(19)
(11)EP 3 640 356 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
31.03.2021 Bulletin 2021/13

(21)Application number: 18818152.3

(22)Date of filing:  25.04.2018
(51)International Patent Classification (IPC): 
C22C 23/06(2006.01)
C22C 23/02(2006.01)
(86)International application number:
PCT/CN2018/084488
(87)International publication number:
WO 2018/228059 (20.12.2018 Gazette  2018/51)

(54)

HIGH THERMAL CONDUCTIVITY MAGNESIUM ALLOY, INVERTER HOUSING, INVERTER AND AUTOMOBILE

MAGNESIUMLEGIERUNG MIT HOHER WÄRMELEITFÄHIGKEIT, WECHSELRICHTERGEHÄUSE, WECHSELRICHTER UND AUTOMOBIL

ALLIAGE DE MAGNÉSIUM À CONDUCTIVITÉ THERMIQUE ÉLEVÉE, BOÎTIER D'ONDULEUR, ONDULEUR ET AUTOMOBILE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 15.06.2017 CN 201710453134

(43)Date of publication of application:
22.04.2020 Bulletin 2020/17

(73)Proprietor: BYD Company Limited
Shenzhen, Guangdong 518118 (CN)

(72)Inventors:
  • GUO, Qiang
    Shenzhen Guangdong 518118 (CN)
  • CAO, Mengmeng
    Shenzhen Guangdong 518118 (CN)
  • GONG, Quanyu
    Shenzhen Guangdong 518118 (CN)

(74)Representative: Gulde & Partner 
Patent- und Rechtsanwaltskanzlei mbB Wallstraße 58/59
10179 Berlin
10179 Berlin (DE)


(56)References cited: : 
CN-A- 102 776 427
JP-A- H07 331 375
US-A1- 2017 129 006
CN-A- 106 609 331
JP-A- 2009 120 883
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] This application relates to the field of materials technologies, and specifically, to a magnesium alloy with high thermal conductivity and application thereof, and more specifically, to a magnesium alloy with high thermal conductivity, an inverter housing of which at least a part is formed by the magnesium alloy with high thermal conductivity, an inverter including the inverter housing, and a vehicle including the inverter.

    BACKGROUND



    [0002] A conventional die casting magnesium alloy on the current market is AZ91D, including main components as follows: Al: 8.5∼9.5%, Zn: 0.45∼0.90%, Mn: 0.17∼0.4%, Si: ≤0.05%, Cu: 0.025%, Ni: ≤0.001%, Fe: ≤0.004%, and magnesium. This material has good fluidity and formability, low costs, and relatively high mechanical properties. However, the thermal conductivity of this material is relatively low, which is less than 60 W/m·K, thereby limiting broad application of magnesium alloys. The US patent application US 2017 129006 A1 discloses a Mg alloy composition that has been developed to improve upon the AZ91D alloy to offer better castability, creep strength, ductility and corrosion resistance for use in automotive applications such as housings.

    [0003] Therefore, current research on magnesium alloys remains to be improved.

    SUMMARY



    [0004] This application is directed to solve one of the technical problems in the related technology at least to some extent. To this end, an objective of this application is to provide a die casting magnesium alloy having good thermal conductivity or having ideal mechanical properties as well.

    [0005] According to an aspect of this application, this application provides a magnesium alloy with high thermal conductivity. According to embodiments of this application, based on the total mass of the magnesium alloy with high thermal conductivity, the magnesium alloy with high thermal conductivity includes: 2.0-4.0 wt% of Al, 0.1-0.3 wt% of Mn, 1.0-2.0 wt% of La, 2.0-4.0 wt% of Ce, 0.1-1.0 wt% of Nd, 0.5-2.0 wt% of Zn, 0.1-0.5 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium. It is found that the magnesium alloy including the foregoing components has extremely high thermal conductivity and ideal mechanical properties at the same time, and can be effectively applied to conditions and environments that require high thermal conductivity and a light weight, for example, being used to manufacture an inverter housing of a vehicle, thereby greatly expanding the application scope of magnesium alloys.

