(19)
(11)EP 3 647 902 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
01.12.2021 Bulletin 2021/48

(21)Application number: 19201558.4

(22)Date of filing:  04.10.2019
(51)International Patent Classification (IPC): 
G06F 1/20(2006.01)
H01L 23/40(2006.01)
H05K 1/02(2006.01)
H01L 23/473(2006.01)
(52)Cooperative Patent Classification (CPC):
H01L 23/40; H01L 23/473; H01L 23/4012; G06F 1/20

(54)

LIQUID-COOLED INTEGRATED CIRCUIT SYSTEM

FLÜSSIGKEITSGEKÜHLTES INTEGRIERTES SCHALTUNGSSYSTEM

SYSTÈME DE CIRCUIT INTÉGRÉ À REFROIDISSEMENT LIQUIDE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.10.2018 US 201816165960

(43)Date of publication of application:
06.05.2020 Bulletin 2020/19

(73)Proprietor: Hewlett Packard Enterprise Development LP
Houston, TX 77070 (US)

(72)Inventors:
  • TSAI, Pinche
    Houston, TX Texas 77070 (US)
  • NGUYEN, Minh H.
    Houtson, TX Texas 77070 (US)

(74)Representative: Iqbal, Md Mash-Hud 
Marks & Clerk LLP 62-68 Hills Road
Cambridge CB2 1LA
Cambridge CB2 1LA (GB)


(56)References cited: : 
US-A1- 2009 237 883
US-A1- 2013 135 812
US-A1- 2012 279 047
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Background



    [0001] Modern computer systems generate large quantities of heat. While some of this heat is generated by power supplies and the like, the majority of the heat is generated by integrated circuits such as processors and memory chips. In order to function properly, these computer systems must be kept within a certain temperature range. Therefore, the heat generated by these processors and memory chips must be dissipated or otherwise removed. US2013135812 describes a liquid-cooled computer memory system including first and second blocks in fluid communication with a chilled liquid source. US2012279047 describes a method of fabricating a liquid-cooled electronic system which includes an electronic assembly having an electronics card and a socket with a latch at one end. US2009237883 describes a board unit comprising a board, a heat generating component, a first heat transfer plate, a heat insulating material that is superimposed on an outer surface of the first heat transfer plate, a second heat transfer plate and a heat receiver.

    Brief Description of the Drawings



    [0002] The present disclosure, in accordance with one or more various embodiments, is described in detail with reference to the following figures. The figures are provided for purposes of illustration only and merely depict typical or example embodiments.

    FIG. 1 is a context diagram of a system in which various embodiments may be implemented.

    FIGS. 2A and 2B show a DIMM package according to one embodiment.

    FIG. 3 shows a view of an edge of the DIMM package of FIG. 2.

    FIG. 4A shows two identical printed circuit assemblies according to one embodiment.

    FIG. 4B shows the two printed circuit assemblies of FIG. 4A brought together in opposition such that the top surfaces of the heat spreaders on each of the printed circuit assemblies contact, and become thermally coupled with, the thermal interface material layers on the other printed circuit assembly.

    FIG. 5 is a perspective view of a printed circuit assembly with the DIMM packages removed.

    FIG. 6 is a perspective view of a printed circuit assembly with the DIMM packages 200 installed in the printed circuit board sockets, and with manifolds attached.

    FIGS. 7A and 7B show a DIMM package featuring an external hinge according to one embodiment.

    FIGS. 8A and 8B show a DIMM package featuring an internal hinge according to one embodiment.

    FIG. 9 shows a process according to one embodiment.



    [0003] The figures are not exhaustive and do not limit the present disclosure to the precise form disclosed.

    Detailed Description



    [0004] Integrated circuits such as Dual Inline Memory Modules (DIMMs) generate a lot of heat, especially in high-density configurations. Many techniques exist to cool them, but there are disadvantages associated with these existing techniques. Air cooling is noisy, and therefore undesirable when deployed near office workers/in a working environment. Liquid immersion cooling is messy when maintenance of the DIMMs is required. Another approach uses DIMM packages that encapsulate the DIMMs in a heat spreader that is thermally coupled to a cooling pipe that circulates a chilled liquid.

