(19)
(11)EP 3 646 700 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.08.2021 Bulletin 2021/32

(21)Application number: 19205845.1

(22)Date of filing:  29.10.2019
(51)International Patent Classification (IPC): 
A01D 41/127(2006.01)
H04N 5/247(2006.01)
G06K 9/00(2006.01)

(54)

AGRICULTURAL HARVESTER BIOMASS ESTIMATING SYSTEM

BIOMASSENSCHÄTZSYSTEM FÜR LANDWIRTSCHAFTLICHE ERNTEMASCHINEN

SYSTÈME D'ESTIMATION DE BIOMASSE DE MOISSONNEUSE AGRICOLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.10.2018 US 201816174935

(43)Date of publication of application:
06.05.2020 Bulletin 2020/19

(73)Proprietor: Deere & Company
Moline, IL 61265 (US)

(72)Inventors:
  • Vandike, Nathan R
    68163 Mannheim (DE)
  • Gilmore, Brian J
    68163 Mannheim (DE)

(74)Representative: Holst, Sönke 
John Deere GmbH & Co. KG Mannheim Regional Center Global Intellectual Property Services John-Deere-Strasse 70
68163 Mannheim
68163 Mannheim (DE)


(56)References cited: : 
EP-A1- 3 299 995
WO-A1-2014/093794
US-A1- 2014 230 391
WO-A1-2011/063814
WO-A2-2007/050192
US-A1- 2016 003 656
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates generally to agricultural combines. In particular, it relates to systems for estimating biomass to be harvested and controlling combine machine settings responsibly.

    Background of the Invention:



    [0002] Agricultural harvesters such as combines or windrowers, travel through fields of agricultural crop harvesting the crop. In one common arrangement, agricultural harvesting heads extend forward from the spreading mechanism agricultural harvester to engage the plant stalks, sever them, and carry the severed crop into the body of the agricultural harvester itself for further processing.

    [0003] A common problem when harvesting agricultural crops is appropriately setting various machine processing parameters to accommodate the amount and type of crop material being harvested. A particular problem for harvesting includes how to change agricultural harvester settings (i.e. settings of material processing mechanisms) to accommodate the changing mass and volume of crop material to be processed. Some portions of a field may have a high volume and therefore high flow rate of cut crop material (biomass) to be processed. Other portions of the field may have a much smaller volume. As the volume changes, the machine settings must be changed in order to efficiently process the crops. These changes do not have instantly, however. They take time. Whenever machine settings are changed, it may take up to a minute for these changes to take effect throughout the combine.

    [0004] In order to accommodate these differing volumes of biomass it is beneficial to estimate the amount of biomass before the crop is actually cut in order to permit the combine to make the proper changes.

    [0005] US 9775290 B2 discloses a system for estimating biomass using remote sensors that point forward from the front of the agricultural harvester into an approaching stand of crop. In an alternative arrangement (Figure 6C) a camera/sensor is shown that points sideways into an existing stand of crop adjacent to the agricultural harvester. This arrangement permits the agricultural harvester to estimate the amount of biomass it should harvest several seconds before harvesting.

    [0006] One drawback with this arrangement is the inability to determine the height of the ground from which the standing crop is growing. The biomass is the amount of crop material that is growing above the ground. If the agricultural harvester is on a concave or convex portion of the field, or if the agricultural harvester is rolling from side to side, the sensed top of the biomass in the field of view of the sensor will move up and down. This leads to inaccurate estimation of the amount of biomass to be harvested.

    [0007] EP 3 299 995 A1 describes a combine harvester with a camera that can look to the side of the harvester. The image signals of the camera are evaluated to identify obstacles and irregularities in the stubbles and in the standing crop. Evaluation of biomass is not described.

    [0008] What is proposed is more accurate estimation of biomass by providing a sensor arrangement that senses the top of the biomass and the harvested ground adjacent to the biomass (the "ground plane") in order to more accurately estimate the amount of biomass to be harvested by the agricultural harvester.

