(19)
(11)EP 3 643 617 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
07.09.2022 Bulletin 2022/36

(21)Application number: 19204426.1

(22)Date of filing:  21.10.2019
(51)International Patent Classification (IPC): 
B64D 15/12(2006.01)
(52)Cooperative Patent Classification (CPC):
B64D 15/12

(54)

HEATER DESIGN FOR CARBON ALLOTROPE ICE PROTECTION SYSTEMS

HEIZUNGSENTWURF FÜR KOHLENSTOFF-ALLOTROPE EISSCHUTZSYSTEME

CONCEPTION D'ÉLÉMENT CHAUFFANT POUR SYSTÈMES DE PROTECTION CONTRE LA GLACE À ALLOTROPE EN CARBONE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 22.10.2018 US 201862748975 P
17.09.2019 US 201916573123

(43)Date of publication of application:
29.04.2020 Bulletin 2020/18

(73)Proprietor: Goodrich Corporation
Charlotte, NC 28217-4578 (US)

(72)Inventors:
  • SLANE, Casey
    Tallmadge, OH Ohio 44278 (US)
  • HU, Jin
    Hudson, OH Ohio 44236 (US)
  • CHING, Nathaniel
    Hartville, OH Ohio 44632 (US)
  • BOTURA, Galdemir Cezar
    Akron, OH Ohio 44313 (US)
  • MULLEN, James
    Wadsworth, OH Ohio 44281 (US)
  • DIDYK, Mark James
    Mogadore, OH Ohio 44260 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 3 333 080
US-A- 5 412 181
DE-A1- 3 907 557
US-B1- 6 338 455
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This application relates generally to ice protection and specifically to ice protection heaters.

    [0002] An aircraft moving through the air is often subjected to ice formation, and anti-icing or de-icing devices must be used to remove or prevent ice from accumulating on exterior surfaces of the aircraft. For any type of electrical heaters or de-icing heaters, the closer the heater is to the external surface of an airfoil, nacelle, nosecone, engine cowl, or other aircraft part, the less power it takes to heat or de-ice the aircraft element due to the proximity of the heater to the external surface.

    [0003] In aircraft, electrothermal ice protection systems (IPS) containing such heaters are applied to the backsides or embedded in leading edges to provide the required heat to leading edge surface that are otherwise subject to ice formation. Due to high thermal cooling loads on leading edges while the aircraft is in flight, heat does not easily spread from the IPS along the leading edge to areas that do not have heaters directly underneath. For this reason, aircraft parts that contain multiple sections, segments or slates requiring breaking in the leading edge surface are susceptible to ice growth in the joint or junction areas not covered by IPS heaters edges. US6,338,455 B1 discloses an exemplary heating device for an aerodynamic profile including several resistive elements forming a first set and a second set of resistive elements. These elements are positioned approximately parallel to the leading edge, arranged in a way to form a de-icing and an anti-icing circuit. Further ice protection systems are described in US 5,412,181 and DE 3907557.

    SUMMARY



    [0004] According to the invention, the present disclosure provides an ice protection system for an aircraft component as defined in claim 1. Optional features of the invention are set out in the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0005] 

    FIG. 1 is a schematic drawing of a heated leading edge with an ice protection system (IPS) in a prior art configuration.

    FIG. 2 is a schematic drawing of a heated leading edge with an IPS including an H-shaped carbon allotrope heater.

    FIG. 3A-3B are schematic drawings of a heated leading edge with an IPS including an H-shaped carbon allotrope heater in a first embodiment.

    FIGS. 4A-4B are schematic drawings of a heated leading edge with an IPS including an H-shaped carbon allotrope heater in a second embodiment.


