(19)
(11)EP 3 663 282 A1

(12)EUROPEAN PATENT APPLICATION

(43)Date of publication:
10.06.2020 Bulletin 2020/24

(21)Application number: 19219114.6

(22)Date of filing:  02.12.2014
(51)International Patent Classification (IPC): 
C07D 207/277(2006.01)
C07D 401/12(2006.01)
C07D 407/04(2006.01)
C07D 407/12(2006.01)
C07D 413/12(2006.01)
A01N 43/36(2006.01)
A01N 43/40(2006.01)
A01N 43/76(2006.01)
C07D 401/04(2006.01)
C07D 403/04(2006.01)
C07D 403/12(2006.01)
C07D 409/04(2006.01)
C07D 417/12(2006.01)
A01N 43/48(2006.01)
A01N 43/50(2006.01)
A01N 43/78(2006.01)
(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 03.12.2013 US 201361911324 P

(62)Application number of the earlier application in accordance with Art. 76 EPC:
14815174.9 / 3077374

(71)Applicant: FMC Corporation
Philadelphia, PA 19104 (US)

(72)Inventors:
  • SATTERFIELD, Andrew Duncan
    Hockessin, DE 19707 (US)
  • SELBY, Thomas Paul
    Hockessin, DE 19707 (US)
  • TRAVIS, David Andrew
    North East, MD 21901 (US)
  • PATEL, Kanu Maganbhai
    Sugarland, TX 77479 (US)
  • TAGGI, Andrew Edmund
    Newark, DE 19711 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)

 
Remarks:
This application was filed on 20-12-2019 as a divisional application to the application mentioned under INID code 62.
 


(54)PYRROLIDINONE HERBICIDES


(57) Disclosed are compounds of Formula 1, including all stereoisomers, N-oxides, and salts thereof:

wherein R1, R2, R3, R4, R5, R6, Q1, Q2, Y1, and Y2 are as defined in the disclosure.
Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling undesired vegetation comprising contacting the undesired vegetation or its environment with an effective amount of a compound or a composition of the invention.


Description

FIELD OF THE INVENTION



[0001] This invention relates to certain pyrrolidinones, their N-oxides and salts, and compositions and methods of their use for controlling undesirable vegetation.

BACKGROUND OF THE INVENTION



[0002] The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, maize, potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds that are more effective, less costly, less toxic, environmentally safer or have different sites of action.

SUMMARY OF THE INVENTION



[0003] This invention is directed to compounds of Formula 1 (including all stereoisomers), including N-oxides and salts thereof, agricultural compositions containing them and their use as herbicides:

wherein
Q1
is a phenyl ring or a naphthalenyl ring system, each ring or ring system optionally substituted with up to 5 substituents independently selected from R7; or a 5- to 6-membered fully unsaturated heterocyclic ring or an 8- to 10-membered heteroaromatic bicyclic ring system, each ring or ring system containing ring members selected from carbon atoms and 1 to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, wherein up to 3 carbon ring members are independently selected from C(=O) and C(=S), and the sulfur atom ring members are independently selected from S(=O)u(=NR8)v, each ring or ring system optionally substituted with up to 5 substituents independently selected from R7 on carbon atom ring members and selected from R9 on nitrogen atom ring members;
Q2
is a phenyl ring or a naphthalenyl ring system, each ring or ring system optionally substituted with up to 5 substituents independently selected from R10; or a 5- to 6-membered fully unsaturated heterocyclic ring or an 8- to 10-membered heteroaromatic bicyclic ring system, each ring or ring system containing ring members selected from carbon atoms and 1 to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, wherein up to 3 carbon ring members are independently selected from C(=O) and C(=S), and the sulfur atom ring members are independently selected from S(=O)u(=NR8)v, each ring or ring system optionally substituted with up to 5 substituents independently selected from R10 on carbon atom ring members and selected from R11 on nitrogen atom ring members;
Y1 and Y2
are each independently O, S or NR12;
R1
is H, hydroxy, amino, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C3-C6 alkynyl, C4-C8 cycloalkylalkyl, C2-C8 alkoxyalkyl, C2-C8 haloalkoxyalkyl, C2-C8 alkylthioalkyl, C2-C8 alkylsulfinylalkyl, C2-C8 alkylsulfonylalkyl, C2-C8 alkylcarbonyl, C2-C8 haloalkylcarbonyl, C4-C10 cycloalkylcarbonyl, C2-C8 alkoxycarbonyl, C2-C8 haloalkoxycarbonyl, C4-C10 cycloalkoxycarbonyl, C2-C8 alkylaminocarbonyl, C3-C10 dialkylaminocarbonyl, C4-C10 cycloalkylaminocarbonyl, C1-C6 alkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C3-C8 cycloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C3-C8 cycloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, C3-C8 cycloalkylsulfonyl, C1-C6 alkylaminosulfonyl, C2-C8 dialkylaminosulfonyl, C3-C10 trialkylsilyl or G1;
R2 and R3
are each independently H, halogen or C1-C4 alkyl; or
R2 and R3
are taken together with the carbon atom to which they are bonded to form a C3-C7 cycloalkyl ring;
R4 and R5
are each independently H, halogen or C1-C4 alkyl;
R6
is H, hydroxy, amino, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C3-C6 alkynyl, C2-C8 alkoxyalkyl, C2-C8 haloalkoxyalkyl, C2-C8 alkylthioalkyl, C2-C8 alkylsulfinylalkyl, C2-C8 alkylsulfonylalkyl, C2-C8 alkylcarbonyl, C2-C8 haloalkylcarbonyl, C4-C10 cycloalkylcarbonyl, C2-C8 alkoxycarbonyl, C2-C8 haloalkoxycarbonyl, C4-C10 cycloalkoxycarbonyl, C2-C8 alkylaminocarbonyl, C3-C10 dialkylaminocarbonyl, C4-C10 cycloalkylaminocarbonyl, C1-C6 alkoxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C3-C8 cycloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C3-C8 cycloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, C3-C8 cycloalkylsulfonyl, C1-C6 alkylaminosulfonyl, C2-C8 dialkylaminosulfonyl, C3-C10 trialkylsilyl or G1;
each R7 and R10
is independently halogen, cyano, nitro, C1-C8 alkyl, C1-C8 haloalkyl, C1-C8 nitroalkyl, C2-C8 alkenyl, C2-C8 haloalkenyl, C2-C8 nitroalkenyl, C2-C8 alkynyl, C2-C8 haloalkynyl, C4-C10 cycloalkylalkyl, C4-C10 halocycloalkylalkyl, C5-C12 alkylcycloalkylalkyl, C5-C12 cycloalkylalkenyl, C5-C12 cycloalkylalkynyl, C3-C8 cycloalkyl, C3-C8 halocycloalkyl, C4-C10 alkylcycloalkyl, C6-C12 cycloalkylcycloalkyl, C3-C8 cycloalkenyl, C3-C8 halocycloalkenyl, C2-C8 alkoxyalkyl, C2-C8 haloalkoxyalkyl, C3-C8 haloalkoxyalkoxy, C3-C8 alkoxyalkoxy, C4-C10 cycloalkoxyalkyl, C3-C10 alkoxyalkoxyalkyl, C2-C8 alkylthioalkyl, C2-C8 alkylsulfinylalkyl, C2-C8 alkylsulfonylalkyl, C2-C8 alkylaminoalkyl, C2-C8 haloalkylaminoalkyl, C4-C10 cycloalkylaminoalkyl, C3-C10 dialkylaminoalkyl, -CHO, C2-C8 alkylcarbonyl, C2-C8 haloalkylcarbonyl, C4-C10 cycloalkylcarbonyl, -C(=O)OH, C2-C8 alkoxycarbonyl, C2-C8 haloalkoxycarbonyl, C4-C10 cycloalkoxycarbonyl, C5-C12 cycloalkylalkoxycarbonyl, -C(=O)NH2, C2-C8 alkylaminocarbonyl, C4-C10 cycloalkylaminocarbonyl, C3-C10 dialkylaminocarbonyl, C1-C8 alkoxy, C1-C8 haloalkoxy, C2-C8 alkoxyalkoxy, C2-C8 alkenyloxy, C2-C8 haloalkenyloxy, C3-C8 alkynyloxy, C3-C8 haloalkynyloxy, C3-C8 cycloalkoxy, C3-C8 halocycloalkoxy, C4-C10 cycloalkylalkoxy, C3-C10 alkylcarbonylalkoxy, C2-C8 alkylcarbonyloxy, C2-C8 haloalkylcarbonyloxy, C4-C10 cycloalkylcarbonyloxy, C1-C8 alkylsulfonyloxy, C1-C8 haloalkylsulfonyloxy, C1-C8 alkylthio, C1-C8 haloalkylthio, C3-C8 cycloalkylthio, C1-C8 alkylsulfinyl, C1-C8 haloalkylsulfinyl, C1-C8 alkylsulfonyl, C1-C8 haloalkylsulfonyl, C3-C8 cycloalkylsulfonyl, formylamino, C2-C8 alkylcarbonylamino, C2-C8 haloalkylcarbonylamino, C2-C8 alkoxycarbonylamino, C1-C6 alkylsulfonylamino, C1-C6 haloalkylsulfonylamino, -SF5, -SCN, SO2NH2, C3-C12 trialkylsilyl, C4-C12 trialkylsilylalkyl, C4-C12 trialkylsilylalkoxy or G2;
each R8
is independently H, cyano, C2--C3 alkylcarbonyl or C2-C3 haloalkylcarbonyl;
each R9 and R11
is independently cyano, C1-C3 alkyl, C2-C3 alkenyl, C2-C3 alkynyl, C3-C6 cycloalkyl, C2-C3 alkoxyalkyl, C1-C3 alkoxy, C2-C3 alkylcarbonyl, C2-C3 alkoxycarbonyl, C2-C3 alkylaminoalkyl or C3-C4 dialkylaminoalkyl;
each R12
is independently H, cyano, C1-C4 alkyl, C1-C4 haloalkyl, -(C=O)CH3 or -(C=O)CF3;
each G1
is independently phenyl, phenylmethyl (i.e. benzyl), pyridinylmethyl, phenylcarbonyl (i.e. benzoyl), phenoxy, phenylethynyl, phenylsulfonyl or a 5- or 6-membered heteroaromatic ring, each optionally substituted on ring members with up to 5 substituents independently selected from R13 ;
each G2
is independently phenyl, phenylmethyl (i.e. benzyl), pyridinylmethyl, phenylcarbonyl (i.e. benzoyl), phenoxy, phenylethynyl, phenylsulfonyl or a 5- or 6-membered heteroaromatic ring, each optionally substituted on ring members with up to 5 substituents independently selected from R14 ;
each R13 and R14
is independently halogen, cyano, hydroxy, amino, nitro, -CHO, -C(=O)OH, -C(=O)NH2, -SO2NH2, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, C2-C8 alkylcarbonyl, C2-C8 haloalkylcarbonyl, C2-C8 alkoxycarbonyl, C4-C10 cycloalkoxycarbonyl, C5-C12 cycloalkylalkoxycarbonyl, C2-C8 alkylaminocarbonyl, C3-C10 dialkylaminocarbonyl, C1-C6 alkoxy, C1-C6 haloalkoxy, C2-C8 alkylcarbonyloxy, C1-C6 alkylthio, C1-C6 haloalkylthio, C1-C6 alkylsulfinyl, C1-C6 haloalkylsulfinyl, C1-C6 alkylsulfonyl, C1-C6 haloalkylsulfonyl, C1-C6 alkylaminosulfonyl, C2-C8 dialkylaminosulfonyl, C3-C10 trialkylsilyl, C1-C6 alkylamino, C2-C8 dialkylamino, C2-C8 alkylcarbonylamino, C1-C6 alkylsulfonylamino, phenyl, pyridinyl or thienyl; and
each u and v
are independently 0, 1 or 2 in each instance of S(=O)u(=NR8)v, provided that the sum of u and v is 0, 1 or 2;
provided that
  1. (a) the compound of Formula 1 is other than N-1H-benzotriazol-1-yl-2-oxo-4-phenyl-3 -pyrrolidinecarboxamide;
  2. (b) when Q1 comprises a 3-furanyl or 3-pyridinyl ring directly bonded to the remainder of Formula 1, then said ring is substituted with at least one substituent selected from R7;
  3. (c) when Q1 is an unsubstituted phenyl ring, and Q2 comprises a phenyl ring directly bonded to the remainder of Formula 1, then said Q2 ring is substituted with R10 other than optionally substituted phenoxy or F at a 2-position, cyano or -CF3 at the 4-positionand R5 is H or halogen;
  4. (d) when Q1 is unsubstituted phenyl, and Q2 comprises a pyridinyl ring directly bonded to the remainder of Formula 1, then said pyridinyl ring is substituted with at least one substituent selected from R10;
  5. (e) when Q1 is a phenyl ring substituted with 4-phenyl or 4-phenoxy, said Q1 ring is further substituted with and R7 susbtituent;
  6. (f) when Q1 comprises a phenyl ring directly bonded to the remainder of Formula 1 and said ring is substituted with R7 at both ortho positions (relative to the bond to the remainder of Formula 1), then said ring is also independently substituted with R7 on at least one additional position;
  7. (g) when Q1 is other than unsubstituted 1-naphthalenyl, then Q2 is other than 2,3-difluorophenyl or 2-CF3-phenyl;
  8. (h) Q2 is other than optionally substituted 1H-pyrazol-5-yl; and
  9. (i) when Q2 comprises a 1H-pyrazol-3-yl ring directly bonded to the remainder of Formula 1, said ring is substituted at the 1-position with R9.