    [0006] According to another aspect of this application, this application provides an inverter housing. According to an embodiment of this application, at least a part of the inverter housing is formed by the foregoing magnesium alloy with high thermal conductivity. In this way, the inverter housing has extremely high thermal conductivity and good heat-dissipation performance, so that the safety and service life of an inverter using the inverter housing are improved significantly.

    [0007] According to still another aspect of this application, this application provides an inverter. According to an embodiment of this application, the inverter includes the foregoing inverter housing. It is found that the inverter has good heat-dissipation performance, so that the safety is greatly improved and the service life is significantly increased.

    [0008] According to yet another aspect of this application, this application provides a vehicle. According to an embodiment of this application, the vehicle includes the foregoing inverter. The vehicle has all the foregoing features and advantages of the inverter, which are not described herein again.

    DETAILED DESCRIPTION



    [0009] The following describes embodiments of this application in detail. The embodiments described below are exemplary and are only used to interpret this application, instead of limiting this application. Technologies or conditions that are not explicitly specified in the embodiments are technologies or conditions described in documents in the art or as described in product specifications. All agents and instruments used in the embodiments whose manufacturers are not explicitly specified are conventional products available on the market.

    [0010] According to an aspect of this application, this application provides a magnesium alloy with high thermal conductivity. According to the embodiments of this application, based on the total mass of the magnesium alloy with high thermal conductivity, the magnesium alloy with high thermal conductivity includes: 2.0-4.0 wt% of Al, 0.1-0.3 wt% of Mn, 1.0-2.0 wt% of La, 2.0-4.0 wt% of Ce, 0.1-1.0 wt% of Nd, 0.5-2.0 wt% of Zn, 0.1-0.5 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium. It is found that the magnesium alloy including the foregoing components has extremely high thermal conductivity and ideal mechanical performance at the same time, and can be effectively applied to conditions and scenarios that require high thermal conductivity and a light weight, for example, being used to manufacture an inverter housing of a vehicle, thereby greatly expanding the application scope of magnesium alloys.

    [0011] According to the embodiments of this application, in the foregoing magnesium alloy: aluminum can improve the strength and anti-corrosion performance of the magnesium alloy and manganese can improve the elongation and toughness of the magnesium alloy. Adding rare earth elements such as La, Ce and Nd can obviously enhance the high-temperature performance of the magnesium alloy and refine particles of the magnesium alloy during the casting process. In addition, magnesium can form a solid solution with the foregoing rare earth elements, a zone rich in magnesium is a simple eutectic zone with a low melting point, and magnesium is distributed in the shape of a net at the grain boundary to prohibit the formation of micro pores, thereby improving the casting performance and thermal conductivity of the magnesium alloy. Nd has relatively large impact on fine-grain strengthening of the magnesium alloy. The refining effect of Ce on micro structures helps to improve the mechanical properties and anti-corrosion performance of the magnesium alloy. Zinc can achieve solution strengthening and form a strengthening phase. Both a small amount of Ca and a small amount of Sr can prevent the magnesium alloy from oxidation during the process of smelting. These components are mixed according to the foregoing proportions to form the magnesium alloy. Due to the synergistic effect of these components, the obtained magnesium alloy has high thermal conductivity and mechanical properties at the same time, and can be effectively applied to multiple fields, especially to scenarios that require relatively high thermal conductivity.

    [0012] According to the embodiments of this application, to further improve usage performance of the magnesium alloy, based on the total mass of the magnesium alloy with high thermal conductivity, the magnesium alloy may include: 0.15-0.3 wt% of Mn and 2.5-4.0 wt% of Ce. In this way, it is ensured that the magnesium alloy has ideal thermal conductivity and high mechanical properties at the same time, to better satisfy usage requirements of different operating environments and conditions.