    [0009] It is an object of this invention to provide such a biomass estimating system. It is also an object of this invention to provide an agricultural harvester with such a biomass estimating system

    Summary



    [0010] An agricultural harvesting vehicle that is operable in an agricultural field to harvest crops is provided with a biomass estimating system, the biomass estimating system comprising: a sensor arrangement directed laterally away from the side of the agricultural harvesting vehicle in a direction generally transverse to the direction of travel, wherein a stand of crop adjacent to the agricultural harvesting vehicle is within the field of view of the at least a first sensor, and wherein a portion of the ground from which crop has previously been harvested is also within the field of view; and an ECU coupled to the sensor arrangement, wherein the ECU is configured to receive signals indicating the stand of crop and the portion of the ground previously harvested, wherein the ECU is configured to calculate an estimated biomass for a portion of ground adjacent to the agricultural harvesting vehicle and having a stand of crop based upon at least signals received from the stand of crop, and signals received from the portion of ground previously harvested.

    [0011] The sensor arrangement may have a first sensor that generates signals indicating the stand of crop and the portion of the ground previously harvested.

    [0012] The sensor arrangement may have a second sensor coupled to the ECU that generates signals indicating the stand of crop, and a third sensor coupled to the ECU that generates signals indicating the portion of ground previously harvested.

    [0013] The biomass estimating system may be fixed to an upper portion of the agricultural harvesting vehicle.

    [0014] The ECU may be configured to store the estimated biomass for the portion of ground adjacent to the agricultural harvesting vehicle in association with a location in the agricultural field of the portion of ground adjacent to the agricultural harvesting vehicle.

    [0015] The ECU may be coupled to a navigation receiver to receive signals therefrom and to determine a location of the agricultural harvesting vehicle in the agricultural field.

    [0016] The ECU may be configured to retrieve the previously stored estimated biomass when the navigation receiver indicates that the agricultural harvesting vehicle is facing the previously stored location in the agricultural field.

    [0017] The ECU may be configured to calculate machine settings of the agricultural harvesting vehicle based at least upon the retrieved previously stored estimated biomass and to apply those machine settings to the agricultural harvesting vehicle.

    [0018] The machine settings may include a header height, a rotor speed, a cleaning fan speed, an adjustable screen setting, a straw chopper speed, a position of a stationary knife bank with respect to a straw chopper and a ground speed of the agricultural combine.

    Brief Description of the Drawings:



    [0019] 

    Figure 1 is a side view of an agricultural harvester with a biomass estimating system in accordance with the present invention.

    Figure 2 is a front view of the agricultural harvester of Figure 1 in an agricultural field.

    Figure 3 is a front view of the agricultural harvester of Figure 1 showing an alternative arrangement of biomass sensors.

    Figure 4 is a schematic diagram of the biomass estimating system of Figures 2-3.

    Figure 5 is a flowchart showing the operation of the biomass estimating system of Figures 2-3.

    Figure 6 is a flowchart showing the operation of the biomass estimating system of Figures 2-4 when applying the biomass estimate to change machine settings.


    Detailed Description of the Preferred Embodiments:



    [0020] In Figure 1 an agricultural harvester 100 is shown comprising a self-propelled agricultural harvesting vehicle 102 and an agricultural harvesting head 104 supported on the front of the agricultural harvesting vehicle 102.

    [0021] A reciprocating knife 106 on the front of the agricultural harvesting head 104 severs the crop material from the ground. A conveyor system 108 on the agricultural harvesting head 104 carries cut crop material rearward to an inclined conveyor in a feederhouse 110. The inclined conveyor carries the cut crop material rearward and upward into the agricultural harvesting vehicle 102 for further processing.

    [0022] The feederhouse 110 is pivotally coupled to the front of the agricultural harvesting vehicle 102 such that it can pivot up and down, thereby lifting and lowering the agricultural harvesting head 104 above the ground. Actuators 112 (here shown as hydraulic cylinders) are coupled to the feederhouse 110 and to the agricultural harvesting vehicle 102 to raise and lower the agricultural harvesting head 104 by extending and retracting.

    [0023] The agricultural harvesting vehicle 102 includes a threshing and separating mechanism 114 that is disposed to receive the cut crop material from the feederhouse and to thresh the cut crop material and separate the cut crop material into the crop itself (grain or seed) from the material other than grain (MOG).

    [0024] The threshing and separating mechanism 114 includes a cylindrical rotor 116 that is disposed inside a concave grating 118. The cut crop material is introduced into a gap provided between the rotor and the grating. The relative movement of the rotor and the grating because the cut crop material to be threshed and to be separated. The crop itself falls through apertures in the grating and the MOG is retained within the gap and carried away.