[0004] More particularly, this invention pertains to a compound of Formula 1 (including all stereoisomers), an N-oxide or a salt thereof. This invention also relates to a herbicidal composition comprising a compound of the invention (i.e. in a herbicidally effective amount) and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents, the composition optionally further comprising at least one additional active ingredient selected from the group consisting of other herbicides and herbicide safeners. This invention further relates to a method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of the invention (e.g., as a composition described herein).

DETAILS OF THE INVENTION



[0005] As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having," "contains", "containing," "characterized by" or any other variation thereof, are intended to cover a non-exclusive inclusion, subject to any limitation explicitly indicated. For example, a composition, mixture, process or method that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, mixture, process, or method.

[0006] The transitional phrase "consisting of" excludes any element, step, or ingredient not specified. If in the claim, such would close the claim to the inclusion of materials other than those recited except for impurities ordinarily associated therewith. When the phrase "consisting of" appears in a clause of the body of a claim, rather than immediately following the preamble, it limits only the element set forth in that clause; other elements are not excluded from the claim as a whole.

[0007] The transitional phrase "consisting essentially of" is used to define a composition, method that includes materials, steps, features, components, or elements, in addition to those literally disclosed, provided that these additional materials, steps, features, components, or elements do not materially affect the basic and novel characteristic(s) of the claimed invention. The term "consisting essentially of" occupies a middle ground between "comprising" and "consisting of".

[0008] Where applicants have defined an invention or a portion thereof with an open-ended term such as "comprising," it should be readily understood that (unless otherwise stated) the description should be interpreted to also describe such an invention using the terms "consisting essentially of" or "consisting of."

[0009] Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).

[0010] Also, the indefinite articles "a" and "an" preceding an element or component of the invention are intended to be nonrestrictive regarding the number of instances (i.e. occurrences) of the element or component. Therefore "a" or "an" should be read to include one or at least one, and the singular word form of the element or component also includes the plural unless the number is obviously meant to be singular.

[0011] As referred to herein, the term "seedling", used either alone or in a combination of words means a young plant developing from the embryo of a seed.

[0012] As referred to herein, the term "broadleaf" used either alone or in words such as "broadleaf weed" means dicot or dicotyledon, a term used to describe a group of angiosperms characterized by embryos having two cotyledons.

[0013] As used herein, the term "alkylating agent" refers to a chemical compound in which a carbon-containing radical is bound through a carbon atom to a leaving group such as halide or sulfonate, which is displaceable by bonding of a nucleophile to said carbon atom. Unless otherwise indicated, the term "alkylating" does not limit the carbon-containing radical to alkyl; the carbon-containing radicals in alkylating agents include the variety of carbon-bound substituent radicals specified for R1.

[0014] In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. "Alkenyl" includes straight-chain or branched alkenes such as ethenyl, 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl.

[0015] "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH3OCH2, CH3OCH2CH2, CH3CH2OCH2, CH3CH2CH2CH2OCH2 and CH3CH2OCH2CH2. "Alkoxyalkoxyalkyl" denotes at least alkoxy substitution on the alkoxy moiety of alkoxyalkyl moiety. Examples of "alkoxyalkoxyalkyl" include CH3OCH2OCH2-, CH3CH2O(CH3)CHOCH2- and (CH3O)2CHOCH2-. "Alkoxyalkoxy" denotes alkoxy substitution on alkoxy. "Alkenyloxy" includes straight-chain or branched alkenyloxy moieties. Examples of "alkenyloxy" include H2C=CHCH2O, (CH3)2C=CHCH2O, (CH3)CH=CHCH2O, (CH3)CH=C(CH3)CH2O and CH2=CHCH2CH2O. "Alkynyloxy" includes straight-chain or branched alkynyloxy moieties. Examples of "alkynyloxy" include HC≡CCH2O, CH3C≡CCH2O and CH3C≡CCH2CH2O. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. "Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH3S(O)-, CH3CH2S(O)-, CH3CH2CH2S(O)-, (CH3)2CHS(O)- and the different butylsulfinyl, pentylsulfinyl and hexylsulfinyl isomers. Examples of "alkylsulfonyl" include CH3S(O)2-, CH3CH2S(O)2-, CH3CH2CH2S(O)2-, (CH3)2CHS(O)2-, and the different butylsulfonyl, pentylsulfonyl and hexylsulfonyl isomers. "Alkylthioalkyl" denotes alkylthio substitution on alkyl. Examples of "alkylthioalkyl" include CH3SCH2, CH3SCH2CH2, CH3CH2SCH2, CH3CH2CH2CH2SCH2 and CH3CH2SCH2CH2. "Alkylsulfinylalkyl" denotes alkylsulfinyl substitution on alkyl. Examples of "alkylsulfinylalkyl" include CH3S(=O)CH2, CH3S(=O)CH2CH2, CH3CH2S(=O)CH2 and CH3CH2S(=O)CH2CH2. "Alkylsulfonylalkyl" denotes alkylsulfinyl substitution on alkyl. Examples of "alkylsulfinylalkyl" include CH3S(=O)2CH2, CH3S(=O)2CH2CH2, CH3CH2S(=O)2CH2 and CH3CH2S(=O)2CH2CH2. "Alkylamino", "dialkylamino", and the like, are defined analogously to the above examples. Examples of "alkylaminoalkyl" include CH3NHCH2-, (CH3)2CHNHCH2- and CH3NHCH(CH3)-. Examples of "dialkylaminoalkyl" include (CH3)2NCH2-, (CH3)2NC(CH3)H- and (CH3)(CH3)NCH2-. Examples of "dialkylaminocarbonyl" include (CH3)2NC(O)-. Examples of "dialkylaminosulfonyl" include (CH3)2NS(O)2-. The term "alkoxycarbonylamino" denotes a straight-chain or branched alkoxy moieties bonded to a C(=O) moiety of carbonylamino group. Examples of "alkoxycarbonylamino" include CH3OC(=O)NH- and CH3CH2OC(=O)NH-.

[0016] "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "alkylcycloalkyl" denotes alkyl substitution on a cycloalkyl moiety and includes, for example, ethylcyclopropyl, i-propylcyclobutyl, 3-methylcyclopentyl and 4-methylcyclohexyl. The term "cycloalkylalkyl" denotes cycloalkyl substitution on an alkyl moiety. Examples of "cycloalkylalkyl" include cyclopropylmethyl, cyclopentylethyl, and other cycloalkyl moieties bonded to straight-chain or branched alkyl groups. The term "cycloalkoxy" denotes cycloalkyl linked through an oxygen atom such as cyclopentyloxy and cyclohexyloxy. "Cycloalkylalkoxy" denotes cycloalkylalkyl linked through an oxygen atom attached to the alkyl chain. Examples of "cycloalkylalkoxy" include cyclopropylmethoxy, cyclopentylethoxy, and other cycloalkyl moieties bonded to straight-chain or branched alkoxy groups. "Cycloalkenyl" includes groups such as cyclopentenyl and cyclohexenyl as well as groups with more than one double bond such as 1,3- and 1,4-cyclohexadienyl.

[0017] The term "halogen", either alone or in compound words such as "haloalkyl", or when used in descriptions such as "alkyl substituted with halogen" includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl", or when used in descriptions such as "alkyl substituted with halogen" said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" or "alkyl substituted with halogen" include F3C, ClCH2, CF3CH2 and CF3CCl2. The terms "halocycloalkyl", "haloalkoxy", "haloalkylthio", "haloalkenyl", "haloalkynyl", "haloalkenyloxy", "haloalkylcarbonylamino", "haloalkylsulfonylamino", "haloalkylsulfonyloxy", "haloalkoxyalkyl", "haloalkylcarbonyloxy", "haloalkylaminoalkyl" and the like, are defined analogously to the term "haloalkyl". Examples of "haloalkoxy" include CF3O-, CCl3CH2O-, HCF2CH2CH2O- and CF3CH2O-. Examples of "haloalkylthio" include CCl3S-, CF3S-, CCl3CH2S- and ClCH2CH2CH2S-. Examples of "haloalkylsulfinyl" include CF3S(O)-, CCl3S(O)-, CF3CH2S(O)- and CF3CF2S(O)-. Examples of "haloalkylsulfonyl" include CF3S(O)2-, CCl3S(O)2-, CF3CH2S(O)2- and CF3CF2S(O)2-. Examples of "haloalkenyl" include (Cl)2C=CHCH2- and CF3CH2CH=CHCH2-. Examples of "haloalkenyloxy" include (Cl)2C=CHCH2O- and CF3CH2CH=CHCH2O-. Examples of "haloalkynyl" include HC≡CCHCl-, CF3C≡C-, CCl3C≡C- and FCH2C≡CCH2-. Examples of "haloalkoxyalkyl" include CF3OCH2-, ClCH2CH2OCH2CH2-, Cl3CCH2OCH2- as well as branched alkyl derivatives. Examples of "haloalkoxycarbonyl" include CF3OC(O)-, ClCH2CH2OCH2CH2-, Cl3CCH2OCH2OC(O)- as well as branched alkyl derivatives.

[0018] "Alkylcarbonyl" denotes a straight-chain or branched alkyl moieties bonded to a C(=O) moiety. Examples of "alkylcarbonyl" include CH3C(=O)-, CH3CH2CH2C(=O)- and (CH3)2CHC(=O)-. Examples of "alkoxycarbonyl" include CH3OC(=O)-, CH3CH2OC(=O)-, CH3CH2CH2OC(=O)-, (CH3)2CHOC(=O)- and the different butoxy- or pentoxycarbonyl isomers. "Cycloalkylalkoxycarbonyl" denotes a cycloalkylalkyl moieties bonded to an oxygen atom of alkoxycarbonyl moiety. Examples of "cycloalkylalkoxycarbonyl" include cyclopropyl-CH2OC(=O)-, cyclopropyl-CH(nH3)OC(=O)- and cyclopentyl-CH2OC(=O)-.

[0019] The total number of carbon atoms in a substituent group is indicated by the "Ci-Cj" prefix where i and j are numbers from 1 to 12. For example, C1-C4 alkylsulfonyl designates methylsulfonyl through butylsulfonyl; C2 alkoxyalkyl designates CH3OCH2-; C3 alkoxyalkyl designates, for example, CH3CH(OCH3)-, CH3OCH2CH2- or CH3CH2OCH2-; and C4 alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH3CH2CH2OCH2- and CH3CH2OCH2CH2-.

