(19)
(11)EP 3 647 512 A1

(12)EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43)Date of publication:
06.05.2020 Bulletin 2020/19

(21)Application number: 18822963.7

(22)Date of filing:  27.06.2018
(51)Int. Cl.: 
E04G 3/28  (2006.01)
E04G 11/28  (2006.01)
(86)International application number:
PCT/ES2018/070462
(87)International publication number:
WO 2019/002654 (03.01.2019 Gazette  2019/01)
(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30)Priority: 30.06.2017 ES 201730876

(71)Applicant: HWS Concrete Towers, S.L.
20009 San Sebastián (ES)

(72)Inventors:
  • ABADÍA PÉREZ, Mariano
    20009 San Sebastiá (ES)
  • MONTANER FRAGÜET, Jesús
    20009 San Sebastián (ES)
  • SORAZU ECHAVE, José Manuel
    20009 San Sebastián (ES)
  • DÍAZ OCHANDIANO, Iban
    20009 San Sebastián (ES)
  • AGUILÓ PÓRTULAS, Borja
    20009 San Sebastián (ES)

(74)Representative: Schäfer, Matthias W. 
Patentanwalt Schwanseestrasse 43
81549 München
81549 München (DE)

  


(54)SELF-CLIMBING DEVICE FOR VERTICAL AND QUASI-VERTICAL CONCRETE SURFACES


(57) Self-climbing device for vertical and quasi-vertical concrete surfaces with main body equipped with a main beam by way of displacement rail, and several self-motorized frames, independent of each other and separately controllable, displaceable along the main beam of the main body, all with a characteristic operating method.
The present invention provides the main advantage of allowing going up or climbing any structure, device or machine, such as a crane or a working platform, being applicable and usable on both vertical and quasi-vertical surfaces, flat or curved, free geometry and with variable slope, and with advances or displacements unit of variable length, adapted to the structure or area to climb.




Description


[0001] The present specification relates, as its title indicates, to a self-climbing device for vertical and quasi-vertical concrete surfaces, and its characteristic operating method, of the type used in its construction, assembly, maintenance and/or repair to raise and lower various types of associated metal structures, both on vertical and quasi-vertical, flat or curved surfaces, with free geometry and variable gradient. Quasi-vertical surfaces are understood as those which, without being totally vertical, have inclination so high that they approximate verticality, and in some cases this can be confused. The present invention allows going up or climbing any structure, device or machine, such as, for example, a crane or a working platform.

Field of the invention



[0002] The invention relates to the field of auxiliary assembly structures for constructive concrete surfaces and elements, both prefabricated and concreted in situ.

Current state of the art



[0003] At present, a large quantity of self-climbing devices and structures are known in the construction field, among which we can highlight patents EP2725166 "Method for establishing concreting sections with the help of a track-guided self-climbing shuttering system", EP1899549 "Climbing cylinder of a self-climbing shuttering", WO2009117986 "Track-guided self-climbing shuttering system with climbing rail extension pieces", EP2365159 "Self-climbing perimeter structure for construction works in buildings" and WO2008061922 "Track-guided self-climbing shuttering system with climbing rail extension pieces". However, all suffer a common problem, that they all need tracks, guides or rails solidly joined to the working surface, which complicate and make its assembly and later dismantling more expensive, in addition to being solely applicable to flat surfaces, which means they are not applicable in many cases, such as, for example, multisectional prefabricated concrete towers.

[0004] Likewise, another type of devices is known, such as that described in patent EP2518239 "Climbing head to lift a self-climbing protection system for construction work in buildings", but it also has shortcomings, in this case, as it needs two lateral beams solidly joined to the surface.

[0005] On the other hand, devices are also used such as that disclosed in patent WO2013171359 "Self-climbing telescopic crane and method for mounting pre-fabricated concrete towers" and ES2435211 "System for assembly of a prefabricated concrete tower comprising a self-climbing telescopic crane", that climb up the inside of the tower, in a more complex process, and continue to require external rails for the parts to raise. They also have the drawback that they are solely applicable to hollow concrete towers, limiting the scope of its application.