    [0013] According to a specific embodiment of this application, based on the total mass of the magnesium alloy with high thermal conductivity, the magnesium alloy may include: 3.0 wt% of Al, 0.25 wt% of Mn, 1.55 wt% of La, 3.0 wt% of Ce, 0.13 wt% of Nd, 0.6 wt% of Zn, 0.15 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.

    [0014] According to another specific embodiment of this application, based on the total mass of the magnesium alloy with high thermal conductivity, the magnesium alloy may include: 2.0 wt% of Al, 0.15 wt% of Mn, 2.0 wt% of La, 2.5 wt% of Ce, 0.1 wt% of Nd, 2.0 wt% of Zn, 0.1 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.

    [0015] According to another specific embodiment of this application, based on the total mass of the magnesium alloy with high thermal conductivity, the magnesium alloy may include: 4.0 wt% of Al, 0.1 wt% of Mn, 1.0 wt% of La, 2.0 wt% of Ce, 1.0 wt% of Nd, 0.5 wt% of Zn, 0.5 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.

    [0016] According to another specific embodiment of this application, based on the total mass of the magnesium alloy with high thermal conductivity, the magnesium alloy may include: 2.5 wt% of Al, 0.3 wt% of Mn, 1.0 wt% of La, 4.0 wt% of Ce, 0.5 wt% of Nd, 1.5 wt% of Zn, 0.3 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.

    [0017] It is found that the magnesium alloy including the foregoing components has high thermal conductivity and ideal mechanical properties at the same time.

    [0018] Through a large number of experiments, it is verified that the magnesium alloy according to the embodiments of this application has thermal conductivity obviously higher than that of an existing magnesium alloy. Experimental results show that the thermal conductivity of the magnesium alloy including the foregoing components with the corresponding proportions may be greater than 110 w/m·K. In this way, the magnesium alloy can be effectively applied to scenarios that require relatively high thermal conductivity. In addition, the magnesium alloy has advantages such as a low density, a high specific strength, a high specific modulus, a high property of tremble elimination, and high resistance to corrosion caused by organic matter and alkali.

    [0019] In addition, the magnesium alloy according to the embodiments of this application may further satisfy at least one of the following conditions: a tensile strength is greater than 220 MPa; a yield strength is greater than 150 MPa; and an elongation is greater than 4%. Specifically, the magnesium alloy may satisfy only one of the foregoing conditions. For example, the magnesium alloy may only satisfy the condition that the tensile strength is greater than 220 MPa, or may only satisfy the condition that the yield strength is greater than 150 MPa, or may only satisfy the condition that the elongation is greater than 4%. Alternatively, the magnesium alloy may satisfy two of the foregoing conditions. For example, the magnesium alloy may satisfy the condition that the tensile strength is greater than 220 MPa and the condition that the yield strength is greater than 150 MPa, or may satisfy the condition that the tensile strength is greater than 220 MPa and the condition that the elongation is greater than 4%, or may satisfy the condition that the yield strength is greater than 150 MPa and the condition that the elongation is greater than 4%. Alternatively, the magnesium alloy may also satisfy the three conditions that the tensile strength is greater than 220 MPa, the yield strength is greater than 150 MPa and the elongation is greater than 4%. In this way, it is ensured that the magnesium alloy has ideal thermal conductivity and better mechanical properties at the same time, and can satisfy usage requirements in different fields as well as different operating environments and conditions.

    [0020] According to another aspect of this application, this application provides an inverter housing. According to an embodiment of this application, at least a part of the inverter housing is formed by the foregoing magnesium alloy with high thermal conductivity. In this way, the inverter housing has extremely high thermal conductivity and high heat-dissipation performance, so that the safety and service life of an inverter using the inverter housing are improved significantly.

    [0021] According to the embodiments of this application, the specific structure of the inverter housing is not particularly limited and may be any existing structure of an inverter housing in the field. A person skilled in the art may choose flexibly according to an actual demand. Moreover, a part of the inverter housing, such as a part that requires higher thermal conductivity, may be prepared by using the magnesium alloy in this application. Alternatively, the entire inverter housing may be prepared by using the magnesium alloy in this application. A person skilled in the art may also choose flexibly according to costs and usage requirements.