    [0025] An actuator 120 (here shown as a linear actuator) is coupled to the grating to move the grating up and down thereby changing the size of the gap between the rotor and the grating.

    [0026] A variable speed drive 121 is coupled to the cylindrical rotor 116 to drive the rotor 116 in rotation at a selectable speed.

    [0027] The crop (grain/seed) falls into a cleaning mechanism 122 for cleaning. The cleaning mechanism 122 includes adjustable screens 124 (also called "sieves" or "chaffers") under which the crop falls. The cleaning mechanism 122 also includes a cleaning fan 126 that generates a flow of air that passes upward through the adjustable screens 124 to lift up light particles mixed with the crop and carry them rearwardly and out of the agricultural harvesting vehicle 102. The crop itself falls through apertures in the adjustable screens 124 into the bottom of the combine.

    [0028] The speed of the cleaning fan 126 is adjustable to vary the volume of air driven upward through the adjustable screens 124.

    [0029] Each of the adjustable screens 124 has an actuator 128 that adjusts the spacing and angle of slats in the screens themselves to thereby control the flow of air through the screens.

    [0030] Crop falling to the bottom of the combine is carried upward into a storage space 129 (also called a "grain tank") for later offloading from the agricultural harvesting vehicle 102.

    [0031] The material other than grain (MOG) is carried to the rear of the agricultural harvesting vehicle 102 and is introduced into a straw chopper 130. The straw chopper 130 includes a chopping rotor 132 disposed inside a housing 134. A bank of stationary knives 136 extends upward through slots in the housing 134 to assist in chopping the MOG against blades that extend from the chopping rotor 132. An actuator 138 is coupled to the bank of stationary knives 136 to extend and withdraw the bank of stationary knives 136 from the housing 134 thereby controlling the degree to which the MOG is chopped.

    [0032] Referring to Figure 2, a sensor 240 is fixed to an upper portion of the agricultural harvesting vehicle 102. The sensor 240 is pointed transversely to one side of the agricultural harvesting vehicle 102 and toward a swath 242 of unharvested crop. The sensor 240 is also pointed toward a portion of the ground 243 that has been previously harvested by the agricultural harvesting vehicle 102. Both the unharvested crop and the portion of the ground 243 are within the field of view 245 of the sensor 240 and the sensor 240 is configured to generate signals indicative of the standing crop and generate signals indicative of the portion of the ground that has been previously harvested.

    [0033] Referring to Figure 3, two sensors 244, 246 are fixed to an upper portion of the agricultural harvesting vehicle 102. The sensor 244 is pointed transversely to one side of the agricultural harvesting vehicle 102 and toward the swath 242 of unharvested crop. The sensor 246 is pointed toward the portion of the ground 243 that has been previously harvested by the agricultural harvesting vehicle 102. The swath 242 of unharvested crop is within the field of view 250 of the sensor 244. The portion of the ground 252 that has been previously harvested is within the field of view of the sensor 246.

    [0034] In an alternative arrangement, a supplemental or alternative set of sensors 240 (Fig. 2), and/or sensors 244, 246 (Fig. 3) can be fixed to the opposite side of the agricultural harvesting vehicle 102 to similarly point at a swath of unharvested crop and a portion of previously harvested ground on the opposite side of the agricultural harvesting vehicle 102.

    [0035] Each of the sensors 240, 244, 246 may comprise a two dimensional imaging device, a laser based device such as a LIDAR, a first emitting a frequency of energy absorbed by the plant mass, and a second radar emitting a frequency of energy that passes through the plant mass without being absorbed.

    [0036] Referring to Figure 4, a biomass estimating system for 48 includes a network of one or more electronic control units (this network is illustrated generally in Fig.4 as ECU 450) coupled to the sensors 240, or (alternatively) sensors 244, 246.

    [0037] The ECU 450 is coupled to the sensors 240, 244, 246 to receive electrical signals representative of the swath 242 of unharvested crop and the portion of the ground that is been previously harvested. The ECU 450 is configured to estimate the biomass in the swath 242 based upon both the sensed characteristics of the swath 242 and sensed characteristics of the previously harvested ground.

    [0038] The ECU 450 includes a digital microprocessor for performing programmed instructions described in conjunction with Figure 5, a random access memory circuit for storing working values generated during the execution of the programmed instructions, a read-only memory circuit for storing the programmed instructions and other constant values, and signal conditioning circuits for converting the signals received from the sensors 240, 244, 246 into a form usable by the digital microprocessor.