[0006] Systems are also knowns such as that claimed in patent ES2085196 "Self-climbing shuttering system and continuous concrete support", which uses anchoring cones for fixing to the wall, but it is not a structure that autonomously climbs, but is a shuttering for dams that is dismantled from the lower part and raising it to the upper part in a fairly manual way.

Description of the invention



[0007] To resolve the problem existing at present in the assembly and raising of working structures on concrete surfaces and elements, the self-climbing device for vertical and quasi-vertical concrete surfaces has been devised, comprised of a main body, formed by a vertical metal structure, in lattice or a tube, of circular section, quasi-rectangular or another structural element, equipped with a main beam, vertically disposed, by way of displacement rail, and at least, three upper, intermediate and lower self-motorized frames, or trolleys, independent of each other and separately controllable, displaceable along the main beam of the main body.

[0008] The distance (vertical) of the upper, intermediate and lower self-motorized frames, between anchorings is free, and, therefore, the length of each individual advance of the system, obviously limited by the length of the main body.

[0009] The device also comprises an associated metal working structure, solidly joined to the main body. Said metal structure will depend on the operating function of the device, although it will be preferably chosen from the group formed by crane, working platform, scaffolding, shuttering and supports.

[0010] The upper, intermediate and lower self-motorized frames comprise, in turn, a sliding part, partially surrounding the main beam, a chassis horizontally displaceable with respect to the sliding part and an anchoring chassis with capacity of rotation with respect to the displaceable chassis by means of a vertically positioned shaft between both.

[0011] Said self-motorized frames have means of vertical displacement with respect to the main body, which comprises one or several motors, equipped with gearboxes and pinions or attack gears, all disposed on the sliding part, which are connected to one or several racks vertically disposed on the main beam of the main body.

[0012] Likewise the self-motorized frames have locking means of vertical displacement with respect to the main body, located in the displaceable chassis. These locking means may be formed from pins, bolts, wedges or any other known technical solution that prevents the movement between both parts when actuated.

[0013] The self-motorized frames also have anchoring means to the working wall, which comprises a protuberance of the anchoring chassis, emerging in the face adjacent to the working wall, equipped with one or several locking elements actuable and laterally disposed on said protuberance, with the protuberance being of shape and size that coincide with anchoring housings disposed in the working wall, in vertical line, and with these anchoring housings having locking housings, of size, shape and position that coincide with the locking elements. The shape of the anchoring chassis protuberance, and of the anchoring housings disposed in the working wall will preferably be chosen from the group formed by truncated pyramid and truncated cone-shape.

[0014] Likewise, the self-motorized frames have means of horizontal displacement with respect to the working wall, which comprise at least two linear actuators, actuated by motors, disposed on the sides of the sliding part, and traversing the displaceable chassis through an opening, and connected at their ends with the anchoring chassis by means of vertically positioned rotation axes. These means of horizontal displacement enable both the approximation to and distancing from necessary for the coupling and fixing of the device to the working wall, and the adaptation of the distance between the device and the working wall, if the latter is not regular, such as, for example, in the case of prefabricated concrete towers of variable section by segments.

[0015] Likewise, the self-motorized frames have rotation means of the main body, in the horizontal plane, with respect to the working wall, which comprises the anchoring chassis, the displaceable chassis, the vertically positioned shaft between both, and the linear actuators together with the motors. This encourages the possibility of having a rotation of the device with respect to the working wall, especially useful when the device is associated to a crane for the assembly of prefabricated concrete towers and for the housing of the nacelle and blades until its upper end.

[0016] In all these elements, the motors and the linear actuators can be of any of the types known at present, or a combination of several types, although preferably they will be of electric, pneumatic or hydraulic type.

[0017] This device involves a specific operating method which comprises a working phase and an upward or downward movement phase.

[0018] The working phase comprises the anchoring to the working wall of at least two of the upper, intermediate or lower self-motorized frames, by means of the corresponding anchoring means to the working wall, and the locking of the vertical displacement of said self-motorized frames with respect to the main body by means of the corresponding locking means. In this phase, the device is solidly joined to the main body and its associated metal working structure to the working wall.

