the malfunction of the first and the second control circuit, the pressure modulators 9, 10 are in an unpowered state, the pressure backup ports of the pressure modulators 9, 10 are connected to the pneumatic output of the intelligent foot brake module 13 and, therefore, the intelligent foot brake module 13 can actuate the brake actuators 5, 5' via the pressure modulators 9, 10.

    [0043] Although the present invention has been described with reference to specific features and embodiments thereof, it is evident that various modifications and combinations can be made thereto without departing from the subject-matter of the appended claims. The specification and drawings are, accordingly, to be regarded simply as an illustration of the invention as defined by the appended claims.

    REFERENCE SIGN LIST



    [0044] 
    1
    redundant brake system
    2
    first battery
    3
    second battery
    4
    third battery
    5, 5'
    front axle brake actuator
    6, 6'
    rear axle brake actuator
    7
    electro-pneumatic park brake controller
    8, 8'
    front axle control valve
    9
    front axle pressure modulator
    10
    rear axle pressure modulator
    11
    first electronic brake control unit
    12
    second electronic brake control unit
    13
    intelligent foot brake module
    14
    foot brake control unit
    15
    pressure control and modulation unit
    16, 17, 18
    control outputs
    19
    pneumatic valve portion
    20, 21, 22
    interlink communication lines
    23, 23'
    power supply switch
    24
    trailer control module
    25, 25', 25", 25'"
    wheel-end sensors
    26, 26', 26", 26"'
    signal switching device
    27, 28, 29
    communication lines



    Claims

    1. A redundant brake system (1) for an autonomously driven vehicle, comprising an electro-pneumatic service brake system,
    a front axle brake actuator (5, 5') and a rear axle brake actuator (6, 6'),
    a front axle control valve (8, 8') configured to control the front axle brake actuator (6, 6'),
    a front axle pressure modulator (9) configured to provide an appropriate front axle brake pressure to the front axle control valve (8, 8'),
    a rear axle pressure modulator (10) configured to provide an appropriate rear axle brake pressure and to control the rear axle brake actuator (6, 6'), and at least
    a first control circuit comprising a first electronic brake control unit (11),
    a second control circuit comprising a second electronic brake control unit (12), and
    characterised in that the redundant brake system (1) is provided with at least three control circuits configured to control the electro-pneumatic service brake system, and the redundant brake system (1) comprises
    a third control circuit comprising an intelligent foot brake module (13),
    wherein
    the intelligent foot brake module (13) comprises

    a control unit (14),

    a pressure control and modulation unit (15) configured to actuate an adjustment of the intelligent foot brake module (13) according to a brake pedal position for pre-setting a brake force,

    brake pedal position sensors (16, 17, 18) configured to respectively provide a driver's brake demand for the control units (11, 12, 14) of the at least three control circuits,

    a pneumatic valve portion (19) configured to pneumatically control the front axle pressure modulator (9) and the rear axle pressure modulator (10), and

    wherein the redundant brake system (1) is configured to control the front axle pressure modulator (9) and the rear axle pressure modulator (10) alternatively
    by the intelligent foot brake module (13) in a pneumatic manner, or
    by the first electronic brake control unit (11) in an electronic manner, or
    by the second electronic brake control unit (12) in an electronic manner, wherein
    power supply switches (23, 23') configured to respectively switch a power supply of the front axle pressure modulator (9) and of the rear axle pressure modulator (10) between the first control circuit and the second control circuit are provided.
     
    2. The redundant brake system (1) of claim 1, wherein
    the at least three control circuits are electrically supplied by at least three power sources.
     
    3. The redundant brake system (1) of claim 1 or 2, further comprising
    a trailer control module (24) configured to control a trailer brake force of a trailer brake system connected to the trailer control module (14), wherein
    the trailer brake force is configured to be controlled alternatively by the first electronic brake control unit (11),
    by the second electronic brake control unit (12), or
    by the intelligent foot brake module (13).
     
    4. The redundant brake system (1) of any preceding claim, further comprising wheel-end sensors (25, 25', 25", 25'"), and
    signal switching devices (26, 26'),
    wherein the signal switching devices (26, 26') are configured to respectively switch a communication
    between the wheel-end sensors (25, 25', 25", 25'") and a respective one of the front axle pressure modulator (9) and the rear axle pressure modulator (10), or
    between the wheel-end sensors (25, 25', 25", 25'") and the intelligent foot brake module (13).
     
    5. The redundant brake system (1) of anyone of the preceding claims, wherein
    in case of manual operation of the intelligent foot brake module (13),
    the redundant brake system (1) is configured to operate all of the at least three control circuits.
     
    6. The redundant brake system (1) of anyone of the preceding claims, wherein
    the at least three control circuits are configured to be actuated via independent circuit-external communication lines (27, 28, 29).
     
    7. The redundant brake system (1) of anyone of the preceding claims, wherein
    the brake control units (11, 12, 14) are pairwise interlinked with each other by interlink communication lines (20, 21, 22).
     


