(19)
(11)EP 3 626 598 A1

(12)EUROPEAN PATENT APPLICATION

(43)Date of publication:
25.03.2020 Bulletin 2020/13

(21)Application number: 18207921.0

(22)Date of filing:  23.11.2018
(51)International Patent Classification (IPC): 
B63H 9/04(2020.01)
B63H 21/20(2006.01)
(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30)Priority: 20.09.2018 JP 2018175979

(71)Applicant: Ouchi Ocean Consultant, Inc.
Saku-gun, Nagano 389-0111 (JP)

(72)Inventor:
  • OUCHI, Kazuyuki
    Nagano, 389-0111 (JP)

(74)Representative: Grünecker Patent- und Rechtsanwälte PartG mbB 
Leopoldstraße 4
80802 München
80802 München (DE)

 
Remarks:
Amended claims in accordance with Rule 137(2) EPC.
 


(54)A ZERO EMISSION POWER GENERATION SAILING SHIP


(57) [Problem to be solved] An object of the present invention is to provide a zero emission power generation sailing ship, wherein generated electric power is consumed for electric demand in the ship or consumed for electric demand in the ship and for driving the ship in response to wind condition, thereby realizing zero emission navigation.
[Means for solving the problem] A zero emission power generation sailing ship comprises a sail provided on a deck, a water turbine-propeller, a power generator-motor which is driven by the water turbine-propeller operating as a water turbine and drives the water turbine-propeller operating as a propeller, and an energy storage device for directly storing electric energy generated by the power generator-motor or converting the electric energy into energy of a substance and storing the substance, wherein the water turbine-propeller operates as a water turbine and the power generator-motor operates as a power generator so as to generate electric power and a part of the generated electric power is consumed for electric demand in the ship and residual part of the generated electric power is stored in the energy storage device when the wind is strong, while the power generator-motor operates as a motor and the water turbine-propeller operates as a propeller and a part of the electric power drawn from the energy storage device is consumed for electric demand in the ship and residual part of the electric power is consumed for driving the power generator-motor operating as a motor when the wind is light, and further comprises a course selecting device provided with a computer program for selecting course based on ocean wind forecasting data so as to prevent exhaustion of the electric power stored in the energy storage device.




Description

[Technical field]



[0001] The present invention relates to a zero emission power generation sailing ship.

[Back ground of the invention]



[0002] The applicant of the present invention proposed in Patent Document No. 1 a power generation sailing ship comprising a sail provided on a deck, a water turbine located outside a hull, a power generator driven by the water turbine, a water electrolyzing device driven by the electric power generated by the power generator, a hydrogenated aromatic compound generator for reacting aromatic compound with hydrogen generated by the water electrolyzing device so as to generate hydrogenated aromatic compound, and aromatic compound / hydrogenated aromatic compound storage tanks, wherein ocean wind power is converted to electric power, the electric power is converted to hydrogen, the hydrogen is converted to hydrogenated aromatic compound which is stable substance, and the hydrogenated aromatic compound is safely sea transported to a land energy base.

[Prior art documents]


[Patent document]



[0003] Patent Document No.1: Japanese Patent No. 6320356 B2 (US2017/022976 A1, EP3121109 A1)

[Non-patent document]



[0004] Non-Patent Document No.1: A software for selecting optimized course of a sailing ship WCNavi : Collection of lecture resumes p43-52, Result reports session of WIND CHALLENGER DEVELOPING PLAN 30.09.2017

[Disclosure of invention]


[Problem to be solved]



[0005] An object of the present invention is to take the power generation sailing ship of Japanese Patent No. 6320356 a step further so as to provide a zero emission power generation sailing ship, wherein generated electric power is consumed for electric demand in the ship or consumed for electric demand in the ship and for driving the ship in response to wind condition, thereby realizing zero emission navigation.