[0020] When a compound is substituted with a substituent bearing a subscript that indicates the number of said substituents can exceed 1, said substituents (when they exceed 1) are independently selected from the group of defined substituents, e.g., [R7)n], n is 1, 2, 3, 4 or 5). Further, when the subscript indicates a range, e.g. (R)i-j, then the number of substituents may be selected from the integers between i and j inclusive. When a group contains a substituent which can be hydrogen, for example R1 or R2, then when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted. When a variable group is shown to be optionally attached to a position, for example [R(7)n] wherein n may be 0, then hydrogen may be at the position even if not recited in the variable group definition. When one or more positions on a group are said to be "not substituted" or "unsubstituted", then hydrogen atoms are attached to take up any free valency.

[0021] The expression "fully saturated" in relation to a ring of atoms means that the bonds between the atoms of the ring are all single. The expression "fully unsaturated" in relation to a ring means that the bonds between the atoms in the ring are single or double bonds according to valence bond theory and furthermore the bonds between the atoms in the ring include as many double bonds as possible without double bonds being cumulative (i.e. no C=C=C, N=C=C, etc.). The term "partially unsaturated" in relation to a ring denotes a ring comprising at least one ring member bonded to an adjacent ring member though a double bond and which conceptually potentially accommodates a number of non-cumulated double bonds through adjacent ring members (i.e. in its fully unsaturated counterpart form) greater than the number of double bonds present (i.e. in its partially unsaturated form). When a fully unsaturated ring satisfies Hückel's rule then it can also be described as aromatic.

[0022] Unless otherwise indicated, a "ring" or "ring system" as a component of Formula 1 (e.g., substituent Q1) is carbocyclic or heterocyclic. The term "ring system" denotes two or more fused rings. The terms "bicyclic ring system" and "fused bicyclic ring system" denote a ring system consisting of two fused rings, in which either ring can be saturated, partially unsaturated, or fully unsaturated unless otherwise indicated. The term "fused heterobicyclic ring system" denotes a fused bicyclic ring system in which at least one ring atom is not carbon. A "bridged bicyclic ring system" is formed by bonding a segment of one or more atoms to nonadjacent ring members of a ring. The term "ring member" refers to an atom or other moiety (e.g., C(=O), C(=S), S(O) or S(O)2) forming the backbone of a ring or ring system.

[0023] The terms "carbocyclic ring", "carbocycle" or "carbocyclic ring system" denote a ring or ring system wherein the atoms forming the ring backbone are selected only from carbon. Unless otherwise indicated, a carbocyclic ring can be a saturated, partially unsaturated, or fully unsaturated ring. When a fully unsaturated carbocyclic ring satisfies Hückel's rule, then said ring is also called an "aromatic ring". "Saturated carbocyclic" refers to a ring having a backbone consisting of carbon atoms linked to one another by single bonds; unless otherwise specified, the remaining carbon valences are occupied by hydrogen atoms.

[0024] The terms "heterocyclic ring", "heterocycle" or "heterocyclic ring system" denote a ring or ring system in which at least one atom forming the ring backbone is not carbon, e.g., nitrogen, oxygen or sulfur. Typically a heterocyclic ring contains no more than 4 nitrogens, no more than 2 oxygens and no more than 2 sulfurs. Unless otherwise indicated, a heterocyclic ring can be a saturated, partially unsaturated, or fully unsaturated ring. When a fully unsaturated heterocyclic ring satisfies Hückel's rule, then said ring is also called a "heteroaromatic ring" or "aromatic heterocyclic ring". Unless otherwise indicated, heterocyclic rings and ring systems can be attached through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.

[0025] "Aromatic" indicates that each of the ring atoms is essentially in the same plane and has a p-orbital perpendicular to the ring plane, and that (4n + 2) π electrons, where n is a positive integer, are associated with the ring to comply with Hückel's rule. The term "aromatic ring system" denotes a carbocyclic or heterocyclic ring system in which at least one ring of the ring system is aromatic. The term "aromatic carbocyclic ring system" denotes a carbocyclic ring system in which at least one ring of the ring system is aromatic. The term "aromatic heterocyclic ring system" denotes a heterocyclic ring system in which at least one ring of the ring system is aromatic. The term "nonaromatic ring system" denotes a carbocyclic or heterocyclic ring system that may be fully saturated, as well as partially or fully unsaturated, provided that none of the rings in the ring system are aromatic. The term "nonaromatic carbocyclic ring system" in which no ring in the ring system is aromatic. The term "nonaromatic heterocyclic ring system" denotes a heterocyclic ring system in which no ring in the ring system is aromatic.

[0026] The term "optionally substituted" in connection with the heterocyclic rings refers to groups which are unsubstituted or have at least one non-hydrogen substituent that does not extinguish the biological activity possessed by the unsubstituted analog. As used herein, the following definitions shall apply unless otherwise indicated. The term "optionally substituted" is used interchangeably with the phrase "substituted or unsubstituted" or with the term "(un)substituted." Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group, and each substitution is independent of the other.

[0027] When Q1 or Q2 is 5- or 6-membered nitrogen-containing heterocyclic ring, it may be attached to the remainder of Formula 1 though any available carbon or nitrogen ring atom, unless otherwise described. As noted above, Q1 and Q2 can be (among others) phenyl optionally substituted with one or more substituents selected from a group of substituents as defined in the Summary of the Invention. An example of phenyl optionally substituted with one to five substituents is the ring illustrated as U-1 in Exhibit 1, wherein, for example, Rv is R7 as defined in the Summary of the Invention for Q1, or Rv is R10 as defined in the Summary of the Invention for Q2, and r is an integer (from 0 to 5).

[0028] As noted above, Q1 and Q2 can be (among others) a 5- or 6-membered fully unsaturated heterocyclic ring, optionally substituted with one or more substituents selected from a group of substituents as defined in the Summary of the Invention. Examples of a 5- or 6-membered unsaturated aromatic heterocyclic ring optionally substituted with from one or more substituents include the rings U-2 through U-61 illustrated in Exhibit 1 wherein Rv is any substituent as defined in the Summary of the Invention for Q1 and Q2, and r is an integer from 0 to 4, limited by the number of available positions on each U group. As U-29, U-30, U-36, U-37, U-38, U-39, U-40, U-41, U-42 and U-43 have only one available position, for these U groups r is limited to the integers 0 or 1, and r being 0 means that the U group is unsubstituted and a hydrogen is present at the position indicated by (Rv)r.





[0029] As noted above, Q1 and Q2 can be (among others) an 8-, 9- or 10-membered heteroaromatic bicyclic ring system optionally substituted with one or more substituents selected from a group of substituents as defined in the Summary of the Invention for Q1 and Q2. Examples of 8-, 9- or 10-membered heteroaromatic bicyclic ring system optionally substituted with from one or more substituents include the rings U-62 through U-100 illustrated in Exhibit 2 wherein Rv is any substituent as defined in the Summary of the Invention for Q1 or Q2, and r is typically an integer from 0 to 4.





[0030] Although Rv groups are shown in the structures U-1 through U-100, it is noted that they do not need to be present since they are optional substituents. Note that when Rv is H when attached to an atom, this is the same as if said atom is unsubstituted. The nitrogen atoms that require substitution to fill their valence are substituted with H or Rv. Note that when the attachment point between (Rv)r and the U group is illustrated as floating, (Rv)r can be attached to any available carbon atom or nitrogen atom of the U group. Note that when the attachment point on the U group is illustrated as floating, the U group can be attached to the remainder of Formula 1 through any available carbon or nitrogen of the U group by replacement of a hydrogen atom. Preferably for greatest herbicidal activity, the U group is attached to the remainder of Formula 1 through an available carbon or nitrogen on a fully unsaturated ring of the U group. Note that some U groups can only be substituted with less than 4 Rv groups (e.g., U-2 through U-5, U-7 through U-48, and U-52 through U-61).

[0031] In the present disclosure and claims, the term "pyrrolidinone" and related terms such as "pyrrolidinone ring" refer to 2-oxo-pyrrolidine derivatives according to the Chemical Abstracts system of nomenclature, including derivatives in which the oxygen atom of the 2-oxo moiety is replaced by S or NR12 as Y1, unless limited to oxygen by particular context.

[0032] A wide variety of synthetic methods are known in the art to enable preparation of aromatic and nonaromatic heterocyclic rings and ring systems; for extensive reviews see the eight volume set of Comprehensive Heterocyclic Chemistry, A. R. Katritzky and C. W. Rees editors-in-chief, Pergamon Press, Oxford, 1984 and the twelve volume set of Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees and E. F. V. Scriven editors-in-chief, Pergamon Press, Oxford, 1996.

[0033] Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. Stereoisomers are isomers of identical constitution but differing in the arrangement of their atoms in space and include enantiomers, diastereomers, cis-trans isomers (also known as geometric isomers) and atropisomers. Atropisomers result from restricted rotation about single bonds where the rotational barrier is high enough to permit isolation of the isomeric species. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers or as an optically active form. Particularly when R4 and R5 are each H, the C(O)N(Q2)(R6) and Q1 substituents are typically mostly in the thermodynamically preferred trans configuration on the pyrrolidinone ring.

[0034] For example the C(O)N(Q2)(R6) moiety (bonded to the carbon at the 3-position of the pyrrolidinone ring) and Q1 (bonded to the carbon at the 4-position of the pyrrolidinone ring) are generally found in the trans configuration. These two carbon atoms (i.e. at the 3- and 4-positions each posses the pyrroldinone ring of Formula 1) both possess a chiral center. The two most prevelant pairs of enantiomers are depicted as Formula 1' and Formula 1" where the chiral centers are identified (i.e. as 3R,4S or as 3S,4R). While this invention pertains to all stereoisomers, the preferred enantiomeric pair for biological operability is identified as Formula 1' (i.e. the 3R,4S configuration). For a comprehensive discussion of all aspects of stereoisomerism, see Ernest L. Eliel and Samuel H. Wilen, Stereochemistry of Organic Compounds, John Wiley & Sons, 1994.



[0035] The skilled artisan will also recognize that the carbon atom at the 5-position of the pyrrolidinone ring (i.e. the carbon atom to which both R2 and R3 are bonded) also contains a stereocenter indicated by a (*) as shown in Formula 1'''. This invention pertains to all stereoisomers, and therefore, when either R2 or R3 are other than the same subtituent, then a mixture of diastereomers is possible.



[0036] Molecular depictions drawn herein follow standard conventions for depicting stereochemistry. To indicate stereoconfiguration, bonds rising from the plane of the drawing and towards the viewer are denoted by solid wedges wherein the broad end of the wedge is attached to the atom rising from the plane of the drawing towards the viewer. Bonds going below the plane of the drawing and away from the viewer are denoted by dashed wedges wherein the narrow end of the wedge is attached to the atom further away from the viewer. Constant width lines indicate bonds with a direction opposite or neutral relative to bonds shown with solid or dashed wedges; constant width lines also depict bonds in molecules or parts of molecules in which no particular stereoconfiguration is intended to be specified.

[0037] This invention also comprises racemic mixtures, for example, equal amounts of the enantiomers of Formulae 1' and 1" (and optionally 1'''). In addition, this invention includes compounds that are enriched compared to the racemic mixture in an enantiomer of Formula 1. Also included are the essentially pure enantiomers of compounds of Formula 1, for example, Formula 1' and Formula 1".

[0038] When enantiomerically enriched, one enantiomer is present in greater amounts than the other, and the extent of enrichment can be defined by an expression of enentiomeric ratio (ER) expressed as the relative area % of the two entantiomers determined by chiral high-performance liquid chromatography.

[0039] Preferably the compositions of this invention have at least a 50% ER; more preferably at least a 75% ER; still more preferably at least a 90% ER; and the most preferably at least a 94% ER of the more active isomer. Of particular note are enantiomerically pure embodiments of the more active isomer.