    [0039] Referring to Figure 5, in step 500, the ECU 450 receives electrical signals from the sensors 240, 244, 246.

    [0040] In step 502, the ECU 450 determines the vertical position of the ground based at least upon the portion of the signal received by the sensor 240 or 246 from the portion of previously harvested ground.

    [0041] In step 504, the ECU 450 determines the vertical position of the top of the swath of unharvested crop 242 based at least upon the portion of the signal received by the sensor 240 or 244 from the swath of unharvested crop 242.

    [0042] In step 506, the ECU determines the vertical extent of the swath of unharvested crop 242 by subtracting the vertical position of the ground (determined in step 502) from the vertical position of the top of the swath of unharvested crop 242 (determined in step 504).

    [0043] In step 508, the ECU 450 stores the vertical extent of the swath of unharvested crop 242 in a memory circuit as an estimation of the biomass. This estimation is stored in conjunction with the corresponding two-dimensional location in the field where the biomass was sensed.

    [0044] In step 510, the process stops.

    [0045] The steps of Figure 5 are automatically and programmatically repeated as the agricultural harvesting machine 102 traverses an agricultural field harvesting crops.

    [0046] The steps in Figure 5 permit the ECU 450 to build a two-dimensional biomass map of unharvested portions of the field. This two-dimensional biomass map can be later accessed by the ECU 450 when the agricultural harvesting vehicle 102 harvests a previously unharvested and mapped portion of the field.

    [0047] Referring back to Figure 4, the ECU 450 of the biomass estimating system 148 is drivingly coupled to the actuator 112 to programmatically lift and lower feederhouse on command of the ECU 450. The ECU 450 is also coupled to actuator 120 to programmatically increase and decrease the gap between the rotor and the concave. The ECU 450 is also coupled to the adjustable screens 124 to programmatically open and close the screens. The ECU 450 is also coupled to the cleaning fan 126 to programmatically increase and decrease the speed of the cleaning fan. The ECU 450 is also coupled to the motor and/or belt pulley arrangement of the chopper rotor 132 to programmatically increase and decrease the speed of the chopper rotor 132. The ECU 450 is also coupled to the actuator 138 to programmatically extend and retract the bank of stationary knives 136 with respect to the housing 134. The ECU 450 is also coupled to the variable speed drive for the rotor 116. The ECU 450 is also coupled to a navigation receiver 452 to receive signals indicating the position of the agricultural harvesting vehicle 102 and to determine the position of the agricultural harvesting vehicle 102 therefrom. The navigation receiver 452 is preferably a Glonass or GPS receiver configured to receive signals from one or more satellites.

    [0048] Figure 6 illustrates another mode of operation of the ECU 450, as the agricultural harvesting vehicle 102 travels through the field harvesting crops.

    [0049] In step 600, the ECU 450 retrieves data indicating the current location (or a location ahead of the current location in the direction of travel) of the agricultural harvesting vehicle 102 from the navigation receiver 452.

    [0050] In step 602, the ECU 450 retrieves the estimation of biomass stored in the memory circuit of the ECU 450 corresponding to the location.

    [0051] In step 604, the ECU 450 calculates appropriate settings of the height of the agricultural harvesting head 104, the rotor speed, the rotor/concave spacing, the cleaning fan speed, the chopper rotor speed, and the amount of extension of the bank of stationary knives 136 within the housing 134. The ECU 450 makes these calculations based at least upon the estimation of biomass calculated in step 508 and stored in the memory circuit of the ECU 450.

    [0052] In step 606, after having calculated the appropriate settings, the ECU 450 applies signals to the actuators 112, the variable speed drive 121, the actuator 120, the motor driving the cleaning fan 126, the chopper rotor drive, and the actuator 138, respectively, that apply the settings to the agricultural harvester 102.

    [0053] In step 608, the process stops.

    [0054] The process of Figure 6 is repeated automatically and repeatedly as the agricultural harvesting vehicle 102 travels through the field harvesting crops.

    [0055] The claims below define the invention. The description and figures above are provided to enable one skilled in the art to make and use the invention. Other ways of making and using the invention will be apparent to those skilled in the art.