[Means for solving the problem]



[0006] In accordance with the present invention, there is provided a zero emission power generation sailing ship comprising a sail provided on a deck, a water turbine-propeller, a power generator-motor which is driven by the water turbine-propeller operating as a water turbine and drives the water turbine-propeller operating as a propeller, and an energy storage device for directly storing electric energy generated by the power generator-motor or converting the electric energy into energy of a substance and storing the substance, wherein the water turbine-propeller operates as a water turbine and the power generator-motor operates as a power generator so as to generate electric power and a part of the generated electric power is consumed for electric demand in the ship and residual part of the generated electric power is stored in the energy storage device when the wind is strong, while the power generator-motor operates as a motor and the water turbine-propeller operates as a propeller and a part of the electric power drawn from the energy storage device is consumed for electric demand in the ship and residual part of the electric power is consumed for driving the power generator-motor operating as a motor when the wind is light, and further comprising a course selecting device provided with a computer program for selecting course based on ocean wind forecasting data so as to prevent exhaustion of the electric power stored in the energy storage device.

[0007] Zero emission navigation wherein discharge amount of carbon dioxide is zero can be realized by converting ocean wind power to electric power, consuming a part of the electric power for electric demand in the ship and storing residual part of the electric power in an energy storage device when the wind is strong, while consuming a part of the electric power drawn from the energy storage device for electric demand in the ship and residual part of the electric power for driving the ship when the wind is light, and also selecting course of the ship with a course selecting device provided with a computer program for selecting course based on ocean wind forecasting data so as to prevent exhaustion of the electric power stored in the energy storage device.

[0008] In accordance with a preferred aspect of the present invention, the zero emission power generation sailing ship comprises a water electrolyzing device driven by the electric power generated by the power generator-motor, a hydrogenated aromatic compound generator for reacting aromatic compound with hydrogen generated by the water electrolyzing device so as to generate hydrogenated aromatic compound, an aromatic compound storage tank, a hydrogenated aromatic compound storage tank, a hydrogen separator for separating hydrogenated aromatic compound into hydrogen and aromatic compound, and a hydrogen fueled power generator.

[0009] Hydrogenated aromatic compounds, which are reaction products between aromatic compounds and hydrogen, are stable substances that assume liquid state under normal temperature and normal pressure. Therefore, stable storage of electric energy can be realized by converting electric energy to hydrogenated aromatic compounds.

[0010] In accordance with a preferred aspect of the present invention, the hydrogen fueled power generator is a hydrogen fueled diesel engine.

[0011] In accordance with a preferred aspect of the present invention, the hydrogen fueled power generator is a fuel cell battery.

[0012] The hydrogen fueled power generator can be a hydrogen fueled diesel engine or a fuel cell battery. When a fuel cell battery is used as the hydrogen fueled power generator, emission of nitrogen oxides can be prevented.

[0013] In accordance with a preferred aspect of the present invention, the aromatic compound is benzene, toluene or naphthalene, and the hydrogenated aromatic compound is cyclohexane, methylcyclohexane or decalin.

[0014] Benzene, toluene and naphthalene are suitable for hydrogen carrier.

[Effect of the invention]



[0015] In accordance with the present invention, there is provided a zero emission power generation sailing ship wherein generated electric power is consumed for electric demand in the ship or consumed for electric demand in the ship and for driving the ship in response to wind condition, thereby realizing zero emission navigation.

[Brief description of the drawings]



[0016] 

Figure 1 is a structural view of a zero emission power generation sailing ship in accordance with a first preferred embodiment of the present invention.

Figure 2 is a structural view of a zero emission power generation sailing ship in accordance with a second preferred embodiment of the present invention.


[Modes for carrying out the invention]



[0017] Zero emission power generation sailing ships in accordance with preferred embodiments of the present invention will be described.