[0040] Compounds of Formula 1 can comprise additional chiral centers. For example, substituents and other molecular constituents such as R2, R3 and R6 may themselves contain chiral centers. This invention comprises racemic mixtures as well as enriched and essentially pure stereoconfigurations at these additional chiral centers.

[0041] Compounds of this invention can exist as one or more conformational isomers due to restricted rotation about the amide bond C(O)N(Q2)(R6) in Formula 1. This invention comprises mixtures of conformational isomers. In addition, this invention includes compounds that are enriched in one conformer relative to others.Compounds of Formula 1 typically exist in more than one form, and Formula 1 thus include all crystalline and non-crystalline forms of the compounds they represent. Non-crystalline forms include embodiments which are solids such as waxes and gums as well as embodiments which are liquids such as solutions and melts. Crystalline forms include embodiments which represent essentially a single crystal type and embodiments which represent a mixture of polymorphs (i.e. different crystalline types). The term "polymorph" refers to a particular crystalline form of a chemical compound that can crystallize in different crystalline forms, these forms having different arrangements and/or conformations of the molecules in the crystal lattice. Although polymorphs can have the same chemical composition, they can also differ in composition due the presence or absence of co-crystallized water or other molecules, which can be weakly or strongly bound in the lattice. Polymorphs can differ in such chemical, physical and biological properties as crystal shape, density, hardness, color, chemical stability, melting point, hygroscopicity, suspensibility, dissolution rate and biological availability. One skilled in the art will appreciate that a polymorph of a compound of Formula 1 can exhibit beneficial effects (e.g., suitability for preparation of useful formulations, improved biological performance) relative to another polymorph or a mixture of polymorphs of the same compound of Formula 1. Preparation and isolation of a particular polymorph of a compound of Formula 1 can be achieved by methods known to those skilled in the art including, for example, crystallization using selected solvents and temperatures. For a comprehensive discussion of polymorphism see R. Hilfiker, Ed., Polymorphism in the Pharmaceutical Industry, Wiley-VCH, Weinheim, 2006.

[0042] One skilled in the art will appreciate that not all nitrogen-containing heterocycles can form N-oxides since the nitrogen requires an available lone pair for oxidation to the oxide; one skilled in the art will recognize those nitrogen-containing heterocycles which can form N-oxides. One skilled in the art will also recognize that tertiary amines can form N-oxides. Synthetic methods for the preparation of N-oxides of heterocycles and tertiary amines are very well known by one skilled in the art including the oxidation of heterocycles and tertiary amines with peroxy acids such as peracetic and m-chloroperbenzoic acid (MCPBA), hydrogen peroxide, alkyl hydroperoxides such as t-butyl hydroperoxide, sodium perborate, and dioxiranes such as dimethyldioxirane. These methods for the preparation of N-oxides have been extensively described and reviewed in the literature, see for example: T. L. Gilchrist in Comprehensive Organic Synthesis, vol. 7, pp 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler and B. Stanovnik in Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton and A. McKillop, Eds., Pergamon Press; M. R. Grimmett and B. R. T. Keene in Advances in Heterocyclic Chemistry, vol. 43, pp 149-161, A. R. Katritzky, Ed., Academic Press; M. Tisler and B. Stanovnik in Advances in Heterocyclic Chemistry, vol. 9, pp 285-291, A. R. Katritzky and A. J. Boulton, Eds., Academic Press; and G. W. H. Cheeseman and E. S. G. Werstiuk in Advances in Heterocyclic Chemistry, vol. 22, pp 390-392, A. R. Katritzky and A. J. Boulton, Eds., Academic Press.

[0043] One skilled in the art recognizes that because in the environment and under physiological conditions salts of chemical compounds are in equilibrium with their corresponding nonsalt forms, salts share the biological utility of the nonsalt forms. Thus a wide variety of salts of a compound of Formula 1 are useful for control of undesired vegetation (i.e. are agriculturally suitable). The salts of a compound of Formula 1 include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. When a compound of Formula 1 contains an acidic moiety such as a carboxylic acid or phenol, salts also include those formed with organic or inorganic bases such as pyridine, triethylamine or ammonia, or amides, hydrides, hydroxides or carbonates of sodium, potassium, lithium, calcium, magnesium or barium. Accordingly, the present invention comprises compounds selected from Formula 1, N-oxides and agriculturally suitable salts thereof.

[0044] Embodiments of the present invention as described in the Summary of the Invention include (where Formula 1 as used in the following Embodiments includes N-oxides and salts thereof):

Embodiment 1. A compound of Formula 1 wherein when Q1 is an 8- to 10-membered heteroaromatic bicyclic ring system optionally substituted with R7 and R9, the remainder of Formula 1 is bonded to a fully unsaturated ring of said bicyclic ring system.

Embodiment 2. A compound of Formula 1 or Embodiment 1 wherein Q1 is a phenyl ring optionally substituted with up to 5 substituents independently selected from R7.

Embodiment 3. A compound of Embodiment 2 wherein Q1 is a phenyl ring substituted with 1 to 3 substituents independently selected from R7.

Embodiment 4. A compound of Embodiment 3 wherein Q1 is a phenyl ring substituted with 1 to 2 substituents independently selected from R7.

Embodiment 5. A compound of Formula 1 or any one of Embodiments 1 through 4 wherein Q1 is a phenyl ring having a substituent selected from R7 at the para (4-) position (and optionally other substituents).

Embodiment 6. A compound of Formula 1 or any one of Embodiments 1 through 5 wherein when Q1 is a phenyl ring substituted with at least two substituents selected from R7, then one substituent is at the para (4-) position and at least one other substituent is at a meta position (of the phenyl ring).

Embodiment 7. A compound of Formula 1 or any one of Embodiments 1 through 6 wherein when Q2 is an 8- to 10-membered heteroaromatic bicyclic ring system optionally substituted with R10 and R11, the remainder of Formula 1 is bonded to a fully unsaturated ring of said bicyclic ring system.

Embodiment 8. A compound of Formula 1 or any one of Embodiments 1 through 7 wherein Q2 is a phenyl ring substituted with up to 5 substituents independently selected from R10.

Embodiment 9. A compound of Embodiment 8 wherein Q2 is a phenyl ring substituted with 1 to 3 substituents independently selected from R10.

Embodiment 10. A compound of Embodiment 9 wherein Q2 is a phenyl ring substituted with 1 to 2 substituents independently selected from R10.

Embodiment 11. A compound of Formula 1 or any one of Embodiments 1 through 10 wherein Q2 is a phenyl ring having at least one substituent selected from R10 at an ortho (e.g., 2-) position (and optionally other substituents).

Embodiment 12. A compound of Formula 1 or any one of Embodiments 1 through 11 wherein when Q2 is a phenyl ring substituted with at least two substituents selected from R10, then at least one substituent is at an ortho (e.g., 2-) position and at least one substituent is at an adjacent meta (e.g., 3-) position (of the phenyl ring).

Embodiment 13. A compound of Formula 1 or any one of Embodiments 1 through 12 wherein, independently, each R7 and R10 is independently halogen, cyano, nitro, C1-C4 alkyl, C1-C4 haloalkyl, C2-C4 alkenyl, C2-C4 haloalkenyl C2-C4 alkynyl, C2-C4 haloalkynyl, C1-C4 nitroalkyl, C2-C4 nitroalkenyl, C2-C4 alkoxyalkyl, C2-C4 haloalkoxyalkyl, C3-C4 cycloalkyl, C3-C4 halocycloalkyl, cyclopropylmethyl, methylcyclopropyl, C1-C4 alkoxy, C1-C4 haloalkoxy, C2-C4 alkenyloxy, C2-C4 haloalkenyloxy, C3-C4 alkynyloxy, C3-C4 haloalkynyloxy, C3-C4 cycloalkoxy, C1-C4 alkylthio, C1-C4 haloalkylthio, C1-C4 alkylsulfinyl, C1-C4 haloalkylsulfinyl, C1-C4 alkylsulfonyl, C1-C4 haloalkylsulfonyl, hydroxy, formyl, C2-C4 alkylcarbonyl, C2-C4 alkylcarbonyloxy, C1-C4 alkylsulfonyloxy, C1-C4 haloalkylsulfonyloxy, amino, C1-C4 alkylamino, C2-C4 dialkylamino, formylamino, C2-C4 alkylcarbonylamino, -SF5, -SCN, C3-C4 trialkylsilyl, trimethylsilylmethyl or trimethylsilylmethoxy.

Embodiment 14. A compound of Embodiment 13 wherein each R7 is independently halogen, cyano, C1-C2 alkyl, C1--C3 haloalkyl or C1-C3 alkylsulfonyl.

Embodiment 15. A compound of Embodiment 14 wherein each R7 is independently halogen or C1-C2 haloalkyl.

Embodiment 16. A compound of Embodiment 15 wherein each R7 is independently halogen or C1 haloalkyl.

Embodiment 17. A compound of Embodiment 16 wherein each R7 is independently halogen or C1 fluoroalkyl.

Embodiment 18. A compound of Embodiment 17 wherein each R7 is independently halogen or CF3.

Embodiment 19. A compound of Embodiment 18 wherein each R7 is independently F, Cl, Br or CF3.

Embodiment 20. A compound of Embodiment 19 wherein each R7 is independently F or CF3.

Embodiment 21. A compound of Embodiment 19 or 20 wherein at most only one CF3 substituent is present and is at the para position of the Q1 phenyl ring.

Embodiment 22. A compound of any one of Embodiments 13 through 21 wherein each R10 is independently halogen, cyano, nitro, C1-C2 alkyl, C1-C3 haloalkyl or C1-C3 alkylsulfonyl.

Embodiment 23. A compound of Embodiment 22 wherein each R10 is independently halogen or C1-C2 haloalkyl.

Embodiment 24. A compound of Embodiment 23 wherein each R10 is independently halogen or C1 haloalkyl.

Embodiment 25. A compound of Embodiment 24 wherein each R10 is independently halogen or C1 fluoroalkyl.

Embodiment 26. A compound of Embodiment 25 wherein each R10 is independently halogen or CF3.

Embodiment 27. A compound of Embodiment 26 wherein each R10 is independently F, Cl, Br or CF3.

Embodiment 28. A compound of Embodiment 27 wherein each R10 is independently F or CF3.

Embodiment 29. A compound of Embodiment 28 wherein each R10 is F.

Embodiment 30. A compound of Formula 1 or any one of Embodiments 1 through 29 wherein, independently, each R9 and R11 is independently H or C1-C2 alkyl.

Embodiment 31. A compound of Embodiment 28 wherein, independently, each R9 and R11 is CH3.

Embodiment 32. A compound of Formula 1 or any one of Embodiments 1 through 31 wherein Y1 is O.

Embodiment 33. A compound of Formula 1 or any one of Embodiments 1 through 32 wherein Y2 is O.

Embodiment 33a. A compound of Formula 1 or any one of Embodiments 1 through 33 wherein R1 is H, C1-C6 alkyl, C1-C6 haloalkyl or C4-C8 cycloalkylalkyl.

Embodiment 33b. A compound of Formula 1 or any one of Embodiments 1 through 33a wherein R1 is H, C1-C6 alkyl or C1-C6 haloalkyl.

Embodiment 33c. A compound of Formula 1 or any one of Embodiments 1 through 33b wherein R1 is H, Me, Et or CHF2.

Embodiment 33d. A compound of Formula 1 or any one of Embodiments 1 through 33c wherein R1 is H, Me or Et.

Embodiment 34. A compound of Formula 1 or any one of Embodiments 1 through 33 wherein R1 is H or CH3.

Embodiment 34a. A compound of Formula 1 or any one of Embodiments 1 through 34 wherein R1 is CH3.

Embodiment 35. A compound of Embodiment 34 wherein R1 is H.

Embodiment 36. A compound of Formula 1 or any one of Embodiments 1 through 35 wherein R2 is H or CH3.