    Claims

    1. An agricultural harvesting vehicle (102) operable in an agricultural field to harvest crops with a biomass estimating system (148) attached to the harvesting vehicle (102), the biomass estimating system (148) comprising:

    a sensor arrangement directed laterally away from the side of the agricultural harvesting vehicle (102) in a direction generally transverse to the direction of travel, wherein a stand of crop adjacent to the agricultural harvesting vehicle (102) is within the field of view of at least a first sensor (240, 244, 246), and wherein a portion of the portion of the ground (243) that has been previously harvested by the agricultural harvesting vehicle (102) is also within the field of view; and

    an ECU (450) coupled to the sensor arrangement, wherein the ECU (450) is configured to receive signals indicating the stand of crop and the portion of the previously harvested ground,

    characterized in that the ECU (450) is configured to calculate an estimated biomass for a portion of the ground adjacent to the agricultural harvesting vehicle (102) and having a stand of crop based upon at least signals received from the stand of crop, and signals received from the portion of ground previously harvested.


     
    2. The agricultural harvesting vehicle (102) of Claim 1, wherein the sensor arrangement comprises a first sensor (240) that generates signals indicating the stand of crop and the portion of the ground previously harvested.
     
    3. The agricultural harvesting vehicle (102) of Claim 1, wherein the sensor arrangement comprises a second sensor (244) coupled to the ECU (450) that generates signals indicating the stand of crop, and a third sensor (246) coupled to the ECU (450) that generates signals indicating the portion of ground previously harvested.
     
    4. The agricultural harvesting vehicle (102) of Claim 1, wherein the biomass estimating system (148) is fixed to an upper portion of the agricultural harvesting vehicle (102).
     
    5. The agricultural harvesting vehicle (102) of Claim 1, wherein the ECU (450) is configured to store the estimated biomass for the portion of ground adjacent to the agricultural harvesting vehicle (102) in association with a location in the agricultural field of the portion of ground adjacent to the agricultural harvesting vehicle (102).
     
    6. The agricultural harvesting vehicle (102) of Claim 5, wherein the ECU (450) is coupled to a navigation receiver (452) to receive signals therefrom and to determine a location of the agricultural harvesting vehicle (102) in the agricultural field.
     
    7. The agricultural harvesting vehicle (102) of Claim 6, wherein the ECU (450) is configured to retrieve the previously stored estimated biomass when the navigation receiver (452) indicates that the agricultural harvesting vehicle (102) is facing the previously stored location in the agricultural field.
     
    8. The agricultural harvesting vehicle (102) of Claim 7, wherein the ECU (450) is configured to calculate machine settings of the agricultural harvesting vehicle (102) based at least upon the retrieved previously stored estimated biomass and to apply those machine settings to the agricultural harvesting vehicle (102).
     
    9. The agricultural harvesting vehicle (102) of Claim 8, wherein the machine settings comprise a header height.
     
    10. The agricultural harvesting vehicle (102) of Claim 8, wherein the machine settings comprise a rotor speed.
     
    11. The agricultural harvesting vehicle (102) of Claim 8, wherein the machine settings comprise a cleaning fan speed.
     
    12. The agricultural harvesting vehicle (102) of Claim 8, wherein the machine settings comprise an adjustable screen setting.
     
    13. The agricultural harvesting vehicle (102) of Claim 8, wherein the machine settings comprise a speed of a straw chopper.
     
    14. The agricultural harvesting vehicle (102) of Claim 8, wherein the machine settings comprise a position of a stationary knife bank with respect to a straw chopper.
     
    15. The agricultural harvesting vehicle (102) of Claim 8, wherein the machine settings comprise a ground speed of the agricultural harvesting vehicle (102).
     
    16. The agricultural harvesting vehicle (102) of Claim 8, wherein the ECU (450) comprises a network of electronic control units.
     


    Ansprüche

    1. Landwirtschaftliches Erntefahrzeug (102), betreibbar in einem landwirtschaftlichen Feld zum Ernten von Erntegut mit einem Biomassenschätzsystem (148), befestigt am Erntefahrzeug (102), wobei das Biomassenschätzsystem (148) Folgendes umfasst:

    eine Sensoranordnung, lateral weg von der Seite des landwirtschaftlichen Erntefahrzeugs (102) gerichtet, in eine Richtung im Allgemeinen quer zur Fahrtrichtung, wobei ein Bestand von Erntegut angrenzend an das landwirtschaftliche Erntefahrzeug (102) innerhalb des Sichtfelds von zumindest einem ersten Sensor (240, 244, 246) ist und wobei ein Teil des Teils des Bodens (243), der vorher durch das landwirtschaftliche Erntefahrzeug (102) abgeerntet wurde, auch innerhalb des Sichtfelds ist; und