[0018] As shown in Figure 1, a power generation sailing ship 1 comprises a plurality of vertically telescopic hard sails 2 provided on a deck, a water turbine-propeller 3, a power generator-motor 4 which is driven by the water turbine-propeller 3 operating as a water turbine and drives the water turbine-propeller 3 operating as a propeller, a water electrolyzing device 5 driven by the electric power generated by the power generator-motor 4, a hydrogenated aromatic compound generator 6 for reacting toluene (TOL), which is an aromatic compound with hydrogen (H2) generated by the water electrolyzing device 5 so as to generate methylcyclohexane (MCH), which is a hydrogenated aromatic compound, a toluene storage tank 7a, a methylcyclohexane storage tank 7b, a hydrogen separator 8 for separating methylcyclohexane into hydrogen and toluene, and a hydrogen fueled diesel power generator 9. The power generator-motor 4 and the water electrolyzing device 5 are connected to each other through an inverter switchboard 10. The hydrogen fueled diesel power generator 9 and the power generator-motor 4 are also connected to each other through the inverter switchboard 10.

[0019] The water turbine-propeller 3 is located outside a stern hull. The power generator-motor 4, the water electrolyzing device 5, the hydrogenated aromatic compound generator 6, the toluene storage tank 7a, the methylcyclohexane storage tank 7b, the hydrogen separator 8, the hydrogen fueled diesel power generator 9, and the inverter switchboard 10 are located in the stern hull.

[0020] The power generation sailing ship 1 is a cargo ship and comprises a cargo space 11, a bow water ballast tank 12, a wheel house 13, an accommodation space 14, and various kinds of facilities not shown in Figure 1, such as pumps, cargo facilities, etc., which are necessary for a cargo ship.

[0021] The wheel house 13 is provided with a course selecting device 15 which is provided with a computer program for selecting course based on ocean wind forecasting data so as to prevent exhaustion of the electric power stored in the energy storage device, more specifically, methylcyclohexane stored in the methylcyclohexane storage tank 7b.

[0022] Operation of the power generation sailing ship 1 will be described.

[0023] When the power generation sailing ship 1 begins navigation, the toluene storage tank 7a is half filled with toluene and the methylcyclohexane storage tank 7b is half filled with methylcyclohexane.

[0024] The power generation sailing ship 1 moves basically by means of wind blowing on the hard sails 2.

[0025] The power generation sailing ship 1 moves in electric power generation mode when the wind is strong. Connection between the hydrogen fueled diesel generator 9 and the inverter switching board 10 is shut down. Ocean wind energy is converted to kinetic energy of the power generation sailing ship 1 through the hard sails 2 and the power generation sailing ship 1 moves.

[0026] The movement of the power generation sailing ship 1 generates sea water flow relative to the water turbine-propeller 3 so as to rotate the water turbine-propeller 3. The water turbine-propeller 3 operates as a water turbine so as to rotate the power generator-motor 4. The power generator-motor 4 operates as a power generator so as to generate electric power. A part of the generated AC electric power is supplied to the wheel house 13, accommodation space 14, motors for driving the hard sails 2 and various kinds of pumps and cargo facilities through the inverter switching board 10 as AC electric power and consumed for electric demand in the ship.

[0027] Residual part of the generated AC electric power is converted to DC electric power through the inverter switching board 10 and supplied to the water electrolyzing device 5. The water electrolyzing device 5 electrolyzes water so as to generate hydrogen. The generated hydrogen is supplied to the hydrogenated aromatic compound generator 6. Toluene is pump fed from the toluene storage tank 7a to the hydrogenated aromatic compound generator 6. Toluene and hydrogen react in the hydrogenated aromatic compound generator 6 so as to generate methylcyclohexane. Methylcyclohexane is pump fed from the hydrogenated aromatic compound generator 6 to and stored in the methylcyclohexane storage tank 7b.

[0028] A part of the ocean wind energy received by the hard sails 2 is converted to electric energy and consumed for electric demand in the ship and stored in the ship. Thus moving speed of the power generation sailing ship 1 is maintained at an appropriate level even under the strong wind.

[0029] The power generation sailing ship 1 moves in electrically driven mode when the wind is light. Connection between the water electrolyzing device 5 and the inverter switching board 10 is shut down.

