(19)
(11)EP 3 653 630 A1

(12)EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43)Date of publication:
20.05.2020 Bulletin 2020/21

(21)Application number: 18831452.0

(22)Date of filing:  13.07.2018
(51)International Patent Classification (IPC): 
C07D 513/04(2006.01)
A61K 31/407(2006.01)
A61P 31/20(2006.01)
A61K 31/4162(2006.01)
A61K 31/554(2006.01)
(86)International application number:
PCT/CN2018/095614
(87)International publication number:
WO 2019/011323 (17.01.2019 Gazette  2019/03)
(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30)Priority: 14.07.2017 CN 201710576102

(71)Applicant: Shanghai Longwood Biopharmaceuticals Co., Ltd.
Shanghai 201108 (CN)

(72)Inventors:
  • WANG, Zhe
    Shanghai 201108 (CN)
  • WANG, Xiaoguang
    Shanghai 201108 (CN)
  • YANG, Sai
    Shanghai 201108 (CN)
  • ZENG, Zhihong
    Shanghai 201108 (CN)

(74)Representative: Barbaro, Gaetano et al
Società Italiana Brevetti S.p.A. Via G. Carducci, 8
20123 Milano
20123 Milano (IT)

  


(54)ENDOCYCLIC THIAMIDINOAMIDE-ARYLAMIDE COMPOUND AND USE THEREOF FOR TREATING HEPATITIS B


(57) Disclosed are an endocyclic thiamidinoamide-arylamide compound and a pharmaceutical composition comprising the compound described above, and the use of the compound or pharmaceutical composition in the treatment of hepatitis B. In particular, disclosed is a compound that can be used as an HBV replication inhibitor and has the structure as shown in chemical formula (L), or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof.




Description

FIELD OF INVENTION



[0001] The present invention belongs to the field of medicine, and in particular, the present invention relates to a class of cyclic sulfonimidamide-arylamide compounds and the use as a medicine for treating hepatitis B thereof.

BACKGROUND OF THE INVENTION



[0002] Hepatitis B virus (HBV) is an enveloped virus of hepatotropic virus DNA family (Hepadnaviridae) with partially double-stranded DNA (dsDNA). The genome thereof contains 4 overlapped reading frames: precore / core gene, polymerase gene, UM and S genes (which encode three envelope proteins), and X gene. In the early stage of infection, the partially double-stranded DNA genome (open-loop DNA, rcDNA) in the host cell nucleus is transformed into covalently closed circular DNA (cccDNA) and transcribed into virus mRNA. Once encapsulated, the pre-genome RNA (pgRNA) (which encodes the core protein and Pol) serves as a template for reverse transcription, which regenerates this partial dsDNA genome (rcDNA) in the nucleocapsid.

[0003] HBV causes epidemics in certain areas of Asia and Africa, and is endemic in China. HBV has infected about 2 billion people worldwide, of which about 350 million people have developed into chronic infectious diseases. The virus causes hepatitis B disease and chronic infectious diseases are associated with a highly increased risk of development of cirrhosis and liver cancer.

[0004] The spread of hepatitis B virus is caused by exposure to infectious blood or body fluid, and the virus is detected in the saliva, tears, and urine of chronic carriers with high DNA titers in the serum.

[0005] Although there is currently an effective and well tolerated vaccine, the option of direct treatment is currently limited to interferon and the following antiviral drugs: tenofovir, lamivudine, adefovir, entecavir and telbivudine.

[0006] Additionally, heteroaryldihydropyrimidines (HAPs) are identified as a class of HBV inhibitors in tissue cultivation and animal models (Weber et al., Antiviral Res. 54: 69-78).

[0007] WO2013/006394 (published on January 10, 2013) and WO 2013/096744 (published on June 27, 2013) also disclosed sulfamoyl-arylamides having anti-HBV activity.

[0008] However, problems encountered in these direct HBV antiviral drugs are toxicity, mutagenicity, lack of selectivity, poor efficacy, poor bioavailability, and difficulty in synthesis.

[0009] Therefore, in order to overcome the above defects, it is necessary to develop HBV inhibitors with advantages such as high potency and lower toxicity.

SUMMARY OF INVENTION



[0010] An object of the present invention is to provide a class of structurally novel compounds useful as HBV inhibitors.

[0011] In the first aspect of the invention, a compound of the formula L, or a stereoisomer thereof, or a tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof is provided,

wherein n is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10;



is a substituted or unsubstituted five or six membered ring, wherein the five or six membered ring optionally contains one or more heteroatoms selected from the group consisting of O, S, N and P; the substituted means that the hydrogen atoms on the group are substituted by one or more substituents selected from the group consisting of C1-C3 alkyl (especially methyl), C3-C4 cycloalkyl, cyano, or halogen;



is a substituted or unsubstituted five- or six-membered aromatic ring, or a substituted or unsubstituted five- or six-membered heteroaromatic ring;

X is-CRaRb-;

Y is substituted or unsubstituted C1-C7 alkylene, or substituted or unsubstituted C2-C7 alkenylene, wherein the substituent is selected from the group consisting of C1-C4 alkyl, hydroxyl;

Z is selected from the group consisting of O, S, N, or P, or Z is a C-C single bond (i.e., Z is none);

W is NRc or none;

R1, R2, R3 and R4 are each independently selected from the group consisting of H, halogen, cyano, substituted or unsubstituted C3-C4 cycloalkyl, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 alkoxy; wherein the substituted means that hydrogen atoms on the group are substituted by one or more substituents selected from the group consisting of halogen, C1-C4 alkyl (such as difluoromethyl, difluoroethyl, monofluoromethyl, trifluoromethyl, trifluoromethoxy);

R5, R6 are each independently selected from the group consisting of H, halogen, -CN, hydroxyl, amino, carboxyl, -(C=O)-substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C8 alkylamino, substituted or unsubstituted C1-C8 alkoxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted 3-10 membered heterocycloalkyl having 1-3 heteroatoms selected from the group consisting of N, S and O, substituted or unsubstituted C6-C10 aryl, and substituted or unsubstituted 5-10 membered heteroaryl having 1-3 heteroatoms selected from the group consisting of N, S and O;

Ra and Rb are each independently H, halogen, -CN, hydroxyl, amino, carboxyl, -(C=O) -substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C8 alkylamino, substituted or unsubstituted C1-C8 alkoxy, substituted or unsubstituted C1-C6 alkoxy-alkyl, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted 3-10 membered heterocycloalkyl having 1-3 heteroatoms selected from the group consisting of N, S and O, substituted or unsubstituted C6-C10 aryl, and substituted or unsubstituted 5-10 membered heteroaryl having 1-3 heteroatoms selected from the group consisting of N, S and O;

Rc is H, halogen, -CN, hydroxyl, amino, carboxyl, -(C=O)-substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C8 alkylamino, substituted or unsubstituted C1-C8 alkoxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted 3-10 membered heterocycloalkyl having 1-3 heteroatoms selected from the group consisting of N, S and O, substituted or unsubstituted C6-C10 aryl, and substituted or unsubstituted 5-10 membered heteroaryl having 1-3 heteroatoms selected from the group consisting of N, S and O;

unless otherwise specified, "substituted" means that the group substituted by one or more (such as 2, 3, 4, etc.) substituents selected from the group consisting of halogen, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy, halogenated C1-C6 alkoxy, C3-C8 cycloalkyl, halogenated C3-C8 cycloalkyl, oxo, -CN, hydroxyl, amino, carboxyl, and the following groups unsubstituted or substituted by one or more substituents: C6-C10 aryl, halogenated C6-C10 aryl, 5-10 membered heteroaryl having 1-3 heteroatoms selected from the group consisting of N, S and O, halogenated 5-10 membered heteroaryl having 1-3 heteroatoms selected from N, S and O; and the substituent is selected from the group consisting of halogen and C1-C6 alkoxy.



[0012] In another preferred embodiment, the Y is selected from the group consisting of C1-C4 alkylene and substituted or unsubstituted C2-C4 alkenylene.

[0013] In another preferred embodiment, the Ra and Rb are each independently substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C1-C8 alkoxy; wherein the substituent is selected from the group consisting of halogen, hydroxyl, and cyano.

[0014] In another preferred embodiment, the compound has a structure selected from the group consisting of the following formulas L-1 L-2 L-3 and L-4:





[0015] In each formula, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10;
the definitions of ring A, ring B, X, R1, R2, R3, R4, R5 and R6 are as described in the first aspect of the present invention.

[0016] In another preferred embodiment, the Ra and Rb are each independently substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C1-C8 alkoxy; wherein the substituent is selected from the group consisting of halogen, hydroxyl, and cyano.

[0017] In another preferred embodiment, the formula I compound has the structure shown by the following formula II:

wherein X1 is -CR= or -N=, X2 is -NR-; and R is H or C1-C4 alkyl.

[0018] In another preferred embodiment, the X2 is -NCH3-.

[0019] In another preferred embodiment, the compound of formula I has the following structure:



[0020] In another preferred embodiment, the compound of formula I has a structure represented by the following formula IV-1 or IV-2:





[0021] In another preferred embodiment, n is 1.

[0022] In another preferred embodiment, Ra is selected from the group consisting of substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C1-C8 alkoxy, and substituted or unsubstituted C1-C6 alkoxy-alkyl;
Rb is H.

[0023] In another preferred embodiment, the Ra is selected from the group consisting of substituted or unsubstituted C1-C8 alkyl; wherein the substituted means that one or more hydrogen atoms on the group are substituted by substituent selected from the group consisting of C1-C4 alkoxy, hydroxyl, C6-C10 aryl unsubstituted or substituted with one or more substituents selected from the group consisting of halogen and C1-C6 alkoxy.

[0024] In another preferred embodiment, the B ring is a benzene ring or a pyridine ring.

[0025] In another preferred embodiment, the A ring is a pyrrole ring.

[0026] In another preferred embodiment, said



[0027] In another preferred embodiment, the R1, R2, R3 and R4 are each independently selected from the group consisting of H, halogen, and cyano.

[0028] In another preferred embodiment, the R5 is selected from the group consisting of H, substituted or unsubstituted C1-C8 alkyl, and substituted or unsubstituted C3-C10 cycloalkyl.

[0029] In another preferred embodiment, the R6 is selected from the group consisting of H, substituted or unsubstituted C1-C8 alkyl, and substituted or unsubstituted C3-C10 cycloalkyl.

[0030] In another preferred embodiment, the compound is the compound 10a1-60y2 as described in Table 1, wherein Peak 1 and Peak 2 refer to the order of the enantiomers' peaks in reversed-phase HPLC, wherein Peak 1 is the first peak in the enantiomer, and Peak 2 is the latter peak of the enantiomer.

[0031] In another preferred embodiment, in the above table, HPLC is reversed-phase HPLC, where peak 1 refers to a compound of greater polarity, and peak 2 refers to a compound of less polarity.

[0032] In the second aspect of the invention, a method for preparing compound of the formula I, or a stereoisomer thereof, or a tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof of the first aspect of the present invention is provided, which comprising the following steps:

in an inert solvent, reacting formula L1 compound with

to provide compound L;

wherein, R is a leaving group, and the definitions of the remaining groups are as described in the first aspect of the present invention.



[0033] In another preferred embodiment, the compound of formula L is a compound of formula VII-1, and the method comprises the following steps:

wherein Rg is selected from the group consisting of H, halogen, -CN, hydroxyl, amino, carboxyl, -(C=O)-substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C8 alkylamino, substituted or unsubstituted C1-C8 alkoxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted 3-10 membered heterocycloalkyl having 1-3 heteroatoms selected from the group consisting of N, S and O, substituted or unsubstituted C6-C10 aryl, and substituted or unsubstituted 5-10 membered heteroaryl having 1-3 heteroatoms selected from the group consisting of N, S and O;

the definition of each group is as set forth above.



[0034] In another preferred embodiment, the compound of formula L is a compound of formula II-2, and the method comprises the following steps:



[0035] In each formula, the definition of each group is as set forth above.

[0036] In another preferred embodiment, the compound of formula L is a compound of formula VII-3, and the method comprises the following steps:



[0037] In each formula, the definition of each group is as set forth above.

[0038] In another preferred embodiment, the compound of formula L is a compound of formula II-4, and the method comprises the following steps:



[0039] In each formula, the definition of each group is as set forth above.

[0040] In the third aspect of the present invention, a compound selected from the following group is provided:



in each formula, Rg is selected from the group consisting of H, halogen, -CN, hydroxyl, amino, carboxyl, -(C=O)-substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C8 alkylamino, substituted or unsubstituted C1-C8 alkoxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted 3-10 membered heterocycloalkyl having 1-3 heteroatoms selected from the group consisting of N, S and O, substituted or unsubstituted C6-C10 aryl, and substituted or unsubstituted 5-10 membered heteroaryl having 1-3 heteroatoms selected from the group consisting of N, S and O;

while each group is defined as in the first aspect of the present invention.



[0041] In the fourth aspect of the invention, a pharmaceutical composition is provided, which comprising (1) a compound, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof according to the first aspect of the invention; and (2) pharmaceutically acceptable carriers.

[0042] In the fifth aspect of the invention, a use of compound, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof according to the first aspect of the invention, or a use of the pharmaceutical composition according to the fourth aspect of the invention is provided, which is used for the preparation of medicine for the prevention and / or treatment of Hepatitis B.

