(19)
(11)EP 3 650 688 A1

(12)EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43)Date of publication:
13.05.2020 Bulletin 2020/20

(21)Application number: 18828886.4

(22)Date of filing:  29.06.2018
(51)Int. Cl.: 
F03D 80/10  (2016.01)
(86)International application number:
PCT/ES2018/070470
(87)International publication number:
WO 2019/008205 (10.01.2019 Gazette  2019/02)
(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.07.2017 ES 201730909

(71)Applicant: ADWEN Offshore, S.L.
48170 Zamudio (ES)

(72)Inventor:
  • LÓPEZ EZQUERRO, Javier
    31600 Burlada (Navarra) (ES)

(74)Representative: Aspacher, Karl-Georg 
Siemens Wind Power GmbH & Co. KG Postfach 22 16 34
80506 München
80506 München (DE)

  


(54)BEACON ILLUMINATION DEVICE AND WIND TURBINE COMPRISING SAID DEVICE


(57) The invention relates to a beacon illumination device for signalling the presence of a wind turbine to aircraft, comprising an illuminator device (7) having at least one light-emitting diode (7a), at least one beacon light (6) that can be mounted on an end part of the wind turbine at a distance from the illuminator device (7), at least one light conductor having optical fibres (8a) for transmitting light from the illuminator device (7) to the beacon light (6), with the optical fibres (8a) being grouped in at least one bundle (8) of optical fibres (8a), with the illuminator device (7) also having an optical collimator (7b) with at least one collimator lens (7c) disposed between the light inlet of the optical fibres (8a) and the light-emitting diode (7a), for converting scattered light emitted by the light-emitting diode (7a) into a parallel beam of light and transmitting same towards the light inlet of the optical fibres (8a).
Resumen: Dispositivo de iluminacion de balizado, para sefialización a aeronaves de la presencia de un aerogenerador, que comprende un dispositivo iluminador (7) con al menos un diodo emisor de luz (7a), al menos una luz de balizado (6)susceptible de estar montada en una parte extrema del aerogenerador en una posición alejada del dispositivo iluminador (7), al menos un conductor de luz que comprende fibras opticas (8a), para transmitir luz desde el dispositivo iluminador (7) a la luz de balizado (6), las fibras opticas (8a) están agrupadas en al menos un mazo (8) de fibras opticas (8a), comprendiendo el dispositivo iluminador (7) además un colimador óptico (7b) que comprende menos una lente colimadora (7c) dispuesta entre la entrada de luz de las fibras opticas (8a) y el diodo emisor de luz (7a), para convertir luz dispersa emitida por el diodo emisor de luz (7a) en un haz de luz paralelo y transmitirlo hacia la entrada de luz de las fibras opticas (8a).




Description

Technical sector



[0001] The present invention relates to a beacon illumination device of the type used to signal the presence of a wind turbine to aircraft. It is of use in the field of safety in the air and of construction, and the maintenance of wind turbines and other buildings.

[0002] It also relates to a wind turbine that comprises the illumination device.

Prior art



[0003] For safety reasons, all constructions above a certain height have to include beacon illumination signaling their position to approaching aircraft. In the case of wind turbines, these lights are required to stand out brightly against the rest of the terrain and must frequently be located on the crest of hills or mountains. In addition, beacon illumination of wind turbines and other very high constructions is usually exposed to the impact of electric rays that may cause the destruction of the electrical part of the beacon illumination, resulting in the need for repair or replacement thereof.

[0004] Wind turbine blades, where the highest point of the wind turbine changes as the blades turn therefore have to carry beacon illumination (for example, in accordance with the German regulations, four 5 W or more lights at the tip and at a second height), which means that there is a need to install a power supply and illumination on all the blades, and this situation is exacerbated by the fact that beacon illumination is customarily positioned very close to the lightning arrestor of the blade. The German company Enertrag Windfeld Systemtechnik GmbH designed a system in which the beacon illumination, arranged in an end part of the blade of the wind turbine, which comprises a block of acrylic material in which are embedded high-power LEDs arranged in an aluminum support and each connected to a driver, is connected by means of an electrical conductor cable to an electricity power supply source located in the root of the blade of the wind turbine. However, in the event of lightning strike, the electrical energy from the lightning also leaks to the electrical conductor cable, in addition to the fact that the electronic components present in the beacon illumination may attract lightning, notwithstanding their being embedded in a block of acrylic material.