    DETAILED DESCRIPTION



    [0006] A heater having at least one chordwise section connected to a spanwise section can be used on aircraft components on or near junction sections to allow full heated coverage and ice protection. Such heaters can be H-shaped, T-shaped, or L-shaped. For instance, an H-shaped heater has two chordwise sections connected at their center by a spanwise section. Similarly, a T-shaped or L-shaped heater has one chordwise section connected to a spanwise section. This configuration can mitigate cold where component sections are joined to form a junction by allowing electrical connection to chordwise sections that fit in such junction sections. This approach can particularly be used with carbon allotropes like carbon nanotube (CNT) based heater systems, as carbon allotrope systems allows for electrical connections at the end of each section of a heater.

    [0007] FIG. 1 is a schematic drawing of a heated leading edge 10 with ice protection system (IPS) 11 in a prior art configuration. IPS 11 includes first section 12, second section 14, junction section 16, heaters 18 with electrical connections 20, and cold section 22.

    [0008] First section 12 and second section 14 of the leading edge can be, for example, panels on a wing that are joined at junction section 16. Heaters 18 are on or embedded in each of first section 12 and second section 14 for ice protection. Heaters 18 can be, for example, carbon allotrope based heaters, metallic heaters, or other ice protection systems. Heaters 18 run spanwise S across each of component sections 12, 14, and heat a large portion of sections 12, 14. Heaters 18 are electrically connected to a power sources at electrical connections 20.

    [0009] However, heaters 18 are unable to run across junction section 16, as first section 12 and second section 14 are manufactured as separate, removable assemblies; for example, they may be required to be installed or removed independently or move independently from one another during flight as in the case of retractable slats. Because of this, during flight, where there are high thermal cooling loads on IPS 10, heaters 18 are unable to spread heat beyond the immediate area in which they reside. This results in cold section 22 near junction section 16. Additionally, electrical connections 20 are the end of heaters 18 are generally cooler than the body of heaters 18. For this reason, the electrical connections 20 on heaters 18 further contribute the creation of cold section 22. Cold section 22 is subject to ice formation because it is unheated. Ice formation in cold section 22 effects aerodynamics, wing operation such as power slats, and acts as an anchor for further ice accumulation.

    [0010] FIG. 2 is a schematic drawing of heated leading edge assembly 30 with IPS 31 including an H-shaped carbon allotrope heater. Leading edge assembly 30 includes first section 32 with end portion 33, second section 34 with end portion 35, junction section 36 with joint 37, linear heaters 38, and H-shaped heaters 40.

    [0011] Leading edge assembly 30 can be, for example, the leading edge on a wing. A leading edge is one example of a component to which IPS 31 could be applied. For example, IPS could be applied to a leading edge of a vertical stabilizer or horizontal stabilizer, or other components containing a junction and needing even heating for ice protection.

    [0012] Leading edge assembly 30 contains first section 32, second section 34 joined at junction section 36. End portion 33 of first section 32 and end portion 35 of second section 34 are adjacent to each other and make up junction section 36. Junction section 36 contains joint 37 where first section 32 and second section 34 meet. Linear heaters 38 reside on and heat first section 32 and second section 34, but do not heat portions 33, 35, which make up junction section 36 surrounding joint 37. Instead, H-shaped heaters fill in space in junction section 36 and heat adjacent to joint 37 joining first section 32 portion 33 and second section 34 portion 35. In some embodiments, joint 37 can be a segment or intersection or one or more components or parts.

    [0013] H-shaped heaters 40 promote ice protection and heating across component sections 32, 34 including junction section 36. H-shaped heaters 40 have an electrical resistivity between 0.005 ohms per square (Ω/sq) and 3.0 Ω/sq.

    [0014] Each H-shaped heater 40 has two chordwise sections with length L1 and width W2, centrally connected by a spanwise (S) section with width W1 (about double the width W2 of chordwise sections). The chordwise (C) sections are disposed on or embedded in first section 32 and second section 34 such that they extend out into junction section 36 past the ends of linear heaters 38. This allows for chordwise sections to be as close as possible to a joint in junction section 36 and eliminate the cold section 22 discussed in reference to FIG. 1.