    [0022] According to another aspect of this application, this application provides an inverter. According to an embodiment of this application, the inverter includes the foregoing inverter housing. It is found that the inverter has good heat-dissipation performance, so that the safety is greatly improved and the service life is significantly increased. Moreover, a person skilled in the art may understand that the inverter has all the features and advantages of the foregoing inverter housing, which are not described herein again.

    [0023] According to the embodiments of this application, apart from the inverter housing, the inverter further includes necessary structures and parts of a conventional inverter, such as an inverter bridge, control logic and a filter circuit, which are not described in further detail herein.

    [0024] According to another aspect of this application, this application provides a vehicle. According to an embodiment of this application, the vehicle includes the foregoing inverter. In this way, the inverter of the vehicle has good thermal conductivity and mechanical properties, thereby greatly improving the safety. In addition, the inverter housing is prepared by using a magnesium alloy, which helps to reduce the weight of the vehicle and improve user experience. The vehicle has all the features and advantages of the foregoing inverter, which are not described herein again.

    [0025] According to the embodiments of this application, apart from the inverter, the vehicle has necessary structures and parts of a conventional vehicle, such as a body, an engine, wheels and interior decoration items, which are not described in further detail herein.

    Embodiment 1



    [0026] Components of the magnesium alloy: 3.0 wt% of Al, 0.25 wt% of Mn, 1.55 wt% of La, 3.0 wt% of Ce, 0.13 wt% of Nd, 0.6 wt% of Zn, 0.15 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.

    [0027] Preparation procedure: put a pure magnesium ingot and a pure aluminum ingot into a smelting furnace, where the smelting temperature is 700-750°C; add an Mg-Ca master alloy, an Mg-Mn master alloy and an Mg-Zn master alloy into the smelting furnace and completely melt down the master alloys, where the smelting temperature is 700-750°C; add an Mg-La master alloy, an Mg-Ce master alloy and an Mg-Nd master alloy into the smelting furnace, where the smelting temperature is 700-750°C, and at the same time add a covering agent onto the surface of the melt; perform a 15-minute refining treatment on the melt using an RJ-5 flux, where the refining temperature is 730-760°C, and then let the melt stand for 80-120 minutes, where the temperature is 650-730°C. Sr and Cu may be introduced using impurities of the foregoing raw materials, and therefore, it is unnecessary to add Sr and Cu separately.

    Embodiment 2



    [0028] Components of the magnesium alloy: 2.0 wt% of Al, 0.15 wt% of Mn, 2.0 wt% of La, 2.5 wt% of Ce, 0.1 wt% of Nd, 2.0 wt% of Zn, 0.1 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.

    [0029] Preparation procedure: same as the preparation procedure in Embodiment 1.

    Embodiment 3



    [0030] Components of the magnesium alloy: 4.0 wt% of Al, 0.1 wt% of Mn, 1.0 wt% of La, 2.0 wt% of Ce, 1.0 wt% of Nd, 0.5 wt% of Zn, 0.5 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.

    [0031] Preparation procedure: same as the preparation procedure in Embodiment 1.

    Embodiment 4



    [0032] Components of the magnesium alloy: 2.5 wt% of Al, 0.3 wt% of Mn, 1.0 wt% of La, 4.0 wt% of Ce, 0.5 wt% of Nd, 0.5 wt% of Zn, 0.3 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.

    [0033] Preparation procedure: same as the preparation procedure in Embodiment 1.

    Comparative Example 1



    [0034] Components of the magnesium alloy: 6 wt% of Al, 0.4 wt% of Mn, 0.48 wt% of Zn, 1.2 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.

    [0035] Preparation procedure: same as the preparation procedure in Embodiment 1.