[0019] The upward movement phase comprises the following steps, which shall be repeated until achieving the desired working height:

step 1 - wherein the device is in working phase, with at least the upper and intermediate self-motorized frames anchored to the working wall,

step 2 - the lower self-motorized frame is released from its anchoring to the working wall, and it separates from it by means of actuation of the means of horizontal displacement with respect to the working wall, the device thus being fastened to the working wall solely by means of the upper and intermediate self-motorized frames,

step 3 - the lower self-motorized frame releases its locking means of vertical displacement with respect to the main body and slides upwards by means of actuation of the means of vertical displacement with respect to the main body until being positioned beside the intermediate self-motorized frame,

step 4 - the lower self-motorized frame approximates the working wall by means of actuation of the means of horizontal displacement with respect to the working wall and it anchors to it in the free anchoring housing beside the intermediate self-motorized frame,

step 5 - release of the locking means of vertical displacement with respect to the main body of the lower and intermediate self-motorized frames, fixed to the working wall, the means of vertical displacement with respect to the main body are actuated and its upward vertical displacement to the new position occurs, wherein the lower self-motorized frame is located at the lower end of the main body,

step 6 - actuation of the locking means of vertical displacement with respect to the main body of the lower self-motorized frame, producing the locking of the main body,

step 7 - the intermediate self-motorized frame is released from its anchoring to the working wall, and it separates from it by means of actuation of the means of horizontal displacement with respect to the working wall, the device thus being fastened to the working wall solely by means of the upper and lower self-motorized frames,

step 8 - the intermediate self-motorized frame releases its locking means of vertical displacement with respect to the main body and slides upwards by means of actuation of the means of vertical displacement with respect to the main body until being positioned beside the upper self-motorized frame,

step 9 - the intermediate self-motorized frame approximates the working wall by means of actuation of the means of horizontal displacement with respect to the working wall and it anchors it in the free anchoring housing beside the upper self-motorized frame, also actuating its locking means of vertical displacement with respect to the main body,

step 10 - the upper self-motorized frame is released from its anchoring to the working wall, and it separates from it by means of actuation of the means of horizontal displacement with respect to the working wall, the device thus being fastened to the working wall solely by means of the intermediate and lower self-motorized frames,

step 11 - the upper self-motorized frame releases its locking means of vertical displacement with respect to the main body and slides upwards by means of actuation of the means of vertical displacement with respect to the main body until being positioned at its upper end, and

step 12 - the upper self-motorized frame approximates the working wall by means of actuation of the means of horizontal displacement with respect to the working wall and it anchors it in the free anchoring housing beside the upper end of the main body, also actuating its locking means of vertical displacement with respect to the main body, again remaining in the initial working phase.



[0020] The downward movement phase comprises the following steps, which shall be repeated until achieving the desired working height or until reaching the ground for dismantling:

step 1 - wherein the device is in working phase, with at least the intermediate and lower self-motorized frames anchored to the working wall,

step 2 - the upper self-motorized frame is released from its anchoring to the working wall, and it separates from it by means of actuation of the means of horizontal displacement with respect to the working wall, the device thus being fastened to the working wall solely by means of the lower and intermediate self-motorized frames,

step 3 - the upper self-motorized frame releases its locking means of vertical displacement with respect to the main body and it slides downwards by means of actuation of the means of vertical displacement with respect to the main body until being positioned beside the intermediate self-motorized frame,

step 4 - the upper self-motorized frame approximates the working wall by means of actuation of the means of horizontal displacement with respect to the working wall and it anchors to it in the free anchoring housing beside the intermediate self-motorized frame,

step 5 - release of the locking means of vertical displacement with respect to the main body of the self-motorized frames fixed to the working wall, the means of vertical displacement with respect to the main body and are actuated and its vertical displacement downward to the new position occurs, wherein the upper self-motorized frame is located at the upper end of the main body,

step 6 - actuation of the locking means of vertical displacement with respect to the main body of the upper self-motorized frame, producing the locking of the main body,

step 7 - the intermediate self-motorized frame is released from its anchoring to the working wall, and it separates from it by means of actuation of the means of horizontal displacement with respect to the working wall, the device thus being fastened to the working wall solely by means of the upper and lower self-motorized frames,