[0030] Methylcyclohexane is pump fed from the methylcyclohexane storage tank 7b to the hydrogen separator 8. The hydrogen separator 8 separates methylcyclohexane into hydrogen and toluene. The separated toluene is pump fed to and stored in the toluene storage tank 7a. The separated hydrogen is supplied to the hydrogen fueled diesel generator 9. The hydrogen fueled diesel generator 9 operates by using hydrogen as fuel so as to generate electric power.

[0031] A part of the generated AC electric power is supplied to the wheel house 13, accommodation space 14, motors for driving the hard sails 2 and various kinds of pumps and cargo facilities through the inverter switching board 10 as AC electric power and consumed for electric demand in the ship.

[0032] Residual part of the generated AC electric power is supplied to the power generator-motor 4 through the inverter switching board 10 as AC electric power and consumed for driving the power generator-motor 4. The power generator-motor 4 operates as a motor so as to rotate the water turbine-propeller 3. The water turbine-propeller 3 operates as a propeller so as to drive and move the power generation sailing ship 1. Thus, decrease of ocean wind power received by the hard sails 2 under light wind is offset by the driving energy of the propeller, and moving speed of the power generation sailing ship 1 is maintained at an appropriate level even under the light wind.

[0033] The power generation sailing ship 1 can realize zero emission navigation wherein discharge amount of carbon dioxide is zero while accomplishing function of cargo ship provided that the size and the number of hard sails 2 and storage amount of the toluene storage tank 7a and the methylcyclohexane storage tank 7b are optimized so as to optimize storage amount of generated electric power, and course of the ship is selected by the course selecting device 15 provided with a computer program for selecting course based on ocean wind forecasting data so as to prevent exhaustion of methylcyclohexane in the methylcyclohexane storage tank 7b, and, in addition, navigation mode is appropriately switched depending on ocean wind condition between power generation mode and electrically driven mode. Ocean wind forecasting data are available from, for example, Japan's JRA-25 and JAR-55, USA's NCEP/NCAR Reanaylsis, NCEP CFSR and NCEP-MERA, and Europe's ERA-20C and ERA-interim. A computer program for selecting optimized course of a sailing ship based on aforementioned ocean wind forecasting data has been developed by Tokyo University (Refer to Non-Patent Document No. 1). Therefore, there can be developed a computer program for selecting optimized course of the power generation sailing ship 1 so as to prevent exhaustion of methylcyclohexane in the methylcyclohexane storage tank 7b by possessing aforementioned ocean wind forecasting data and using as reference the computer program for selecting optimized course of a sailing ship developed by Tokyo University.

[0034] The hydrogen fueled diesel generator 9 is used as a power generator using hydrogen as fuel in the aforementioned preferred embodiment. However, as shown in Figure 2, a fuel cell battery 16 can be used instead of the hydrogen fueled diesel generator 9. In this case, generated DC electric power is converted to AC electric power through the inverter switching board 10 and consumed for electric demand in the ship and for driving power generator-motor 4. When a fuel cell battery 16 is used as the hydrogen fueled power generator, emission of nitrogen oxides can be prevented.

[0035] The power generator-motor 4 which is connected to the fixed axis water turbine-propeller 3 is installed in the ship hull in the aforementioned preferred embodiment. However, a pod type power generator-motor 17 comprising a power generator-motor connected to the water turbine-propeller 3 and installed in a pod can be located outside the ship hull as shown in Figure 2. Power generating efficiency and steering performance can be enhanced by appropriately changing direction of the water turbine-propeller 3.

[0036] Toluene is used as hydrogen carrier in the aforementioned preferred embodiment. Other kind of aromatic compound such as benzene or naphthalene can also be used as hydrogen carrier. In this case, cyclohexane and decalin are generated as hydrogenated aromatic compounds.

[0037] Hydrogen is converted to methylcyclohexane and stored in the aforementioned preferred embodiment. However, hydrogen can be converted to ammonia and stored or adsorbed by hydrogen storage alloy made of rare earth elements such as lanthanum, cerium, etc., and nickel, cobalt, etc., and stored.

[0038] Hydrogen can be highly compressed or low-temperature liquefied and stored instead of converted to other material or adsorbed by other material and stored.