    [0005] According to one aspect of the invention, a liquid-cooled integrated circuit system is provided as recited in claim 1. According to another aspect, a method of cooling the plurality of integrated circuit modules of the liquid-cooled integrated circuit system is provided as recited in claim 8. The disclosed embodiments pair two system boards, each having cooling pipes, interleaved between DIMM modules. When the boards are brought together in opposition, the DIMM modules on each system board are cooled by the cooling pipes on the other system board. This approach allows greater densities of DIMMs than previous approaches while still providing the necessary cooling. This approach is also quiet, and so can be located near office personnel. This approach also allows easy maintenance, without the spills associated with liquid immersion cooling systems. While various embodiments are described with reference to DIMMs, it should be appreciated that the disclosed technology can be used to cool any integrated circuit or similar system(s) and element(s)/components therein.

    [0006] FIG. 1 is a context diagram of a system 100 in which various embodiments may be implemented. System 100 includes a computing component 120 that includes a processor 104 and a memory 106. The memory 106 includes a number of DIMM packages 108. System 100 also includes a cooling loop 130. The cooling loop 130 includes a pump 110, a heat exchanger 112, and a reservoir 114. The pump 110 provides cool liquid 130 to the DIMM packages 108. The heat generated by the DIMM packages 108 is passed to the liquid, heating it and cooling the DIMM packages 108. The pump 110 removes the heated liquid 132 from the DIMM packages 108. The heat exchanger 112 cools the heated liquid 132. The reservoir 114 accommodates changes in the volume of the liquid.

    [0007] FIGS. 2A and 2B show a DIMM package 200 according to one embodiment. FIG. 2A is a perspective view of the DIMM package 200 in its assembled state. An exploded view of DIMM package 200 is shown in FIG. 2B. The DIMM package 200 includes a printed circuit board 202 on which one or more integrated circuits, shown generally at 204, are mounted. The printed circuit board 202 is generally double-sided, with integrated circuits 204 mounted upon both sides.

    [0008] Layers of thermal interface material 206a,b are thermally coupled to the integrated circuits 204. One common thermal interface material is a thermal gap pad. However, other thermal interface materials may be used, for example such as thermal grease and the like.

    [0009] In the depicted embodiment, a removable heat spreader having a pair of side plates 208a,b is brought into physical contact with the layers of thermal interface material 206a,b, and is thereby thermally coupled to the thermal interface material 206 a,b. The side plates 208 a,b may be made of aluminum. However, other materials may be used to form the side plates 208 a,b, for example such as stainless steel, or the like. The side plates 208 a,b may be identical in order to reduce manufacturing costs.

    [0010] One or more removable spring clips 210a,b,c,d may be positioned about the side plates 208 a,b to press them against the thermal interface material 206 a,b to ensure proper thermal coupling.

    [0011] FIG. 3 shows a view of an edge of the DIMM package 200 of FIG. 2. FIG. 3 shows the printed circuit board 202, the integrated circuits 204a,b, the layers of thermal interface material 206a,b, the heat spreader plates 208a,b, and the spring clips 210a,b,c. Features of particular interest for the disclosed technology include the upper surface 302 of the heat spreader plates 208 formed by one or more of the side plates 208 extending across the edge of the printed circuit board 202 opposite the connector edge 304. These features are discussed in more detail below.

    [0012] FIG. 4A shows two identical printed circuit assemblies 400A and 400B according to one embodiment. Each of printed circuit assemblies 400A and 400B includes a system board 402, upon which a plurality of printed circuit board sockets, one of which is referenced as 404, are mounted in parallel. A cooling pipe 406 is mounted adjacent to, and parallel to each printed circuit board socket 404. A layer of thermal interface material 408 is disposed upon, and thermally coupled to, each cooling pipe 406 on the side of the cooling pipe opposite the system board 402. A plurality of DIMM packages, one of which is referenced as 200, are electrically coupled to the system board 402. In particular, the connector edge 304 of each DIMM package 200 is disposed in one of the printed circuit board sockets 404.