[0043] In the sixth aspect of the invention, an inhibitor of hepatitis B virus is provided, which comprises the compound of the formula I, or a stereoisomer thereof, or a tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof of the first aspect of the present invention.

[0044] In the seventh aspect of the invention, a method for the prevention and / or treatment of hepatitis B is provided, which comprises the steps: administrating the compound, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof of the first aspect of the invention, or the pharmaceutical composition of the fourth aspect of the invention to a subject in need thereof.

[0045] In the eighth aspect of the invention, a method for in inhibiting replication of hepatitis B virus is provided, which comprises the steps: contacting the compound, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof of the first aspect of the invention with hepatitis B virus, thus inhibiting the replication of hepatitis B.

[0046] It should be understood that, in the present invention, each of the technical features specifically described above and below (such as those in the Examples) can be combined with each other, thereby constituting new or preferred technical solutions which are not necessarily specified one by one herein.

EMBODIMENTS FOR CARRYING OUT THE INVENTION



[0047] After extensive and intensive research, the inventors have found a novel class of compounds having excellent therapeutic effects on hepatitis B. The inventors have completed the present invention on this basis.

DEFINITIONS



[0048] As used herein, the term "alkyl" includes straight or branched alkyl groups. For example, C1-C8 alkyl refers to straight or branched alkyls having from 1-8 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, and the like.

[0049] As used herein, the term "alkenyl" includes straight or branched alkenyl groups. For example, C2-C6 alkenyl refers to straight or branched alkenyls having 2-6 carbon atoms, such as vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, and the like.

[0050] As used herein, the term "alkynyl" includes straight or branched alkynyl groups. For example, "C2-C6 alkynyl" refers to straight or branched alkynyl having 2-6 carbon atoms, such as ethynyl, propynyl, butynyl, and the like.

[0051] As used herein, the term "C3-C10 cycloalkyl" refers to cycloalkyl groups having 3 to 10 carbon atoms. It may be a monocyclic ring, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like. It may also be of bicyclic form, such as bridged or spiro ring form.

[0052] As used herein, the term "C1-C8 alkylamino" refers to amine groups substituted by C1-C8 alkyl, which may be monosubstituted or disubstituted; such as methylamino, ethylamino, propylamino, isopropylamino, butylamino, isobutylamino, tert-butylamino, dimethylamino, diethylamino, dipropylamino, diisopropylamino, dibutylamino, diisobutylamino, di(tert-butyl)amino, and the like.

[0053] As used herein, the term "C1-C8 alkoxy" refers to straight or branched alkoxy groups having 1-8 carbon atoms; such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, tert-butoxy, and the like.

[0054] As used herein, the term "3-10 membered heterocycloalkyl having 1-3 heteroatoms selected from the group consisting of N, S and O" refers to a saturated or partially saturated cyclic group having 3-10 atoms, wherein 1-3 atoms are heteroatoms selected from the group consisting of N, S and O. It may be a monocyclic ring or bicyclic form, such as bridged or spiro ring form. Specific examples may be oxetane, azetidine, tetrahydro-2H-pyranyl, piperidinyl, tetrahydrofuranyl, morpholinyl and pyrrolidinyl, and the like.

[0055] As used herein, the term "C6-C10 aryl" refers to aryl groups having 6 to 10 carbon atoms, such as phenyl, naphthyl, and the like.

[0056] As used herein, the term "5-10 membered heteroaryl having 1-3 heteroatoms selected from the group consisting of N, S and O" refers to cyclic aromatic groups having 5-10 atoms, of which 1-3 is selected from the group consisting of N, S and O. It may be a monocyclic ring or fused ring form. Specific examples may be pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, pyrrolyl, pyrazolyl, imidazolyl, (1,2,3)-triazolyl and (1,2,4)-triazolyl, tetrazyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazolyl, etc.

[0057] Unless otherwise specified as "substituted or unsubstituted", all the groups described in the present invention may be substituted with substituents selected from the group consisting of halogen, cyano, nitro, hydroxy, amino, C1-C6 alkyl-amino, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 alkoxy, halogenated C1-C6 alkyl, halogenated C2-C6 alkenyl, halogenated C2-C6 alkynyl, halogenated C1-C6 alkoxy, allyl, benzyl, C6-C12 aryl, C1-C6 alkoxy-C1-C6 alkyl, C1-C6 alkoxy-carbonyl, phenoxycarbonyl, C2-C6 alkynyl-carbonyl, C2-C6 alkenyl-carbonyl, C3-C6 cycloalkyl-carbonyl, C1-C6 alkyl-sulfonyl, etc.

[0058] As used herein, "halogen" or "halogen atom" refers to F, Cl, Br, and I. More preferably, the halogen or halogen atom is selected from F, Cl or Br. "Halogenated" means substitution by atom(s) selected from the group consisting of F, Cl, Br, and I.

[0059] Unless otherwise specified, the structural formula described herein are intended to include all isomeric forms (such as enantiomeric, diastereomeric, and geometric isomers (or conformational isomers)): for example, R, S configuration having asymmetrical centers, (Z), (E) isomers of double bonds, etc. Therefore, the single stereo chemical isomers or enantiomers, diastereomers or geometric isomers (or conformers) of the compounds of the invention, or mixtures thereof all fall within the scope of the invention.

[0060] As used herein, the term "tautomer" means that structural isomers having different energies can exceed the low energy barrier and thereby transform between each other. For example, proton tautomers (proton shift) includes interconversion by proton transfer, such as 1H-carbazole and 2H-carbazole. Valence tautomers include interconversion through some bonding electron recombination.

[0061] As used herein, the term "solvate" refers to a complex of specific ratio formed by a compound of the invention coordinating to a solvent molecule.

[0062] As used herein, the term "hydrate" refers to a complex formed by the coordination of a compound of the invention with water.

ACTIVE INGREDIENTS



[0063] As used herein, "compound of the invention" refers to the compound of formula L, as well as various crystal forms of the compound of formula L, or the pharmaceutically acceptable salts, hydrate or solvates thereof.



[0064] As used herein, the "pharmaceutically acceptable salts" refers to salts suitable for use in pharmaceutical which is formed by a compound of the present invention with an acid or base. The pharmaceutically acceptable salts include inorganic and organic salts. Preferred type of salts are salts formed by the compounds of the present invention and acid. Suitable salt-forming acids include, but are not limited to: inorganic acids such as hydrochloric acid, hydro bromic acid, hydrofluoric acid, sulfuric acid, nitric acid, phosphoric acid and the like; organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, tartaric acid, citric acid, picric acid, methane sulfonic acid, toluene sulfonic acid, benzene sulfonic acid and the like; and acidic amino acids such as aspartic acid, glutamic acid.

[0065] In another preferred embodiment, said ring A, ring B, R1, R2, R3, R4, R5 and R6 are each independently the corresponding group of each compound in Table 1.

[0066] Preferred compounds of the invention are shown in Table 1:
Table 1
No.StructureMass Spectrum ESI-MS, (M + H)Remark
10a1