[0039] Generated electric power can be directly stored in a battery. In this case, a battery is provided instead of the water electrolyzing device 5, the hydrogenated aromatic compound generator 6, the toluene storage tank 7a, the methylcyclohexane storage tank 7b, the hydrogen separator 8, and the hydrogen fueled diesel power generator 9.

[Industrial applicability]



[0040] The present invention can be widely used in power generation sailing ships.

[Explanation of reference numerals]



[0041] 
1
Power generation sailing ship
2
Hard sail
3
Water turbine-propeller
4
Power generator-motor
5
Water electrolyzing device
6
Hydrogenated aromatic compound generator
7a
Toluene storage tank
7b
Methylcyclohexane storage tank
8
Hydrogen separator
9
Hydrogen fueled diesel generator
10
Inverter switching board
11
Cargo space
12
Bow water ballast tank
13
Wheel house
14
Accommodation space
15
Course selecting device
16
Fuel cell battery
17
Pod type power generator-motor



Claims

1. A zero emission power generation sailing ship comprising a sail provided on a deck, a water turbine-propeller, a power generator-motor which is driven by the water turbine-propeller operating as a water turbine and drives the water turbine-propeller operating as a propeller, and an energy storage device for directly storing electric energy generated by the power generator-motor or converting the electric energy into energy of a substance and storing the substance, wherein the water turbine-propeller operates as a water turbine and the power generator-motor operates as a power generator so as to generate electric power and a part of the generated electric power is consumed for electric demand in the ship and residual part of the generated electric power is stored in the energy storage device when the wind is strong, while the power generator-motor operates as a motor and the water turbine-propeller operates as a propeller and a part of the electric power drawn from the energy storage device is consumed for electric demand in the ship and residual part of the electric power is consumed for driving the power generator-motor operating as a motor when the wind is light, and further comprising a course selecting device provided with a computer program for selecting course based on ocean wind forecasting data so as to prevent exhaustion of the electric power stored in the energy storage device.
 
2. A zero emission power generation sailing ship of claim 1, comprising a water electrolyzing device driven by the electric power generated by the power generator-motor, a hydrogenated aromatic compound generator for reacting aromatic compound with hydrogen generated by the water electrolyzing device so as to generate hydrogenated aromatic compound, an aromatic compound storage tank, a hydrogenated aromatic compound storage tank, a hydrogen separator for separating hydrogenated aromatic compound into hydrogen and aromatic compound, and a hydrogen fueled power generator.
 
3. A zero emission power generation sailing ship of claim 2, wherein the hydrogen fueled power generator is a hydrogen fueled diesel engine.
 
4. A zero emission power generation sailing ship of claim 2, wherein the hydrogen fueled power generator is a fuel cell battery.
 
5. A zero emission power generation sailing ship of any one of claims 2 to 4, wherein the aromatic compound is benzene, toluene or naphthalene, and hydrogenated aromatic compound is cyclohexane, methylcyclohexane or decalin.
 


Amended claims in accordance with Rule 137(2) EPC.