    [0015] The chordwise sections of the H-shaped heaters 40 are electrically coupled to the spanwise sections and operated in anti-icing mode to prevent ice formation and growth. Various electrical configurations and specific geometries can be used to provide different heating profiles depending on the heating needs for the component to which H-shaped heaters 40 are applied. Physical and electrical layouts of heaters 40 are discuss in more depth with regards to FIGS. 3A-3B and 4A-4B.

    [0016] H-shaped heaters 40 are made of a carbon allotrope material. For example, carbon nanotubes (CNTs) are allotropes of carbon having a generally cylindrical nanostructure, and have a variety of uses in nanotechnology, electronics, optics and other materials sciences. CNTs are both thermally and electrically conductive, in addition to being lightweight. Due to these properties, CNTs can be used as heaters to prevent icing on aircraft or other vehicles. Other carbon allotropes, such as graphene or graphene nanoribbons (GNRs), can also be used for heating or de-icing. Graphene has a two-dimensional honeycomb lattice structure, and is much stronger than steel, but is still electrically and thermally conductive. GNRs are strips of graphene with ultra-thin widths, typically less than 50 nm per strip.

    [0017] Carbon allotrope heaters are uniquely beneficial for de-icing because of their high efficiency, light weight and ability to be molded into specific shapes, and durability. They are more durable long term compared to traditional metallic heaters, and can be shaped more easily for specific application needs.

    [0018] FIG. 3A-3B are schematic drawings of a heated leading edge with an IPS including an H-shaped carbon allotrope heater in a first embodiment. FIG. 3A shows a physical layout of an IPS with H-shaped carbon allotrope heater, while FIG. 3B shows an electrical layout.

    [0019] FIG. 3A is a schematic drawing of heated leading edge assembly 50 with IPS 51, main section 52, junction sections 56, linear heaters 58, and H-shaped heater 60. H-shaped carbon allotrope heaters 60 for use in IPS system 51 each include spanwise section 62, chordwise sections 64, positive electrical connections 66, and negative electrical connections 68.

    [0020] Sections 52, 56, and linear heaters 58 are similar to those components discussed in relation to FIG. 2. Main section 52 has both a span and a chord. Linear heaters 58 are applied on main section 52 in a spanwise direction. Linear heaters 58 do not reach junction sections 56.

    [0021] The use of an "H" pattern design for heater 60 encompasses two chordwise sections 64 and one spanwise section 62. Chordwise sections 64 run along the chord of main section 52, while spanwise section 62 runs along the span of main section 52. Chordwise sections 64 have equal lengths and run parallel to each other. Spanwise section 62 connects chordwise sections 64 at the center of chordwise sections 64, forming an "H" shape.

    [0022] Chordwise sections 64 lay close to the edges of the joints in junction section 56. This mitigates cold injunction sections 56 of leading edge assembly 50. Chordwise sections 64 are electrically coupled with spanwise section 62 and can be operated in anti-icing mode to prevent ice growth.

    [0023] In the embodiment of FIGS. 3A-3B, chordwise sections 64 host electrical connections to heater 60. Positive electrical connections 66 reside on opposite ends of the first chordwise section, while negative electrical connections 68 reside on opposite ends of the second chordwise section. Electrical connections to 66, 68, can be made through bus bar, wires, solder paste, or other appropriate connecting material that couples heater 60 to a power source.

    [0024] FIG. 3B is a schematic drawing of the electrical configuration of H-shaped heater 60 on leading edge assembly 50. Here, linear heaters 58 are shown with resistors 59. H-shaped heater 60 is shown with spanwise resistor 70, and chordwise resistors 72, 74, 76, and 78.

    [0025] Resistors 59 are each situated spanwise, centrally on one of linear heaters 58. Each of resistors 59 are equal to each other. Resistor 70 resides on spanwise section 62 of heater 60. Resistor 70 is equal to twice of one resistor 59. Resistors 72, 74, 76, 78 reside on chordwise sections 64 of heater 60. Each of resistors 72, 74, 76, 78, is equal to one resistor 59.