    [0013] When the two printed circuit assemblies 400A and 400B are brought together in opposition, as shown in FIG 4B, the top surfaces 302 of the heat spreaders 208a,b on each of the printed circuit assemblies 400 contact, and become thermally coupled with, the thermal interface material layers 408 on the other printed circuit assembly 400, as indicated at 410A and 410B. In this configuration, the DIMM packages 200 on each printed circuit assembly 400 are cooled by the cooling pipes 406 of the other printed circuit assembly 400.

    [0014] FIG. 5 is a perspective view of a printed circuit assembly 400 with the DIMM packages 200 removed. Referring to FIG. 5, the printed circuit board sockets 404, the adjacent and parallel cooling pipes 406, and the layers of thermal interface material 408 disposed upon the parallel cooling pipes 406 may be seen clearly.

    [0015] FIG. 6 is a perspective view of a printed circuit assembly 400 with the DIMM packages 200 installed in the printed circuit board sockets 404, and with manifolds attached. Referring back to FIG. 5, a first end of each cooling pipe 406 is coupled to an input manifold 606A, and a second end of each cooling pipe 406 is coupled to an output manifold 606B. In operation, cool liquid enters the cooling pipes through the input manifold 606A, and heated liquid leaves the cooling pipes through the output manifold 606B.

    [0016] FIGS. 7A and 7B show a DIMM package featuring an external hinge according to one embodiment. FIG. 7B shows an exploded view, while FIG. 7A shows an assembled view. The DIMM package 700 includes a printed circuit board 702 upon which are mounted one or more integrated circuits, shown generally at 704. The printed circuit board 702 is generally double-sided, with integrated circuits 704 mounted upon both sides.

    [0017] Layers of thermal interface material 706 are thermally coupled to the integrated circuits 704. One common thermal interface material is a thermal gap pad. However, other thermal interface materials may be used.

    [0018] In the depicted embodiment, a removable heat spreader constituting a pair of side plates 708a,b joined by an external hinge 720 is brought into physical contact with the layers of thermal interface material 706a,b, and is thereby thermally coupled to the thermal interface material 706a,b. The side plates 708a,b may be made of aluminum. However, other materials may be used to form the side plates 708a,b.

    [0019] One or more removable spring clips 710a,b may be positioned about the side plates 708 to press them against the thermal interface material 706 to ensure proper thermal coupling.

    [0020] FIGS. 8A and 8B show a DIMM package featuring an internal hinge according to one embodiment. FIG. 8B shows an exploded view, while FIG. 8A shows an assembled view. The DIMM package 800 includes a printed circuit board 802 upon which are mounted one or more integrated circuits, shown generally at 804. The printed circuit board 802 is generally double-sided, with integrated circuits 804 mounted upon both sides.

    [0021] Layers of thermal interface material 806 are thermally coupled to the integrated circuits 804. One common thermal interface material is a thermal gap pad. However, other thermal interface materials may be used.

    [0022] In the depicted embodiment, a removable heat spreader constituting a pair of side plates 808 joined by an internal hinge 820 is brought into physical contact with the layers of thermal interface material 806, and is thereby thermally coupled to the thermal interface material 806. The side plates 808 may be made of aluminum. However, other materials may be used to form the side plates 808.

    [0023] One or more removable spring clips 810 may be positioned about the side plates 808 to press them against the thermal interface material 806 to ensure proper thermal coupling.

    [0024] FIG. 9 shows a process 900 according to one embodiment. Although the steps of the process are shown in a particular sequence, some or all of the steps may be performed in other sequences, in parallel, or combinations thereof, and some of the steps may be omitted without departing from the scope of the appended claims. Referring to FIG. 9, two printed circuit assemblies 400 are provided, at 902. Each printed circuit assembly 400 includes a system board 402, plurality of printed circuit board sockets 404 mounted on the system board 402 in parallel, a plurality of cooling pipes 406 each mounted on the system board 402 parallel to and adjacent to a respective one of the printed circuit board sockets 404, each of the cooling pipes 406 having a first layer of thermal interface material 408 adhered thereto on a side of the cooling pipe 406 opposite the system board 402.