[0005] In an attempt to mitigate these problems, patent application ES2353320A1, from the Spanish company Gamesa Innovation & Technology, S.L., describes a beacon device that comprises a luminous beacon based on LEDs arranged in the region of the tip of a blade of a wind turbine, a converter that converts luminous energy into electrical energy also arranged adjacent the luminous beacon, and an optical fiber cable connected to the converter and to a laser light emitter arranged in the zone of the root of the blade. Although this system does not generate the aforementioned problems of the electrical conductor cable, the conversion of the luminous energy into electrical energy that takes place does not actually make it possible to achieve the necessary power for correct beacon illumination and, in addition, the converter and the LED driver are formed by electronic circuits that, as well as attracting lightning, are arranged in the vicinity of the lightning arrestor of the blade and may be destroyed in the event of lightning strike.

[0006] Application WO03050412A1 describes a beacon illumination device, for signaling the presence of a blade of a wind turbine to aircraft, that comprises an illuminator device that comprises at least one light-emitting diode or a laser light source arranged inside the blade or the hub of the rotor of the wind turbine and at least one beacon light arranged in the tip of the blade. The light generated by the illuminator device is transmitted to the beacon light by means of optical fiber cables used as light conductors. The illuminator device faces a light inlet end of the optical fiber cable, while the beacon light is connected to a light outlet end of the optical fiber cable. There is no description of how it is possible to arrive at the situation in which the beacon light has sufficient intensity to be able to fulfil its illumination function that alerts nearby aircraft to the presence of the blades of the wind turbine, since it mentions only that the light exiting the outlet end of the optical fiber may be connected to a light receiving diode.

[0007] It was therefore desirable to develop a safe, simple device which is also easy to maintain and that guarantees the correct functioning of the beacon illumination.

Description of the invention



[0008] An object of the present invention is to resolve the aforementioned prior-art drawbacks by means of a device for signaling the presence of a wind turbine to aircraft and a wind turbine that comprises the beacon illumination device.

[0009] The beacon illumination device comprises an illuminator device that comprises at least one light-emitting diode capable of being arranged in an interior part of the wind turbine, at least one beacon light capable of being mounted at an end part of the wind turbine in a position at a distance from the illuminator device, at least one light conductor that comprises optical fibers for transmitting light from the illuminator device to the beacon light, the illuminator device facing light inlet ends of the optical fibers and each optical fiber comprising a light outlet end, wherein
the optical fibers are grouped in at least one bundle of optical fibers,
the illuminator device further comprises an optical collimator that comprises at least one collimator lens arranged between the light inlet of the optical fibers and the light-emitting diode, for converting scattered light emitted by the light-emitting diode into a parallel light beam and transmitting same toward the light inlet of the optical fibers.

[0010] The beacon light may comprise an optical diffuser arranged at the light outlet end of the optical fibers of the bundle of optical fibers, and preferably comprises a diffuser optical lens.

[0011] The optical collimator may comprise a concave reflector that directs the scattered light emitted by the light-emitting diode toward the collimator optical lens.

[0012] In one embodiment of the invention, the bundle of optical fibers comprises a principal trunk and at least one branch deriving from the principal trunk. Each branch comprises at least one optical fiber originating from the principal trunk, the light outlet ends of the optical fibers of the principal trunk and of each branch are connected to respective beacon lights.

[0013] The illuminator device may comprise a plurality of light-emitting diodes. In this case, the illuminator device may comprise a concave reflector that directs the scattered light emitted by the plurality of light-emitting diodes toward the collimator lens of the optical collimator.