    [0026] This resistor configuration allows for consistent power throughout heater 60 and the entire IPS on leading edge assembly 50. In some embodiments, this is accomplished by constant current and constant resistance. Alternatively, this is accomplished by variable current and variable resistant to yield constant power.

    [0027] FIGS. 4A-4B are schematic drawings of a heated leading edge with an IPS including an H-shaped carbon allotrope heater in a second embodiment. FIG. 4A shows a physical layout of an IPS with H-shaped carbon allotrope heater, while FIG. 4B shows an electrical layout.

    [0028] FIG. 4A is a schematic drawing of heated leading edge assembly 80 with IPS 81, main section 82, junction sections 86, linear heaters 88, and H-shaped heater 90. H-shaped carbon allotrope heater 90 for use in an IPS system is in a different electrical configuration than heater 60. Heater 90 includes spanwise section 92, chordwise sections 94, positive electrical connection 96, and negative electrical connection 98.

    [0029] Sections 82, 86, and linear heaters 88 are similar to those components discussed in relation to FIG. 2. Main section 82 has both a span and a chord. Linear heaters 88 are applied on main section 82 in a spanwise direction. Linear heaters 88 do not reach junction sections 86.

    [0030] The use of an "H" pattern design for heater 90 encompasses two chordwise sections 94 and one spanwise section 92. This mitigates cold in junction sections 86 of leading edge assembly 80. Here, the "H' pattern of heater 90 is a snakelike pattern running from positive electrical connection 96 to negative electrical connection 98 in the shape of an "H." The benefits of this configuration are that electrical connections are minimized while ensuring the entire "H" heats simultaneously. Electrical connections 96, 98, can be connected in a fashion similar to those described in reference to FIG. 3A.

    [0031] FIG. 4B is a schematic drawing of the electrical configuration of H-shaped heater 90 on leading edge assembly 80. Assembly 80 includes linear heaters 88 with resistors 89, H-shaped heater 90 with spanwise section 92, chordwise sections 94, connections 96, 98, and resistors 100, 102, 104, 106, 108, 110, 112, and 114.

    [0032] On linear heaters 88, resistors 89 are each situated spanwise, centrally on one of linear heaters 88. Each of resistors 89 are equal to each other. Resistors 100, 102, 104, 106, 108, and 110 reside on chordwise sections of heater 90. Resistors 100, 102, 106, and 108 are equal in length. Likewise, resistors 104 and 110 are equal in length. Resistors 112 and 114 reside on the spanwise portion pf heater 90. This electrical configuration allows for variable electrical power throughout heater 90 and leading edge assembly 80. This can be accomplished through constant current with variable resistance.

    [0033] Alternatively, H-shaped heaters can be replaced with T-shaped or L-shaped heaters. These heater shapes have at least one chordwise section capable of being applied closely to the edge of a component section so that a resulting junction section is heated by the chordwise section. Each of these shapes of heaters should also have at least one spanwise section connected to the at least one chordwise section. The spanwise section allows for electrical connection between the chordwise section across the component surface.

    [0034] The heater having at least one chordwise section allows for mitigation of ice build-up injunction or joint sections on aircraft components. Ice build-up can interfere with normal wing operations, such as power slats, in addition to affecting aerodynamics. Ice build-up can also act as an anchor, and promote additional ice growth or "bridging" when allowed to accumulate in junction areas. The use of such a heater streamlines ice protection through the use of a spanwise connecting section between two chordwise sections. Due to this geometry, additional electrical connections or circuitry are not needed to heat junction sections.

    [0035] While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.