    [0025] The process 900 includes providing a plurality of integrated circuit modules, at 904. For example, the integrated circuit modules may include one or more DIMM packages 200. Each integrated circuit module includes a printed circuit board 202 having a connector edge 304 disposed in one of the printed circuit board sockets 404, one or more integrated circuits 204 mounted on the printed circuit board 202, a second layer of thermal interface material 206 thermally coupled with the integrated circuits 204, and a removable heat spreader 208 thermally coupled with the second layer of thermal interface material 206, the heat spreader 208 having a top surface 302 extending across an edge of the printed circuit board 202 opposite the connector edge 304.

    [0026] The two printed circuit assemblies are brought together in opposition, at 906, such that the top surfaces 302 of the heat spreaders 208 on each of the printed circuit assemblies 400 contact, and become thermally coupled with, the first thermal interface material layers 408 on the other printed circuit assembly 400.

    [0027] The process 900 includes coupling a first end of each cooling pipe 406 to a first manifold 606A, and coupling a second end of each cooling pipe 406 to a second manifold 606B, at 908.

    [0028] The process 900 includes coupling a pump 110, heat exchanger 112, and reservoir 114 in fluid communication with the first and second manifolds 606A,B, at 910.

    [0029] The process 900 includes operating the pump 110 to pass a liquid through the cooling pipes 406.


    Claims

    1. A liquid-cooled integrated circuit system (100) comprising:

    two printed circuit assemblies (400A, 400B), each comprising:

    a system board (402),

    a plurality of printed circuit board sockets (404) mounted in parallel on the system board (402),

    a plurality of liquid cooling pipes (406) each mounted on the system board (402) adjacent to and parallel to one of the printed circuit board sockets (404),

    a plurality of integrated circuit modules (200), each of the plurality of integrated circuit modules (200) comprising a printed circuit board (202) having a connector edge disposed in one of the printed circuit board sockets (404), and

    a plurality of heat spreaders, each thermally coupled with a corresponding one of the integrated circuit modules (200), wherein each of the plurality of heat spreaders comprises a pair of side plates (208 a, 208 b) located on opposite sides of a corresponding printed circuit board (202), and a top surface (302) extending across an edge of the corresponding printed circuit board (202) opposite the connector edge;

    wherein the printed circuit assemblies (400A, 400B) are configured to be arranged opposite one another such that the integrated circuit modules (200) of the two printed circuit assemblies (400A, 400B) are interleaved with one another, and the top surfaces (302) of the heat spreaders of each of the printed circuit assemblies (400A, 400B) are thermally coupled with the liquid cooling pipes (406) of the other printed circuit assembly (400A, 400B).


     
    2. The system of claim 1, further comprising:

    a first manifold (606A) coupled to a first end of each liquid cooling pipe (406); and

    a second manifold (606B) coupled to a second end of each liquid cooling pipe (406).


     
    3. The system of claim 1 or 2, further comprising:
    a cooling loop (130) comprising

    a pump (110) in fluid communication with the first and second manifolds (606A, 606B),

    a heat exchanger (112) in fluid communication with the first and second manifolds (606A, 606B), and

    a reservoir (114) in fluid communication with the first and second manifolds (606A, 606B).


     
    4. The system of any preceding claim, further comprising:
    a removable spring clip (210) positioned about the side plates (208 a, 208b) to press them against the corresponding integrated circuit module (200).
     
    5. The system of claim 1, wherein each heat spreader further comprises:
    an external hinge (720) pivotably joining the two side plates (708).
     
    6. The system of claim 1, wherein each heat spreader further comprises:
    an internal hinge (820) pivotably joining the two side plates (808).
     
    7. The liquid-cooled integrated circuit system of any preceding claim, wherein:

    each of the cooling pipes (406) has a first layer of thermal interface material (408) adhered thereto on a side of the cooling pipe (406) opposite the system board (402);

    the plurality of integrated circuit modules (200) each comprises:

    one or more integrated circuits (204) mounted on the printed circuit board (202),

    a second layer of thermal interface material (206a, 206b) thermally coupled with the integrated circuits (204), and

    the heat spreaders are removable heat spreaders thermally coupled with the second layer of thermal interface material (206a, 206b);

    wherein the two printed circuit assemblies (400A, 400B) are placed together in opposition such that the top surfaces (302) of the heat spreaders on each of the printed circuit assemblies (400A, 400B) contact, and become thermally coupled with, the first thermal interface material layers (408) on the other printed circuit assembly (400A, 400B).
     