[0014] The wind turbine according to the invention comprises a tower, a nacelle mounted on an upper part of the tower, a hub on which is mounted at least one blade, and an electrical machine connected to the hub and housed in the nacelle, and also one beacon illumination device comprises an illuminator device that comprises at least one light-emitting diode capable of being arranged in an interior part of the wind turbine, at least one beacon light capable of being mounted on an end part of the wind turbine in a position at a distance from the illuminator device, and at least one light conductor that comprises optical fibers for transmitting light from the illuminator device to the beacon light, the illuminator device facing light inlet ends of the optical fibers and each optical fiber comprising a light outlet end, wherein the optical fibers are grouped in at least one bundle of optical fibers,
the illuminator device further comprises an optical collimator that comprises at least one collimator lens arranged between the light inlet of the optical fibers and the light-emitting diode, for converting scattered light emitted by the light-emitting diode into a parallel light beam and transmitting same toward the light inlet of the optical fibers.

[0015] The optical collimator may comprise a concave reflector that directs the scattered light emitted by the light-emitting diode toward the collimator optical lens.

[0016] In one embodiment of the wind turbine, each of the blades thereof comprises a root that is connected to the hub, a tip, a leading edge, a trailing edge and a shell that constitutes an exterior covering of the blade, and it comprises at least one beacon light in an end part of each blade, close to the tip of each blade. The beacon lights are connected to at least one illuminator device arranged inside the hub by means of respective bundles of optical fibers such that it turns with the hub, and each bundle of optical fibers extends internally through the blade such that the light outlet ends of the optical fibers are in contact with a part of the beacon light. Each beacon light is connected via the bundle of optical fibers to a single illuminator device.

[0017] Each blade may comprise a principal beam that in turn comprises a front wall facing the leading edge of the blade and extends between the root and the tip of the blade. On said front wall of the principal beam is arranged a guide profile that guides the bundle of optical fibers toward the beacon light.

[0018] In one embodiment, the beacon light may comprise a diffuser lens mounted on a fitting that is mounted in the shell of the blade. This fitting comprises a rear tubular extension that traverses the shell. The optical fibers are secured inside the rear tubular extension such that their light outlet ends are in contact with the diffuser lens.

[0019] In another embodiment, the beacon light comprises a light diffuser cover arranged, in a zone of the tip of the blade, externally on the shell. The optical fibers traverse the shell of the blade toward the exterior and are embedded in a resin layer applied between the shell and the light diffuser cover such that the light outlet ends of the optical fibers are in contact with the light diffuser cover, forming points of light that are diffused by the light diffuser cover.

[0020] In a subsequent embodiment, the shell of the blade comprises a transparent part in a part of the tip of the blade, and the outlet ends of the optical fibers of the bundle of optical fibers are connected to an optical diffuser positioned inside the blade such that the light exiting the optical diffuser is projected to the exterior of the blade (5) via the transparent part.

[0021] Alternately, or to complement the presence of the beacon lights on the blades of the wind turbine, there may also be a plurality of beacon lights distanced from one another over the periphery of the tower of the wind turbine and connected by means of respective bundles of optical fibers to the at least one illuminator device. Each beacon light may be connected via the bundle of optical fibers to a single illuminator device.

[0022] According to a first embodiment of the wind turbine, each beacon light comprises a diffuser lens mounted on a fitting that is mounted on the wall of the tower. This fitting comprises a rear tubular extension that traverses the wall, and the optical fibers are secured inside the rear tubular extension such that their light outlet ends are in contact with the diffuser lens.