395 Peak1 (HPLC)
10a2

395 Peak2 (HPLC)
10b1

402 Peak1 (HPLC)
10b2

402 Peak2 (HPLC)
10c1

413 Peak1 (HPLC)
10c2

413 Peak2 (HPLC)
10d1

360 Peak1 (HPLC)
10d2

360 Peak2 (HPLC)
10e1

403 Peak1 (HPLC)
10e2

403 Peak2 (HPLC)
10f1

410 Peak1 (HPLC)
10f2

410 Peak2 (HPLC)
10g1

395 Peak1 (HPLC)
10g2

395 Peak2 (HPLC)
10h1

402 Peak1 (HPLC)
10h2

402 Peak2 (HPLC)
10i1

413 Peak1 (HPLC)
10i2

413 Peak2 (HPLC)
10j1

360 Peak1 (HPLC)
10j2

360 Peak2 (HPLC)
10k1

403 Peak1 (HPLC)
10k2

403 Peak2 (HPLC)
10m1

410 Peak1 (HPLC)
10m2

410 Peak2 (HPLC)
10n1

409 Peak1 (HPLC)
10n2

409 Peak2 (HPLC)
10o1

416 Peak1 (HPLC)
10o2

416 Peak2 (HPLC)
10p1

417 Peak1 (HPLC)
10p2

417 Peak2 (HPLC)
10q1

424 Peak1 (HPLC)
10q2

424 Peak2 (HPLC)
10r1

409 Peak1 (HPLC)
10r2

409 Peak2 (HPLC)
10s1

374 Peak1 (HPLC)
10s2

374 Peak2 (HPLC)
10t1

417 Peak1 (HPLC)
10t2

417 Peak2 (HPLC)
10u1

409 Peak1 (HPLC)
10u2

409 Peak2 (HPLC)
10v1

416 Peak1 (HPLC)
10v2

416 Peak2 (HPLC)
10w1

417 Peak1 (HPLC)
10w2

417 Peak2 (HPLC)
10x1

424 Peak1 (HPLC)
10x2

424 Peak2 (HPLC)
10y1

409 Peak1 (HPLC)
10y2

409 Peak2 (HPLC)
10z1

374 Peak1 (HPLC)
10z2

374 Peak2 (HPLC)
10aa1

417 Peak1 (HPLC)
10aa2

417 Peak2 (HPLC)
10bb1

435 Peak1 (HPLC)
10bb2

435 Peak2 (HPLC)
10cc1

442 Peak1 (HPLC)
10cc2

442 Peak2 (HPLC)
10dd1

443 Peak1 (HPLC)
10dd2

443 Peak2 (HPLC)
10ee1

450 Peak1 (HPLC)
10ee2

450 Peak2 (HPLC)
10ff1

435 Peak1 (HPLC)
10ff2

435 Peak2 (HPLC)
10gg1

400 Peak1 (HPLC)
10gg2

400 Peak2 (HPLC)
10hh1

443 Peak1 (HPLC)
10hh2

443 Peak2 (HPLC)
10ii1

429 Peak1 (HPLC)
10ii2

429 Peak2 (HPLC)
10jj1

436 Peak1 (HPLC)
10jj2

436 Peak2 (HPLC)
10kk1

437 Peak1 (HPLC)
10kk2

437 Peak2 (HPLC)
10mm1

429 Peak1 (HPLC)
10mm2

429 Peak2 (HPLC)
10nn1

436 Peak1 (HPLC)
10nn2

436 Peak2 (HPLC)
10001

437 Peak1 (HPLC)
10oo2

437 Peak2 (HPLC)
10pp1

443 Peak1 (HPLC)
10pp2

443 Peak2 (HPLC)
10qq1

450 Peak1 (HPLC)
10qq2

450 Peak2 (HPLC)
10rr1

451 Peak1 (HPLC)
10rr2

451 Peak2 (HPLC)
10ss1

443 Peak1 (HPLC)
10ss2

443 Peak2 (HPLC)
10tt1

450 Peak1 (HPLC)
10tt2

450 Peak2 (HPLC)
10uu1

451 Peak1 (HPLC)
10uu2

451 Peak2 (HPLC)
10vv1

493 Peak1 (HPLC)
10vv2

493 Peak2 (HPLC)
10ww1

500 Peak1 (HPLC)
10ww2

500 Peak2 (HPLC)
10xx1

501 Peak1 (HPLC)
10xx2

501 Peak2 (HPLC)
10yy1

493 Peak1 (HPLC)
10yy2

493 Peak2 (HPLC)
10zz1

500 Peak1 (HPLC)
10zz2

500 Peak2 (HPLC)
10aaa1

501 Peak1 (HPLC)
10aaa2

501 Peak2 (HPLC)
10bbb1

487 Peak1 (HPLC)
10bbb2

487 Peak2 (HPLC)
10ccc1

494 Peak1 (HPLC)
10ccc2

494 Peak2 (HPLC)
10ddd1

505 Peak1 (HPLC)
10ddd2

505 Peak2 (HPLC)
10eee1

486 Peak1 (HPLC)
10eee2

486 Peak2 (HPLC)
10fff1

495 Peak1 (HPLC)
10fff2

495 Peak2 (HPLC)
10ggg1

485 Peak1 (HPLC)
10ggg2

485 Peak2 (HPLC)
10hhh1

492 Peak1 (HPLC)
10hhh2

492 Peak2 (HPLC)
10iii1

503 Peak1 (HPLC)
10iii2

503 Peak2 (HPLC)
10jjj 1

484 Peak1 (HPLC)
10jjj2

484 Peak2 (HPLC)
10kkk1

493 Peak1 (HPLC)
10kkk2

493 Peak2 (HPLC)
10mmm1

503 Peak1 (HPLC)
10mmm2

503 Peak2 (HPLC)
10nnn1

510 Peak1 (HPLC)
10nnn2

510 Peak2 (HPLC)
10ooo1

521 Peak1 (HPLC)
10ooo2

521 Peak2 (HPLC)
10ppp1

502 Peak1 (HPLC)
10ppp2

502 Peak2 (HPLC)
10qqq1

511 Peak1 (HPLC)
10qqq2

511 Peak2 (HPLC)
10rrr1

515 Peak1 (HPLC)
10rrr2

515 Peak2 (HPLC)
10sss1

522 Peak1 (HPLC)
10sss2

522 Peak2 (HPLC)
10ttt1

533 Peak1 (HPLC)
10ttt2

533 Peak2 (HPLC)
10uuu1

514 Peak1 (HPLC)
10uuu2

514 Peak2 (HPLC)
10vvv1

523 Peak1 (HPLC)
10vvv2

523 Peak2 (HPLC)
10www1

367 Peak1 (HPLC)
10www2

367 Peak2 (HPLC)
10xxx1

411 Peak1 (HPLC)
10xxx2

411 Peak2 (HPLC)
20a1

397 Peak1 (HPLC)
20a2

397 Peak2 (HPLC)
20b1

404 Peak1 (HPLC)
20b2

404 Peak2 (HPLC)
20c1

415 Peak1 (HPLC)
20c2

415 Peak2 (HPLC)
20d1

362 Peak1 (HPLC)
20d2

362 Peak2 (HPLC)
20e1

405 Peak1 (HPLC)
20e2

405 Peak2 (HPLC)
20f1

412 Peak1 (HPLC)
20f2

412 Peak2 (HPLC)
20g1

397 Peak1 (HPLC)
20g2

397 Peak2 (HPLC)
20h1

404 Peak1 (HPLC)
20h2

404 Peak2 (HPLC)
20i1

415 Peak1 (HPLC)
20i2

415 Peak2 (HPLC)
20j1

362 Peak1 (HPLC)
20j2

362 Peak2 (HPLC)
20k1

405 Peak1 (HPLC)
20k2

405 Peak2 (HPLC)
20m1

412 Peak1 (HPLC)
10m2

412 Peak2 (HPLC)
20n1

411 Peak1 (HPLC)
20n2

411 Peak2 (HPLC)
20o1

418 Peak1 (HPLC)
20o2

418 Peak2 (HPLC)
20p1

419 Peak1 (HPLC)
20p2

419 Peak2 (HPLC)
20q1

426 Peak1 (HPLC)
20q2

426 Peak2 (HPLC)
20r1

411 Peak1 (HPLC)
20r2

411 Peak2 (HPLC)
20s1

376 Peak1 (HPLC)
20s2

376 Peak2 (HPLC)
20t1

419 Peak1 (HPLC)
20t2

419 Peak2 (HPLC)
20u1

411 Peak1 (HPLC)
20u2

411 Peak2 (HPLC)
20v1

418 Peak1 (HPLC)
20v2

418 Peak2 (HPLC)
20w1

419 Peak1 (HPLC)
20w2

419 Peak2 (HPLC)
20x1

426 Peak1 (HPLC)
20x2

426 Peak2 (HPLC)
20y1

411 Peak1 (HPLC)
20y2

411 Peak2 (HPLC)
20z1

376 Peak1 (HPLC)
20z2

376 Peak2 (HPLC)
20aa1

419 Peak1 (HPLC)
20aa2

419 Peak2 (HPLC)
20bb1

437 Peak1 (HPLC)
20bb2

437 Peak2 (HPLC)
20cc1

444 Peak1 (HPLC)
20cc2

444 Peak2 (HPLC)
20dd1

445 Peak1 (HPLC)
20dd2

445 Peak2 (HPLC)
20ee1

452 Peak1 (HPLC)
20ee2

452 Peak2 (HPLC)
20ff1

437 Peak1 (HPLC)
20ff2

437 Peak2 (HPLC)
20gg1

402 Peak1 (HPLC)
20gg2

402 Peak2 (HPLC)
20hh1

445 Peak1 (HPLC)
20hh2

445 Peak2 (HPLC)
20ii1

431 Peak1 (HPLC)
20ii2

431 Peak2 (HPLC)
20jj1

438 Peak1 (HPLC)
20jj2

438 Peak2 (HPLC)
20kk1

439 Peak1 (HPLC)
20kk2

439 Peak2 (HPLC)
20mm1

431 Peak1 (HPLC)
20mm2

431 Peak2 (HPLC)
20nn1

438 Peak1 (HPLC)
20nn2

438 Peak2 (HPLC)
20oo1

439 Peak1 (HPLC)
20oo2

439 Peak2 (HPLC)
20pp1

445 Peak1 (HPLC)
20pp2

445 Peak2 (HPLC)
20qq1

452 Peak1 (HPLC)
20qq2

452 Peak2 (HPLC)
20rr1

453 Peak1 (HPLC)
20rr2

453 Peak2 (HPLC)
20ss1

445 Peak1 (HPLC)
20ss2

445 Peak2 (HPLC)
20tt1

452 Peak1 (HPLC)
20tt2

-F
452 Peak2 (HPLC)
20uu1

453 Peak1 (HPLC)
20uu2

453 Peak2 (HPLC)
20vv1

495 Peak1 (HPLC)
20vv2

495 Peak2 (HPLC)
20ww1

502 Peak1 (HPLC)
20ww2

502 Peak2 (HPLC)
20xx1

503 Peak1 (HPLC)
20xx2

503 Peak2 (HPLC)
20yy1

495 Peak1 (HPLC)
20yy2

495 Peak2 (HPLC)
20zz1

502 Peak1 (HPLC)
20zz2

502 Peak2 (HPLC)
20aaa1

503 Peak1 (HPLC)
20aaa2

503 Peak2 (HPLC)
20bbb1

489 Peak1 (HPLC)
20bbb2

489 Peak2 (HPLC)
20ccc1

496 Peak1 (HPLC)
20ccc2

496 Peak2 (HPLC)
20ddd1

507 Peak1 (HPLC)
20ddd2

507 Peak2 (HPLC)
20eee1

488 Peak1 (HPLC)
20eee2

488 Peak2 (HPLC)
20fff1

497 Peak1 (HPLC)
20fff2

497 Peak2 (HPLC)
20ggg1

486 Peak1 (HPLC)
20ggg2

486 Peak2 (HPLC)
20hhh1

494 Peak1 (HPLC)
20hhh2

494 Peak2 (HPLC)
20iii1

505 Peak1 (HPLC)
20iii2

505 Peak2 (HPLC)
20jjj1

486 Peak1 (HPLC)
20jjj2

486 Peak2 (HPLC)
20kkk1

495 Peak1 (HPLC)
20kkk2

495 Peak2 (HPLC)
20mmm1

505 Peak1 (HPLC)
20mmm2

505 Peak2 (HPLC)
20nnn1

512 Peak1 (HPLC)
20nnn2

512 Peak2 (HPLC)
20ooo1

523 Peak1 (HPLC)
20ooo2

523 Peak2 (HPLC)
20ppp1

504 Peak1 (HPLC)
20ppp2

504 Peak2 (HPLC)
20qqq1

513 Peak1 (HPLC)
20qqq2

513 Peak2 (HPLC)
20rrr1

517 Peak1 (HPLC)
20rrr2

517 Peak2 (HPLC)
20sss1

524 Peak1 (HPLC)
20sss2

524 Peak2 (HPLC)
20ttt1

535 Peak1 (HPLC)
20ttt2

535 Peak2 (HPLC)
20uuu1

516 Peak1 (HPLC)
20uuu2

516 Peak2 (HPLC)
20vvv1

525 Peak1 (HPLC)
20vvv2

525 Peak2 (HPLC)
20www1

369 Peak1 (HPLC)
20www2

369 Peak2 (HPLC)
20xxx1

413 Peak1 (HPLC)
20xxx2

413 Peak2 (HPLC)
30a1

397 Peak1 (HPLC)
30a2

397 Peak2 (HPLC)
30b1

404 Peak1 (HPLC)
30b2

404 Peak2 (HPLC)
30c1

415 Peak1 (HPLC)
30c2

415 Peak2 (HPLC)
30d1

362 Peak1 (HPLC)
30d2

362 Peak2 (HPLC)
30e1

405 Peak1 (HPLC)
30e2

405 Peak2 (HPLC)
30f1

412 Peak1 (HPLC)
30f2

412 Peak2 (HPLC)
30g1

383 Peak1 (HPLC)
30g2

383 Peak2 (HPLC)
30h1

390 Peak1 (HPLC)
30h2

390 Peak2 (HPLC)
30i1

401 Peak1 (HPLC)
30i2

401 Peak2 (HPLC)
30j1

348 Peak1 (HPLC)
30j2

348 Peak2 (HPLC)
30k1

391 Peak1 (HPLC)
30k2

391 Peak2 (HPLC)
30m1

398 Peak1 (HPLC)
30m2

398 Peak2 (HPLC)
40a1

399 Peak1 (HPLC)
40a2

399 Peak2 (HPLC)
40b1

406 Peak1 (HPLC)
40b2

406 Peak2 (HPLC)
40c1

417 Peak1 (HPLC)
40c2

417 Peak2 (HPLC)
40d1

364 Peak1 (HPLC)
40d2

364 Peak2 (HPLC)
40e1

407 Peak1 (HPLC)
40e2

407 Peak2 (HPLC)
40f1

414 Peak1 (HPLC)
40f2

414 Peak2 (HPLC)
40g1

385 Peak1 (HPLC)
40g2

385 Peak2 (HPLC)
40h1

392 Peak1 (HPLC)
40h2

392 Peak2 (HPLC)
40i1

403 Peak1 (HPLC)
40i2

403 Peak2 (HPLC)
40j1

350 Peak1 (HPLC)
40j2

350 Peak2 (HPLC)
40k1

393 Peak1 (HPLC)
40k2

393 Peak2 (HPLC)
40m1

400 Peak1 (HPLC)
40m2

400 Peak2 (HPLC)
50a1

409 Peak1 (HPLC)
50a2

409 Peak2 (HPLC)
50b1

416 Peak1 (HPLC)
50b2

416 Peak2 (HPLC)
50c1

413 Peak1 (HPLC)
50c2

427 Peak2 (HPLC)
50d1

374 Peak1 (HPLC)
50d2

360 Peak2 (HPLC)
50e1

417 Peak1 (HPLC)
50e2

417 Peak2 (HPLC)
50f1

423 Peak1 (HPLC)
50f2

423 Peak2 (HPLC)
50g1

430 Peak1 (HPLC)
50g2

430 Peak2 (HPLC)
50h1

442 Peak1 (HPLC)
50h2

442 Peak2 (HPLC)
50i1

499 Peak1 (HPLC)
50i2

499 Peak2 (HPLC)
50j1

506 Peak1 (HPLC)
50j2

506 Peak2 (HPLC)
50k1

517 Peak1 (HPLC)
50k2

427 Peak2 (HPLC)
50m1

464 Peak1 (HPLC)
50m2

464 Peak2 (HPLC)
50n1

507 Peak1 (HPLC)
50n2

507 Peak2 (HPLC)
50o1

513 Peak1 (HPLC)
50o2

513 Peak2 (HPLC)
50p1

520 Peak1 (HPLC)
50p2

520 Peak2 (HPLC)
50q1

525 Peak1 (HPLC)
50q2

525 Peak2 (HPLC)
50r1

532 Peak1 (HPLC)
50r2

532 Peak2 (HPLC)
50s1

430 Peak1 (HPLC)
50s2

430 Peak2 (HPLC)
50t1

444 Peak1 (HPLC)
50t2

444 Peak2 (HPLC)
50u1

458 Peak1 (HPLC)
50u2

458 Peak2 (HPLC)
50v1

456 Peak1 (HPLC)
50v2

456 Peak2 (HPLC)
50w1

381 Peak1 (HPLC)
50w2

381 Peak2 (HPLC)
50x1

423 Peak1 (HPLC)
50x2

423 Peak2 (HPLC)
60a1

411 Peak1 (HPLC)
60a2

411 Peak2 (HPLC)
60b1

418 Peak1 (HPLC)
60b2

418 Peak2 (HPLC)
60c1

429 Peak1 (HPLC)
60c2

429 Peak2 (HPLC)
60d1

376 Peak1 (HPLC)
60d2

376 Peak2 (HPLC)
60e1

419 Peak1 (HPLC)
60e2

419 Peak2 (HPLC)
60f1

425 Peak1 (HPLC)
60f2

425 Peak2 (HPLC)
60g1

432 Peak1 (HPLC)
60g2

432 Peak2 (HPLC)
60h1

446 Peak1 (HPLC)
60h2

446 Peak2 (HPLC)
60i1

501 Peak1 (HPLC)
60i2

501 Peak2 (HPLC)
60j1

508 Peak1 (HPLC)
60j2

508 Peak2 (HPLC)
60k1

519 Peak1 (HPLC)
60k2

519 Peak2 (HPLC)
60m1

466 Peak1 (HPLC)
60m2

466 Peak2 (HPLC)
60n1

509 Peak1 (HPLC)
60n2

509 Peak2 (HPLC)
60o1

515 Peak1 (HPLC)
60o2

515 Peak2 (HPLC)
60p1

522 Peak1 (HPLC)
60p2

522 Peak2 (HPLC)
60q1

527 Peak1 (HPLC)
60q2

527 Peak2 (HPLC)
60r1

534 Peak1 (HPLC)
60r2

534 Peak2 (HPLC)
60s1

383 Peak1 (HPLC)
60s2

383 Peak2 (HPLC)
60t1

425 Peak1 (HPLC)
60t2

425 Peak2 (HPLC)
60u1

451 Peak1 (HPLC)
60u2

451 Peak2 (HPLC)
60v1

432 Peak1 (HPLC)
60v2

432 Peak2 (HPLC)
60w1

446 Peak1 (HPLC)
60w2

446 Peak2 (HPLC)
60x1

460 Peak1 (HPLC)
60x2

460 Peak2 (HPLC)
60y1

458 Peak1 (HPLC)
60y2

458 Peak2 (HPLC)
70a1

403 Peak1 (HPLC)
70a2

403 Peak2 (HPLC)
70b1

417 Peak1 (HPLC)
70b2

417 Peak2 (HPLC)
80a1

405 Peak1 (HPLC)
80a2

405 Peak2 (HPLC)
80b1

419 Peak1 (HPLC)
80b2

419 Peak2 (HPLC)
90a1

419 Peak1 (HPLC)
90a2

419 Peak2 (HPLC)
90b1

433 Peak1 (HPLC)
90b2

433 Peak2 (HPLC)

PHARMACEUTICAL COMPOSITION AND ADMINISTRATION MODE



[0067] Since the compounds of the present invention have excellent inhibitory activity against hepatitis B virus (HBV), the various compounds of the present invention, pharmaceutically acceptable inorganic or organic salts, hydrates or solvates thereof, and a pharmaceutical composition containing a compound of the present invention as a main active ingredient can be used for the prevention and/or treatment (stabilization, alleviation or cure) of hepatitis B virus infection or for prevention and/or treatment (stabilization, alleviation or cure) hepatitis B virus-related diseases (for example, hepatitis B, progressive liver fibrosis, inflammation and necrosis which cause cirrhosis, end-stage liver disease, hepatitis B cancer).