    eine ECU (450), gekoppelt mit der Sensoranordnung, wobei die ECU (450) dazu ausgelegt ist, Signale zu empfangen, die den Bestand von Erntegut und den Teil des vorher abgeernteten Bodens anzeigen,

    dadurch gekennzeichnet, dass die ECU (450) ausgelegt ist zum Berechnen einer geschätzten Biomasse für einen Teil des Bodens, angrenzend an das landwirtschaftliche Erntefahrzeug (102) und einen Bestand von Erntegut aufweisend, basierend zumindest auf Signalen, die vom Bestand von Erntegut empfangen wurden, und Signalen, die von dem Teil des Bodens empfangen wurden, der vorher abgeerntet wurde.


     
    2. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 1, wobei die Sensoranordnung einen ersten Sensor (240) umfasst, der Signale erzeugt, die den Bestand von Erntegut und den Teil des Bodens, der vorher abgeerntet wurde, anzeigen.
     
    3. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 1, wobei die Sensoranordnung einen zweiten Sensor (244), gekoppelt mit der ECU (450), der Signale erzeugt, die den Bestand von Erntegut anzeigen, und einen dritten Sensor (246), gekoppelt mit der ECU (450), der Signale erzeugt, die den Teil des Bodens, der vorher abgeerntet wurde, anzeigen, umfasst.
     
    4. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 1, wobei das Biomassenschätzsystem (148) an einem oberen Teil des landwirtschaftlichen Erntefahrzeugs (102) befestigt ist.
     
    5. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 1, wobei die ECU (450) ausgelegt ist zum Speichern der geschätzten Biomasse für den Teil des Bodens, angrenzend an das landwirtschaftliche Erntefahrzeug (102), in Verbindung mit einem Ort im landwirtschaftlichen Feld des Teils des Bodens, angrenzend an das landwirtschaftliche Erntefahrzeug (102) .
     
    6. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 5, wobei die ECU (450) mit einem Navigationsempfänger (452) gekoppelt ist, um Signale davon zu empfangen und einen Ort des landwirtschaftlichen Erntefahrzeugs (102) im landwirtschaftlichen Feld zu bestimmen.
     
    7. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 6, wobei die ECU (450) ausgelegt ist zum Abrufen der vorher gespeicherten geschätzten Biomasse, wenn der Navigationsempfänger (452) anzeigt, dass das landwirtschaftliche Erntefahrzeug (102) dem vorher gespeicherten Ort im landwirtschaftlichen Feld begegnet.
     
    8. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 7, wobei die ECU (450) ausgelegt ist zum Berechnen von Maschineneinstellungen des landwirtschaftlichen Erntefahrzeugs (102) zumindest basierend auf der vorher gespeicherten geschätzten Biomasse und zum Anwenden dieser Maschineneinstellungen auf das landwirtschaftliche Erntefahrzeug (102).
     
    9. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 8, wobei die Maschineneinstellungen eine Aufnahmevorrichtungshöhe umfassen.
     
    10. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 8, wobei die Maschineneinstellungen eine Rotordrehzahl umfassen.
     
    11. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 8, wobei die Maschineneinstellungen eine Reinigungsgebläsedrehzahl umfassen.
     
    12. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 8, wobei die Maschineneinstellungen eine anpassbare Siebeinstellung umfassen.
     
    13. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 8, wobei die Maschineneinstellungen eine Drehzahl eines Strohhäckslers umfassen.
     
    14. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 8, wobei die Maschineneinstellungen eine Position einer stationären Messerbank bezüglich eines Strohhäckslers umfassen.
     
    15. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 8, wobei die Maschineneinstellungen eine Bodengeschwindigkeit des landwirtschaftlichen Erntefahrzeugs (102) umfassen.
     
    16. Landwirtschaftliches Erntefahrzeug (102) nach Anspruch 8, wobei die ECU (450) ein Netzwerk aus elektronischen Steuereinheiten umfasst.
     