    Claims

    1. An ice protection system for an aircraft component comprising:

    a first section (32) of the aircraft component having a first span and a first chord;

    a second section (34) of the aircraft component, adjacent to the first section, having a second span and a second chord attached to the first section by a joint (37); and

    a junction section (36) comprising:

    an end portion (33) of the first section (32); and

    an end portion (35) of the second section (34) adjacent to the end portion (33) of the first section (32);

    a first plurality of heaters (38) expanding spanwise across the first section configured to heat the first section (32);

    a second plurality of heaters (38) expanding spanwise across the second section configured to heat the second section (34);

    a first heater (40) on the first section (32), wherein the first heater (40) has at least one chordwise section connected to at least one spanwise section and the at least one chordwise section is positioned in the junction section (36) such that the at least one chordwise section is configured to heat the end portion (33) of the first section (32); and

    a second heater (40) on the second section (34), wherein the second heater has at least one chordwise section connected to at least one spanwise section and the at least one chordwise section is positioned in the junction section (36) such that the at least one chordwise section is configured to heat the end portion (35) of the second section (34).


     
    2. The system of claim 1, wherein the ice protection system is configured for being applied to an aircraft component selected from the group consisting of wing leading edges, vertical stabilizer leading edges, horizontal stabilizer leading edges, pylons, vanes, propellers, blades, engine inlets and surfaces requiring adjacent heaters.
     
    3. The system of claim 1 or 2, wherein the first and second heaters (40) are H-shaped, T-shaped, or L-shaped.
     
    4. The system of claim 3, wherein the first and second heaters (40) are H-shaped heaters and each comprise two chordwise sections (64) connected by a spanwise section (62).
     
    5. The system of claim 4, wherein each of the first and second heaters (40) further comprises a resistor (70) on the spanwise section and two resistors (72, 74, 76, 78) on each of the chordwise sections.
     
    6. The system of any preceding claim, wherein each of the first and second heaters (40) comprises an electrical resistivity between 0.005 ohms per square (Q/sq) and 3.0 Q/sq.
     
    7. The system of any preceding claim, wherein the first and second heaters (40) each comprise a material selected from the group consisting of carbon nanotubes, graphene, graphene nanoribbons, and combinations thereof.
     
    8. The system of any preceding claim, wherein electrical power is constant throughout each of the first and second heaters (40).
     
    9. The system of claim 7, wherein each of the first and second heaters (40) is H-shaped and further comprises:

    two positive electrical connections (66) each at the end of a first chordwise section; and

    two negative electrical connections (68) each at the end of a second chordwise section.


     
    10. The system of any of claims 1 to 7, wherein electrical power is variable throughout each of the first and second heaters (40).
     
    11. The system of claim 10, wherein each of the first and second heaters (40) is H-shaped and further comprises:

    a positive electrical connection at one end of a chordwise section; and

    a negative electrical connection at the one end of the chordwise section.


     


    Ansprüche

    1. Eisschutzsystem für eine Luftfahrzeugkomponente, umfassend:

    einen ersten Bereich (32) der Luftfahrzeugkomponente, der eine erste Spannweite und eine erste Profilsehne aufweist;

    einen zweiten Bereich (34) der Luftfahrzeugkomponente, der an den ersten Bereich angrenzt und eine zweite Spannweite und eine zweite Profilsehne aufweist, die an dem ersten Bereich durch eine Verbindung (37) befestigt ist; und

    einen Verbindungsbereich (36), umfassend:

    einen Endabschnitt (33) des ersten Bereichs (32); und

    einen Endabschnitt (35) des zweiten Bereichs (34), der an den Endabschnitt (33) des ersten Bereichs (32) angrenzt;

    eine erste Vielzahl von Heizungen (38), die sich spannweitenartig über den ersten Bereich erstreckt und so konfiguriert ist, dass sie den ersten Bereich (32) erwärmt;

    eine zweite Vielzahl von Heizungen (38), die sich spannweitenartig über den zweiten Bereich erstreckt und so konfiguriert ist, dass sie den zweiten Bereich (34) erwärmt;