    Comparative Example 2



    [0036] Components of the magnesium alloy: 6.0 wt% of Al, 0.25 wt% of Mn, 1.55 wt% of La, 3.0 wt% of Ce, 0.013 wt% of Nd, 0.6 wt% of Zn, 0.15 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.

    [0037] Preparation procedure: same as the preparation procedure in Embodiment 1.

    Embodiment 5



    [0038] Mechanical properties and the coefficient of thermal conductivity of magnesium alloys prepared in Embodiments 1 to 4 and Comparative Examples 1 and 2 are tested:
    1. (1) Experiment on the coefficient of thermal conductivity: According to the test method of ASTM E 1461-07, a laser flash method is used to test the coefficient of thermal conductivity of a magnesium alloy wafer having a diameter of 12.7 mm and a thickness of 3 mm.
    2. (2) Experiment on tensile properties: According to the test method of ISO 6892-1, the smelted magnesium alloy melt is injected into a mold cavity by using pressure casting equipment to obtain a tensile casting with a wall thickness of 3 mm. A universal mechanical testing machine is used to perform the experiment on tensile properties to obtain a yield strength and an elongation. The yield strength is a yield limit when a 0.2% residual deformation is produced. The elongation is elongation at break.


    [0039] Experimental results of Embodiments 1 to 4 and Comparative Examples 1 and 2 are shown in Table 1.
    Table 1
     Embodiment 1Embodiment 2Embodiment 3Embodiment 4Comparative Example 1Comparative Example 2
    Tensile strength/MPa 223 222 224 223 190 230
    Yield strength/MPa 155 153 154 152 140 160
    Elongation/% 5 5 5 5 3 4
    Coefficient of thermal conductivity/W/(m·K) 114 112 110 113 70 75


    [0040] It can be learned from the data in Table 1 that the magnesium alloys obtained in Embodiments 1 to 4 have substantially the same mechanical properties as those of the magnesium alloys in Comparative Examples 1 and 2 and much higher coefficients of thermal conductivity than those of the magnesium alloys in Comparative Examples 1 and 2. It indicates that the magnesium alloy in this application has high thermal conductivity while mechanical properties meeting requirements are ensured.

    [0041] The mechanical properties and material molding fluidity of the magnesium alloy prepared in Embodiment 1 and an AZ91D magnesium alloy are tested. The test standard for mechanical properties is ISO 6892-1. A sample for testing the material molding fluidity is die-cast at atmospheric pressure by using a mosquito-repellent incense mold, where the mold temperature is 200°C and the die-casting temperature is 700°C. An injection speed is 3 circles per second. A second-speed starting position is 140 mm. The length of the injected mosquito-repellent incense mold is recorded as an analogy of the material fluidity. Results are respectively shown in Table 2 and Table 3.
    Table 2
    AlloyTensile strength/MPaYield strength/MPaElongation/%Formability
    Embodiment 1 >220 >150 >4 High
    AZ91D >200 >150 >3.0 High
    Table 3
    AlloyLength 1Length 2Length 3Length 4Length 5Average value mm
    Embodiment 1 1100 1090 1120 1180 1100 1118
    AZ91D 1050 980 1030 1020 980 1012


    [0042] It can be learned from the data in Table 2 and Table 3 that, compared with the AZ91D magnesium alloy, the magnesium alloy with high thermal conductivity in this application has extremely high thermal conductivity and heat-dissipation capability, as well as a relatively high tensile strength, yield strength and elongation, and also has high formability and recovery capability.


    Claims

    1. A magnesium alloy with high thermal conductivity, wherein based on the total mass of the magnesium alloy with high thermal conductivity, the magnesium alloy with high thermal conductivity comprises: 2.0-4.0 wt% of Al, 0.1-0.3 wt% of Mn, 1.0-2.0 wt% of La, 2.0-4.0 wt% of Ce, 0.1-1.0 wt% of Nd, 0.5-2.0 wt% of Zn, 0.1-0.5 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and residue magnesium.
     