step 8 - the intermediate self-motorized frame releases its locking means of vertical displacement with respect to the main body and it slides downwards by means of actuation of the means of vertical displacement with respect to the main body until being positioned beside the lower self-motorized frame,

step 9 - the intermediate self-motorized frame approximates the working wall by means of actuation of the means of horizontal displacement with respect to the working wall and it anchors it in the free anchoring housing beside the lower self-motorized frame, also actuating its locking means of vertical displacement with respect to the main body,

step 10 - the lower self-motorized frame is released from its anchoring to the working wall, and it separates from it by means of actuation of the means of horizontal displacement with respect to the working wall, the device thus being fastened to the working wall solely by means of the self-motorized frames intermediate and upper,

step 11 - the lower self-motorized frame releases its locking means of vertical displacement with respect to the main body and it slides downwards by means of actuation of the means of vertical displacement with respect to the main body until being positioned at its lower end, and

step 12 - the lower self-motorized frame approximates the working wall by means of actuation of the means of horizontal displacement with respect to the working wall and it anchors it in the free anchoring housing beside the end lower of the main body, also actuating its locking means of vertical displacement with respect to the main body, again remaining in the initial working phase.


Advantages of the invention



[0021] This self-climbing device for vertical and quasi-vertical concrete surfaces presented provides multiple advantages over the devices available at present, the most important one being that it allows going up or climbing any structure, device or machine, such as, for example, a crane or a working platform.

[0022] Another advantage of the present invention is that it is applicable and useable in both vertical and quasi-vertical, flat or curved surfaces, with free geometry and with variable gradient.

[0023] It is important to highlight that, as it is possible to work on surfaces of free geometry, it is especially applicable, for example, to wind turbine towers, bridge stacks or walls and pillars of structures of all types.

[0024] Another important advantage is that the financial cost of this device is considerably more reduced than another type of equivalent elements, to work at the same height, with a great saving in assembly and operating time.

[0025] Another advantage of the present invention is that it is easily to dismantle, transport and reuse, and can be used to access even the most difficult working environments, which makes it more profitable financially.

[0026] Likewise, another advantage is the low visual and structural impact it has on the concrete surface once removed, since the anchoring housings can be easily covered.

[0027] Furthermore, the distance (vertical) between anchors is free and, therefore, the length of each individual advance of the system, obviously limited by the length of the main body.

Description of the figures



[0028] To better understand the object of the present invention, the attached plan has represented a preferred embodiment of a self-climbing device for vertical and quasi-vertical concrete surfaces.

[0029] In said plan,

figure -1- shows a view of the device positioned on the surface of a multisectional prefabricated concrete tower.

Figure -2- shows a view of the device positioned on the surface of a prefabricated concrete tower.

Figure -3- shows an expanded construction detail of any one of the upper, intermediate or lower self-motorized frames.

Figure -4, 5 and 6 - show construction details of any one of the upper, intermediate or lower self-motorized frames


Preferred embodiment of the invention



[0030] The constitution and characteristics of the invention can be better understood with the following description made with reference to the attached figures.

[0031] As can be observed in figure 1, the main body (1) of the device is illustrated, formed by a vertical metal structure, in lattice or a tube, of circular section, quasi-rectangular or another structural element, equipped with a main beam (8), vertically disposed, by way of displacement rail, and at least three upper (2a), intermediate (2b) and lower (2c) self-motorized frames or trolleys, independent of each other and separately controllable, displaceable along the main beam (8) of the main body (1).

[0032] Said main body (1) is shown positioned on the surface of a multisectional prefabricated concrete tower, which shows in its working wall (3) a plurality of anchoring housings (15), designed for a specific operating method that comprises a working phase and an upward or downward movement phase.

[0033] The working phase comprises the anchoring to the working wall (3) of at least two of the upper (2a), intermediate (2b) or lower (2c) self-motorized frames, by means of the corresponding anchoring means (15) to the working wall (3), and the locking of vertical displacement of the upper (2a), intermediate (2b) or lower (2c) self-motorized frames, with respect to the main body (1) by means of the corresponding locking means. In this phase, the device solidly joins the main body (1) and its associated metal working structure to the working wall (3).