    eine erste Heizung (40) an dem ersten Bereich (32), wobei die erste Heizung (40) mindestens einen profilsehnenartigen Bereich aufweist, der mit mindestens einem spannweitenartigen Bereich verbunden ist, und der mindestens eine profilsehnenartige Bereich in dem Verbindungsbereich (36) so positioniert ist, dass der mindestens eine profilsehnenartige Bereich so konfiguriert ist, dass er den Endabschnitt (33) des ersten Bereichs (32) erwärmt; und

    eine zweite Heizung (40) an dem zweiten Bereich (34), wobei die zweite Heizung mindestens einen profilsehnenartigen Bereich aufweist, der mit mindestens einem spannweitenartigen Bereich verbunden ist, und der mindestens eine profilsehnenartige Bereich in dem Verbindungsbereich (36) so positioniert ist, dass der mindestens eine profilsehnenartige Bereich so konfiguriert ist, dass er den Endabschnitt (35) des zweiten Bereichs (34) erwärmt.


     
    2. System nach Anspruch 1, wobei das Eisschutzsystem so konfiguriert ist, dass es auf eine Luftfahrzeugkomponente angewendet wird, die aus der Gruppe ausgewählt ist, bestehend aus Flügelvorderkanten, Seitenleitwerksvorderkanten, Höhenleitwerksvorderkanten, Pylonen, Flügeln, Propellern, Schaufeln, Triebwerkseinlässen und Oberflächen, die benachbarte Heizungen erfordern.
     
    3. System nach Anspruch 1 oder 2, wobei die erste und zweite Heizung (40) H-förmig, T-förmig oder L-förmig sind.
     
    4. System nach Anspruch 3, wobei die erste und zweite Heizung (40) H-förmige Heizungen sind und jeweils zwei profilsehnenartige Bereiche (64) umfassen, die durch einen spannweitenartigen Bereich (62) verbunden sind.
     
    5. System nach Anspruch 4, wobei jede der ersten und zweiten Heizungen (40) ferner einen Widerstand (70) im spannweitenartigen Bereich und zwei Widerstände (72, 74, 76, 78) an jedem der profilsehnenartigen Bereiche umfasst.
     
    6. System nach einem der vorstehenden Ansprüche, wobei jede der ersten und zweiten Heizung (40) einen elektrischen Widerstand zwischen 0,005 Ohm pro Quadrat (Ω/sq) und 3,0 Ω/sq umfasst.
     
    7. System nach einem der vorstehenden Ansprüche, wobei die erste und zweite Heizung (40) jeweils ein Material umfassen, das aus der Gruppe ausgewählt ist, bestehend aus Kohlenstoff-Nanoröhrchen, Graphen, Graphen-Nanobändern und Kombinationen davon.
     
    8. System nach einem der vorstehenden Ansprüche, wobei die elektrische Leistung in jeder der ersten und zweiten Heizung (40) konstant ist.
     
    9. System nach Anspruch 7, wobei jede der ersten und zweiten Heizung (40) H-förmig ist und ferner Folgendes umfasst:

    zwei positive elektrische Anschlüsse (66) jeweils am Ende eines ersten profilsehnenartigen Bereichs; und

    zwei negative elektrische Anschlüsse (68) jeweils am Ende eines zweiten profilsehnenartigen Bereichs.


     
    10. System nach einem der Ansprüche 1 bis 7, wobei die elektrische Leistung in jeder der ersten und zweiten Heizungen (40) variabel ist.
     
    11. System nach Anspruch 10, wobei jede der ersten und zweiten Heizung (40) H-förmig ist und ferner Folgendes umfasst:

    einen positiven elektrischen Anschluss an einem Ende eines profilsehnenartigen Bereichs; und

    einen negativen elektrischen Anschluss an dem einem Ende des profilsehnenartigen Bereichs.