[0068] The pharmaceutical composition of the invention comprises the compound of the present invention in a safe and effective dosage range and a pharmaceutically acceptable excipient or carrier. The term "safe and effective dosage" means that the amount of compound is sufficient to significantly improve the condition without causing serious side effects. Generally, the pharmaceutical composition contains 1-2000 mg compound of the invention per dose, preferably, 10-200mg compound of the invention per dose. Preferably, the "one dose" is one capsule or one tablet.

[0069] "Pharmaceutically acceptable carrier" means one or more compatible solid or liquid fillers, or gelatinous materials which are suitable for human use and should be of sufficient purity and sufficiently low toxicity. "Compatibility" means that each component in the composition can be admixed with the compounds of the present invention and with each other without significantly reducing the efficacy of the compounds. Some examples of pharmaceutically acceptable carriers include cellulose and the derivatives thereof (such as sodium carboxymethyl cellulose, sodium ethyl cellulose, cellulose acetate, etc.), gelatin, talc, solid lubricants (such as stearic acid, magnesium stearate), calcium sulfate, vegetable oils (such as soybean oil, sesame oil, peanut oil, olive oil, etc.), polyols (such as propylene glycol, glycerol, mannitol, sorbitol, etc.), emulsifiers (such as Tween®), wetting agent (such as sodium dodecyl sulfate), coloring agents, flavoring agents, stabilizers, antioxidants, preservatives, pyrogen-free water, etc.

[0070] There is no special limitation on administration mode for the compound or pharmaceutical composition of the present invention, and the representative administration mode includes (but is not limited to): oral, parenteral (intravenous, intramuscular or subcutaneous) administration.

[0071] Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules. In these solid dosage forms, the active compounds are mixed with at least one conventional inert excipient (or carrier), such as sodium citrate or CaHPO4, or mixed with any of the following components: (a) fillers or compatibilizer, such as starch, lactose, sucrose, glucose, mannitol and silicic acid; (b) binders, such as hydroxymethyl cellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose and arabic gum; (c) humectant, such as, glycerol; (d) disintegrating agents such as agar, calcium carbonate, potato starch or tapioca starch, alginic acid, certain composite silicates, and sodium carbonate; (e) dissolution-retarding agents, such as paraffin; (f) sorbefacientsabsorption-, such asquaternary ammonium compounds; (g) wetting agents, such as cetyl alcohol and glyceryl monostearate; (h) adsorbents, such askaolin; and (i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycol, sodium lauryl sulfate, or the mixtures thereof. In capsules, tablets and pills, the dosage forms may also contain buffering agents.

[0072] The solid dosage forms such as tablets, sugar pills, capsules, pills and granules can be prepared by using coating and shell materials, such as enteric coatings and any other materials known in the art. They can contain an opaque agent. The release of the active compounds or compounds in the compositions can be released in a delayed mode in a given portion of the digestive tract. Examples of the embedding components include polymers and waxes. If necessary, the active compounds and one or more above excipients can form microcapsules.

[0073] Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or tinctures. In addition to the active compounds, the liquid dosage forms may contain any conventional inert diluents known in the art such as water or other solvents, solubilizes and emulsifiers, such as ethanol, isopropanol, ethyl carbonate, ethyl acetate, propylene glycol, 1,3-butanediol, dimethyl formamide, as well as oil, in particular, cottonseed oil, peanut oil, corn germ oil, olive oil, castor oil and sesame oil, or the combination thereof.

[0074] Besides these inert diluents, the composition may also contain additives such as wetting agents, emulsifiers, and suspending agent, sweetener, flavoring agents and perfume.

[0075] In addition to the active compounds, the suspension may contain suspending agents, such as ethoxylated isooctadecanol, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, methanol aluminum and agar, or the combination thereof.

[0076] The compositions for parenteral injection may comprise physiologically acceptable sterile aqueous or anhydrous solutions, dispersions, suspensions or emulsions, and sterile powders which can be re-dissolved into sterile injectable solutions or dispersions. Suitable aqueous and non-aqueous carriers, diluents, solvents or excipients include water, ethanol, polyols and any suitable combination thereof.

[0077] The compounds of the present invention can be administrated alone, or in combination with any other pharmaceutically acceptable compounds (such as anti-HBV agents).

[0078] In the case of co-administration, the pharmaceutical composition can also include one or more (2, 3, 4, or more) other pharmaceutically acceptable compounds (such as anti-HBV agents). One or more (2, 3, 4, or more) other pharmaceutically acceptable compounds (e.g., anti-HBV agents) may be used simultaneously, separately or sequentially with the compound of the present invention so as to prevent and / or treat HBV infection or HBV related diseases.

[0079] When the pharmaceutical composition is used, a safe and effective amount of compound of the present invention is administered to a mammal (such as human) in need of, wherein the dose of administration is a pharmaceutically effective dose. For a person weighed 60 kg, the daily dose is usually 1-2000 mg, preferably 20-500mg. Of course, the particular dose should also depend on various factors, such as the route of administration, patient healthy status, which are well within the skills of an experienced physician.

The main advantages of the present invention include:



[0080] 
  1. (1) The compounds of the present invention are novel in structure and have an excellent anti-hepatitis B virus infection effect. In this application, the existing endocyclic sulfoxide amide-arylamide compounds are transformed into endocyclic sulfonimid amide-arylamide compounds in order to better interfering with the assembly process of the capsid protein, thus inhibiting the activity or expression of HBV.
  2. (2) The compounds of the present invention have very low toxicity to normal cells, and therefore can be applied to a subject in a large dose range.
  3. (3) The compounds of the present invention have good drug ability. Compared with the existing compounds, the compounds of the present invention have better solubility and have shown good bioavailability in in vivo experiments. The bioavailability of some compounds has reached 70% or above. Meanwhile, the compounds of the present invention are extremely easy to make into pharmaceutically acceptable salts compared to existing compounds, and thus contribute to the further formation of formulations.
  4. (4) The compound of the present invention and a pharmaceutical composition containing the compound of the present invention as a main active ingredient can be used for prevention and/or treatment of hepatitis B virus-related diseases (for example, hepatitis B, progressive liver fibrosis, inflammation and necrosis leading to liver cirrhosis, end-stage liver diseases, hepatitis B liver cancer).


[0081] The present invention will be further illustrated below with reference to the specific examples. It should be understood that these examples are only to illustrate the invention but not to limit the scope of the invention. The experimental methods with no specific conditions described in the following examples are generally performed under the conventional conditions, or according to the manufacturer's instructions. Unless indicated otherwise, parts and percentage are calculated by weight. Unless otherwise specified, the raw materials or instruments used in the embodiments of the present invention are commercially available.

[0082] The following are the synthesis of 10 types of compounds:

Example 1: Synthesis of compound 10a



[0083] 


Step 1: Synthesis of Compound 2



[0084] 



[0085] Compound 1 (10 g) was dissolved in dichloromethane (40 mL), and ammonia water (30 mL) was added dropwise to the reaction system at room temperature. The reaction was carried out for 5 h at room temperature, then vacuum filtrated, and the filter cake was washed with water (5mL) to provide 5g of light yellow solid, MS (M + 1 = 267).

Step 2: Synthesis of Compound 3



[0086] 



[0087] The substrate 2 (5 g) was dissolved in DMF (10 mL), sodium hydride (1.5 g) was added into the reaction system at 0 °C, and stirred for 15 min. TBDPSCl was then added to the reaction system, and reacted for 18 h. The reaction system was poured into ice water, and extracted with ethyl acetate (3 30 mL), and the organic phase was dried, the solvent was evaporated in vacuum. Crude product was purified via column chromatography (n-heptane: ethyl acetate = 1: 4) to provide the product 3 (3 g). MS (M + 1 = 505).

Step 3: Synthesis of Compound 4



[0088] 



[0089] The PPh3Cl2 chloroform solution (80 mL) was cooled to 0 °C, and then triethylamine (7 mL) was added, stirred for 10 minutes and then compound 3 was added at 0 °C. After stirred for 20 minutes, 2-isopropyl-3-propenylamine was added to the reaction system and reacted at room temperature for 18h. Water (20 mL) and ethyl acetate (3 25mL) were added to the reaction system for extraction. The organic phase was dried and the solvent was evaporated in vacuum. Crude product was purified via column chromatography (n-heptane: ethyl acetate = 1: 5) to provide the product 4 (1.9 g). MS (M + 1 = 586).

Step 4: Synthesis of Compound 5



[0090] 



[0091] Compound 4 (1.8 g), Tetrakis (triphenylphosphine) palladium (100 mg), pinacol vinylboronate (900 mg), and cesium carbonate (2.7 g) were dissolved in DMF (410 mL), and the mixture was reacted at 100 °C under nitrogen for 15 h. The reaction was quenched with aqueous solution, extracted with ethyl acetate, and the organic phase was dried and the solvent was evaporated in vacuum. The resulting crude product was purified by column chromatography (n-heptane: ethyl acetate = 1: 5) to provide compound 5 (1.0 g). MS (M + 1 = 340).

Step 5: Synthesis of Compound 6



[0092] 



[0093] Compound 5 (1.0 g) was dissolved in dichloromethane (500 ml), and then the Zhan Catalyst (0.1 g) was added to the reaction system and stirred overnight. The solvent of reaction solution was evaporated in vacuum and crude product was purified via column chromatography (n-heptane: ethyl acetate = 1: 3) to provide compound 6. The lower point indicated by TLC was 6-1 (0.22 g), and the upper point indicated by TLC was 6-2 (0.27 g), MS (M + 1 = 312).

Step 6: Synthesis of compound 10a1



[0094] 



[0095] Compound 6-1 (30 mg) and 4-fluoro-3-cyanoaniline (20 mg) were dissolved in THF (5 mL), the solution was cooled to 0 °C, and then NaHMDS (0.2 mL) solution was added to the reaction system. The reaction was stirred at room temperature for 16 h, and water was added to the reaction system. The mixture was extracted with ethyl acetate (3 15 mL). The organic phase was dried over anhydrous sodium sulfate and the solvent was evaporated in vacuum. The crude product was subjected to column chromatography (n-heptane: ethyl acetate = 1: 3) to provide target product 10a1 (11mg). 1H NMR (400 MHz, DMSO-d6) δ 10.78 (s, 1H), 7.89 - 7.83 (m, 1H), 7.71 (s, 1H), 7.44 (qd, J = 4.7, 4.2, 2.5 Hz, 2H), 6.54 (dd, J = 12.4, 2.7 Hz, 1H), 5.75 (dd, J = 12.4, 2.8 Hz, 1H), 4.0 (dq, J = 7.8, 2.6 Hz, 1H), 3.74 (s, 3H), 1.97-1.89 (m, 1H), 0.98 (dd, J = 12.6, 6.7 Hz, 6H). MS(M+1=395).

Example 2: Synthesis of Compound 10a2



[0096] 



[0097] The reaction was carried out according to the step 6 of example 1, all the conditions were the same except the compound 6-2 was used instead of 6-1, column chromatography (n-heptane: ethyl acetate = 1: 1) purified to provide target product 10a2 (8mg). 1H NMR (400 MHz, DMSO-d6) δ 10.69 (s, 1H), 7.89 - 7.83 (m, 1H), 7.51 (s, 1H), 7.44 (qd, J = 4.7, 4.2, 2.5 Hz, 2H), 6.53 (dd, J = 12.4, 2.7 Hz, 1H), 5.72 (dd, J = 12.4, 2.8 Hz, 1H), 3.87 (dq, J = 7.8, 2.6 Hz, 1H), 3.72 (s, 3H), 1.91-1.85 (m, 1H), 0.96 (dd, J = 12.6, 6.7 Hz, 6H). MS(M+1=395).