Embodiment 37. A compound of Embodiment 36 wherein R2 is H.

Embodiment 38. A compound of Formula 1 or any one of Embodiments 1 through 37 wherein R3 is H or CH3.

Embodiment 39. A compound of Embodiment 38 wherein R3 is H.

Embodiment 40. A compound of Formula 1 or any one of Embodiments 1 through 39 wherein R4 is H or CH3.

Embodiment 41. A compound of Embodiment 40 wherein R4 is H.

Embodiment 42. A compound of Formula 1 or any one of Embodiments 1 through 41 wherein R5 is H or CH3.

Embodiment 43. A compound of Embodiment 42 wherein R5 is H.

Embodiment 44. A compound of Formula 1 or any one of Embodiments 1 through 43 wherein R6 is H or CH3.

Embodiment 45. A compound of Embodiment 44 wherein R6 is H.

Embodiment 46. A compound of Formula 1 or any one of Embodiments 1 through 45 wherein Q2 is other than 1H-indazol-5-yl optionally substituted at the 3-position.

Embodiment 47. A compound of Embodiment 46 wherein Q2 is other than 1H-indazol-5-yl optionally substituted at the 1- and 3-positions.

Embodiment 48. A compound of Embodiment 47 wherein Q2 is other than optionally substituted 1H-indazol-5-yl.

Embodiment 49. A compound of any one of Embodiments 1 through 48 wherein Q1 is other than unsubstitutued phenyl.

Embodiment 50. A compound of any one of Emboiments 1 through 49 wherein Q2 is other than unsubstituted pyridinyl.

Embodiment 51. A compound of anyd one of Embodiments 1 through 50 wherein Q1 is other than optionally substituted naphthalenyl.

Embodiment 52. A compound of any one of Embodiments 1 through 51 wherein G2 is other than optionally substituted phenyl.

Embodiment 53. A compound of any one of Embodiments 1 through 51 wherein G2 is other then optionally substituted phenyl at the 4 position (of Q1).

Embodiment 54. A compound of any one of Embodiments 1 through 52 wherein G2 is other than optionally substituted phenoxy

Embodiment 55. A compound of any one of Embodiments 1 through 54 wherein G2 is other than optionally substituted phenoxy at the 4-position (of Q1).

Embodiment 56. A compound of Formula 1 or any one of Embodiments 1 through 55 wherein the stereochemistry is (3R,4S) or (3S,4R).

Embodiment 57. A compound of Embodiment 54 wherein the stereochemistry is (3R,4S)

Embodiment 58. A compound of Embodiment 54 wherein the stereochemistry is (3S,4R).



[0045] Embodiments of this invention, including Embodiments 1-58 above as well as any other embodiments described herein, can be combined in any manner, and the descriptions of variables in the embodiments pertain not only to the compounds of Formula 1 but also to the starting compounds and intermediate compounds useful for preparing the compounds of Formula 1. In addition, embodiments of this invention, including Embodiments 1-58 above as well as any other embodiments described herein, and any combination thereof, pertain to the compositions and methods of the present invention.

[0046] Combinations of Embodiments 1-48 are illustrated by:

Embodiment A. A compound of Formula 1 wherein

each R7 and R10 is independently halogen, cyano, nitro, C1-C4 alkyl, C1-C4 haloalkyl, C2-C4 alkenyl, C2-C4 haloalkenyl C2-C4 alkynyl, C2-C4 haloalkynyl, C1-C4 nitroalkyl, C2-C4 nitroalkenyl, C2-C4 alkoxyalkyl, C2-C4 haloalkoxyalkyl, C3-C4 cycloalkyl, C3-C4 halocycloalkyl, cyclopropylmethyl, methylcyclopropyl, C1-C4 alkoxy, C1-C4 haloalkoxy, C2-C4 alkenyloxy, C2-C4 haloalkenyloxy, C3-C4 alkynyloxy, C3-C4 haloalkynyloxy, C3-C4 cycloalkoxy, C1-C4 alkylthio, C1-C4 haloalkylthio, C1-C4 alkylsulfinyl, C1-C4 haloalkylsulfinyl, C1-C4 alkylsulfonyl, C1-C4 haloalkylsulfonyl, hydroxy, formyl, C2-C4 alkylcarbonyl, C2-C4 alkylcarbonyloxy, C1-C4 alkylsulfonyloxy, C1-C4 haloalkylsulfonyloxy, amino, C1-C4 alkylamino, C2-C4 dialkylamino, formylamino, C2-C4 alkylcarbonylamino, -SF5, -SCN, C3-C4 trialkylsilyl, trimethylsilylmethyl or trimethylsilylmethoxy; and

each R9 and R11 is independently H or C1-C2 alkyl.

Embodiment B. A compound of Embodiment A wherein

Y1 and Y2 are each O; and

R1, R2, R3, R4, R5 and R6 are each H.

Embodiment C. A compound of Embodiment B wherein

Q1 is a phenyl ring substituted with 1 to 3 substituents independently selected from R7; and

Q2 is a phenyl ring substituted with 1 to 3 substituents independently selected from R10

Embodiment D. A compound of Embodiment C wherein

each R7 is independently halogen, cyano, C1-C2 alkyl, C1-C3 haloalkyl or C1-C3 alkylsulfonyl; and

each R10 is independently halogen, cyano, nitro, C1-C2 alkyl, C1-C3 haloalkyl or C1-C3 alkylsulfonyl.

Embodiment E. A compound of Embodiment D wherein

Q1 is a phenyl ring substituted with 1 substituent selected from R7 at the para position or substituted with 2 substituents independently selected from R7 wherein one substituent is at the para position and the other substituent is at a meta position; and

Q2 is a phenyl ring substituted with 1 substituent selected from R10 at an ortho position or substituted with 2 substituents independently selected from R10 wherein one substituent is at an ortho position and the other substituent is at the adjacent meta position.

Embodiment F. A compound of Embodiment E wherein

each R7 is independently F or CF3; and

each R10 is F.



[0047] Specific embodiments include compounds of Formula 1 selected from the group consisting of:

N-(2,3-difluorophenyl)-4-(3,4-difluorophenyl)-2-oxo-3-pyrrolidinecarboxamide (Compound 17);

N-(2-fluorophenyl)-2-oxo-4-[4-(trifluoromethyl)phenyl]-3-pyrrolidinecarboxamide (Compound 79);

N-(2,3-difluorophenyl)-2-oxo-4-[4-(trifluoromethyl)phenyl]-3-pyrrolidinecarboxamide (Compound 80);

N-(3,4-difluorophenyl)-N-(2-fluorophenyl)-2-oxo-3-pyrrolidinecarboxamide (Compound 5); and

(3R,4S)-N-(2-fluorophenyl)-2-oxo-4-[3-(trifluoromethyl)phenyl]-3-pyrrolidinecarboxamide (Compound 204).



[0048] Specific Embodiments include a compound of Formula 1 selected from the group consisting of Comound Numbers (where the Compound Number refers to the compound in Index Tables A, B or C): 80, 202, 204, 206, 232, 263, 304, 306, 315 and 319; or 202, 206, 232, 304 and 306; or 202, 232 and 306.

[0049] Specific Embodiments include a compound of Formula 1 selected from the group consisting of Compound Numbers (where the Compound Number refers to the compound in Index Tables A, B or C): 3, 5, 17, 101, 103, 156, 204, 271, 323 and 351; or 3, 17, 103, 156, and 204; or 103, 204 and 351.

[0050] This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of the invention (e.g., as a composition described herein). Of note as embodiments relating to methods of use are those involving the compounds of embodiments described above. Compounds of the invention are particularly useful for selective control of weeds in crops such as wheat, barley, maize, soybean, sunflower, cotton, oilseed rape and rice, and specialty crops such as sugarcane, citrus, fruit and nut crops.

[0051] Also noteworthy as embodiments are herbicidal compositions of the present invention comprising the compounds of embodiments described above.

[0052] This invention also includes a herbicidal mixture comprising (a) a compound selected from Formula 1, N-oxides, and salts thereof, and (b) at least one additional active ingredient selected from (b1) photosystem II inhibitors, (b2) acetohydroxy acid synthase (AHAS) inhibitors, (b3) acetyl-CoA carboxylase (ACCase) inhibitors, (b4) auxin mimics, (b5) 5-enol-pyruvylshikimate-3-phosphate (EPSP) synthase inhibitors, (b6) photosystem I electron diverters, (b7) protoporphyrinogen oxidase (PPO) inhibitors, (b8) glutamine synthetase (GS) inhibitors, (b9) very long chain fatty acid (VLCFA) elongase inhibitors, (b10) auxin transport inhibitors, (b11) phytoene desaturase (PDS) inhibitors, (b12) 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibitors, (b13) homogentisate solenesyltransererase (HST) inhibitors, (b14) cellulose biosynthesis inhibitors, (b15) other herbicides including mitotic disruptors, organic arsenicals, asulam, bromobutide, cinmethylin, cumyluron, dazomet, difenzoquat, dymron, etobenzanid, flurenol, fosamine, fosamine-ammonium, metam, methyldymron, oleic acid, oxaziclomefone, pelargonic acid and pyributicarb, and (b16) herbicide safeners; and salts of compounds of (b1) through (b16).

[0053] "Photosystem II inhibitors" (b1) are chemical compounds that bind to the D-1 protein at the QB-binding niche and thus block electron transport from QA to QB in the chloroplast thylakoid membranes. The electrons blocked from passing through photosystem II are transferred through a series of reactions to form toxic compounds that disrupt cell membranes and cause chloroplast swelling, membrane leakage, and ultimately cellular destruction. The QB-binding niche has three different binding sites: binding site A binds the triazines such as atrazine, triazinones such as hexazinone, and uracils such as bromacil, binding site B binds the phenylureas such as diuron, and binding site C binds benzothiadiazoles such as bentazone, nitriles such as bromoxynil and phenyl-pyridazines such as pyridate. Examples of photosystem II inhibitors include ametryn, amicarbazone, atrazine, bentazon, bromacil, bromofenoxim, bromoxynil, chlorbromuron, chloridazon, chlorotoluron, chloroxuron, cumyluron, cyanazine, daimuron, desmedipham, desmetryn, dimefuron, dimethametryn, diuron, ethidimuron, fenuron, fluometuron, hexazinone, ioxynil, isoproturon, isouron, lenacil, linuron, metamitron, methabenzthiazuron, metobromuron, metoxuron, metribuzin, monolinuron, neburon, pentanochlor, phenmedipham, prometon, prometryn, propanil, propazine, pyridafol, pyridate, siduron, simazine, simetryn, tebuthiuron, terbacil, terbumeton, terbuthylazine, terbutryn and trietazine.

[0054] "AHAS inhibitors" (b2) are chemical compounds that inhibit acetohydroxy acid synthase (AHAS), also known as acetolactate synthase (ALS), and thus kill plants by inhibiting the production of the branched-chain aliphatic amino acids such as valine, leucine and isoleucine, which are required for protein synthesis and cell growth. Examples of AHAS inhibitors include amidosulfuron, azimsulfuron, bensulfuron-methyl, bispyribac-sodium, cloransulam-methyl, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, diclosulam, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, florasulam, flucarbazone-sodium, flumetsulam, flupyrsulfuron-methyl, flupyrsulfuron-sodium, foramsulfuron, halosulfuron-methyl, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, iodosulfuron-methyl (including sodium salt), iofensulfuron (2-iodo-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]-benzenesulfonamide), mesosulfuron-methyl, metazosulfuron (3-chloro-4-(5,6-dihydro-5-methyl-1,4,2-dioxazin-3-yl)-N-[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-1-methyl-1H-pyrazole-5-sulfonamide), metosulam, metsulfuron-methyl, nicosulfuron, oxasulfuron, penoxsulam, primisulfuron-methyl, propoxycarbazone-sodium, propyrisulfuron (2-chloro-N-[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-6-propylimidazo[1,2-b]pyridazine-3-sulfonamide), prosulfuron, pyrazosulfuron-ethyl, pyribenzoxim, pyriftalid, pyriminobac-methyl, pyrithiobac-sodium, rimsulfuron, sulfometuron-methyl, sulfosulfuron, thiencarbazone, thifensulfuron-methyl, triafamone (N-[2-[(4,6-dimethoxy-1,3,5-triazin-2-yl)carbonyl]-6-fluorophenyl]-1,1-difluoro-N-methylmethanesulfonamide), triasulfuron, tribenuron-methyl, trifloxysulfuron (including sodium salt), triflusulfuron-methyl and tritosulfuron.