Description of the drawings



[0023] Embodiments of the invention will be described below with reference to the schematic drawings that form an integral part of the present description, in which

Figure 1 is a view in front elevation of a wind turbine incorporating the illumination device according to the invention;

Figure 2 is a view of an embodiment of an illuminator device according to the invention;

Figure 3 is a sectioned plan view of a wind turbine blade incorporating the beacon light according to the invention;

Figure 4 is a sectional view on line A-A, which appears in Figure 3;

Figure 5 is an upper plan view of the exterior end part of the blade illustrated in Figure 3;

Figure 6 is a sectional view on the line B-B, which appears in Figure 3;

Figure 7 is an upper plan view of the exterior end part of a wind turbine blade with a beacon light according to one more embodiment of the invention;

Figure 8 is a sectional view on line C-C, which appears in Figure 7;

Figure 9 is an upper plan view of the exterior end part of a wind turbine blade with a beacon light according to a subsequent embodiment of the invention;

Figure 10 is a view in rear elevation of a rotor of a wind turbine that houses an illuminator device according to another embodiment of the invention;

Figure 11 is a horizontal sectional view of a wind turbine tower in which the illumination device is arranged, according to a subsequent embodiment of the invention;

Figure 12 is a sectional view on line D-D, which appears in Figure 11;

Figure 13 is a view in front elevation of one of the beacon lights shown in Figure 11;

Figure 14 is a view in elevation of the illuminator device for the embodiment of the illumination device shown in Figure 11.



[0024] Reference signs appear in these figures, identifying the following elements:
1
wind turbine
2
tower
2a
wall
3
nacelle
4
hub
5
blade
5a
root of the blade
5b
tip of the blade
5c
leading edge
5d
trailing edge
5e
principal beam
5f
shell
6
beacon light
6'
beacon illumination
6a
diffuser lens
6b
fitting
6c
rear tubular extension
6d
light diffuser cover
6e
adhesive resin layer
6f
light tip
6g
transparent part
6h
optical diffuser
7
illuminator device
7a
light-emitting diode
7b
optical collimator
7c
collimator lens
7d
concave reflector
7e
electrical power supply device
7f
electrical connection lines
7g
heat dissipator
7h
casing
8
bundle of optical fibers
8a
optical fibers
9
securing element
10
grouping element
11
guide profile
12
lightning arrestor
12a
protective profile

Embodiments of the invention



[0025] A brief description is given below of embodiments of the invention, as an illustrative, non-limiting example thereof.

[0026] Figure 1 shows a wind turbine -1-, which is conventional per se, which incorporates an embodiment of the beacon illumination device according to the invention.

[0027] The wind turbine -1- comprises a tower -2-, a nacelle -3-mounted on the upper part of the tower -2-, a hub -4- in which three blades -5- are mounted, and an electrical machine connected to the hub -4- and housed in the nacelle -3-. In the zone of the tip of each blade, there is a beacon light -6- that emits a beacon illumination -6'- to signal the presence of the wind turbine -1- to aircraft.

[0028] Figure 2 illustrates an embodiment of an illuminator device -7-according to the invention which is capable of being arranged in an interior part of the wind turbine and can be connected to the beacon light (not shown in Figure 2) by means of a light conductor that comprises optical fibers -8a-, for transmitting light from the illuminator device -7- to the beacon light.

[0029] The illuminator device -7- faces the light inlet ends of the optical fibers -8a- and comprises a light-emitting diode -7a-, an optical collimator -7b- that comprises a collimator lens -7c- arranged between the light inlet of the optical fibers -8a- and the light-emitting diode -7a-, and a concave reflector -7d-.

[0030] The light-emitting diode -7a- is connected, by means of electrical lines -7f-, to an electrical power supply device -7e- ("driver"), which is conventional per se, which is in turn connected to an electrical energy source (not shown in Figure 2). To avoid overheating and to stabilize the temperature of the light-emitting device -7a-, it is mounted on a heat dissipator -7g-.

[0031] The light-emitting diode -7a-, the concave reflector -7d- and the collimator lens -7c- are mounted in a casing -7h-, the interior surface of which reflects light at least between the collimator lens -7c- and the light inlets of the optical fibers -8a-.