Example 3: Synthesis of Compound 10b1



[0098] 


Step 1: Synthesis of Compound 7



[0099] 



[0100] Compound 2 (2.5 g), vinyl borate (1.5 g), sodium carbonate (3.5 g), palladium acetate (120 mg) and Xphos (500 mg) were dissolved in DMF. Under nitrogen protection, the reaction system was placed in a pre-heated 100°C oil bath to react for 6 hours. Water (50 mL) was added to the reaction system, and extracted with ethyl acetate (3 60 mL), dried over anhydrous sodium sulfate, and the solvent was evaporated in vacuum. Purified via column chromatography to provide 1.2 g of yellow solid. MS (M + 1 = 259).

Step 2: Synthesis of Compound 8



[0101] 



[0102] The reaction system was cooled to 0 °C, sodium hydride (180 mg) was added to DMF, and then stirred for 10 min. TBDPSC1 (2.7 g) and 7 (1.1 g) in DMF was added dropwise to the reaction system at 0 °C, and reacted at room temperature for 1.5 h. The reaction liquid was added dropwise to a mixed solution of 1N HCl and saturated ammonium chloride, extracted with ethyl acetate (3 50mL), dried over anhydrous sodium sulfate, the organic phase was evaporated in vacuum, and 800 mg of white solid was obtained by column chromatography, MS (M + 1 = 497). 1H NMR (400 MHz, DMSO-d6) δ 10.78 (s, 1H), 7.62 - 7.59 (m, 1H), 7.45 - 7.41(m, 1H), 7.33 - 7.29 (m, 3H), 7.13 (qd, J = 4.7, 4.2, 2.5 Hz, 2H), 6.16 (dd, J = 12.4, 2.7 Hz, 1H), 5.58 (dd, J = 12.4, 2.8 Hz, 1H), 5.09 (s, 1H), 4.35-4.40 (m, 2), 3.56(s, 3H), 1.45-1.40 (m,3), 1.04 (s, 9H).

Step 3: Synthesis of Compound 11



[0103] 



[0104] The PPh3Cl2 mixture was cooled to 0 °C, and then triethylamine (3mL) was added into the reaction system. After the addition, the mixture was reacted at 0 °C for 10 minutes, and then solid 8 (500mg) was added in one batch to the system, and stirred at 0 °C for 20 min. Finally, the chloroform solution of isopropylallylamine (200 mg) was added to the reaction system, and reacted at room temperature for 18 h. The silica gel was directly added to the reaction system, and purified via column chromatography to provide 650 mg of pale yellow oil. MS(M+1=578) 1H NMR (400 MHz, DMSO-d6) δ 7.81 - 7.73 (m, 4H), 7.38-7.32 (m, 7H), 7.06 - 6.91 (m, 2H), 6.01-5.89 (m, 1 H), 5.48-5.33 (m, 2 H), 4.92-4.70 (m, 2 H), 4.36-4.30 (m, 2 H), 3.79 (s, 1.55H), 3.76 (s, 1.36H), 3.50-3.41(m, 1H),1.71-1.66 (m, 0. 5H),1.56-1.51 (m, 0. 5H), 1.40-1.35 (m, 3),1.14 (s, 4.2H), 1.12 (s, 4.5H),0.76-0.73 (m,3H), 0.68-0.64 (m,3H).

Step 4: Synthesis of Compound 12



[0105] 



[0106] Compound 11 (650mg) was dissolved in 1,2-dichloroethane, and Zhan 1B was added to the reaction system. Under the protection of nitrogen, the system was warmed to 70 °C and stirred for 24h. Silica gel was directly added to the reaction system, and purified by column chromatography, after the solvent was evaporated in vacuum to provide pale yellow oil 12: The lower point of the TLC display was 12-1 (0.22 g), and the upper point of the TLC display was 12-2 (0.27 g), MS (M + 1 = 550). 1H NMR (400 MHz, DMSO-d6) δ 7.81 - 7.74 (m, 5H), 7.40-7.37 (m, 7H), 7.28-7.21 (m, 1H), 6.01-5.89 (m, 1 H), 6.99 (s, 1H), 5.77-5.73 (m, 1 H), 4.42-4.35 (m, 2 H), 4.15-4.11 (m, 1 H), 3.80 (s, 3H), 1.91-1.86 (m, 1H), 1.43-1.39 (m, 3), 1.14 (s, 9H), 0.87-0.78 (m,6H).

Step 5: Synthesis of Compound 13



[0107] 



[0108] Compound 12-1 (90 mg) (lower point shown by TLC) and 3,4-difluoroaniline (43 mg) was dissolved in THF (8 mL), then the system was cooled to 0 °C, and 6 eq of NaHMDS was added to the reaction system to react at 0 °C for 1 h. Water (20 mL) was added to the reaction system, and extracted with ethyl acetate (3 30 mL), dried over anhydrous sodium sulfate, the solvent was evaporated in vacuum, and purified via column chromatography to provide 80 mg of yellow oil. MS (M + 1 = 640).

Step 6: Synthesis of compound 10b1



[0109] 



[0110] Compound 13-1 (40 mg) (lower point shown by TLC) was dissolved in THF (3mL), then 120 eq of 3HF.TEA was added dropwise into the reaction system, reacted at room temperature for 3 days, separated by preparation TLC, and freeze-dried to obtain white solid 10b1 (4.5 mg). 1H NMR (400 MHz, DMSO-d6) δ 10.90 (s, 1H), 8.18 (dd, J = 5.8, 2.7 Hz, 1H), 7.99(ddd, J = 9.2, 4.8, 2.7 Hz, 1H), 7.78- 7.70 (m, 2H), 7.57 (d, J = 10.3 Hz, 1H), 6.57 (dd, J = 12.4, 2.7 Hz, 1H), 5.77 (dd, J = 12.4, 2.8 Hz, 1H), 4.07 (ddt, J = 10.6, 5.4, 2.7 Hz, 1H), 3.76 (s, 3H), 1.92 (tq, J = 12.1, 6.7, 5.6 Hz, 1H), 0.99 (dd, J = 12.0, 6.7 Hz, 6H). Ms (ESI) m/z = 402(M+1)

Example 4: Synthesis of compound 10b2



[0111] 



[0112] The reaction was carried out according to the step 6 of example 3, all the conditions were the same except the compound 13-2 (upper point shown by TLC) was used instead of compound 13-1 (lower point shown by TLC), purified by column chromatography (n-heptane: ethyl acetate = 1: 1) to provide target product 10b2 (8mg). 1H NMR (400 MHz, DMSO-d6) δ 10.89 (s, 1H), 8.20 (dd, J = 5.8, 2.7 Hz, 1H), 7.97(ddd, J = 9.2, 4.8, 2.7 Hz, 1H), 7.90- 7.88 (m, 2H), 7.56 (d, J = 10.3 Hz, 1H), 6.65(dd, J = 12.4, 2.7 Hz, 1H), 5.91 (dd, J = 12.4, 2.8 Hz, 1H), 3.80 (s, 3H), 3.69-3.63(m, 1H), 1.95 (tq, J = 12.1, 6.7, 5.6 Hz, 1H), 0.99 (dd, J = 12.0, 6.7 Hz, 6H). Ms (ESI) m/z = 402(M+1)

[0113] The following 10 and 30 series compounds were synthesized according to the method of example 3:
No.StructureMass Spectrum ESI-MS, (M + H)Remark
10c1

413 Peak1 (HPLC)
10c2

413 Peak2 (HPLC)
10d1

360 Peak1 (HPLC)
10d2

360 Peak2 (HPLC)
10e1

403 Peak1 (HPLC)
10e2

403 Peak2 (HPLC)
10f1

410 Peak1 (HPLC)
10f2

410 Peak2 (HPLC)
10g1

395 Peak1 (HPLC)
10g2

395 Peak2 (HPLC)
10h1

402 Peak1 (HPLC)
10h2

402 Peak2 (HPLC)
10i1

413 Peak1 (HPLC)
10i2

413 Peak2 (HPLC)
10j1

360 Peak1 (HPLC)
10j2

360 Peak2 (HPLC)
10k1

403 Peak1 (HPLC)
10k2

403 Peak2 (HPLC)
10m1

410 Peak1 (HPLC)
10m2

410 Peak2 (HPLC)
10n1

409 Peak1 (HPLC)
10n2

409 Peak2 (HPLC)
10o1

416 Peak1 (HPLC)
10o2

416 Peak2 (HPLC)
10p1

417 Peak1 (HPLC)
10p2

417 Peak2 (HPLC)
10q1

424 Peak1 (HPLC)
10q2

424 Peak2 (HPLC)
10r1

409 Peak1 (HPLC)
10r2

409 Peak2 (HPLC)
10s1

374 Peak1 (HPLC)
10s2

374 Peak2 (HPLC)
10t1

417 Peak1 (HPLC)
10t2

417 Peak2 (HPLC)
10u1

409 Peak1 (HPLC)
10u2

409 Peak2 (HPLC)
10v1

416 Peak1 (HPLC)
10v2

416 Peak2 (HPLC)
10w1

417 Peak1 (HPLC)
10w2

417 Peak2 (HPLC)
10x1

424 Peak1 (HPLC)
10x2

424 Peak2 (HPLC)
10y1

409 Peak1 (HPLC)
10y2

409 Peak2 (HPLC)
10z1

374 Peak1 (HPLC)
10z2

374 Peak2 (HPLC)
10aa1

417 Peak1 (HPLC)
10aa2

417 Peak2 (HPLC)
10bb1

435 Peak1 (HPLC)
10bb2

435 Peak2 (HPLC)
10cc1

442 Peak1 (HPLC)
10cc2

442 Peak2 (HPLC)
10dd1

443 Peak1 (HPLC)
10dd2

443 Peak2 (HPLC)
10ee1

450 Peak1 (HPLC)
10ee2

450 Peak2 (HPLC)
10ff1

435 Peak1 (HPLC)
10ff2

435 Peak2 (HPLC)
10gg1

400 Peak1 (HPLC)
10gg2

400 Peak2 (HPLC)
10hh1

443 Peak1 (HPLC)
10hh2

443 Peak2 (HPLC)
10ii1

429 Peak1 (HPLC)
10ii2

429 Peak2 (HPLC)
10jj1

436 Peak1 (HPLC)
10jj2

436 Peak2 (HPLC)
10kk1

437 Peak1 (HPLC)
10kk2

437 Peak2 (HPLC)
10mm1

429 Peak1 (HPLC)
10mm2

429 Peak2 (HPLC)
10nn1

436 Peak1 (HPLC)
10nn2

436 Peak2 (HPLC)
10oo1

437 Peak1 (HPLC)
10oo2

437 Peak2 (HPLC)
10pp1

443 Peak1 (HPLC)
10pp2

443 Peak2 (HPLC)
10qq1

450 Peak1 (HPLC)
10qq2

450 Peak2 (HPLC)
10rr1

451 Peak1 (HPLC)
10rr2

451 Peak2 (HPLC)
10ss1

443 Peak1 (HPLC)
10ss2

443 Peak2 (HPLC)
10tt1

450 Peak1 (HPLC)
10tt2

450 Peak2 (HPLC)
10uu1

451 Peak1 (HPLC)
10uu2

451 Peak2 (HPLC)
10vv1

493 Peak1 (HPLC)
10vv2

493 Peak2 (HPLC)
10ww1

500 Peak1 (HPLC)
10ww2

500 Peak2 (HPLC)
10xx1

501 Peak1 (HPLC)
10xx2

501 Peak2 (HPLC)
10yy1

493 Peak1 (HPLC)
10yy2

493 Peak2 (HPLC)
10zz1

500 Peak1 (HPLC)
10zz2

500 Peak2 (HPLC)
10aaa1

501 Peak1 (HPLC)
10aaa2

501 Peak2 (HPLC)
10bbb1

487 Peak1 (HPLC)
10bbb2

487 Peak2 (HPLC)
10ccc1

494 Peak1 (HPLC)
10ccc2

494 Peak2 (HPLC)
10ddd1

505 Peak1 (HPLC)
10ddd2

505 Peak2 (HPLC)
10eee1

486 Peak1 (HPLC)
10eee2

486 Peak2 (HPLC)
10fff1

495 Peak1 (HPLC)
10fff2

495 Peak2 (HPLC)
10ggg1

485 Peak1 (HPLC)
10ggg2

485 Peak2 (HPLC)
10hhh1

492 Peak1 (HPLC)
10hhh2

492 Peak2 (HPLC)
10iii1

503 Peak1 (HPLC)
10iii2

503 Peak2 (HPLC)
10jjj 1

484 Peak1 (HPLC)
10jjj2

484 Peak2 (HPLC)
10kkk1

493 Peak1 (HPLC)
10kkk2

493 Peak2 (HPLC)
10mmm1

503 Peak1 (HPLC)
10mmm2

503 Peak2 (HPLC)
10nnn1

510 Peak1 (HPLC)
10nnn2

510 Peak2 (HPLC)
10ooo1

521 Peak1 (HPLC)
10ooo2

521 Peak2 (HPLC)
10ppp1

502 Peak1 (HPLC)
10ppp2

502 Peak2 (HPLC)
10qqq1

511 Peak1 (HPLC)
10qqq2

511 Peak2 (HPLC)
10rrr1

515 Peak1 (HPLC)
10rrr2

515 Peak2 (HPLC)
10sss1

522 Peak1 (HPLC)
10sss2

522 Peak2 (HPLC)
10ttt1

533 Peak1 (HPLC)
10ttt2

533 Peak2 (HPLC)
20uuu1

514 Peak1 (HPLC)
10uuu2

514 Peak2 (HPLC)
10vvv1

523 Peak1 (HPLC)
10vvv2

523 Peak2 (HPLC)
10www1

367 Peak1 (HPLC)
10www2

367 Peak2 (HPLC)
10xxx1

411 Peak1 (HPLC)
10xxx2

411 Peak2 (HPLC)
30a1

397 Peak1 (HPLC)
30a2

397 Peak2 (HPLC)
30b1

404 Peak1 (HPLC)
30b2

404 Peak2 (HPLC)
30c1

415 Peak1 (HPLC)
30c2

415 Peak2 (HPLC)
30d1

362 Peak1 (HPLC)
30d2

362 Peak2 (HPLC)
30e1

405 Peak1 (HPLC)
30e2

405 Peak2 (HPLC)
30f1

412 Peak1 (HPLC)
30f2

412 Peak2 (HPLC)
30g1

383 Peak1 (HPLC)
30g2

383 Peak2 (HPLC)
30h1

390 Peak1 (HPLC)
30h2

390 Peak2 (HPLC)
30i1

401 Peak1 (HPLC)
30i2

401 Peak2 (HPLC)
30j1

348 Peak1 (HPLC)
30j2

348 Peak2 (HPLC)
30k1

391 Peak1 (HPLC)
30k2

391 Peak2 (HPLC)
30m1

398 Peak1 (HPLC)
30m2

398 Peak2 (HPLC)


[0114] The following are the synthesis of 20 series compounds:

Example 72: Synthesis of compound 20al



[0115] 


Step 1



[0116] 



[0117] Compound 10a1 (20 mg) was dissolved in methanol (5 mL), and then Pd/C (5 mg) was added to the reaction system. The reaction was performed in hydrogen atmophile at room temperature for 6 h. The crude product was column chromatography (n-heptane: ethyl acetate = 1: 3) purified to provide the target product 20a1 (11 mg). 1H NMR (400 MHz, DMSO-d6) δ 10.56 (s, 1H), 7.88- 7.83 (m, 1H), 7.63 (s, 2H), 7.46- 7.42 (m, 1H), 7.21- 6.96 (m, 1H), 3.72 (s, 3H), 3.12-3.09 (m, 1H), 3.00 (dd, J = 15.0, 6.7 Hz, 1H), 2.89 - 2.78(m, 1H), 1.89-1.85 (m, 1H), 1.69-1.50 (m, 1H), 1.43 (q, J = 12.0 Hz, 1H), 0.92 (dd, J = 6.8, 3.5 Hz, 6H). MS (M+1=397).

Example 73: Synthesis of Compound 20a2



[0118] 



[0119] The reaction was carried out according to the step 6 of example 1, all the conditions were the same except the compound 10a2 was used instead of 10a1, purified via column chromatography (n-heptane: ethyl acetate = 1: 1) to provide target product 20a2 (8mg). 1H NMR (400 MHz, DMSO-d6) δ 10.67 (s, 1H), 8.20- 8.18 (m, 1H), 7.97 (d, J = 3.7 Hz, 1H), 7.68- 7.59 (m, 1H), 7.55 (d, J = 10.3 Hz, 1H), 3.76 (s, 3H), 3.04 - 2.92 (m, 2H), 2.85 (dd, J = 15.0, 6.7 Hz, 1H), 1.90 - 1.83 (m, 1H), 1.73 (dd, J = 14.3, 6.7 Hz, 1H), 1.69-1.50 (m, 1H), 1.45 (q, J = 12.0 Hz, 1H), 0.89 (dd, J = 6.8, 3.5 Hz, 6H). MS (M+1=397).

Example 74: Synthesis of compound 20bl



[0120] 


Step 1



[0121] 



[0122] Compound 1 (150 mg) was dissolved in methanol (8 mL), and Pd / C (30 mg) was added to the reaction system, and purged with nitrogen for three times, then purged with hydrogen for three times. The reaction was carried out at room temperature (25 °C) for 18h with a hydrogen balloon, and the raw material was monitored to have been consumed with TLC. The reaction was suction filtrated, and the solvent was evaporated in vacuum, and purified via column chromatography (n-heptane: ethyl acetate = 5: 1) to obtain the target product 130 mg.
MS (M + 1 = 552).

Step 2



[0123] 



[0124] Compound 12-1 (45 mg) (lower point shown by TLC) and 3-cyano-4-fluoroaniline (23 mg) was dissolved in THF (6 mL), then the system was cooled to 0 °C. 8 eq of NaHMDS was added to the reaction system to react at 0 °C for 1 h. Water (20 mL) was added to the reaction system, and extracted with ethyl acetate (3 30 mL), dried over anhydrous sodium sulfate, the solvent was evaporated in vacuum, and purified by column chromatography to provide 18 mg of yellow oil. MS (M + 1 = 640).

Step 3: Synthesis of compound 20b1



[0125] 



[0126] Compound 2 (18 mg) was dissolved in THF (3 mL), and 50 eq of 3HF.TEA was added dropwise to the reaction system. The reaction was performed at room temperature for 3 days. The mixture was purified by preparation TLC and freeze-dried to obtain 4.0 mg of the target product as a white solid. 1H NMR (400 MHz, DMSO-d6) δ 10.77(s, 1H), 8.20 (dd, J = 5.8, 2.7 Hz, 1H), 7.98 (ddd, J = 9.2, 4.9, 2.7 Hz, 1H), 7.90 (s, 1H), 7.51 (t, J = 9.1 Hz, 1H), 3.77 (s, 3H), 3.11 - 3.02 (m, 2H), 2.89 - 2.87 (m, 1H), 1.97-1.92 (m, 1H), 1.78-1.73 (m, 1H), 1.60-1.51 (m, 1H), 0.96 (dd, J = 6.8, 3.4 Hz, 6H). Ms(ESI) m/z = 404(M+1)

Example 75: Synthesis of compound 20b2



[0127] 



[0128] The reaction was carried out according to the step 3 of example 74, all the conditions were the same except the compound 19b2 was used instead of 19b1, column chromatography (n-heptane: ethyl acetate = 1: 1) purified to provide target product 20b2 (8mg). 1H NMR (400 MHz, DMSO-d6) δ 10.67 (s, 1H), 8.19 (dd, J = 5.8, 2.7 Hz, 1H), 7.97 (ddd, J = 9.2, 4.9, 2.7 Hz, 1H), 7.68 (s, 1H), 7.57 (t, J = 9.1 Hz, 1H), 3.76 (s, 3H), 3.04-2.92(m, 2H), 2.85 - 2.83 (m, 1H), 1.90-1.83 (m, 1H), 1.74-1.69 (m, 1H), 1.67-1.46 (m, 1H), 0.89 (dd, J = 6.8, 3.4 Hz, 6H). Ms(ESI) m/z = 404(M+1)

[0129] The following 20 and 40 series compounds are synthesized according to the method of example 72 or 74:
No.StructureMass Spectrum ESI-MS, (M + H)Remark
20c1

415 Peak1 (HPLC)
20c2

415 Peak2 (HPLC)
20d1

362 Peak1 (HPLC)
20d2

362 Peak2 (HPLC)
20e1

405 Peak1 (HPLC)
20e2

405 Peak2 (HPLC)
20f1

412 Peak1 (HPLC)
20f2

412 Peak2 (HPLC)
20g1

397 Peak1 (HPLC)
20g2

397 Peak2 (HPLC)
20h1

404 Peak1 (HPLC)
20h2

404 Peak2 (HPLC)
20i1

415 Peak1 (HPLC)
20i2

415 Peak2 (HPLC)
20j1

362 Peak1 (HPLC)
20j2

362 Peak2 (HPLC)
20k1

405 Peak1 (HPLC)
20k2

405 Peak2 (HPLC)
20m1

412 Peak1 (HPLC)
10m2

412 Peak2 (HPLC)
20n1

411 Peak1 (HPLC)
20n2

411 Peak2 (HPLC)
20o1

418 Peak1 (HPLC)
20o2

418 Peak2 (HPLC)
20p1

419 Peak1 (HPLC)
20p2

419 Peak2 (HPLC)
20q1

426 Peak1 (HPLC)
20q2

426 Peak2 (HPLC)
20r1

411 Peak1 (HPLC)
20r2

411 Peak2 (HPLC)
20s1

376 Peak1 (HPLC)
20s2

376 Peak2 (HPLC)
20t1

419 Peak1 (HPLC)
20t2

419 Peak2 (HPLC)
20u1

411 Peak1 (HPLC)
20u2

411 Peak2 (HPLC)
20v1

418 Peak1 (HPLC)
20v2

418 Peak2 (HPLC)
20w1

419 Peak1 (HPLC)
20w2

419 Peak2 (HPLC)
20x1

426 Peak1 (HPLC)
20x2

426 Peak2 (HPLC)
20y1

411 Peak1 (HPLC)
20y2

411 Peak2 (HPLC)
20z1

376 Peak1 (HPLC)
20z2

376 Peak2 (HPLC)
20aa1

419 Peak1 (HPLC)
20aa2

419 Peak2 (HPLC)
20bb1

437 Peak1 (HPLC)
20bb2

437 Peak2 (HPLC)
20cc1

F
444 Peak1 (HPLC)
20cc2

444 Peak2 (HPLC)
20dd1

445 Peak1 (HPLC)
20dd2

445 Peak2 (HPLC)
20ee1

452 Peak1 (HPLC)
20ee2

452 Peak2 (HPLC)
20ff1

437 Peak1 (HPLC)
20ff2

437 Peak2 (HPLC)
20gg1

402 Peak1 (HPLC)
20gg2

402 Peak2 (HPLC)
20hh1

445 Peak1 (HPLC)
20hh2

445 Peak2 (HPLC)
20ii1

431 Peak1 (HPLC)
20ii2

431 Peak2 (HPLC)
20jj1

438 Peak1 (HPLC)
20jj2

438 Peak2 (HPLC)
20kk1

439 Peak1 (HPLC)
20kk2

439 Peak2 (HPLC)
20mm1

431 Peak1 (HPLC)
20mm2

431 Peak2 (HPLC)
20nn1

438 Peak1 (HPLC)
20nn2

438 Peak2 (HPLC)
20oo1

439 Peak1 (HPLC)
20oo2

439 Peak2 (HPLC)
20pp1

445 Peak1 (HPLC)
20pp2

445 Peak2 (HPLC)
20qq1

452 Peak1 (HPLC)
20qq2

452 Peak2 (HPLC)
20rr1

453 Peak1 (HPLC)
20rr2

453 Peak2 (HPLC)
20ss1

445 Peak1 (HPLC)
20ss2

445 Peak2 (HPLC)
20tt1

452 Peak1 (HPLC)
20tt2

452 Peak2 (HPLC)
20uu1

453 Peak1 (HPLC)
20uu2

453 Peak2 (HPLC)
20vv1

495 Peak1 (HPLC)
20vv2

495 Peak2 (HPLC)
20ww1

502 Peak1 (HPLC)
20ww2

502 Peak2 (HPLC)
20xx1

503 Peak1 (HPLC)
20xx2

503 Peak2 (HPLC)
20yy1

495 Peak1 (HPLC)
20yy2

495 Peak2 (HPLC)
20zz1

502 Peak1 (HPLC)
20zz2

502 Peak2 (HPLC)
20aaa1

503 Peak1 (HPLC)
20aaa2

503 Peak2 (HPLC)
20bbb1

489 Peak1 (HPLC)
20bbb2

489 Peak2 (HPLC)
20ccc1

496 Peak1 (HPLC)
20ccc2

496 Peak2 (HPLC)
20ddd1

507 Peak1 (HPLC)
20ddd2

507 Peak2 (HPLC)
20eee1

488 Peak1 (HPLC)
20eee2

488 Peak2 (HPLC)
20fff1

497 Peak1 (HPLC)
20fff2

497 Peak2 (HPLC)
20ggg1

486 Peak1 (HPLC)
20ggg2

486 Peak2 (HPLC)
20hhh1

494 Peak1 (HPLC)
20hhh2

494 Peak2 (HPLC)
20iii1

505 Peak1 (HPLC)
20iii2

505 Peak2 (HPLC)
20jjj1

486 Peak1 (HPLC)
20jjj2

486 Peak2 (HPLC)
20kkk1

495 Peak1 (HPLC)
20kkk2

495 Peak2 (HPLC)
20mmm1

505 Peak1 (HPLC)
20mmm2

505 Peak2 (HPLC)
20nnn1

512 Peak1 (HPLC)
20nnn2

512 Peak2 (HPLC)
20ooo1

523 Peak1 (HPLC)
20ooo2

523 Peak2 (HPLC)
20ppp1

504 Peak1 (HPLC)
20ppp2

504 Peak2 (HPLC)
20qqq1

513 Peak1 (HPLC)
20qqq2

513 Peak2 (HPLC)
20rrr1

517 Peak1 (HPLC)
20rrr2

517 Peak2 (HPLC)
20sss1

524 Peak1 (HPLC)
20sss2

524 Peak2 (HPLC)
20ttt1

535 Peak1 (HPLC)
20ttt2

535 Peak2 (HPLC)
20uuu1

516 Peak1 (HPLC)
20uuu2

516 Peak2 (HPLC)
20vvv1

525 Peak1 (HPLC)
20vvv2

525 Peak2 (HPLC)
20www1

369 Peak1 (HPLC)
20www2

369 Peak2 (HPLC)
20xxx1

413 Peak1 (HPLC)
20xxx2

413 Peak2 (HPLC)
40a1

399 Peak1 (HPLC)
40a2

399 Peak2 (HPLC)
40b1

406 Peak1 (HPLC)
40b2

406 Peak2 (HPLC)
40c1

417 Peak1 (HPLC)
40c2

417 Peak2 (HPLC)
40d1

364 Peak1 (HPLC)
40d2

364 Peak2 (HPLC)
40e1

407 Peak1 (HPLC)
40e2

407 Peak2 (HPLC)
40f1

414 Peak1 (HPLC)
40f2

414 Peak2 (HPLC)
40g1

385 Peak1 (HPLC)
40g2

385 Peak2 (HPLC)
40h1

392 Peak1 (HPLC)
40h2

392 Peak2 (HPLC)
40i1

403 Peak1 (HPLC)
40i2

403 Peak2 (HPLC)
40j1

350 Peak1 (HPLC)
40j2

350 Peak2 (HPLC)
40k1

393 Peak1 (HPLC)
40k2

393 Peak2 (HPLC)
40m1

400 Peak1 (HPLC)
40m2

400 Peak2 (HPLC)


[0130] The following are the synthesis of 50 series compounds:

Example 167: Synthesis of compound 50al



[0131] 


Step 1: Synthesis of Compound 42



[0132] 



[0133] Compound 41 (10 g) was dissolved in dichloromethane (40 mL), and methylamine aqueous solution (30 mL) was added dropwise to the reaction system at room temperature. The reaction was carried out for 5 h at room temperature, then suction filtrated, and the filter cake was washed with water (5mL) to provide 5g of light yellow solid 42, MS (M + 1 = 281).