[0034] The upward movement phase comprises twelve steps, which shall be cyclically repeated until achieving the desired working height.

[0035] Likewise, the downward movement phase comprises another twelve steps, which shall be repeated until achieving the desired working height or until reaching the ground for the dismantling.

[0036] Figure 2 illustrates the main body (1) of the device, indicating the main beam (8), vertically disposed, by way of displacement rail, and the upper (2a), intermediate (2b) or lower (2c) self-motorized frames, fixed on the working wall (3), indicating an enlargement of the construction detail of any one of the upper (2a), intermediate (2b) or lower (2c) self-motorized frames.

[0037] Figure 3 shows a construction detail of any one of the upper (2a), intermediate (2b) or lower (2c) self-motorized frames, in turn comprising a sliding part (9), partially surrounding the main beam (8), a chassis (10) horizontally displaceable with respect to the sliding part (9) and an anchoring chassis (11) with capacity of rotation with respect to the displaceable chassis (10) by means of a vertically positioned shaft (12) between both.

[0038] Said upper (2a), intermediate (2b) or lower (2c) self-motorized frames have means of vertical displacement with respect to the main body (1), which comprises one or several motors (4), equipped with gearboxes (5) and pinions (6) or attack gears (not illustrated), all disposed on the sliding part (9), which are connected to one or several racks (7) vertically disposed on the main beam (8) of the main body (1).

[0039] Likewise the upper (2a), intermediate (2b) or lower (2c) self-motorized frames, show locking means of vertical displacement with respect to the main body (1), located in the displaceable chassis (10). These locking means can be formed by pins, bolts, wedges or any other known technical solution that prevents the movement between both parts on actuating.

[0040] Likewise, the upper (2a), intermediate (2b) or lower (2c) self-motorized frames have means of horizontal displacement with respect to the working wall (3), which comprises at least two linear actuators (17), actuated by motors (20), disposed on the sides of the sliding part (9), and traversing the displaceable chassis (10) through an opening (19), and connected at their ends with the anchoring chassis (11) by means of vertically positioned rotation axes (18).

[0041] These means of horizontal displacement enable both the approximation and distancing necessary for the coupling and fixing of the device to the working wall (3), and the adaptation of the distance between the device and the working wall (3) in the case that the latter is not regular, such as, for example, in the case of prefabricated concrete towers of variable section by segments.

[0042] The upper (2a), intermediate (2b) or lower (2c) self-motorized frames have rotation means of the main body (1), in the horizontal plane, with respect to the working wall (3), which comprises the anchoring chassis (11), the displaceable chassis (10), the vertically positioned shaft (12) between both, and the linear actuators (17) together with the motors (20). This encourages the possibility of having a rotation of the device with respect to the working wall, especially useful when the device is associated to a crane for the assembly of prefabricated concrete towers and for the hoisting of the nacelle and blades to its upper end.

[0043] It shows the motors (4), the motors (20) and the linear actuators (17), which can be of any of the types known at present, or a combination of various types, although they will preferably be of electric, pneumatic or hydraulic type.

[0044] It also shows anchoring housings (15) disposed in the working wall (3), in vertical line, and these anchoring housings (15) having locking housings (16).

[0045] Figure 4 illustrates one of the upper (2a), intermediate (2b) or lower (2c) self-motorized frames, in a position rotated 90º, indicating the displaceable chassis (10) completely adhered to the sliding part (9), and with the anchoring chassis (11) parallel to the displaceable chassis (10), without rotating.

[0046] Figure 5 illustrates one of the upper (2a), intermediate (2b) or lower (2c) self-motorized frames, in a position rotated 90º, indicating the displaceable chassis (10) separate from the sliding part (9), and with the anchoring chassis (11) parallel to the displaceable chassis (10), without rotating.

[0047] Figure 6 illustrates one of the upper (2a), intermediate (2b) or lower (2c) self-motorized frames, in a position rotated 90º, indicating the displaceable chassis (10) completely adhered to the sliding part (9), and with the anchoring chassis (11) rotated with respect to the displaceable chassis (10).