[0032] The concave reflector -7d- directs the scattered light emitted by the light-emitting diode -7a- toward the collimator lens -7c-, which in turn converts the scattered light originating from the light-emitting diode -7a- into a parallel light beam that is transmitted toward the light inlet of the optical fibers -8a-.

[0033] The ends of the optical fibers -8a- where the light inlets thereof are located are secured to a securing element -9- that closes the end of the casing -7h- opposite the collimator lens -7c-, such that said light inlets are arranged in alignment with the parallel light beam generated by the collimator lens -7c-.

[0034] The optical fibers -8a- that exit the securing element -9-enter a grouping element -10- in which the optical fibers -8a-are brought together such as to be grouped in a bundle -8- of optical fibers. A number of optical fibers -8a- may in turn be grouped as respective optical fiber cables (not shown in the figures), which are in turn grouped as the bundle (8) of optical fibers.

[0035] Figures 3 and 4 show a wind turbine blade -5- on which is arranged a bundle of optical fibers connected to a beacon light -6-, such as that shown in Figure 1, according to an embodiment of the invention.

[0036] The blade -5- comprises, in a manner that is conventional per se, a root -5a- that is connected to the hub, a tip -5b- of the blade, a leading edge -5c-, a trailing edge -5d-, a principal beam -5e- that extends between the root -5a- and the tip -5b-of the blade -5-, and a shell -5f- that constitutes the exterior cover of the blade -5-.

[0037] On the wall of the principal beam -5e- facing the leading edge -5c- of the blade -5- are arranged a guide profile -11- and a protective profile -12a-. Via the protective profile -12a-extends a lightning conductor -12- that connects a lightning arrestor (not shown in the figures) located on the tip -5b- of the blade and a ground connection (not shown in the figures) arranged on the tower of the wind turbine.

[0038] The beacon light -6- is located in a zone of the tip -5b- of the blade and is connected to the bundle -8- of optical fibers that extends via the guide profile -11- through the interior of the root -5a- of the blade toward, as may be seen in Figure 10, the illuminator device -7- that is arranged inside the hub -4-.

[0039] Figures 5 and 6 illustrate in greater detail the arrangement of the beacon light -6- shown in Figure 6 in the zone of the tip -5b- of the blade. The beacon light -6- comprises a diffuser lens -6a- mounted on a fitting -6b- that is mounted on the shell -5f- of the blade. The fitting -6b- comprises a rear tubular extension -6c- that traverses the shell -5f-. The optical fibers -8a- are secured inside the rear tubular extension -6c- such that their light outlet ends are in contact with the diffuser lens -6a-.

[0040] Figures 7 and 8 show another embodiment of the beacon light -6-, in which it comprises a light diffuser cover -6d-adhesively bonded, in a zone of the tip -5b- of the blade, to the exterior of the shell -5f- by means of an adhesive resin layer -6e-. The optical fibers -8a- traverse the shell -5f- of the blade toward the exterior and are embedded in the resin layer -6e- such that the light outlet ends thereof are in contact with the light diffusor cover -6d-, forming points of light -6f- that are diffused by the light diffuser cover -6d-.

[0041] Figure 9 shows another embodiment of the beacon light -6-, in which the shell of the blade comprises a transparent part -6g-, for example a part made from methacrylate, in the part of the tip -5b- of the blade. The outlet ends of the optical fibers of the bundle -8- of optical fibers are connected to an optical diffuser -6h- located inside the blade, such that the light exiting the optical diffusor -6h- is projected to the exterior via the transparent part -6g-.

[0042] Figure 10 shows the arrangement of the illuminator devices -7-that generate the light transmitted via the bundles -8- of optical fibers to the beacon lights -6- located in the zone of the tip -5b- of the blade -5-, according to the embodiments shown in Figures 1, 3-4, 5-6, 7-8 and 9.