Step 2: Synthesis of Compound 43



[0134] 



[0135] The PPh3Cl2 chloroform solution (80 mL) was cooled to 0 °C, and then triethylamine (7 mL) was added, stirred for 10 minutes and then compound 42 (5.0g) was added at 0 °C. After stirred for 20 minutes, 2-isopropyl-3-propenylamine (5g) was added to the reaction system and reacted at room temperature for 18h. Water (20 mL) and ethyl acetate (3 25mL) were added to the reaction system for extraction. The organic phase was dried and the solvent was evaporated in vacuum. Crude product was purified by column chromatography (n-heptane: ethyl acetate = 1: 5) to provide the product 43 (400 mg). MS (M + 1 = 362).

Step 3: Synthesis of Compound 44



[0136] 



[0137] Compound 43 (1.8 g), tetrakis (triphenylphosphine) palladium (100 mg), vinyl borate (900 mg), and cesium carbonate (2.7 g) were dissolved in DMF (410 mL), and the mixture was reacted at 100 °C under the protection of nitrogen for 15 h. The reaction was quenched with an aqueous solution, extracted with ethyl acetate, and the organic phase was dried and the solvent was evaporated in vacuum. The resulting crude product was purified by column chromatography (n-heptane: ethyl acetate = 1: 5) to provide compound 44 (0.5 g). MS (M + 1 = 354).

Step 4: Synthesis of Compound 45



[0138] 



[0139] Compound 44 (1.0 g) was dissolved in dichloromethane (500 ml), and then the Zhan Catalyst (0.1 g) was added to the reaction system and stirred overnight. The reaction solution was evaporated in vacuum and crude product was column chromatography (n-heptane: ethyl acetate = 1: 3) purified to provide compound 45. The lower point of the TLC display was 45-1 (0.22 g), and the upper point of the TLC display was 45-2 (0.27 g), MS (M + 1 = 312).

Step 5: Synthesis of compound 50al



[0140] 



[0141] Compound 45-1 (30 mg) and 4-fluoro-3-cyanoaniline (20 mg) were dissolved in THF (5 mL), the system was cooled to 0 °C, and then NaHMDS (0.2 mL) was added to the reaction system. The reaction was stirred at room temperature for 16 h, and water was added to the reaction system. The mixture was extracted with ethyl acetate (3 15 mL). The organic phase was dried over anhydrous sodium sulfate and the solvent was evaporated in vacuum. The crude product was subjected to column chromatography (n-heptane: ethyl acetate = 1: 3) to provide target product 50a1 (11mg). MS (M + 1 = 409).

[0142] The following 50 series compounds are synthesized according to the method of example 167:
No.StructureMass Spectrum ESI-MS, (M + H)Remark
50b1

416 Peak1 (HPLC)
50b2

416 Peak2 (HPLC)
50c1

413 Peak1 (HPLC)
50c2

427 Peak2 (HPLC)
50d1

374 Peak1 (HPLC)
50d2

360 Peak2 (HPLC)
50e1

417 Peak1 (HPLC)
50e2

417 Peak2 (HPLC)
50f1

423 Peak1 (HPLC)
50f2

423 Peak2 (HPLC)
50g1

430 Peak1 (HPLC)
50g2

430 Peak2 (HPLC)
50h1

442 Peak1 (HPLC)
50h2

442 Peak2 (HPLC)
50i1

499 Peak1 (HPLC)
50i2

499 Peak2 (HPLC)
50j1

506 Peak1 (HPLC)
50j2

506 Peak2 (HPLC)
50k1

517 Peak1 (HPLC)
50k2

427 Peak2 (HPLC)
50m1

464 Peak1 (HPLC)
50m2

464 Peak2 (HPLC)
50n1

507 Peak1 (HPLC)
50n2

507 Peak2 (HPLC)
50o1

513 Peak1 (HPLC)
50o2

513 Peak2 (HPLC)
50p1

520 Peak1 (HPLC)
50p2

520 Peak2 (HPLC)
50q1

525 Peak1 (HPLC)
50q2

525 Peak2 (HPLC)
50r1

532 Peak1 (HPLC)
50r2

532 Peak2 (HPLC)
50s1

430 Peak1 (HPLC)
50s2

430 Peak2 (HPLC)
50t1

444 Peak1 (HPLC)
50t2

444 Peak2 (HPLC)
50u1

458 Peak1 (HPLC)
50u2

458 Peak2 (HPLC)
50v1

456 Peak1 (HPLC)
50v2

456 Peak2 (HPLC)
50w1

381 Peak1 (HPLC)
50w2

381 Peak2 (HPLC)
50x1

423 Peak1 (HPLC)
50x2

423 Peak2 (HPLC)


[0143] The following are the synthesis of 60 series compounds:

Example 186: Synthesis of compound 60al


Step 1



[0144] 



[0145] Compound 50a1 (20 mg) was dissolved in methanol (5 mL), and then palladium carbon (5 mg) was added to the reaction system. The reaction was performed at room temperature for 6 h under hydrogen. The crude product was purified by column chromatography (n-heptane: ethyl acetate = 1: 3) to provide the target product 60a1 (11 mg). MS (M + 1 = 411)

[0146] The following 60 series compounds are synthesized according to the method of example 186:
No.StructureMass Spectrum ESI-MS, (M + H)Remark
60a2

411 Peak2 (HPLC)
60b1

418 Peak1 (HPLC)
60b2

418 Peak2 (HPLC)
60c1

429 Peak1 (HPLC)
60c2

429 Peak2 (HPLC)
60d1

376 Peak1 (HPLC)
60d2

376 Peak2 (HPLC)
60e1

419 Peak1 (HPLC)
60e2

419 Peak2 (HPLC)
60f1

425 Peak1 (HPLC)
60f2

425 Peak2 (HPLC)
60g1

432 Peak1 (HPLC)
60g2

432 Peak2 (HPLC)
60h1

446 Peak1 (HPLC)
60h2

446 Peak2 (HPLC)
60i1

501 Peak1 (HPLC)
60i2

501 Peak2 (HPLC)
60j1

508 Peak1 (HPLC)
60j2

508 Peak2 (HPLC)
60k1

519 Peak1 (HPLC)
60k2

519 Peak2 (HPLC)
60m1

466 Peak1 (HPLC)
60m2

466 Peak2 (HPLC)
60n1

509 Peak1 (HPLC)
60n2

509 Peak2 (HPLC)
60o1

515 Peak1 (HPLC)
60o2

515 Peak2 (HPLC)
60p1

522 Peak1 (HPLC)
60p2

522 Peak2 (HPLC)
60q1

527 Peak1 (HPLC)
60q2

527 Peak2 (HPLC)
60r1

534 Peak1 (HPLC)
60r2

534 Peak2 (HPLC)
60s1

383 Peak1 (HPLC)
60s2

383 Peak2 (HPLC)
60t1

425 Peak1 (HPLC)
60t2

425 Peak2 (HPLC)
60u1

451 Peak1 (HPLC)
60u2

451 Peak2 (HPLC)
60v1

432 Peak1 (HPLC)
60v2

432 Peak2 (HPLC)
60w1

446 Peak1 (HPLC)
60w2

446 Peak2 (HPLC)
60x1

460 Peak1 (HPLC)
60x2

460 Peak2 (HPLC)
60y1

458 Peak1 (HPLC)
60y2

458 Peak2 (HPLC)


[0147] The following are the synthesis of 70, 80 and 90 series compounds:

Example 234: Synthesis of compound 70a1



[0148] The reaction was carried out according to the example 74 and example 167, while the pyrrole compounds were replaced with pyrazole compounds to obtain the compounds in the following list.
70a1

403 Peak1 (HPLC)
70a2

403 Peak2 (HPLC)
70b1

417 Peak1 (HPLC)
70b2

417 Peak2 (HPLC)
80a1

405 Peak1 (HPLC)
80a2

405 Peak2 (HPLC)
80b1

419 Peak1 (HPLC)
80b2

419 Peak2 (HPLC)
90a1

419 Peak1 (HPLC)
90a2

419 Peak2 (HPLC)
90b1

433 Peak1 (HPLC)
90b2

433 Peak2 (HPLC)

Biological Example-Anti-HBV Activity Experiment


Experiment 1: In vitro anti-HBV nucleocapsid assembly activity test


Main reagents and raw materials:



[0149] C150 protein was expressed and purified by WuXi Apptec Co., Ltd;
BoDIPY® FL was purchased from Thermo Fisher Scientific.

Protein fluorescent label:



[0150] 150 µL of 2% w/v skimmed milk was added into each well of 96-well plate, and incubated at room temperature for 2 hours. The skimmed milk was aspirated. The plate was washed with deionized water and dried, and stored at room temperature. C150 protein (3 mg per tube) was desalted with 5 ml Hitrap desalting column. The desalted C150 protein of each tube was added with 50 mM BoDIPY® FL Fluorescent Dye (20 µl), and incubated under 4 °C overnight in the dark after well mixed. Sephadex G-25 gel was used for filtration to remove fluorescent dyes that were not bounded onto C150. The C150 fluorescent labeling efficiency was calculated according to the following equation:





wherein,

[BoDIPY®FL] represents the concentration of the fluorescent label;

[C150Bo] represents the concentration of fluorescently labeled protein;

A504 represents the absorbance value at 504nM wavelength;

A280 represents the absorbance value at 280nM wavelength;

M-1 represents the reciprocal of the molar concentration.


Compound dilution:



[0151] The mother liquor of compound was diluted with DMSO to 6 mM, then diluted to 600 µM with 50 mM HEPES, and then further 3-fold diluted with 10 DMSO / 50 mM HEPES to 8 concentrations.

[0152] C150Bo was diluted to 2 µM with 50mM HEPES. 37.5 µL of C150Bo and 2.5 µL of compound at each concentration were added into a 96 well plate and well mixed, then incubated at room temperature for 15 minutes. 10 µl of 750 mM NaCl / 50 mM HEPES were added into the each reaction well, and the final concentration of NaCl was 150 mM.

[0153] Into the control wells in the 0% protein group 10 µL of 50 mM HEPES was added, and the final concentration of NaCl was 0 mM.

[0154] Into the control wells in the 100% protein group 10 µL of 5 M/ 50 mM HEPES was added, and the final concentration of NaCl was 1 M.

[0155] The final concentration of DMSO was 0.5%, the maximum final concentration of the compound was 30 µM, and final concentration of C150Bo was 1.5µM. The mixture was incubated at room temperature for 1 hour. Fluorescence signal was measured (excitation light was 485 nm; emission light was 535 nm).

Data analysis



[0156] 



[0157] IC50 value was calculated by prism software, and the equation was as follows:

wherein,

X represents the logarithm of the concentration, Y represents the effect value, and Y starts from the bottom and fits to the top by S type fitting.

Bottom represents the bottom of the curve;

Top represents the top of the curve;

HillSlope represents the absolute value of the maximum slope of the curve.


Experiment 2: Determination of Anti-HBV Activity in HepG2.2.15 Cell


Main reagents:



[0158] QIAamp 96 DNA Blood Kit (12) (Qiagen, Item No. 51162);
FastStart Universal Probe Master (Roche, Item No. 04914058001);
Cell-titer Glo Testing Reagent (Promega, Item No. G7573).

[0159] Compound dilution: all the compounds for in vitro anti-HBV activity assay and cytotoxicity assay were 3-fold diluted into 8 concentrations. The final starting concentration of the tested compound was 30 µM, the final starting concentration of reference compound GLS4 was 1 µM, and the final concentration of DMSO was 0.5%.