    Ansprüche

    1. Redundante Bremsanlage (1) für ein autonom angetriebenes Fahrzeug, umfassend:

    eine elektropneumatische Betriebsbremsanlage,

    einen Vorderachs-Bremszylinder (5, 5') und einen Hinterachs-Bremszylinder (6, 6'),

    ein zur Steuerung des Vorderachs-Bremszylinders (5, 5') ausgelegtes Vorderachs-Steuerventil (8, 8'),

    einen zur Bereitstellung eines angemessenen Vorderachs-Bremsdrucks für das Vorderachs-Steuerventil (8, 8') ausgelegten Vorderachs-Druckmodulator (9),

    einen zur Bereitstellung eines angemessenen Hinterachs-Bremsdrucks und zur Steuerung des Hinterachs-Bremszylinders (6, 6') ausgelegten Hinterachs-Druckmodulator (10), und mindestens

    einen ersten Steuerkreis mit einer ersten elektronischen Bremssteuereinheit (11),

    einen zweiten Steuerkreis mit einer zweiten elektronischen Bremssteuereinheit (12), und dadurch gekennzeichnet, dass die redundante Bremsanlage (1) mit mindestens drei Steuerkreisen ausgestattet ist, die zur Steuerung der elektropneumatischen Betriebsbremsanlage ausgelegt sind, und dass die redundante Bremsanlage (1) umfasst:

    einen dritten Steuerkreis mit einem intelligenten Fußbremsmodul (13),

    wobei

    das intelligente Fußbremsmodul (13) umfasst:

    eine Steuereinheit (14),

    eine Druckregel- und -modulationseinheit (15), die zur Betätigung einer Einstellung des intelligenten Fußbremsmoduls (13) gemäß einer Bremspedalstellung zur Voreinstellung einer Bremskraft ausgelegt ist,

    Bremspedal-Positionssensoren (16, 17, 18), die jeweils zur Bereitstellung einer Fahrerbremsanforderung für die Steuereinheiten (11, 12, 14) der mindestens drei Steuerkreise ausgelegt sind,

    einen Druckluftventilabschnitt (19), der zur pneumatischen Steuerung des Vorderachs-Druckmodulators (9) und des Hinterachs-Druckmodulators (10) ausgelegt ist, und

    wobei die die redundante Bremsanlage (1) zur alternativen Steuerung des Vorderachs-Druckmodulators (9) und des Hinterachs-Druckmodulators (10)

    durch das intelligente Fußbremsmodul (13) auf pneumatische Art und Weise, oder

    durch die erste elektronische Bremssteuereinheit (11) auf elektronische Art und Weise oder

    durch die zweite elektronische Bremssteuereinheit (12) auf elektronische Art und Weise ausgelegt ist, wobei

    Stromversorgungsschalter (23, 23') vorgesehen sind, die zur Schaltung einer Stromversorgung des Vorderachs-Druckmodulators (9) bzw. des Hinterachs-Druckmodulators (10) zwischen dem ersten Steuerkreis und dem zweiten Steuerkreis ausgelegt sind.


     
    2. Redundante Bremsanlage (1) nach Anspruch 1, wobei
    die mindestens drei Steuerkreise elektrisch aus mindestens drei Stromquellen versorgt werden.
     
    3. Redundante Bremsanlage (1) nach Anspruch 1 oder 2, weiter umfassend:

    ein Anhängersteuermodul (24), das zur Steuerung einer Anhängerbremskraft einer mit dem Anhängerbremsmodul (14) verbundenen Anhängerbremsanlage ausgelegt ist, wobei

    die Anhängerbremskraft zur alternativen Steuerung

    durch die erste elektronische Bremssteuereinheit (11),

    durch die zweite elektronische Bremssteuereinheit (12), oder

    durch das intelligente Fußbremsmodul (13) ausgelegt ist.


     
    4. Redundante Bremsanlage (1) nach einem der vorhergehenden Ansprüche, weiter umfassend:

    radseitige Sensoren (25, 25', 25", 25"') und

    Signalschaltvorrichtungen (26, 26'),

    wobei die Signalschaltvorrichtungen (26, 26') jeweils zur Schaltung einer Kommunikation

    zwischen den radseitigen Sensoren (25, 25', 25", 25'") und dem Vorderachs-Druckmodulator (9) oder dem Hinterachs-Druckmodulators (10), oder

    zwischen den radseitigen Sensoren (25, 25', 25", 25"') und dem intelligenten Fußbremsmodul (13) ausgelegt sind.


     
    5. Redundante Bremsanlage (1) nach einem der vorhergehenden Ansprüche, wobei
    bei manualler Betätigung des intelligenten Fußbremsmoduls (13)
    die redundante Bremsanlage (1) zur Betätigung aller der mindestens drei Steuerkreise ausgelegt ist.
     
    6. Redundante Bremsanlage (1) nach einem der vorhergehenden Ansprüche, wobei
    die mindestens drei Steuerkreise zur Betätigung über unabhängige schaltkreisexterne Kommunikationsleitungen (27, 28, 29) ausgelegt sind.
     