1. Verfahren zum Betreiben eines wenigstens einen elektrischen Verbraucher (19, 20; 19.1, 20.1) und eine Ansteuereinheit (18) zum Ansteuern des wenigstens einen elektrischen Verbrauchers (19, 20; 19.1, 20.1) aufweisenden Verbrauchermoduls (3, 3.1, 3.2, 3.3) durch ein Steuermodul (SM) über zwei Versorgungsleitungen und eine Datenleitung, wobei das Verbrauchermodul (3, 3.2) durch eine Vorortsensorik, mit der der zumindest eine elektrische Verbraucher des Verbrauchermoduls angesteuert werden kann, wenn aktiviert, von einer Ansteuerung seines zumindest einen elektrischen Verbrauchers (19, 20; 19.1, 20.1) durch das Steuermodul (SM) entkoppelt wird und der zumindest eine elektrische Verbraucher (19, 20; 19.1, 20.1) anschließend über die Ansteuereinheit (18) des elektrischen Verbrauchermoduls (3, 3.2) durch die Vorortsensorik angesteuert wird, dadurch gekennzeichnet, dass sich die Vorortsensorik am Verbrauchermodul (3, 3.2) befindet und die Entkopplung der Ansteuerung durch die Vorortsensorik des zumindest einen elektrischen Verbrauchers des Verbrauchermoduls (3, 3.2) von dem oder über das Steuermodul (SM) beendet wird, wenn eine eine vorgegebene Größe überschreitende Stellwertänderung am Steuermoduldateneingang der Ansteuereinheit (18) erfasst wird.
 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der zumindest eine elektrische Verbraucher nach Beenden der Entkopplung seiner Ansteuerung über das Steuermodul (SM) durch die Vorortsensorik noch so lange mit der zuletzt verwendeten Ansteuerparametrierung angesteuert wird, bis die durch das Steuermodul (SM) bereitgestellten Ansteuerparameter diese Parametrierung über- oder unterschreitet.
 
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine bidirektionale Datenkommunikation zwischen dem Steuermodul (SM) und dem elektrischen Verbrauchermodul (3, 3.2) über die Datenverbindung erfolgt.
 
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das elektrische Verbrauchermodul (3, 3.2) Kenndaten an das Steuermodul (SM) übermittelt werden.
 
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Verbrauchermodul (3, 3.2) einen Sensor als Vorortsensorik umfasst und die Sensordaten an das Steuermodul (SM) übermittelt werden.
 
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Frame eines an das elektrische Verbrauchermodul (3, 3.2) übertragenen Datenpaketes nur zum Teil mit Datenslots belegt ist und die nicht belegten Datenslots dasjenige Zeitintervall definieren, in dem Daten von dem zumindest einen elektrischen Verbrauchermodul (3, 3.2) an das Steuermodul (SM) übertragen werden können.
 
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass

- das Verbrauchermodul (3) mit seinem zumindest einen elektrischen Verbraucher (19, 20; 19.1, 20.1) über die Schnittstelle (5) eines Wandlers (2) mit Konstantspannung versorgt wird und Ansteuerdaten erhält,

- der Wandler (2) eingangsseitig mit einem Ansteuersignal beaufschlagt wird,

- ein von dem Wandler (2) empfangenes Ansteuersignal in einen unabhängig von der Art des zumindest einen elektrischen Verbrauchers des Verbrauchermoduls (3) normierten digitalen Stellwert umgesetzt wird, welcher Stellwert an einem Kontakt (8.2) der Schnittstelle (5) zum Abgreifen durch das Verbrauchermodul (3) bereitgestellt wird, und

- der zumindest eine elektrische Verbraucher (19, 20; 19.1, 20.1) des Verbrauchermoduls (3) von der Ansteuereinheit (18) mit dem am Kontakt (8.2) anliegenden Stellwert entsprechend angesteuert wird.


 
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Stellwert durch den Wandler (2) in einer vorgegebenen Wiederholungsfrequenz bereitgestellt wird.
 
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der von der Ansteuereinheit (18) des Verbrauchermoduls (3) empfangene Stellwert anhand einer Kennlinie oder anhand eines Kennfeldes in Ansteuerparameter umgesetzt und der zumindest eine elektrische Verbraucher (19, 20; 19.1, 20.1) mit diesen Ansteuerparametern angesteuert wird.
 
10. Elektrisches Verbrauchersystem, ausführend das Verfahren nach einem der Ansprüche 1 bis 9, mit einem Steuermodul (SM) zum Bereitstellen einer Spannungsversorgung sowie von Ansteuerdaten für wenigstens ein daran angeschlossenes, zumindest einen elektrischen Verbraucher (19, 20; 19.1, 20.1) sowie eine Ansteuereinheit (18) aufweisendes Verbrauchermodul (3, 3.2), dadurch gekennzeichnet, dass zumindest einer der elektrischen Verbrauchermodule (3, 3.2) eine Vorortsensorik zum Ansteuern seines zumindest einen elektrischen Verbrauchers (19, 20; 19.1, 20.1) aufweist.
 