[0055] "ACCase inhibitors" (b3) are chemical compounds that inhibit the acetyl-CoA carboxylase enzyme, which is responsible for catalyzing an early step in lipid and fatty acid synthesis in plants. Lipids are essential components of cell membranes, and without them, new cells cannot be produced. The inhibition of acetyl CoA carboxylase and the subsequent lack of lipid production leads to losses in cell membrane integrity, especially in regions of active growth such as meristems. Eventually shoot and rhizome growth ceases, and shoot meristems and rhizome buds begin to die back. Examples of ACCase inhibitors include alloxydim, butroxydim, clethodim, clodinafop, cycloxydim, cyhalofop, diclofop, fenoxaprop, fluazifop, haloxyfop, pinoxaden, profoxydim, propaquizafop, quizalofop, sethoxydim, tepraloxydim and tralkoxydim, including resolved forms such as fenoxaprop-P, fluazifop-P, haloxyfop-P and quizalofop-P and ester forms such as clodinafop-propargyl, cyhalofop-butyl, diclofop-methyl and fenoxaprop-P-ethyl.

[0056] Auxin is a plant hormone that regulates growth in many plant tissues. "Auxin mimics" (b4) are chemical compounds mimicking the plant growth hormone auxin, thus causing uncontrolled and disorganized growth leading to plant death in susceptible species. Examples of auxin mimics include aminocyclopyrachlor (6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylic acid) and its methyl and ethyl esters and its sodium and potassium salts, aminopyralid, benazolin-ethyl, chloramben, clacyfos, clomeprop, clopyralid, dicamba, 2,4-D, 2,4-DB, dichlorprop, fluroxypyr, halauxifen (4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-2-pyridinecarboxylic acid), halauxifen-methyl (methyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-2-pyridinecarboxylate), MCPA, MCPB, mecoprop, picloram, quinclorac, quinmerac, 2,3,6-TBA, triclopyr, and methyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoro-2-pyridinecarboxylate.

[0057] "EPSP (5-enol-pyruvylshikimate-3-phosphate) synthase inhibitors" (b5) are chemical compounds that inhibit the enzyme, 5-enol-pyruvylshikimate-3-phosphate synthase, which is involved in the synthesis of aromatic amino acids such as tyrosine, tryptophan and phenylalanine. EPSP inhibitor herbicides are readily absorbed through plant foliage and translocated in the phloem to the growing points. Glyphosate is a relatively nonselective postemergence herbicide that belongs to this group. Glyphosate includes esters and salts such as ammonium, isopropylammonium, potassium, sodium (including sesquisodium) and trimesium (alternatively named sulfosate).

[0058] "Photosystem I electron diverters" (b6) are chemical compounds that accept electrons from Photosystem I, and after several cycles, generate hydroxyl radicals. These radicals are extremely reactive and readily destroy unsaturated lipids, including membrane fatty acids and chlorophyll. This destroys cell membrane integrity, so that cells and organelles "leak", leading to rapid leaf wilting and desiccation, and eventually to plant death. Examples of this second type of photosynthesis inhibitor include diquat and paraquat.

[0059] "PPO inhibitors" (b7) are chemical compounds that inhibit the enzyme protoporphyrinogen oxidase, quickly resulting in formation of highly reactive compounds in plants that rupture cell membranes, causing cell fluids to leak out. Examples of PPO inhibitors include acifluorfen-sodium, azafenidin, benzfendizone, bifenox, butafenacil, carfentrazone, carfentrazone-ethyl, chlomethoxyfen, cinidon-ethyl, fluazolate, flufenpyr-ethyl, flumiclorac-pentyl, flumioxazin, fluoroglycofen-ethyl, fluthiacet-methyl, fomesafen, halosafen, lactofen, oxadiargyl, oxadiazon, oxyfluorfen, pentoxazone, profluazol, pyraclonil, pyraflufen-ethyl, saflufenacil, sulfentrazone, thidiazimin, tiafenacil (methyl N-[2-[[2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoromethyl)-1(2H)-pyrimidinyl]-4-fluorophenyl]thio]-1-oxopropyl]-β-alaninate) and 3-[7-fluoro-3,4-dihydro-3-oxo-4-(2-propyn-1-yl)-2H-1,4-benzoxazin-6-yl]dihydro-1,5-dimethyl-6-thioxo-1,3,5-triazine-2,4(1H,3H)-dione.

[0060] "GS (glutamine synthase) inhibitors" (b8) are chemical compounds that inhibit the activity of the glutamine synthetase enzyme, which plants use to convert ammonia into glutamine. Consequently, ammonia accumulates and glutamine levels decrease. Plant damage probably occurs due to the combined effects of ammonia toxicity and deficiency of amino acids required for other metabolic processes. The GS inhibitors include glufosinate and its esters and salts, such as glufosinate-ammonium and other phosphinothricin derivatives, glufosinate-P ((2S)-2-amino-4-(hydroxymethylphosphinyl)butanoic acid) and bilanaphos.

[0061] "VLCFA (very long chain fatty acid) elongase inhibitors" (b9) are herbicides having a wide variety of chemical structures, which inhibit the elongase. Elongase is one of the enzymes located in or near chloroplasts which are involved in biosynthesis of VLCFAs. In plants, very-long-chain fatty acids are the main constituents of hydrophobic polymers that prevent desiccation at the leaf surface and provide stability to pollen grains. Such herbicides include acetochlor, alachlor, anilofos, butachlor, cafenstrole, dimethachlor, dimethenamid, diphenamid, fenoxasulfone (3-[[(2,5-dichloro-4-ethoxyphenyl)methyl]sulfonyl]-4,5-dihydro-5,5-dimethylisoxazole), fentrazamide, flufenacet, indanofan, mefenacet, metazachlor, metolachlor, naproanilide, napropamide, napropamide-M ((2R)-N,N-diethyl-2-(1-naphthalenyloxy)propanamide), pethoxamid, piperophos, pretilachlor, propachlor, propisochlor, pyroxasulfone, and thenylchlor, including resolved forms such as S-metolachlor and chloroacetamides and oxyacetamides.

[0062] "Auxin transport inhibitors" (b10) are chemical substances that inhibit auxin transport in plants, such as by binding with an auxin-carrier protein. Examples of auxin transport inhibitors include diflufenzopyr, naptalam (also known as N-(1-naphthyl)phthalamic acid and 2-[(1-naphthalenylamino)carbonyl]benzoic acid).

[0063] "PDS (phytoene desaturase inhibitors) (b11) are chemical compounds that inhibit carotenoid biosynthesis pathway at the phytoene desaturase step. Examples of PDS inhibitors include beflubutamid, diflufenican, fluridone, flurochloridone, flurtamone norflurzon and picolinafen.

[0064] "HPPD (4-hydroxyphenyl-pyruvate dioxygenase) inhibitors" (b12) are chemical substances that inhibit the biosynthesis of synthesis of 4-hydroxyphenyl-pyruvate dioxygenase. Examples of HPPD inhibitors include benzobicyclon, benzofenap, bicyclopyrone (4-hydroxy-3-[[2-[(2-methoxyethoxy)methyl]-6-(trifluoromethyl)-3-pyridinyl]carbonyl]bicyclo[3.2.1]oct-3-en-2-one), fenquinotrione (2-[[8-chloro-3,4-dihydro-4-(4-methoxyphenyl)-3-oxo-2-quinoxalinyl]carbonyl]-1,3-cyclohexanedione), isoxachlortole, isoxaflutole, mesotrione, pyrasulfotole, pyrazolynate, pyrazoxyfen, sulcotrione, tefuryltrione, tembotrione, topramezone, 5-chloro-3-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-1-(4-methoxyphenyl)-2(1H)-quinoxalinone, 4-(2,6-diethyl-4-methylphenyl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone, 4-(4-fluorophenyl)-6-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-methyl-12,4-triazine-3,5(2H,4H)-dione, 5-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-2-(3-methoxyphenyl)-3-(3-methoxypropyl)-4(3H)-pyrimidinone, 2-methyl-N-(4-methyl-1,2,5-oxadiazol-3-yl)-3-(methylsulfinyl)-4-(trifluoromethyl)benzamide and 2-methyl-3-(methylsulfonyl)-N-(1-methyl-1H-tetrazol-5-yl)-4-(trifluoromethyl)benzamide.

[0065] HST (homogentisate solenesyltransererase) inhibitors (b13) disrupt a plant's ability to convert homogentisate to 2-methyl-6-solanyl-1,4-benzoquinone, thereby disrupting carotenoid biosynthesis. Examples of HST inhibitors include haloxydine, pyriclor, 3-(2-chloro-3,6-difluorophenyl)-4-hydroxy-1-methyl-1,5-naphthyridin-2(1H)-one, 7-(3,5-dichloro-4-pyridinyl)-5-(2,2-difluoroethyl)-8-hydroxypyrido[2,3-b]pyrazin-6(5H)-one and 4-(2,6-diethyl-4-methylphenyl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone.

[0066] HST inhibitors also include compounds of Formulae A and B.

wherein Rd1 is H, Cl or CF3; Rd2 is H, Cl or Br; Rd3 is H or Cl; Rd4 is H, Cl or CF3; Rd5 is CH3, CH2CH3 or CH2CHF2; and Rd6 is OH, or -OC(=O)-i-Pr; and Re1 is H, F, Cl, CH3 or CH2CH3; Re2 is H or CF3; Re3 is H, CH3 or CH2CH3; Re4 is H, F or Br; Re5 is Cl, CH3, CF3, OCF3 or CH2CH3; Re6 is H, CH3, CH2CHF2 or C≡CH; Re7 is OH, -OC(=O)Et, -OC(=O)-i-Pr or -OC(=O)-t-Bu; and Ae8 is N or CH.

[0067] Cellulose biosynthesis inhibitors (b14) inhibit the biosynthesis of cellulose in certain plants. They are most effective when using a pre-application or early post-application on young or rapidly growing plants. Examples of cellulose biosynthesis inhibitors include chlorthiamid, dichlobenil, flupoxam, indaziflam (N2-[(1R,2S)-2,3-dihydro-2,6-dimethyl-1H-inden-1-yl]-6-(1-fluoroethyl)-1,3,5-triazine-2,4-diamine), isoxaben and triaziflam.

[0068] Other herbicides (b15) include herbicides that act through a variety of different modes of action such as mitotic disruptors (e.g., flamprop-M-methyl and flamprop-M-isopropyl) organic arsenicals (e.g., DSMA, and MSMA), 7,8-dihydropteroate synthase inhibitors, chloroplast isoprenoid synthesis inhibitors and cell-wall biosynthesis inhibitors. Other herbicides include those herbicides having unknown modes of action or do not fall into a specific category listed in (b1) through (bl4) or act through a combination of modes of action listed above. Examples of other herbicides include aclonifen, asulam, amitrole, bromobutide, cinmethylin, clomazone, cumyluron, cyclopyrimorate (6-chloro-3-(2-cyclopropyl-6-methylphenoxy)-4-pyridazinyl 4-morpholinecarboxylate), daimuron, difenzoquat, etobenzanid, fluometuron, flurenol, fosamine, fosamine-ammonium, dazomet, dymron, ipfencarbazone (1-(2,4-dichlorophenyl)-N-(2,4-difluorophenyl)-1,5-dihydro-N-(1-methylethyl)-5-oxo-4H-1,2,4-triazole-4-carboxamide), metam, methyldymron, oleic acid, oxaziclomefone, pelargonic acid, pyributicarb and 5-[[(2,6-difluorophenyl)methoxy]methyl]-4,5-dihydro-5-methyl-3-(3-methyl-2-thienyl)isoxazole.