    2. The magnesium alloy with high thermal conductivity according to claim 1, wherein based on the total mass of the magnesium alloy with high thermal conductivity, the magnesium alloy with high thermal conductivity comprises: 0.15-0.3 wt% of Mn and 2.5-4.0 wt% of Ce.
     
    3. The magnesium alloy with high thermal conductivity according to claim 1, wherein based on the total mass of the magnesium alloy with high thermal conductivity, the magnesium alloy with high thermal conductivity comprises:
    3.0 wt% of Al, 0.25 wt% of Mn, 1.55 wt% of La, 3.0 wt% of Ce, 0.13 wt% of Nd, 0.6 wt% of Zn, 0.15 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and residue magnesium.
     
    4. The magnesium alloy with high thermal conductivity according to claim 1, wherein based on the total mass of the magnesium alloy with high thermal conductivity, the magnesium alloy with high thermal conductivity comprises:
    2.0 wt% of Al, 0.15 wt% of Mn, 2.0 wt% of La, 2.5 wt% of Ce, 0.1 wt% of Nd, 2.0 wt% of Zn, 0.1 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and residue magnesium.
     
    5. The magnesium alloy with high thermal conductivity according to claim 1, wherein based on the total mass of the magnesium alloy with high thermal conductivity, the magnesium alloy with high thermal conductivity comprises:
    4.0 wt% of Al, 0.1 wt% of Mn, 1.0 wt% of La, 2.0 wt% of Ce, 1.0 wt% of Nd, 0.5 wt% of Zn, 0.5 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and residue magnesium.
     
    6. The magnesium alloy with high thermal conductivity according to claim 1, wherein based on the total mass of the magnesium alloy with high thermal conductivity, the magnesium alloy with high thermal conductivity comprises:
    2.5 wt% of Al, 0.3 wt% of Mn, 1.0 wt% of La, 4.0 wt% of Ce, 0.5 wt% of Nd, 0.5 wt% of Zn, 0.3 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and residue magnesium.
     
    7. The magnesium alloy with high thermal conductivity according to any one of claims 1 to 6, wherein the thermal conductivity is greater than 110 w/m·K.
     
    8. The magnesium alloy with high thermal conductivity according to any one of claims 1 to 7, wherein at least one of the following conditions is met:

    a tensile strength is greater than 220 MPa;

    a yield strength is greater than 150 MPa; and

    an elongation is greater than 4%.


     
    9. An inverter housing, wherein at least a part of the inverter housing is formed by the magnesium alloy with high thermal conductivity according to any one of claims 1 to 8.
     
    10. An inverter, comprising the inverter housing according to claim 9.
     


    Ansprüche

    1. Magnesiumlegierung mit hoher Wärmeleitfähigkeit, wobei, auf die Gesamtmasse der Magnesiumlegierung mit hoher Wärmeleitfähigkeit bezogen, die Magnesiumlegierung mit hoher Wärmeleitfähigkeit Folgendes umfasst: 2, 0-4,0 Gew.-% Al, 0,1-0,3 Gew.-% Mn, 1,0-2,0 Gew.-% La, 2,0-4,0 Gew.-% Ce, 0,1-1,0 Gew.-% Nd, 0,5-2,0 Gew.-% Zn, 0,1-0,5 Gew.-% Ca, weniger als 0,1 Gew.-% Sr, weniger als 0,1 Gew.-% Cu und restliches Magnesium.
     
    2. Magnesiumlegierung mit hoher Wärmeleitfähigkeit nach Anspruch 1, wobei, auf die Gesamtmasse der Magnesiumlegierung mit hoher Wärmeleitfähigkeit bezogen, die Magnesiumlegierung mit hoher Wärmeleitfähigkeit Folgendes umfasst: 0,15-0,3 Gew.-% Mn und 2,5-4,0 Gew.-% Ce.
     