[0048] Figures 4, 5 and 6 show any one of the upper (2a), intermediate (2b) or lower (2c) self-motorized frames, which have anchoring means to the working wall consisting of a protuberance (13) of the anchoring chassis (11), equipped with one or several locking elements (14) actuable and laterally disposed on said protuberance (13), said protuberance (13) having a configuration preferably chosen from the group formed by truncated pyramid and truncated cone shape.

[0049] It also shows the vertically positioned shaft (12) and the linear actuators (17) actuated by motors (20), disposed on the sides of the sliding part (9), and traversing the displaceable chassis (10) through an opening (19), and connected at their ends with the anchoring chassis (11) by means of rotation axes (18).

[0050] It shows the motors (4), equipped with gearboxes (5) provided for the vertical displacement, disposed on the sliding part (9).


Claims

1. Self-climbing device for vertical and quasi-vertical concrete surfaces, of the type used in its construction, assembly, maintenance and/or repair to raise and lower various types of associated metal structures, characterized in that it comprises a main body (1), formed by a vertical metal structure, chosen from the group formed by lattice, tube, circular section, quasi-rectangular and another, equipped with a main beam (8), vertically disposed, by way of displacement rail, and at least three upper (2a), intermediate (2b) and lower (2c) self-motorized frames, independent of each other and separately controllable, displaceable along the main beam (8) of the main body (1).).
 
2. Self-climbing device for vertical and quasi-vertical concrete surfaces, according to the preceding claim, characterized in that upper (2a), intermediate (2b) and lower (2c) self-motorized frames have

means of vertical displacement with respect to the main body (1),

locking means of vertical displacement with respect to the main body (1),

anchoring means to the working wall (3),

means of horizontal displacement with respect to the working wall (3), and

rotation means of the main body, in the horizontal plane, with respect to the working wall (3).


 
3. Self-climbing device for vertical and quasi-vertical concrete surfaces, according to the preceding claims, characterized in that upper (2a), intermediate (2b) and lower (2c) self-motorized frames, comprise a sliding part (9), partially surrounding the main beam (8), a chassis (10) horizontally displaceable with respect to the sliding part (9) and an anchoring chassis (11) with capacity of rotation with respect to the displaceable chassis (10) by means of a vertically positioned shaft (12) between the anchoring chassis (11) and the displaceable chassis (10).
 
4. Self-climbing device for vertical and quasi-vertical concrete surfaces, according to the preceding claims, characterized in that the means of vertical displacement of the upper (2a), intermediate (2b) and lower (2c) self-motorized frames, with respect to the main body (1) comprises one or several motors (4), with gearboxes (5) and pinions (6) or attack gears, all disposed on the sliding part (9), which are connected to one or several racks (7) vertically disposed on the main beam (8) of the main body (1).
 
5. Self-climbing device for vertical and quasi-vertical concrete surfaces, according to the preceding claims, characterized in that the locking means of vertical displacement of the upper (2a), intermediate (2b) and lower (2c) self-motorized frames, with respect to the main body (1), are located in the displaceable chassis (10).
 
6. Self-climbing device for vertical and quasi-vertical concrete surfaces, according to the preceding claims, characterized in that the anchoring means to the working wall (3) of the upper (2a), intermediate (2b) and lower (2c) self-motorized frames, comprises a protuberance (13) of the anchoring chassis (11), emerging in the face adjacent to the working wall (3), equipped with one or several locking elements (14) actuable and laterally disposed on said protuberance (13), with the protuberance (13) being of shape and size that coincide with anchoring housings (15) disposed in the working wall (3), in vertical line, and with these anchoring housings (15) having locking housings (16), of size, shape and position that coincide with the locking elements (14).
 
7. Self-climbing device for vertical and quasi-vertical concrete surfaces, according to the preceding claims, characterized in that the protuberance (13) of the anchoring chassis (11), and the anchoring housings (15) disposed in the working wall (3) adopt a shape chosen from the group formed by truncated pyramid and truncated cone-shape.
 