[0069] "Herbicide safeners" (b16) are substances added to a herbicide formulation to eliminate or reduce phytotoxic effects of the herbicide to certain crops. These compounds protect crops from injury by herbicides but typically do not prevent the herbicide from controlling undesired vegetation. Examples of herbicide safeners include but are not limited to benoxacor, cloquintocet-mexyl, cumyluron, cyometrinil, cyprosulfamide, daimuron, dichlormid, dicyclonon, dimepiperate, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen-ethyl, mefenpyr-diethyl, mephenate, methoxyphenone, naphthalic anhydride, oxabetrinil, N-(aminocarbonyl)-2-methylbenzenesulfonamide and N-(aminocarbonyl)-2-fluorobenzenesulfonamide, 1-bromo-4-[(chloromethyl)sulfonyl]benzene, 2-(dichloromethyl)-2-methyl-1,3-dioxolane (MG 191), 4-(dichloroacetyl)-1-oxa-4-azospiro-[4.5]decane (MON 4660).

[0070] The compounds of Formula 1 can be prepared by general methods known in the art of synthetic organic chemistry. Of note are the following methods described in Schemes 1-15 and variations thereof. The definitions of R1, R2, R3, R4, R5, R6, Q1, Q2, Y1, and Y2 in the compounds of Formulae 1 through 19 below are as defined above in the Summary of the Invention unless otherwise noted. Formulae 1a-1h and 5a and 10a are various subsets of a compound of Formulae 1, 5 and 10 respectively. Substituents for each subset formula are as defined for its parent formula unless otherwise noted.

[0071] As shown in Scheme 1 compounds of Formula 1a (i.e. Formula 1 wherein R1, R4 and R5 are H, and Y1 and Y2 are O) can be prepared by reaction of acids of Formula 2 with amines of Formula 3 in the presence of a dehydrative coupling reagent such as propylphosphonic anhydride, dicyclohexylcarbodiimide, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide, N,N'-carbonyldiimidazole, 2-chloro-1,3-dimethylimidazolium chloride or 2-chloro-1-methylpyridinium iodide. Polymer-supported reagents, such as polymer-supported cyclohexylcarbodiimide, are also suitable. These reactions are typically run at temperatures ranging from 0-60 °C in a solvent such as dichloromethane, acetonitrile, N,N-dimethylformamide or ethyl acetate in the presence of a base such as triethylamine, N,N-diisopropylamine, or 1,8-diazabicyclo[5.4.0]undec-7-ene. See Organic Process Research & Development 2009, 13, 900-906 for coupling conditions employing propylphosphonic anhydride. The method of Scheme 1 utilizing propylphosphonic anhydride is illustrated by Step E of Synthesis Example 1. Substituents in the 3- and 4-positions of the pyrrolidinone ring of compounds of Formula 1a, i.e. C(O)N(Q2)(R6) and Q1, respectively, are predominantly in the trans configuration. In some instances, the presence of minor amounts of the cis isomer can be detected by NMR.



[0072] As shown in Scheme 2 compounds of Formula 2 can be prepared by hydrolysis of esters of Formula 4 by methods well known to those skilled in the art. Hydrolysis is carried out with aqueous base or aqueous acid, typically in the presence of a co-solvent. Suitable bases for the reaction include, but are not limited to, hydroxides such as sodium and potassium hydroxide and carbonates such as sodium and potassium carbonate. Suitable acids for the reaction include, but are not limited to, inorganic acids such as hydrochloric acid, hydrobromic acid and sulfuric acid, and organic acids such as acetic acid and trifluoroacetic acid. A wide variety of co-solvents are suitable for the reaction including, but not limited to, methanol, ethanol and tetrahydrofuran. The reaction is conducted at temperatures ranging from -20 °C to the boiling point of the solvent, and typically from 0 to 100 °C. The method of Scheme 2 is illustrated by Step D of Synthesis Example 1.



[0073] As shown in Scheme 3, compounds of Formula 4 can be obtained by reduction of compounds of Formula 5 and subsequent in situ cyclization of the resulting intermediate amine. A wide variety of methods for reduction of the aliphatic nitro group in compounds of Formula 5 are known in the literature. Methods well known to those skilled in the art include catalytic hydrogenation in the presence of palladium on carbon or Raney nickel, iron or zinc metal in acidic medium (see, for example, Berichte der Deutschen Chemischen Gesellschaft 1904, 37, 3520-3525), and lithium aluminum hydride. Reduction can also be achieved with samarium(II) iodide in the presence of a proton source such as methanol (see for example, Tetrahedron Letters 1991, 32 (14), 1699-1702). Alternatively sodium borohydride in the presence of a nickel catalyst such as nickel(II) acetate or nickel(II) chloride can be used (see for example, Tetrahedron Letters 1985, 26 (52), 6413-6416). The method of Scheme 3 utilizing sodium borohydride in the presence of nickel(II) acetate is illustrated by Step C of Synthesis Example 1. Specific examples of a compound of Formula 4 that is useful in the preparation of a compound of Formula 1 can be found in Tables I through IV.



[0074] As shown in Scheme 4, compounds of Formula 5 can be prepared by reacting diesters of Formula 6 with nitroalkanes of Formula 7, typically in the presence of a base. Suitable bases for the reaction include alkali metal lower alkoxides such as sodium methoxide in methanol or sodium ethoxide in ethanol. The method of Scheme 4 is illustrated by Step B of Synthesis Example 1. Compounds of Formula 6 can readily be prepared by methods known to those skilled in the art, e.g., by Knoevenagel condensation of aldehydes and malonates (see for example G. Jones, Organic Reactions Volume 15, John Wiley and Sons, 1967).



[0075] Compounds of Formula 5a (i.e. Formula 5 wherein R2 and R3 are H) can be prepared by reacting nitroalkenes of Formula 8 with malonates of Formula 9 in the presence of a base as shown in Scheme 5. Suitable bases for this reaction include, but are not limited to, alkali metal lower alkoxides such as sodium methoxide in methanol or sodium ethoxide in ethanol, or bases such as lithium bis(trimethylsilyl)amide, sodium bis(trimethylsilyl)amide and lithium diisopropylamide in solvents such as tetrahydrofuran. Typically, the reaction is carried out in the range of from -78 °C to 23 °C. See Synthesis 2005, 2239-2245 for conditions for effecting this transformation. Conditions for effecting this transformation in refluxing water in the absence of a catalyst have been reported in Synthetic Communications 2013, 43, 744-748. Nitroalkenes of Formula 8 can readily be prepared from aldehydes and nitromethane by methods known to those skilled in the art.



[0076] Compounds of Formula 5a' and 5a" can be prepared stereoselectively by reacting nitroalkenes of Formula 8 with malonates of Formula 9 in the presence of a chiral catalyst and optionally in the presence of a suitable base as shown in Scheme 5A. Suitable catalysts include, but are not limited to Ni(II) with vicinal diamine ligands such as Ni(II) Bis[(R,R)-N,N'-dibenzylcyclohexane-1,2-diamine]dibromide, Ni(II) Bis[(S,S)-N,N'-dibenzylcyclohexane-1,2-diamine]dibromide or nickel(II) bromide with chiral 1,1'-bi(tetrahydroisoquinoline) type diamines. Suitable organic bases for this reaction include, but are not limited to, piperidine, morpholine, triethylamine, 4-methylmorpholine or N,N-diisopropylethylamine. This transformation can be accomplished neat or in solvents such as tetrahydrofuran, toluene or dichloromethane. Typically, the reaction is carried out in the range of from -78°C to 80°C using 0 to 1 equivalent of catalyst and optionally 0 to 1 equivalent of a base. Conditions for effecting this transformation have been reported in J. Am. Chem. Soc. 2005, 9958-9959 or Eur. J. Org. Chem. 2011, 5441-5446 for conditions. Nitroalkenes of Formula 8 can readily be prepared from aldehydes and nitromethane by methods known to those skilled in the art.



[0077] As shown in Scheme 6, compounds of Formula 1a can also be prepared by reductive cyclization of compounds of Formula 10 analogous to the method of Scheme 3. As also shown in Scheme 6, compounds of Formula 1b (i.e. Formula 1 wherein R1 is OH, R4 and R5 are H, and Y1 and Y2 are O) can be prepared from compounds of Formula 10 by catalytic transfer hydrogenation with ammonium formate in the presence of palladium on carbon, and subsequent in situ cyclization of the intermediate hydroxylamine. See J. Med. Chem. 1993, 36, 1041-1047 for catalytic transfer hydrogenation/cyclization conditions to produce N-hydroxypyrrolidinones. The method of Scheme 6 for preparing N-hydroxypyrrolidinones is illustrated by Step D of Synthesis Example 3.



[0078] As shown in Scheme 7, compounds of Formula 10 can be prepared by reacting compounds of Formula 11 with nitroalkanes of Formula 7 in a solvent, in the presence of a base analogous to the method described in Scheme 4. The method of Scheme 7 is illustrated by Step C of Synthesis Example 3.



[0079] As shown in Scheme 8, compounds of Formula 10a (i.e. Formula 10 wherein R2 and R3 are H) can be prepared, analogous to the method of Scheme 5, by reacting nitroalkenes of Formula 8 with malonates of Formula 12.



[0080] As shown in Scheme 9, compounds of Formula 11 can be prepared by reaction of malonic amide Formula 12 with aldehydes of Formula 14 by methods known to those skilled in the art. As also shown in Scheme 9, malonates of Formula 12 can readily be prepared from lower alkyl malonyl chlorides of Formula 13 such as methyl malonyl chloride and amines of Formula 3 by methods known to those skilled in the art. The method of Scheme 9 is illustrated by Steps A and B of Synthesis Example 3.



[0081] As shown in Scheme 10, mixtures of compounds of Formula 1c (i.e. Formula 1 wherein R1 and R5 are H, R4 is halogen and Y1 and Y2 are O) and Formula 1d (i.e. Formula 1 wherein R1 and R4 are H, R5 is halogen and Y1 and Y2 are O) can be prepared by reacting compounds of Formula 1a with a halogen source in a solvent, in the presence or absence of an initiator. Separation of the regioisomers produced in this reaction can be achieved by standard methods such as chromatography or fractional crystallization. Suitable halogen sources for this reaction include bromine, chlorine, N-chlorosuccinimide, N-bromosuccinimide and N-iodosuccinimide. Suitable initiators for this reaction include 2,2'-azobisisobutyronitrile (AIBN) and benzoyl peroxide. Typically, the reaction is carried out in solvents such as dichloromethane in the range of from 0 °C to the boiling point of the solvent. The method of Scheme 10 is illustrated by Synthesis Example 2.



[0082] As shown in Scheme 11, compounds of Formula 1e (i.e. Formula 1 wherein R1 is NH2, R4 and R5 are H and Y1 and Y2 are O) can be prepared by reacting compounds of Formula 1a with an aminating reagent such as O-(diphenylphosphinyl)hydroxylamine and hydroxylamino-O-sulphonic acid. For procedures, conditions and reagents see Bioorganic & Medicinal Chemistry Letters 2009, 19, 5924-5926 and Journal of Organic Chemistry 2002, 67, 6236-6239.



[0083] As shown in Scheme 12, compounds of Formula 1f (i.e. Formula 1 wherein R4, R5 and R6 are H and Y1 is O) can be produced by reaction of compounds of Formula 15 with isocyanates (i.e. Formula 16 wherein Y2 is O) or isothiocyanates (i.e. Formula 16 wherein Y2 is S) in the presence of base. Examples, of the base which can be used for the present process include those listed for the method of Scheme 4. The reaction temperature can be selected from the range of from -78 °C to the boiling point of an inert solvent used. Typically, the reaction is carried out at temperatures ranging from -78 °C to 100 °C in solvents such as toluene.