    3. Magnesiumlegierung mit hoher Wärmeleitfähigkeit nach Anspruch 1, wobei, auf die Gesamtmasse der Magnesiumlegierung mit hoher Wärmeleitfähigkeit bezogen, die Magnesiumlegierung mit hoher Wärmeleitfähigkeit Folgendes umfasst:
    3,0 Gew.-% Al, 0,25 Gew.-% Mn, 1,55 Gew.-% La, 3,0 Gew.-% Ce, 0,13 Gew.-% Nd, 0,6 Gew.-% Zn, 0,15 Gew.-% Ca, weniger als 0,1 Gew.-% Sr, weniger als 0,1 Gew.-% Cu und restliches Magnesium.
     
    4. Magnesiumlegierung mit hoher Wärmeleitfähigkeit nach Anspruch 1, wobei, auf die Gesamtmasse der Magnesiumlegierung mit hoher Wärmeleitfähigkeit bezogen, die Magnesiumlegierung mit hoher Wärmeleitfähigkeit Folgendes umfasst:
    2,0 Gew.-% Al, 0,15 Gew.-% Mn, 2,0 Gew.-% La, 2,5 Gew.-% Ce, 0,1 Gew.-% Nd, 2,0 Gew.-% Zn, 0,1 Gew.-% Ca, weniger als 0,1 Gew.-% Sr, weniger als 0,1 Gew.-% Cu und restliches Magnesium.
     
    5. Magnesiumlegierung mit hoher Wärmeleitfähigkeit nach Anspruch 1, wobei, auf die Gesamtmasse der Magnesiumlegierung mit hoher Wärmeleitfähigkeit bezogen, die Magnesiumlegierung mit hoher Wärmeleitfähigkeit Folgendes umfasst:
    4,0 Gew.-% Al, 0,1 Gew.-% Mn, 1,0 Gew.-% La, 2,0 Gew.-% Ce, 1,0 Gew.-% Nd, 0,5 Gew.-% Zn, 0,5 Gew.-% Ca, weniger als 0,1 Gew.-% Sr, weniger als 0,1 Gew.-% Cu und restliches Magnesium.
     
    6. Magnesiumlegierung mit hoher Wärmeleitfähigkeit nach Anspruch 1, wobei, auf die Gesamtmasse der Magnesiumlegierung mit hoher Wärmeleitfähigkeit bezogen, die Magnesiumlegierung mit hoher Wärmeleitfähigkeit Folgendes umfasst:
    2,5 Gew.-% Al, 0,3 Gew.-% Mn, 1,0 Gew.-% La, 4,0 Gew.-% Ce, 0,5 Gew.-% Nd, 0,5 Gew.-% Zn, 0,3 Gew.-% Ca, weniger als 0,1 Gew.-% Sr, weniger als 0,1 Gew.-% Cu und restliches Magnesium.
     
    7. Magnesiumlegierung mit hoher Wärmeleitfähigkeit nach einem der Ansprüche 1 bis 6, wobei die Wärmeleitfähigkeit höher als 110 W/mK ist.
     
    8. Magnesiumlegierung mit hoher Wärmeleitfähigkeit nach einem der Ansprüche 1 bis 7, wobei mindestens eine der folgenden Bedingungen erfüllt ist:

    eine Zugfestigkeit ist höher als 220 MPa;

    eine Streckspannung ist höher als 150 MPa; und

    eine Dehnung ist höher als 4 %.


     
    9. Umrichtergehäuse, wobei mindestens ein Teil des Umrichtergehäuses durch die Magnesiumlegierung mit hoher Wärmeleitfähigkeit nach einem der Ansprüche 1 bis 8 gebildet ist.
     
    10. Umrichter umfassend das Umrichtergehäuse nach Anspruch 9.
     


    Revendications

    1. Alliage de magnésium à conductivité thermique élevée, dans lequel sur la base de la masse totale de l'alliage de magnésium à conductivité thermique élevée, l'alliage de magnésium à conductivité thermique élevée comprend : entre 2,0 et 4,0 % en poids d'Al, entre 0,1 et 0,3 % en poids de Mn, entre 1,0 et 2,0 % en poids de La, entre 2,0 et 4,0 % en poids de Ce, entre 0,1 et 1,0 % en poids de Nd, entre 0,5 et 2,0 % en poids de Zn, entre 0,1 et 0,5 % en poids de Ca, moins de 0,1 % en poids de Sr, moins de 0,1 % en poids de Cu, et des résidus contenant du magnésium.
     