    8. A method of cooling a plurality of integrated circuit modules (200) of a liquid-cooled integrated circuit system (100) according to claim 1.
     
    9. The method of claim 8, further comprising:
    passing a liquid through the liquid cooling pipes (406).
     
    10. The method of claim 9, further comprising:

    coupling a first end of each liquid cooling pipe (406) to a first manifold (606A);

    coupling a second end of each liquid cooling pipe (406) to a second manifold (606B); and

    passing the liquid through the manifolds (606A, 606B) and the liquid cooling pipes (406).


     
    11. The method of any one of claims 8 to 10, further comprising:
    for each of the integrated circuit modules (200), placing a removable spring clip (210) about the side plates (208 a, 208 b) to press them against the corresponding integrated circuit module (200).
     


    Ansprüche

    1. Flüssigkeitsgekühltes System (100) einer integrierten Schaltung, das Folgendes umfasst:

    zwei gedruckte Schaltungsanordnungen (400A, 400B), die jeweils Folgendes umfassen:

    eine Systemplatine (402),

    mehrere Leiterplattensockel (404), die parallel auf der Systemplatine (402) montiert sind,

    mehrere Flüssigkeitskühlrohre (406), die jeweils auf der Systemplatine (402) angrenzend zu und parallel zu einem der Leiterplattensockel (404) montiert sind,

    mehrere Module (200) der integrierten Schaltung, wobei jedes der mehreren Module (200) der integrierten Schaltung eine Leiterplatte (202) umfasst, die eine Verbinderkante aufweist, die in einem der Leiterplattensockel (404) eingerichtet ist, und

    mehrere Wärmeableiter, die jeweils mit einem entsprechenden der Module (200) der integrierten Schaltung thermisch gekoppelt sind, wobei jeder der mehreren Wärmeableiter ein Paar Seitenplatten (208a, 208b), die sich auf gegenüberliegenden Seiten einer entsprechenden Leiterplatte (202) befinden, und eine obere Oberfläche (302) umfasst, die sich über eine Kante der entsprechenden Leiterplatte (202) gegenüber der Verbinderkante erstreckt;

    wobei die gedruckten Schaltungsanordnungen (400A, 400B) dazu konfiguriert sind, derart einander gegenüberliegend arrangiert zu werden, dass die Module (200) der integrierten Schaltung der zwei gedruckten Schaltungsanordnungen (400A, 400B) miteinander verschachtelt sind, und die oberen Oberflächen (302) der Wärmeableiter jeder der gedruckten Schaltungsanordnungen (400A, 400B) mit den Flüssigkeitskühlrohren (406) der anderen gedruckten Schaltungsanordnung (400A, 400B) thermisch gekoppelt sind.


     
    2. System nach Anspruch 1, das ferner Folgendes umfasst:

    einen ersten Verteiler (606A), der mit einem ersten Ende jedes Flüssigkeitskühlrohrs (406) gekoppelt ist; und

    einen zweiten Verteiler (606B), der mit einem zweiten Ende jedes Flüssigkeitskühlrohrs (406) gekoppelt ist.


     
    3. System nach Anspruch 1 oder 2, das ferner Folgendes umfasst:
    einen Kühlkreislauf (130), der Folgendes umfasst:

    eine Pumpe (110) in Fluidverbindung mit dem ersten und dem zweiten Verteiler (606A, 606B),

    einen Wärmetauscher (112) in Fluidverbindung mit dem ersten und dem zweiten Verteiler (606A, 606B), und

    ein Reservoir (114) in Fluidverbindung mit dem ersten und dem zweiten Verteiler (606A, 606B).


     
    4. Verfahren nach einem der vorhergehenden Ansprüche, das ferner Folgendes umfasst:
    eine abnehmbare Federklammer (210), die um die Seitenplatten (208a, 208b) herum positioniert ist, um sie gegen das entsprechende Modul (200) der integrierten Schaltung zu drücken.
     