    Revendications

    1. Véhicule de récolte agricole (102) utilisable dans un champ agricole pour récolter des cultures avec un système d'estimation de biomasse (148) attaché au véhicule de récolte (102), le système d'estimation de biomasse (148) comprenant :

    un agencement de capteurs dirigé latéralement à l'opposé du côté du véhicule de récolte agricole (102) dans une direction généralement transversale à la direction de déplacement, dans lequel un peuplement de culture adjacent au véhicule de récolte agricole (102) est au sein du champ de vue d'au moins un premier capteur (240, 244, 246), et dans lequel une portion de la portion du sol (243) qui a été auparavant récoltée par le véhicule de récolte agricole (102) est également au sein du champ de vue ; et

    une ECU (450) couplée à l'agencement de capteurs, dans lequel l'ECU (450) est configurée pour recevoir des signaux indiquant le peuplement de culture et la portion du sol auparavant récoltée,

    caractérisé en ce que l'ECU (450) est configurée pour calculer une biomasse estimée pour une portion du sol adjacente au véhicule de récolte agricole (102) et ayant un peuplement de culture sur la base au moins de signaux reçus à partir du peuplement de culture, et de signaux reçus à partir de la portion du sol auparavant récoltée.


     
    2. Véhicule de récolte agricole (102) selon la revendication 1, dans lequel l'agencement de capteurs comprend un premier capteur (240) qui génère des signaux indiquant le peuplement de culture et la portion du sol auparavant récoltée.
     
    3. Véhicule de récolte agricole (102) selon la revendication 1, dans lequel l'agencement de capteurs comprend un deuxième capteur (244) couplé à l'ECU (450) qui génère des signaux indiquant le peuplement de culture, et un troisième capteur (246) couplé à l'ECU (450) qui génère des signaux indiquant la portion du sol auparavant récoltée.
     
    4. Véhicule de récolte agricole (102) selon la revendication 1, dans lequel le système d'estimation de biomasse (148) est fixé à une portion supérieure du véhicule de récolte agricole (102).
     
    5. Véhicule de récolte agricole (102) selon la revendication 1, dans lequel l'ECU (450) est configurée pour stocker la biomasse estimée pour la portion du sol adjacente au véhicule de récolte agricole (102) en association à un emplacement dans le champ agricole de la portion du sol adjacente au véhicule de récolte agricole (102).
     
    6. Véhicule de récolte agricole (102) selon la revendication 5, dans lequel l'ECU (450) est couplée à un récepteur de navigation (452) pour recevoir des signaux à partir de celui-ci et pour déterminer un emplacement du véhicule de récolte agricole (102) dans le champ agricole.
     
    7. Véhicule de récolte agricole (102) selon la revendication 6, dans lequel l'ECU (450) est configurée pour récupérer la biomasse estimée stockée auparavant lorsque le récepteur de navigation (452) indique que le véhicule de récolte agricole (102) fait face à l'emplacement stocké auparavant dans le champ agricole.
     
    8. Véhicule de récolte agricole (102) selon la revendication 7, dans lequel l'ECU (450) est configurée pour calculer des réglages de machine du véhicule de récolte agricole (102) au moins sur la base de la biomasse estimée stockée auparavant récupérée et pour appliquer ces réglages de machine sur le véhicule de récolte agricole (102).
     
    9. Véhicule de récolte agricole (102) selon la revendication 8, dans lequel les réglages de machine comprennent une hauteur de table de coupe.
     
    10. Véhicule de récolte agricole (102) selon la revendication 8, dans lequel les réglages de machine comprennent une vitesse de rotor.
     
    11. Véhicule de récolte agricole (102) selon la revendication 8, dans lequel les réglages de machine comprennent une vitesse de ventilateur de nettoyage.
     
    12. Véhicule de récolte agricole (102) selon la revendication 8, dans lequel les réglages de machine comprennent un réglage de grille ajustable.
     
    13. Véhicule de récolte agricole (102) selon la revendication 8, dans lequel les réglages de machine comprennent une vitesse d'un hache-paille.
     
    14. Véhicule de récolte agricole (102) selon la revendication 8, dans lequel les réglages de machine comprennent une position d'un banc de couteaux stationnaires par rapport à un hache-paille.
     
    15. Véhicule de récolte agricole (102) selon la revendication 8, dans lequel les réglages de machine comprennent une vitesse au sol du véhicule de récolte agricole (102).
     
    16. Véhicule de récolte agricole (102) selon la revendication 8, dans lequel l'ECU (450) comprend un réseau d'unités de commande électroniques.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description