     


    Revendications

    1. Système de protection contre la glace pour un composant d'aéronef comprenant :

    une première section (32) du composant d'aéronef ayant une première envergure et une première corde ;

    une seconde section (34) du composant d'aéronef, adjacente à la première section, ayant une seconde envergure et une seconde corde fixée à la première section par un joint (37) ; et

    une section de jonction (36) comprenant :

    une partie d'extrémité (33) de la première section (32) ; et

    une partie d'extrémité (35) de la seconde section (34) adjacente à la partie d'extrémité (33) de la première section (32) ;

    une première pluralité d'éléments chauffants (38) s'étendant dans le sens de l'envergure à travers la première section configurée pour chauffer la première section (32) ;

    une seconde pluralité d'éléments chauffants (38) s'étendant dans le sens de l'envergure à travers la seconde section configurée pour chauffer la seconde section (34) ;

    un premier élément chauffant (40) sur la première section (32), dans lequel le premier élément chauffant (40) a au moins une section dans le sens de la corde connectée à au moins une section dans le sens de l'envergure et l'au moins une section dans le sens de la corde est positionnée dans la section de jonction (36) de sorte que l'au moins une section dans le sens de la corde est configurée pour chauffer la partie d'extrémité (33) de la première section (32) ; et

    un second élément chauffant (40) sur la seconde section (34), dans lequel le second élément chauffant a au moins une section dans le sens de la corde connectée à au moins une section dans le sens de l'envergure et l'au moins une section dans le sens de la corde est positionnée dans la section de jonction (36) de sorte que l'au moins une section dans le sens de la corde est configurée pour chauffer la partie d'extrémité (35) de la seconde section (34).


     
    2. Système selon la revendication 1, dans lequel le système de protection contre la glace est configuré pour être appliqué à un composant d'aéronef choisi dans le groupe constitué de bords d'attaque d'aile, de bords d'attaque d'empennage vertical, de bords d'attaque d'empennage horizontal, de pylônes, d'aubes, d'hélices, de pales, d'entrées de moteur et de surfaces nécessitant des éléments chauffants adjacents.
     
    3. Système selon la revendication 1 ou 2, dans lequel les premier et second éléments chauffants (40) sont en forme de H, en forme de T ou en forme de L.
     
    4. Système selon la revendication 3, dans lequel les premier et second éléments chauffants (40) sont des éléments chauffants en forme de H et comprennent chacun deux sections dans le sens de la corde (64) connectées par une section dans le sens de l'envergure (62).
     
    5. Système selon la revendication 4, dans lequel chacun des premier et second éléments chauffants (40) comprend en outre une résistance (70) sur la section dans le sens de l'envergure et deux résistances (72, 74, 76, 78) sur chacune des sections dans le sens de la corde.
     
    6. Système selon une quelconque revendication précédente, dans lequel chacun des premier et second éléments chauffants (40) comprend une résistivité électrique comprise entre 0,005 ohms par carré (Ω/sq) et 3,0 Ω/sq.
     
    7. Système selon une quelconque revendication précédente, dans lequel les premier et second éléments chauffants (40) comprennent chacun un matériau choisi dans le groupe constitué de nanotubes de carbone, de graphène, de nanorubans de graphène et de combinaisons de ceux-ci.
     
    8. Système selon une quelconque revendication précédente, dans lequel la puissance électrique est constante dans chacun des premier et second éléments chauffants (40).
     
    9. Système selon la revendication 7, dans lequel chacun des premier et second éléments chauffants (40) est en forme de H et comprend en outre :

    deux connexions électriques positives (66) chacune au niveau de l'extrémité d'une première section dans le sens de la corde ; et

    deux connexions électriques négatives (68) chacune au niveau de l'extrémité d'une seconde section dans le sens de la corde.


     
    10. Système selon l'une quelconque des revendications 1 à 7, dans lequel la puissance électrique est variable dans chacun des premier et second éléments chauffants (40).
     
    11. Système selon la revendication 10, dans lequel chacun des premier et second éléments chauffants (40) est en forme de H et comprend en outre :

    une connexion électrique positive au niveau d'une extrémité d'une section dans le sens de la corde ; et

    une connexion électrique négative au niveau de l'une extrémité de la section dans le sens de la corde.


     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description