8. Self-climbing device for vertical and quasi-vertical concrete surfaces, according to the preceding claims, characterized in that the means of horizontal displacement of the upper (2a), intermediate (2b) and lower (2c) self-motorized frames, with respect to the working wall (3) comprise at least two linear actuators (17), actuated by motors (20), disposed on the sides of the sliding part (9), and traversing the displaceable chassis (10) through an opening (19), and connected at their ends with the anchoring chassis (11) by means of vertically positioned rotation axes (18).
 
9. Self-climbing device for vertical and quasi-vertical concrete surfaces, according to the preceding claims, characterized in that the motors (4), the motors (20) and linear actuators (17) are of the type chosen from the group formed by electric, pneumatic, hydraulic or a combination thereof.
 
10. Self-climbing device for vertical and quasi-vertical concrete surfaces, according to the preceding claims, characterized in that the rotation means of the main body, in the horizontal plane, with respect to the working wall (3) comprises the anchoring chassis (11), the displaceable chassis (10), the vertically disposed axis (12) between both, and the linear actuators (17) together with the motors (20).
 
11. Self-climbing device for vertical and quasi-vertical concrete surfaces, according to the preceding claims, characterized in that it comprises an associated metal working structure, solidly joined to the main body (1), chosen from the group formed by crane, working platform, scaffolding, shuttering and supports.
 
12. Operating method of a self-climbing device for vertical and quasi-vertical concrete surfaces, such as that previously described, characterized in that it comprises a working phase and an upward or downward movement phase.
 
13. Operating method of a self-climbing device for vertical and quasi-vertical concrete surfaces, according to claim 11, characterized in that the working phase comprises the anchoring to the working wall (3) of at least two of the upper (2a), intermediate (2b) or lower (2c) self-motorized frames by means of their anchoring means to the working wall (3), and the locking of the vertical displacement of said self-motorized frames, with respect to the main body (1) by means of their locking means.
 
14. Operating method of a self-climbing device for vertical and quasi-vertical concrete surfaces, according to claim 11, characterized in that the upward movement phase comprises the following steps, which shall be repeated until achieving the desired working height:

step 1 - wherein the device is in working phase, with at least the upper (2a) and intermediate (2b) self-motorized frames, anchored to the working wall (3),

step 2 - of release of the anchoring to the working wall (3) of the lower self-motorized frame (2c) and of separation from said wall by the means of horizontal displacement with respect to the working wall (3), the device being fastened to the working wall (3) solely by means of the upper (2a) and intermediate (2b) self-motorized frames,

step 3 - of release of the locking means of vertical displacement with respect to the main body (1) of the lower self-motorized frame (2c) and of sliding upwards by the means of vertical displacement with respect to the main body (1) until being positioned beside the intermediate self-motorized frame (2b),

step 4 - of approximation to the working wall (3) of the lower self-motorized frame (2c), by the means of horizontal displacement with respect to the working wall (3), and of anchoring in the free anchoring housing (15) beside the intermediate self-motorized frame (2b),

step 5 - of release of the locking means of vertical displacement with respect to the main body (1) of the intermediate (2b) and lower (2c) self-motorized frames (2c), fixed to the working wall (3), and of upward vertical displacement, by the means of vertical displacement with respect to the main body (1), reaching a new position wherein the lower self-motorized frame (2c), is located at the lower end of the main body (1),

step 6 - of locking of the main body (1) by means of the locking means of vertical displacement with respect to the main body (1) of the lower self-motorized frame (2c),

step 7 - of release of the anchoring to the working wall (3) of the intermediate self-motorized frame (2b), and of separation from it by the means of horizontal displacement with respect to the working wall (3), the device being fastened to the working wall (3) solely by means of the upper (2a) and lower (2c) self-motorized frames

step 8 - of release of the locking means of vertical displacement with respect to the main body (1) of the intermediate self-motorized frame (2b), and of sliding upwards by the means of vertical displacement with respect to the main body (1) until being positioned beside the upper self-motorized frame (2a),

step 9 - of approximation of the intermediate self-motorized frame (2b), to the working wall (3) by the means of horizontal displacement with respect to the working wall (3), of anchoring in the free anchoring housing (15) beside the upper self-motorized frame (2a), and of locking by means of its locking means of vertical displacement with respect to the main body (1),