    5. System nach Anspruch 1, wobei jeder Wärmeableiter ferner Folgendes umfasst:
    ein äußeres Scharnier (720), das die beiden Seitenplatten (708) schwenkbar zusammenfügt.
     
    6. System nach Anspruch 1, wobei jeder Wärmeableiter ferner Folgendes umfasst:
    ein inneres Scharnier (820), das die beiden Seitenplatten (808) schwenkbar zusammenfügt.
     
    7. Flüssigkeitsgekühltes System der integrierten Schaltung nach einem der vorhergehenden Ansprüche, wobei:

    jedes der Kühlrohre (406) eine erste Schicht aus thermischem Grenzflächenmaterial (408) aufweist, die auf einer Seite des Kühlrohrs (406) gegenüber der Systemplatine (402) daran haftet;

    die mehreren Module (200) der integrierten Schaltung jeweils Folgendes umfassen:

    eine oder mehrere integrierte Schaltungen (204), die auf der Leiterplatte (202) montiert sind,

    eine zweite Schicht aus thermischem Grenzflächenmaterial (206a, 206b), die mit den integrierten Schaltungen (204) thermisch gekoppelt ist, und

    wobei die Wärmeableiter abnehmbare Wärmeableiter sind, die mit der zweiten Schicht aus thermischem Grenzflächenmaterial (206a, 206b) thermisch gekoppelt sind;

    wobei die zwei gedruckten Schaltungsanordnungen (400A, 400B) derart gegenüberliegend zusammen platziert sind, dass die oberen Oberflächen (302) der Wärmeableiter auf jeder der gedruckten Schaltungsanordnungen (400A, 400B) die ersten thermischen Grenzflächenmaterialschichten (408) auf der anderen gedruckten Schaltungsanordnung (400A, 400B) berühren und mit diesen thermisch gekoppelt werden.


     
    8. Verfahren zum Kühlen mehrerer Module (200) der integrierten Schaltung eines flüssigkeitsgekühlten Systems (100) der integrierten Schaltung nach Anspruch 1.
     
    9. Verfahren nach Anspruch 8, das ferner Folgendes umfasst:
    Leiten einer Flüssigkeit durch die Flüssigkeitskühlrohre (406).
     
    10. Verfahren nach Anspruch 9, das ferner Folgendes umfasst:

    Koppeln eines ersten Endes jedes Flüssigkeitskühlrohrs (406) mit einem ersten Verteiler (606A);

    Koppeln eines zweiten Endes jedes Flüssigkeitskühlrohrs (406) mit einem zweiten Verteiler (606B); und

    Leiten der Flüssigkeit durch die Verteiler (606A, 606B) und die Flüssigkeitskühlrohre (406).


     
    11. Verfahren nach einem der Ansprüche 8 bis 10, das ferner Folgendes umfasst:
    für jedes der Module (200) der integrierten Schaltung, Platzieren einer abnehmbaren Federklammer (210) um die Seitenplatten (208a, 208b) herum, um sie gegen das entsprechende Modul (200) der integrierten Schaltung zu drücken.
     


    Revendications

    1. Système (100) comprenant :

    deux ensembles de circuits imprimés (400A, 400B), chacun comprenant :

    un ensemble carte de circuit imprimé (402),

    une pluralité de douilles (404) de tête d'impression montées dans la carte système (402),

    une pluralité de tuyaux de refroidissement liquide (406) montés chacun sur la carte système (402) de manière adjacente et parallèle à l'une des douilles (404) de carte de circuit imprimé,

    une pluralité de modules de circuit intégré (200), chacun de la pluralité de modules de circuit intégré (200) comprenant une carte de circuit imprimé (202) ayant un bord de connecteur disposé dans l'une des douilles (404) de carte de circuit imprimé, et

    une pluralité de dissipateurs de chaleur, chacun accouplé thermiquement à un module correspondant des modules de circuit intégré (200), chacun de la pluralité de dissipateurs de chaleur comprenant une paire de plaques latérales (208a, 208b) situées sur les côtés opposés d'une carte de circuit imprimé (202) correspondante, et une surface supérieure (302) s'étendant sur un bord de la carte de circuit imprimé (202) correspondante opposée au bord du connecteur ;

    les ensembles de circuits imprimés (400A, 400B) étant conçus pour être disposés l'un en face de l'autre de telle sorte que les modules de circuits intégrés (200) des deux ensembles de circuits imprimés (400A, 400B) sont intercalés l'un avec l'autre, et les surfaces supérieures (302) des dissipateurs de chaleur de chacun des ensembles de circuits imprimés (400A, 400B) sont accouplés thermiquement aux tuyaux de refroidissement de liquide (406) de l'autre ensemble de circuits imprimés (400A, 400B).