[0043] It may be seen that the illuminator devices -7- are arranged in a support element -13- inside the hub -4- such that they turn with the hub -4-. The roots -5a- of the blades are connected to the hub -4-, in a manner that is conventional per se, by means of respective adjustment mechanisms -14- that allow individual turning of the position of each blade with respect to the incident wind. The bundles -8- of optical fibers respectively exiting the illuminator devices -7- enter the respective guide profiles -11- described above with reference to Figure 2.

[0044] Figures 11-13 illustrate an embodiment in which the beacon illumination device according to the invention is applied to beacon lights -6- arranged on the tower -2- of a wind turbine of the type as shown in Figure 1. In the embodiment illustrated in these figures, the illumination device comprises four beacon lights -6- located in an equidistant manner over the periphery of the tower -2- and connected by means of respective bundles -8- of optical fibers to a control cabinet -15- housing respective illuminator devices -7- such as those described previously with reference to Figure 2, and also a control board -17-, which is conventional per se. The control cabinet -15- is arranged beside a staircase -16- mounted inside the tower -2-.

[0045] Each beacon light -6- comprises a diffuser lens -6a- mounted on a fitting -6b- that is mounted on the wall -2a- of the tower -2-. The fitting -6b- comprises a rear tubular extension -6c-that traverses the wall -2a-. The optical fibers -8a- are secured inside the rear tubular extension -6c- such that their light outlet ends are in contact with the diffuser lens -6a-.


Claims

1. A beacon illumination device for signaling, to aircraft, the presence of a wind turbine (1) with a tower (2), a nacelle (3) mounted on an upper part of the tower (2), a hub (4) on which is mounted at least one blade (5), and an electrical machine connected to the hub (4) and housed in the nacelle (3), which comprises
an illuminator device (7) that comprises at least one light-emitting diode (7a) capable of being arranged in an interior part of the wind turbine,
at least one beacon light (6) capable of being mounted at an end part of the wind turbine in a position at a distance from the illuminator device (7),
at least one light conductor that comprises optical fibers (8a) for transmitting light from the illuminator device (7) to the beacon light (6), the illuminator device (7) facing light inlet ends of the optical fibers (8a) and each optical fiber (8a) comprising a light outlet end, characterized in that
the optical fibers (8a) are grouped in at least one bundle (8) of optical fibers (8a),
the illuminator device (7) further comprises an optical collimator (7b) that comprises at least one collimator lens (7c) arranged between the light inlet of the optical fibers (8a) and the light-emitting diode (7a), for converting scattered light emitted by the light-emitting diode (7a) into a parallel light beam and transmitting same toward the light inlet of the optical fibers (8a).
 
2. The device as claimed in claim 1, characterized in that the beacon light (6) comprises an optical diffuser (6h) arranged at the light outlet end of the optical fibers (8a) of the bundle (8) of optical fibers (8a).
 
3. The device as claimed in claim 2, characterized in that the optical diffuser (6a) comprises a diffuser optical lens.
 
4. The device as claimed in claim 1, 2 or 3, characterized in that the optical collimator (7b) comprises a concave reflector (7d) that directs the scattered light emitted by the light-emitting diode (7a) toward the collimator optical lens (7c) .
 
5. The device as claimed in any one of claims 1 to 4, characterized in that
the bundle (8) of optical fibers comprises a principal trunk and at least one branch deriving from the principal trunk;
each branch comprises at least one optical fiber (8a) originating from the principal trunk;
the light outlet ends of the optical fibers (8a) of the principal trunk and of each branch are connected to respective beacon lights (6).
 
6. The device as claimed in any one of the preceding claims, characterized in that the illuminator device (7) comprises a plurality of light-emitting diodes (7a).
 
7. The device as claimed in claim 6, characterized in that the illuminator device (7) comprises a concave reflector (7d) that directs the scattered light emitted by the plurality of light-emitting diodes (7a) toward the collimator lens (7c) of the optical collimator (7b).
 
8. A wind turbine (1) with a tower (2), a nacelle (3) mounted on an upper part of the tower (2), a hub (4) on which is mounted at least one blade (5), and an electrical machine connected to the hub (4) and housed in the nacelle (3), characterized in that it comprises at least one beacon illumination device according to claim 1.
 