step 10 - of release of the anchoring to the working wall (3) of the upper self-motorized frame (2a), and of separation from it by the means of horizontal displacement with respect to the working wall (3), the device being fastened to the working wall (3) solely by means of the intermediate (2b) and lower (2c) self-motorized frames (2c),

step 11 - of release of the locking means of vertical displacement with respect to the main body (1) of the upper self-motorized frame (2a) and of sliding upwards by the means of vertical displacement with respect to the main body (1) until being positioned at its upper end, and

step 12 - of approximation of the upper self-motorized frame (2a) to the working wall (3) by the means of horizontal displacement with respect to the working wall (3), of anchoring in the free anchoring housing (15) beside the upper end of the main body (1), and of locking by means of its locking means of vertical displacement with respect to the main body (1), again remaining in the initial working phase.


 
15. Operating method of a self-climbing device for vertical and quasi-vertical concrete surfaces, according to claim 11, characterized in that the downward movement phase comprises the following steps, which shall be repeated until achieving the desired working height or dismantling.

step 1 - wherein the device is in working phase, with at least the intermediate (2b) and lower (2c) self-motorized frames anchored to the working wall (3),

step 2 - of release of the anchoring to the working wall (3) of the upper self-motorized frame (2a) and of separation from said wall by the means of horizontal displacement with respect to the working wall (3), the device being fastened to the working wall (3) solely by means of the lower (2c) and intermediate (2b) self-motorized frames,

step 3 - of release of the locking means of vertical displacement with respect to the main body (1) of the upper self-motorized frame (2a) and of sliding downwards by the means of vertical displacement with respect to the main body (1) until being positioned beside the intermediate self-motorized frame (2b),

step 4 - of approximation to the working wall (3) of the upper self-motorized frame (2a), by the means of horizontal displacement with respect to the lower working wall (3), and of anchoring in the free anchoring housing (15) beside the intermediate self-motorized frame (2b),

step 5 - of release of the locking means of vertical displacement with respect to the main body (1) of the upper (2a) and intermediate (2b) self-motorized frames, fixed to the working wall (3), and of downward vertical displacement, by the means of vertical displacement with respect to the main body (1), reaching a new position wherein the lower self-motorized frame (2c), is located at the upper end of the main body (1),

step 6 - of locking of the main body (1) by means of the locking means of vertical displacement with respect to the main body (1) of the upper self-motorized frame (2a),

step 7 - of release of the anchoring to the working wall (3) of the intermediate self-motorized frame (2b), and of separation from it by the means of horizontal displacement with respect to the working wall (3), the device being fastened to the working wall (3) solely by means of the upper (2a) and lower (2c) self-motorized frames,

step 8 - of release of the locking means of vertical displacement with respect to the main body (1) of the intermediate self-motorized frame (2b) and of sliding downwards by the means of vertical displacement with respect to the main body (1) until being positioned beside the lower self-motorized frame (2c),

step 9 - of approximation of the intermediate self-motorized frame (2b), to the working wall (3) by the means of horizontal displacement with respect to the working wall (3), of anchoring in the free anchoring housing (15) beside the upper self-motorized frame (2a), and of locking by means of its locking means of vertical displacement with respect to the main body (1),

step 10 - of release of the anchoring to the working wall (3) of the lower self-motorized frame (2c), and of separation from it by the means of horizontal displacement with respect to the working wall (3), the device being fastened to the working wall (3) solely by means of the intermediate (2b) and upper (2a) self-motorized frames,

step 11 - of release of the locking means of vertical displacement with respect to the main body (1) of the lower (2) self-motorized frame and of sliding downwards by the means of vertical displacement with respect to the main body (1) until being positioned at its lower end, and

step 12 - of approximation of the lower self-motorized frame (2c), to the working wall (3) by the means of horizontal displacement with respect to the working wall (3), of anchoring in the free anchoring housing (15) beside the upper end of the main body (1), and of locking by means of its locking means of vertical displacement with respect to the main body (1), again remaining in the initial working phase.


 




Drawing




























REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description