     
    2. Système selon la revendication 1, comprenant en outre :

    un premier collecteur (606A) accouplé à une première extrémité de chaque tuyau de refroidissement de liquide (406) ; et

    un second collecteur (606B) accouplé à une seconde extrémité de chaque tuyau de refroidissement de liquide (406).


     
    3. Système selon la revendication 1 ou 2, comprenant en outre :
    une boucle de refroidissement (130) comprenant

    une pompe (110) en communication fluidique avec les premier et second collecteurs (606A, 606B),

    un échangeur de chaleur (112) en communication fluidique avec les premier et second collecteurs (606A, 606B), et

    un réservoir (114) en communication fluidique avec les premier et second collecteurs (606A, 606B).


     
    4. Procédé selon une quelconque revendication précédente, comprenant en outre :
    une attache à ressort amovible (210) positionnée autour des plaques latérales (208a, 208b) pour les presser contre le module de circuit intégré (200) correspondant.
     
    5. Système selon la revendication 1, chaque dissipateur de chaleur comprenant en outre :
    une charnière externe (720) reliant de manière pivotante les deux plaques latérales (708).
     
    6. Système selon la revendication 1, chaque dissipateur de chaleur comprenant en outre :
    une charnière interne (820) reliant de manière pivotante les deux plaques latérales (808).
     
    7. Système de circuit intégré refroidi par liquide selon l'une quelconque des revendications précédentes :

    chacun des tuyaux de refroidissement (406) ayant une première couche de matériau d'interface thermique (408) collée sur un côté du tuyau de refroidissement (406) opposé à la carte système (402) ;

    la pluralité de modules de circuit intégré (200) comprenant chacun :

    un ou plusieurs circuits intégrés (204) montés sur la carte de circuit imprimé (202),

    une seconde couche de matériau d'interface thermique (206a, 206b) accouplée thermiquement aux circuits intégrés (204), et

    les dissipateurs de chaleur étant des dissipateurs de chaleur amovibles accouplés thermiquement à la seconde couche de matériau d'interface thermique (206a, 206b) ;

    les deux ensembles de circuits imprimés (400A, 400B) étant disposés ensemble en opposition de telle sorte que les surfaces supérieures (302) des dissipateurs de chaleur sur chacun des ensembles de circuits imprimés (400A, 400B) entrent en contact avec les, et deviennent thermiquement accouplées aux, premières couches de matériau d'interface thermique (408) sur l'autre ensemble de circuit imprimé (400A, 400B).


     
    8. Procédé de refroidissement d'une pluralité de modules de circuit intégré (200) d'un système (100) de circuit intégré refroidi par liquide selon la revendication 1.
     
    9. Procédé selon la revendication 8, comprenant en outre :
    le passage d'un liquide à travers les tuyaux de refroidissement de liquide (406).
     
    10. Procédé selon la revendication 9, comprenant en outre :

    l'accouplement d'une première extrémité de chaque tuyau de refroidissement de liquide (406) à un premier collecteur (606A) ;

    l'accouplement d'une seconde extrémité de chaque tuyau de refroidissement de liquide (406) à un second collecteur (606B) ; et

    le passage du liquide à travers les collecteurs (606A, 606B) et les tuyaux de refroidissement de liquide (406).


     
    11. Procédé selon l'une quelconque des revendications 8 à 10, comprenant en outre :
    pour chacun des modules de circuit intégré (200), la mise en place d'une attache à ressort amovible (210) autour des plaques latérales (208a, 208b) pour les presser contre le module de circuit intégré (200) correspondant.
     




    Drawing



































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description