9. The wind turbine as claimed in claim 8, characterized in that the optical collimator (7b) comprises a concave reflector (7d) that directs the scattered light emitted by the light-emitting diode (7a) toward the collimator optical lens (7c) .
 
10. The wind turbine as claimed in claim 8 or 9, characterized in that
each blade (5) comprises a root (5a) that is connected to the hub (4), a tip (5b), a leading edge (5c), a trailing edge (5d) and a shell (5f) that constitutes an exterior covering of the blade (5);
it comprises at least one beacon light (6) in an end part of each blade (5), close to the tip (5b) of each blade;
the beacon lights (6) are connected to at least one illuminator device (7) arranged inside the hub (4) by means of respective bundles (8) of optical fibers such that it turns with the hub (4) ;
each bundle (8) of optical fibers extends internally through the blade (5) such that the light outlet ends of the optical fibers (8a) are in contact with a part of the beacon light (6).
 
11. The wind turbine as claimed in claim 10, characterized in that each beacon light (6) is connected via the bundle (8) of optical fibers to a single illuminator device (7).
 
12. The wind turbine as claimed in claim 10 or 11, characterized in that
each blade (5) comprises a principal beam (5e) that extends between the root (5a) and the tip (5b) of the blade (5);
the principal beam (5e) comprises a front wall facing the leading edge (5c) of the blade (5);
on said front wall of the principal beam (5e) is arranged a guide profile (11) that guides the bundle (8) of optical fibers toward the beacon light (6).
 
13. The wind turbine as claimed in claim 10, 11 or 12, characterized in that
the beacon light (6) comprises a diffuser lens (6a) mounted on a fitting (6b) that is mounted on the shell (5f) of the blade; the fitting (6b) comprises a rear tubular extension (6c) that traverses the shell (5f);
the optical fibers (8a) are secured inside the rear tubular extension (6c) such that their light outlet ends are in contact with the diffuser lens (6a).
 
14. The wind turbine as claimed in any one of claims 10, 11 and 12, characterized in that
the beacon light (6) comprises a light diffuser cover (6d) arranged, in a zone of the tip (5b) of the blade, externally on the shell (5f);
the optical fibers (8a) traverse the shell (5f) of the blade (5) toward the exterior and are embedded in a resin layer (6e) applied between the shell (5f) and the light diffuser cover (6d) such that the light outlet ends of the optical fibers (8a) are in contact with the light diffuser cover (6d), forming points of light (6f) that are diffused by the light diffuser cover (6d).
 
15. The wind turbine as claimed in any one of claims 10, 11 and 12, characterized in that
the shell (5f) of the blade comprises a transparent part (6g) in a part of the tip (5b) of the blade;
the outlet ends of the optical fibers (8a) of the bundle (8) of optical fibers are connected to an optical diffuser (6h) positioned inside the blade (5) such that the light exiting the optical diffuser (6h) is projected to the exterior of the blade (5) via the transparent part (6g).
 
16. The wind turbine as claimed in claim 8 or 9, characterized in that it comprises a plurality of beacon lights (6) distanced from one another over the periphery of the tower (2) of the wind turbine (1) and connected by means of respective bundles (8) of optical fibers to at least one illuminator device (7).
 
17. The wind turbine as claimed in claim 16, characterized in that each beacon light (6) is connected via the bundle (8) of optical fibers to a single illuminator device (7).
 
18. The wind turbine as claimed in claim 16 or 17, characterized in that
each beacon light (6) comprises a diffuser lens (6a) mounted on a fitting (6b) that is mounted on the wall (2a) of the tower (2) ;
the fitting (6b) comprises a rear tubular extension (6c) that traverses the wall (2a);
the optical fibers (8a) are secured inside the rear tubular extension (6c) such that their light outlet ends are in contact with the diffuser lens (6a).
 




Drawing


































REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description