11. Verbrauchersystem nach Anspruch 10, dadurch gekennzeichnet, dass die Vorortsensorik als Ein-Aus-Schalter ausgelegt ist.
 
12. Verbrauchersystem nach Anspruch 11, dadurch gekennzeichnet, dass die Vorortsensorik mit einer Dimmfunktionalität ausgerüstet ist.
 
13. Verbrauchersystem nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass das zumindest eine elektrische Verbrauchermodul (3, 3.2) als Vorortsensorik über einen Helligkeitssensor (21, 21.1) verfügt.
 
14. Verbrauchersystem nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Ansteuereinheit (18) zumindest eines der elektrischen Verbrauchermodule (3, 3.2) eine Sendeeinheit zum Übertragen von Daten von dem elektrischen Verbrauchermodul (3, 3.2) an das Steuermodul (SM) zugehörig ist.
 
15. Verbrauchersystem nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass zwischen dem Steuermodul (SM) und dem zumindest einen elektrischen Verbrauchermodul (3) ein Wandler (2) mit einem Ansteuereingang (16) zum Empfangen von Ansteuerdaten von dem Steuermodul (SM) zum Ansteuern des zumindest einen elektrischen Verbrauchers (19, 20; 19.1, 20.1) des Verbrauchermoduls (3), mit zwei Kontakten (8, 8.1) zur Spannungsversorgung, mit wenigstens einem Kontakt (8.2) als Datenkontakt sowie mit einem Stellwertgeber (17) zum Umsetzen eines empfangenen Ansteuersignals in einen von der Art des zumindest einen elektrischen Verbrauchers (19, 20; 19.1, 20.1) des Verbrauchermoduls (3) unabhängigen, normierten digitalen Stellwert angeordnet ist und dass das Verbrauchermodul (3) Anschlussmittel zum Kontaktieren der Kontakte (8, 8.1, 8.2) des Wandlers (2) sowie eine eingangsseitig an den Kontakt (8.2) angeschlossene bzw. anschließbare Ansteuereinheit (18) umfasst, durch die der zumindest eine elektrische Verbraucher (19, 20; 19.1, 20.1) entsprechend dem empfangenen Stellwert ansteuerbar ist.
 
16. Verbrauchersystem nach Anspruch 15, dadurch gekennzeichnet, dass der Wandler (2) eine als Anschlussdose mit als konzentrisch zueinander angeordneten, ringförmigen Kontaktbahnen ausgeführten Kontakten (8, 8.1, 8.2) ausgelegte Schnittstelle (5) ist und das Verbrauchermodul (3) ein Steckermodul (11) mit Kontaktstiften (12) als Anschlussmittel ausgelegt sind und dass die Anschlussdose und das Steckermodul (11) des Verbrauchermoduls (3) mit Haltemittel zum Halten des in die Anschlussdose eingesetzten Steckermoduls (11) ausgerüstet sind.
 
17. Verbrauchersystem nach Anspruch 16, dadurch gekennzeichnet, dass es sich bei den Haltemitteln um magnetische Haltemittel handelt und die Anschlussdose und/oder das Steckermodul einen Haltemagneten (H) und das jeweils komplementäre Teil - Steckermodul oder Anschlussdose - ein Haltemagnetgegenstück aufweisen.
 
18. Verbrauchersystem nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass die Schnittstelle (5) zum formschlüssigen Verriegeln des darin eingesetzten Steckermoduls (11) über wenigstens ein in radialer Richtung in die Aufnahme eingreifendes Riegelelement (9) verfügt, das in eine umlaufende Nut (15) des Steckermoduls (11) eingreift.
 
19. Verbrauchersystem nach Anspruch 18, dadurch gekennzeichnet, dass das Riegelelement (9) durch einen an entsprechender Position an der Schnittstelle (5) positionierten Lösemagneten in seine Entriegelungsstellung verstellbar ist.
 




Drawing










Search report












Search report




Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description