    2. Alliage de magnésium à conductivité thermique élevée selon la revendication 1, dans lequel sur la base de la masse totale de l'alliage de magnésium à conductivité thermique élevée, l'alliage de magnésium à conductivité thermique élevée comprend : entre 0,15 et 0,3 % en poids de Mn et entre 2,5 et 4,0 % en poids de Ce.
     
    3. Alliage de magnésium à conductivité thermique élevée selon la revendication 1, dans lequel sur la base de la masse totale de l'alliage de magnésium à conductivité thermique élevée, l'alliage de magnésium à conductivité thermique élevée comprend :
    3,0 % en poids d'Al, 0,25 % en poids de Mn, 1,55 % en poids de La, 3,0 % en poids de Ce, 0,13 % en poids de Nd, 0,6 % en poids de Zn, 0,15 % en poids de Ca, moins de 0,1 % en poids de Sr, moins de 0,1 % en poids de Cu, et des résidus contenant du magnésium.
     
    4. Alliage de magnésium à conductivité thermique élevée selon la revendication 1, dans lequel sur la base de la masse totale de l'alliage de magnésium à conductivité thermique élevée, l'alliage de magnésium à conductivité thermique élevée comprend :
    2,0 % en poids d'Al, 0,15 % en poids de Mn, 2,0 % en poids de La, 2,5 % en poids de Ce, 0,1 % en poids de Nd, 2,0 % en poids de Zn, 0,1 % en poids de Ca, moins de 0,1 % en poids de Sr, moins de 0,1 % en poids de Cu, et des résidus contenant du magnésium.
     
    5. Alliage de magnésium à conductivité thermique élevée selon la revendication 1, dans lequel sur la base de la masse totale de l'alliage de magnésium à conductivité thermique élevée, l'alliage de magnésium à conductivité thermique élevée comprend :
    4,0 % en poids d'Al, 0,1 % en poids de Mn, 1,0 % en poids de La, 2,0 % en poids de Ce, 1,0 % en poids de Nd, 0,5 % en poids de Zn, 0,5 % en poids de Ca, moins de 0,1 % en poids de Sr, moins de 0,1 % en poids de Cu, et des résidus contenant du magnésium.
     
    6. Alliage de magnésium à conductivité thermique élevée selon la revendication 1, dans lequel sur la base de la masse totale de l'alliage de magnésium à conductivité thermique élevée, l'alliage de magnésium à conductivité thermique élevée comprend :
    2,5 % en poids d'Al, 0,3 % en poids de Mn, 1,0 % en poids de La, 4,0 % en poids de Ce, 0,5 % en poids de Nd, 0,5 % en poids de Zn, 0,3 % en poids de Ca, moins de 0,1 % en poids de Sr, moins de 0,1 % en poids de Cu, et des résidus contenant du magnésium.
     
    7. Alliage de magnésium à conductivité thermique élevée selon l'une quelconque des revendications 1 à 6, dans lequel la conductivité thermique est supérieure à 110 W/mK.
     
    8. Alliage de magnésium à conductivité thermique élevée selon l'une quelconque des revendications 1 à 7, dans lequel au moins l'une des conditions suivantes est satisfaite :

    une résistance à la traction est supérieure à 220 MPa ;

    une limite d'élasticité est supérieure à 150 MPa ;et

    un allongement est supérieur à 4 %.


     
    9. Boîtier d'onduleur, dans lequel une partie du boîtier d'onduleur est formée par l'alliage de magnésium à conductivité thermique élevée selon l'une quelconque des revendications 1 à 8.
     
    10. Onduleur, comprenant le boîtier d'onduleur selon la revendication 9.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description