[0160] HepG2.2.15 cells (4 × 104 cells / well) was inoculated into 96-well plates and cultured overnight at 37 °C, 5% CO2. On the second day, fresh culture medium containing different concentrations of compounds was added into the culture wells. On the fifth day, the old culture solution in the culture well was aspirated and fresh culture medium containing different concentrations of the compound was added.

[0161] On the eighth day, the supernatant in the culture well was collected for extraction of HBV DNA, and the content of HBV DNA in the supernatant of HepG2.2.15 was detected by qPCR. After the supernatant was collected, the medium and Cell-titer Glo reagent were added into the culture well, and the chemiluminescence value of each well was measured by microplate reader.

[0162] The activity calculation formula was as follows:

wherein,

X represents the logarithm of the concentration, Y represents the effect value, and Y starts from the bottom and fits to the top by S type fitting.

Bottom represents the bottom of the curve;

Top represents the top of the curve;

HillSlope represents the absolute value of the maximum slope of the curve.


Experiment 3: Determination of cytotoxicity



[0163] The cytotoxicity of the test compound was tested using HepG2 cells. The cells were incubated for 4 days in the presence of the test compound. Cell activity was assessed using the resazurin assay.

[0164] The results showed that the compound of the present invention had good anti-HBV nucleocapsid assembly activity and anti-HBV activity in vitro, and had low cytotoxicity.

[0165] The activity data of experiment 1 to 3 are shown in Table 13:
Table 13
Compound No.Experiment 1 Protein experiment IC50 (µM)Experiment 2 Cell experiment EC50 (nM)Experiment 3 Cytotoxicity CC50 (nM)
10a1 ++ ++ >30000
10a2 ++ +++ >30000
10b1 ++ ++ >30000
10b2 ++ +++ >30000
10c1 ++ ++ >30000
10c2 ++ +++ >30000
10e1 ++ ++ >30000
10e2 ++ +++ >30000
10f1 ++ ++ >30000
10f2 ++ +++ >30000
10g1 ++ ++ >30000
10g2 ++ +++ >30000
10h1 ++ + >30000
10h2 ++ + >30000
10n1 ++ ++ >30000
10n2 ++ +++ >30000
10o1 ++ ++ >30000
10o2 ++ +++ >30000
10w1 ++ ++ >30000
10w2 ++ +++ >30000
10bb1 ++ ++ >30000
10bb2 ++ +++ >30000
10cc1 ++ ++ >30000
10cc2 ++ +++ >30000
10ccc1 ++ ++ >30000
10ccc2 ++ +++ >30000
10ddd1 ++ ++ >30000
10ddd2 ++ +++ >30000
10vvv1 ++ ++ >30000
10vvv2 ++ +++ >30000
20a1 ++ ++ >30000
20a2 ++ +++ >30000
20b1 ++ ++ >30000
20b2 ++ +++ >30000
20c1 ++ ++ >30000
20c2 ++ +++ >30000
20dd1 ++ ++ >30000
20dd2 ++ +++ >30000
20ee1 ++ ++ >30000
20ee2 ++ +++ >30000
20ccc1 ++ +++ >30000
20ccc2 ++ +++ >30000
20ttt1 ++ ++ >30000
20ttt2 ++ +++ >30000
30a1 ++ ++ >30000
30a2 ++ ++ >30000
30b1 ++ ++ >30000
30b2 ++ ++ >30000
30c1 ++ ++ >30000
30c2 ++ ++ >30000
30g1 ++ ++ >30000
30g2 ++ ++ >30000
40a1 ++ ++ >30000
40a2 ++ ++ >30000
40b1 ++ ++ >30000
40b2 ++ ++ >30000
40g1 ++ ++ >30000
40g2 ++ ++ >30000
50a1 ++ ++ >30000
50a2 ++ +++ >30000
50s1 ++ ++ >30000
50s2 ++ +++ >30000
50t1 ++ ++ >30000
50t2 ++ +++ >30000
50u1 ++ ++ >30000
50u2 ++ +++ >30000
50v1 ++ ++ >30000
50v2 ++ +++ >30000
60a1 ++ ++ >30000
60a2 ++ +++ >30000
60g1 ++ ++ >30000
60g2 ++ +++ >30000
60h1 ++ ++ >30000
60h2 ++ +++ >30000
60v1 ++ ++ >30000
60v2 ++ +++ >30000
60w1 ++ ++ >30000
60w2 ++ +++ >30000
60x1 ++ ++ >30000
60x2 ++ +++ >30000
60y1 ++ ++ >30000
60y2 ++ +++ >30000
70a1 ++ ++ >30000
70a2 ++ +++ >30000
70b1 ++ ++ >30000
70b2 ++ +++ >30000
80a1 ++ ++ >30000
80a2 ++ +++ >30000
80b1 ++ ++ >30000
80b2 ++ +++ >30000
90a1 ++ ++ >30000
90a2 ++ +++ >30000
90b1 ++ ++ >30000
90b2 ++ +++ >30000
In the table:
+++ indicates IC50 <1µM;
++ indicates that IC50 is 1∼100µM;
+ indicates that IC50 is >100µM.
++++ indicates EC50 <0.1nM;
+++ indicates that EC50 is 0.1∼100nM;
++ indicates that EC50 is 100∼1000nM;
+ indicates that EC50 is >1000nM.


[0166] Therefore, the compounds of the present application have excellent anti-HBV activity.

[0167] Meanwhile, for the compound of the present invention, after being separated by HPLC, the two configuration of compounds based on the chiral sulfur atom center (that is, the S atom in O=S=N-R6) can be effectively separated. The inventors have unexpectedly founded that, between the two configuration compounds based on the chiral sulfur atom center, the enantiomer with less polarity has significantly higher activity against HBV nucleocapsid than the enantiomer with greater polarity, and in some embodiments, and the difference in activity can reach up to several times.

Experiment 4 Example of mouse PK experiment:



[0168] 18 male C57 mice (9 intravenously administrated and 9 orally administrated) were randomly grouped according to body weight, and were administered with the test compounds at 2 mg / kg (intravenous) and 50 mg / kg (oral). 3 mice were taken at each time point in each group for a total of 8 time points (5 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, and 24 hours). The calculation method of oral bioavailability F was AUCpo / Dosepo / AUCiv / Doseiv.

[0169] The compound of the present invention was administrated, and the result showed that each compound showed good bioavailability in in vivo experiments, and the bioavailability of some compounds have reached or exceeded 70%.

[0170] All literatures mentioned in the present application are incorporated herein by reference, as though each one is individually incorporated by reference. Additionally, it should be understood that after reading the above teachings, those skilled in the art can make various changes and modifications to the present invention. These equivalents also fall within the scope defined by the appended claims.


Claims

1. A compound represented by formula L, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof,

wherein n is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10;



is a substituted or unsubstituted five or six membered ring, wherein the five or six membered ring optionally contains one or more heteroatoms selected from the group consisting of O, S, N or P; the substituted means that the hydrogen atoms on the group are substituted by one or more substituents selected from the group consisting of C1-C3 alkyl (especially methyl), C3-C4 cycloalkyl, cyano, or halogen;



is a substituted or unsubstituted five- or six-membered aromatic ring, or a substituted or unsubstituted five- or six-membered heteroaromatic ring;

X is-CRaRb-;

Y is substituted or unsubstituted C1-C7 alkylene, or substituted or unsubstituted C2-C7 alkenylene, wherein the substituent is selected from the group consisting of C1-C4 alkyl, hydroxyl;

Z is selected from the group consisting of O, S, N, and P, or Z is a C-C single bond (i.e., Z is none);

W is NRc or none;

R1, R2, R3 and R4 are each independently selected from the group consisting of H, halogen, cyano, substituted or unsubstituted C3-C4 cycloalkyl, substituted or unsubstituted C1-C4 alkyl, substituted or unsubstituted C1-C4 alkoxy; wherein the substituted means that hydrogen atoms on the group are substituted by one or more substituents selected from the group consisting of halogen, C1-C4 alkyl (such as difluoromethyl, difluoroethyl, monofluoromethyl, trifluoromethyl, trifluoromethoxy);

R5, R6 are each independently selected from the group consisting of H, halogen, -CN, hydroxyl, amino, carboxyl, -(C=O)-substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C8 alkylamino, substituted or unsubstituted C1-C8 alkoxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted 3-10 membered heterocycloalkyl having 1-3 heteroatoms selected from the group consisting of N, S and O, substituted or unsubstituted C6-C10 aryl, and substituted or unsubstituted 5-10 membered heteroaryl having 1-3 heteroatoms selected from the group consisting of N, S and O;

Ra and Rb are each independently H, halogen, -CN, hydroxyl, amino, carboxyl, -(C=O) -substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C8 alkylamino, substituted or unsubstituted C1-C8 alkoxy, substituted or unsubstituted C1-C6 alkoxy-alkyl, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted 3-10 membered heterocycloalkyl having 1-3 heteroatoms selected from the group consisting of N, S and O, substituted or unsubstituted C6-C10 aryl, or substituted or unsubstituted 5-10 membered heteroaryl having 1-3 heteroatoms selected from the group consisting of N, S and O;

Rc is H, halogen, -CN, hydroxyl, amino, carboxyl, -(C=O)-substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C8 alkylamino, substituted or unsubstituted C1-C8 alkoxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted 3-10 membered heterocycloalkyl having 1-3 heteroatoms selected from the group consisting of N, S and O, substituted or unsubstituted C6-C10 aryl, or substituted or unsubstituted 5-10 membered heteroaryl having 1-3 heteroatoms selected from the group consisting of N, S and O;

unless otherwise specified, "substituted" means that the group substituted by one or more (such as 2, 3, 4, etc.) substituents selected from the group consisting of halogen, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy, halogenated C1-C6 alkoxy, C3-C8 cycloalkyl, halogenated C3-C8 cycloalkyl, oxo, -CN, hydroxyl, amino, carboxyl, and the following groups unsubstituted or substituted by one or more substituents: C6-C10 aryl, halogenated C6-C10 aryl, 5-10 membered heteroaryl having 1-3 heteroatoms selected from the group consisting of N, S and O, halogenated 5-10 membered heteroaryl having 1-3 heteroatoms selected from N, S and O; and the substituent is selected from the group consisting of halogen and C1-C6 alkoxy.


 
2. The compound of claim 1, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof, wherein the compound is of a formula selected from the group consisting L-1, L-2, L-3 and L-4:



in each formula, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10;

the definitions of A ring, B ring, X, R1, R2, R3, R4, R5, and R6 are as described in claim 1.


 
3. The compound of claim 1, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof, wherein the compound of formula I has a structure shown in the following formula II:

wherein X1 is -CR= or -N=, X2 is -NR-; and R is H or C1-C4 alkyl.
 
4. The compound of claim 1, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof, wherein the X2 is -NCH3-.
 
5. The compound of claim 1, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof, wherein the compound of formula I has the following structure:


 
6. The compound of claim 1, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof, wherein the compound of formula I has a structure shown by the following formula IV-1 or IV-2:


 
7. The compound of claim 1, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof, wherein Ra is selected from the group consisting of substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C1-C8 alkoxy, substituted or unsubstituted C1-C6 alkoxy-alkyl;
Rb is H.
 
8. The compound of claim 1, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof, wherein the compound is the compound 10al-60y2 as described in Table 1, wherein Peak 1 and Peak 2 refer to the order of the enantiomers' peaks in reversed-phase HPLC, wherein Peak 1 is the first peak in the enantiomer, and Peak 2 is the latter peak of the enantiomer.
 
9. A method for preparation of compound of claim 1, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof, wherein the formula L compound is a compound represented by formula VII-1, and the method comprises the following steps:

in an inert solvent, reacting formula L1 compound with

to provide compound L;

wherein R is a leaving group, and the definitions of the remaining groups are as described in claim 1.


 
10. A compound selected from the group consisting of:



in each formula, Rg is selected from the group consisting of H, halogen, -CN, hydroxyl, amino, carboxyl, -(C=O)-substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C1-C8 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C2-C6 alkynyl, substituted or unsubstituted C1-C8 alkylamino, substituted or unsubstituted C1-C8 alkoxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted 3-10 membered heterocycloalkyl having 1-3 heteroatoms selected from the group consisting of N, S and O, substituted or unsubstituted C6-C10 aryl, and substituted or unsubstituted 5-10 membered heteroaryl having 1-3 heteroatoms selected from the group consisting of N, S and O;

the definition of each group is as described in claim 1.


 
11. A pharmaceutical composition, wherein comprises (1) the compound, or the stereoisomer thereof, tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate of claim 1 and (2) pharmaceutically acceptable carriers.
 
12. A use of the compound, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof of claim 1, or the pharmaceutical composition of claim 11 in the preparation of a medicine for prevention and/or treatment of hepatitis B virus infection.
 
13. A hepatitis B virus inhibitor which comprises a compound, or a stereoisomer or a tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof of claim 1.
 
14. A method for in vitro inhibiting hepatitis B virus, which comprises the step: contacting the compound, or a stereoisomer or tautomer thereof, or a pharmaceutically acceptable salt, hydrate or solvate thereof of claim 1 with hepatitis B virus so as to inhibit the replication of hepatitis B virus.
 





Search report










Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description