    7. Redundante Bremsanlage (1) nach einem der vorhergehenden Ansprüche, wobei
    die Bremssteuereinheiten (11, 12, 14) durch Koppel-Kommunikationsleitungen (20, 21, 22) paarweise aneinander gekoppelt sind.
     


    Revendications

    1. Système (1) de freinage redondant d'un véhicule entraîné de manière autonome, comprenant un système électropneumatique de frein de service,

    un actionneur (5, 5') de frein d'essieu avant et un actionneur (6, 6') de frein d'essieu arrière,

    une soupape (8, 8') de commande d'essieu avant, configurée pour commander l'actionneur (6, 6') de frein d'essieu avant,

    un modulateur (9) de pression d'essieu avant, configuré pour fournir une pression de frein appropriée d'essieu avant à la soupape (8, 8') de commande d'essieu avant,

    un modulateur (10) de pression d'essieu arrière, configuré pour fournir une pression de frein appropriée d'essieu arrière et pour commander l'actionneur (6, 6') de frein d'essieu arrière, et au moins

    un premier circuit de commande, comprenant une première unité (11) électronique de commande de frein,

    un deuxième circuit de commande comprenant une deuxième unité (12) électronique de commande de frein, et caractérisé en ce que le système (1) de freinage redondant est pourvu d'au moins trois circuits de commande, configurés pour commander le système électropneumatique de frein de service, et le système (1) de freinage redondant comprend

    un troisième circuit de commande comprenant un module (13) intelligent de frein à pied,

    dans lequel

    le module (13) intelligent de frein à pied comprend

    une unité (14) de commande,

    une unité (15) de commande et de modulation de la pression, configurée pour actionner un réglage du module (13) intelligent de frein à pied en fonction d'une position d'une pédale de frein pour fixer à l'avance une force de freinage,

    des capteurs (16, 17, 18) de position de la pédale de frein, configurés pour fournir, respectivement, une demande de frein du conducteur pour les unités (11, 12, 14) de commande des au moins trois circuits de commande,

    une partie (19) de soupape pneumatique, configurée pour commander pneumatiquement le modulateur (9) de pression d'essieu avant et le modulateur (10) de pression d'essieu arrière, et

    dans lequel le système (1) de freinage redondant est configuré pour commander le modulateur (9) de pression d'essieu avant et le modulateur (10) de pression d'essieu arrière en alternance par le module (3) intelligent de frein à pied, d'une manière pneumatique, ou par la première unité (11) électronique de commande de frein, d'une manière électronique, ou par la deuxième unité (12) électronique de commande de frein, d'une manière électronique, des commutateurs (23, 23') d'alimentation en courant étant configurés pour commuter, respectivement, une alimentation en courant du modulateur (9) de pression d'essieu avant et du modulateur (10) de pression d'essieu arrière entre le premier circuit de commande et le deuxième circuit de commande.


     
    2. Système (1) de freinage redondant suivant la revendication 1, dans lequel
    les au moins trois circuits de commande sont alimentés électriquement par au moins trois sources de courant.
     
    3. Système (1) de freinage redondant suivant la revendication 1 ou 2, comprenant, en outre,

    un module (24) de commande de remorque, configuré pour commander une force de freinage de remorque d'un système de freinage de remorque relié au module (14) de commande de remorque, dans lequel

    la force de freinage de remorque est configurée pour être commandée en alternance

    par la première unité (11) électronique de commande de frein,

    par la deuxième unité (12) électronique de commande de frein, ou

    par le module (13) intelligent de frein à pied.


     
    4. Système (1) de freinage redondant suivant l'une quelconque des revendications précédentes, comprenant, en outre,

    des capteurs (25, 25', 25'', 25''') d'extrémité de roue, et

    des dispositifs (26, 26') de commutation de signal, les dispositifs (26, 26') de commutation de signal étant configurés pour commuter, respectivement, une communication entre les capteurs (25, 25', 25'', 25''') d'extrémité de roue et l'un respectif du modulateur (9) de pression d'essieu avant et du modulateur (10) de pression d'essieu arrière, ou

    entre les capteurs (25, 25', 25'', 25''') d'extrémité de roue et le module (13) intelligent de frein à pied.


     
    5. Système (1) de freinage redondant suivant l'une quelconque des revendications précédentes, dans lequel,

    dans le cas d'un fonctionnement manuel du module (13) intelligent de frein à pied,

    le système (1) de freinage redondant est configuré pour faire fonctionner tous les au moins trois circuits de commande.


     
    6. Système (1) de freinage redondant suivant l'une quelconque des revendications précédentes, dans lequel
    les au moins trois circuits de commande sont configurés pour être actionnés par l'intermédiaire de lignes (27, 28, 29) de communication indépendantes extérieures au circuit.
     
    7. Système (1) de freinage redondant suivant l'une quelconque des revendications précédentes, dans lequel
    les unités (11, 12, 14) de commande de frein sont reliées entre elles par paire par des lignes (20, 21, 22) de communication entre elles.
     




    Drawing








    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description