[0084] As shown in Scheme 13, compounds of Formula 15 can be prepared by reaction of compounds of Formula 17 with corresponding electrophiles of Formula 18 in the presence of base. In Formula 18, G denotes a leaving group, i.e. a nucleofuge. Depending upon selection of R1, suitable electrophiles for the reaction can include alkyl halides such as chlorides, bromides and iodides, alkylsulfonates, acid anhydrides such as tert-butoxycarbonyl anhydride and acetic anhydride, and haloalkylsilanes such as chlorotrimethylsilane. Suitable bases for the reaction include inorganic bases such as alkali or alkaline earth metal (e.g., lithium, sodium, potassium and cesium) hydroxides, alkoxides, carbonates, and phosphates, and organic bases such as triethylamine, N,N-diisopropylethylamine and 1,8-diazabicyclo[5.4.0]undec-7-ene. A wide variety of solvents are suitable for the reaction including, for example but not limited to, tetrahydrofuran, dichloromethane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidinone, acetonitrile, C2-C6 alcohols and acetone as well as mixtures of these solvents. This reaction is conducted at temperatures ranging from -20 to 200 °C, and typically between 0 and 50 °C.



[0085] As shown in Scheme 14, compounds of Formula 17 can be prepared by decarboxylation of acids of Formula 2 by methods well known to those skilled in the art. Decarboxylation is carried by heating compounds of Formula 2 in a solvent, typically in the presence of an acid. Suitable acids for the reaction include, but are not limited to, p-toluenesulfonic acid. A wide variety of co-solvents are suitable for the reaction including, but not limited to, toluene, isopropanol acetate and isobutyl methylketone. The reaction is conducted at temperatures ranging from -20 °C and to the boiling point of the solvent, and typically from 0 to 150 °C. The method of Scheme 14 is illustrated by Step A of Synthesis Example 6.



[0086] As shown in Scheme 15, compounds of Formula 1g (i.e. Formula 1 wherein R1 is H, R4 and R5 are H, and Y1 and Y2 are S) can be prepared by reacting compounds of Formula 1a with at least two equivalents of a thionation reagent such as Lawesson's reagent, tetraphosphorus decasulfide or diphosphorus pentasulfide in a solvent such as tetrahydrofuran or toluene. Typically, the reaction is carried out at temperatures ranging from 0 to 115 °C. One skilled in the art recognizes that using less than two equivalents of the thionating reagent can provide mixtures comprising Formula 1 products wherein Y1 is O and Y2 is S, or Y1 is S and Y2 is O, which can be separated by conventional methods such as chromatography and crystallization.



[0087] As shown in Scheme 16, compounds of Formula 1h (i.e. Formula 1 wherein R1, R4, R5 are H, Y2 is O and Y1 is NH) can be prepared by alkylation of compounds of Formula 1a triethyloxonium tetrafluoroborate (Meerwein's reagent) followed by treatment of the resulting imino ether of Formula 19 with aqueous ammonia. The method of Scheme 16 is illustrated by Steps A and B of Synthesis Example 4.



[0088] It is recognized by one skilled in the art that various functional groups can be converted into others to provide different compounds of Formula 1. For a valuable resource that illustrates the interconversion of functional groups in a simple and straightforward fashion, see Larock, R. C., Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 2nd Ed., Wiley-VCH, New York, 1999. For example, intermediates for the preparation of compounds of Formula 1 may contain aromatic nitro groups, which can be reduced to amino groups, and then be converted via reactions well known in the art such as the Sandmeyer reaction, to various halides, providing compounds of Formula 1. The above reactions can also in many cases be performed in alternate order

[0089] It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula 1 may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula 1. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular presented to prepare the compounds of Formula 1.

[0090] One skilled in the art will also recognize that compounds of Formula 1 and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.
Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Steps in the following Examples illustrate a procedure for each step in an overall synthetic transformation, and the starting material for each step may not have necessarily been prepared by a particular preparative run whose procedure is described in other Examples or Steps. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. 1H NMR spectra are reported in ppm downfield from tetramethylsilane in CDCl3 solution unless indicated otherwise; "s" means singlet, "d" means doublet, "t" means triplet, "q" means quartet, "m" means multiplet and "br s" means broad singlet. 19F NMR spectra are reported in ppm downfield from CFCl3 in CDCl3 unluess indicated otherwise. The enentiomeric ratio (ER) was determined by chiral high performance liquid chromatography analysis using a Chiralpak AD-RH column and eluting with a 50:50 isopropanol/water mixture at 40 °C at 0.3 mL/min.

SYNTHESIS EXAMPLE 1


Preparation of 4-(3-chloro-4-fluoropheinyl)-2-oxo-N-[2-(trifluoromethyl)phenyl]-3-pyrrolidinecarboxamide (Compound 74)


Step A: Preparation of 1,3-diethyl 2-(3-chloro-4-fluorophenyl)methylene-propanedioate



[0091] A mixture of 3-chloro-4-fluorobenzaldehyde (3 g, 18.9 mmol), diethyl malonate (3.16 mL, 20.8 mmol), piperidine (0.37 mL, 3.8 mmol) and toluene (40 mL) was refluxed for 18 h with continuous removal of water (Dean-Stark trap). The cooled reaction mixture was concentrated under reduced pressure, and the residue was chromatographed on silica gel, eluted with 0% to 10% ethyl acetate in hexanes, to afford the title compound as a yellow oil (5 g).
1H NMR δ 7.61 (m, 1H), 7.61 (m, 1H), 7.53 (m, 1H), 7.35 (m, 1H), 7.15 (m, 1H), 4.33 (m, 4H), 1.33 (m, 6H).

Step B: Preparation 1,3-diethyl 2-[1-(3-chloro-4-fluorophenyl)-2-nitroethyl]-propanedioate



[0092] A mixture of 1,3-diethyl 2-(3-chloro-4--fluorophenyl)methylenepropanedioate (i.e. the product of Step A, 5 g, 16.7 mmol), nitromethane (8.9 mL, 166 mmol) and a methanol solution of sodium methoxide (25 wt%, 0.36 g, 1.67 mmol) in ethanol (60 mL) was stirred at 23 °C for 18 h. The reaction mixture was then concentrated under reduced pressure to afford a thick oil, which was diluted with 25% ethyl acetate in hexanes and filtered through a pad of Celite® diatomaceous filter aid to remove insoluble particulates. The filtrate was concentrated under reduced pressure to afford the title compound as a yellow oil (5.3 g).
1H NMR δ 7.32 (m, 1H), 7.15 (m, 1H), 7.10 (m, 1H), 4.87 (m, 2H), 4.22 (m, 3H), 4.07 (m, 2H), 3.76 (d, 1H), 1.27 (m, 3H), 1.12 (m, 3H).

Step C: Preparation of ethyl 4-(3-chloro-4-fluorophenyl)-2-oxo-3-pyrrolidine-carboxylate



[0093] A stirred mixture of 1,3-diethyl 2-[1-(3-chloro-4-fluorophenyl)-2-nitroethyl]-propanedioate (i.e. the product of Step B, 5.3 g, 14.7 mmol), nickel(II) acetate tetrahydrate (18.3 g, 73.4 mmol) and ethanol (120 mL) was cooled in an ice bath and treated with sodium borohydride (2.8 g, 73.4 mmol) in 0.5 g portions added over 5 minutes. The resulting mixture was stirred at 26 °C for 18 h. Saturated ammonium chloride solution (120 mL) and ethyl acetate (120 mL) were then added, the mixture was stirred for 1 h and then filtered through a pad of Celite® diatomaceous filter aid to remove insoluble particulates. The layers of the filtrate were separated, and the aqueous layer was extracted with ethyl acetate (2 × 100 mL). The combined organic extracts were washed with saturated ammonium chloride solution (100 mL), brine (100 mL), dried (MgSO4) and concentrated under reduced pressure to afford the title compound as a yellow-orange solid (4.73 g) which was used without purification.
1H NMR δ 7.31 (m, 1H), 7.12 (m, 2H), 6.93 (br s, 1H), 4.24 (m, 2H), 4.06 (m, 1H), 3.82 (m, 1H), 3.49 (d, 1H), 3.39 (m, 1H), 1.29 (m, 3H).

Step D: Preparation of 4-(3-chloro-4-fluorophenyl)-2-oxo-3-pyrrolidinecarboxylic acid



[0094] A mixture of ethyl 4-(3-chloro-4-fluorophenyl)-2-oxo-3-pyrrolidinecarboxylate (i.e. the product of Step C, 4.73 g, 16.5 mmol) and aqueous sodium hydroxide (50 wt%, 1.98 g, 49.5 mmol) in ethanol (50 mL) was stirred at 26 °C for 18 h. The reaction mixture was then diluted with water (50 mL) and extracted with diethyl ether (2 × 50 mL). The aqueous phase was acidified with concentrated hydrochloric acid to pH 2 and extracted with dichloromethane (3 × 50 mL). The combined dichloromethane extracts were washed with brine, dried (MgSO4), and concentrated under reduced pressure to afford the title compound as a white solid (2.37 g).
1H NMR (acetone-d6) δ 7.63 (m, 1H), 7.46 (m, 1H), 7.31 (m, 1H), 4.05 (m, 1H), 3.82 (m, 1H), 3.70 (d, 1H), 3.45 (m, 1H).

Step E: Preparation of 4-(3-chloro-4-fluorophenyl)-2-oxo-N-[2-(trifluoromethyl)-phenyl]-3-pyrrolidinecarboxamide



[0095] A mixture of 4-(3-chloro-4-fluorophemyl)-2-oxo-3-pyrrolidinecarboxylic acid (i.e. the product of Step D, 0.3 g, 1.17 mmol), triethylamine (0.49 mL, 3.5 mmol) and 2-(trifluoromethyl)aniline (0.16 mL, 1.28 mmol) in dichloromethane (8 mL) was stirred at ambient temperature for 30 minutes, and then treated with propylphosphonic anhydride in ethyl acetate (50%, 1.26 g, 1.98 mmol). The resulting mixture was stirred at ambient temperature for 18 h. The reaction mixture was then concentrated under reduced pressure, and the residue was chromatographed on silica gel, eluted with 0-30% ethyl acetate in hexanes, to afford a solid residue which on trituration with 1-chlorobutane afforded the title product, a compound of the present invention, as a light pink solid (0.2 g).
1H NMR δ 9.85 (s, 1H), 8.15 (m, 1H), 7.62 (m, 1H), 7.52 (m, 1H), 7.43 (m, 1H), 7.27 (m, 1H), 7.22 (m, 1H), 7.14 (m, 1H), 6.93 (s, 1H), 4.15 (m, 1H), 3.82 (m, 1H), 3.55 (d, 1H), 3.44 (m, 1H).

SYNTHESIS EXAMPLE 2


Preparation of 4-bromo-N-(2-fluorophenyl)-2-oxo-4-phenyl-3-pyrrolidinecarboxamide and 3-bromo-N-(2-fluorophenyl)-2-oxo-4-phenyl-3-pyrrolidinecarboxamide (Compounds 92 and 93)



[0096] A mixture of 4-phenyl-2-oxo-N-(2-fluorophenyl)-3-pyrrolidinecarboxamide (prepared by the method of Example 1, 0.75 g, 2.5 mmol) in dichloromethane (25 mL) at room temperature was treated with bromine (0.16 mL, 3.0 mmol), and the resulting mixture was stirred for 18 h. The reaction mixture was then concentrated under reduced pressure, and the residue was chromatographed on silica gel, eluted with 0-2% methanol in dichloromethane, to give as the faster eluting product, 4-bromo-N-(2-fluorophenyl)-2-oxo-4-phenyl-3-pyrrolidinecarboxamide, a compound of the present invention, as a white solid (90 mg):
1H NMR δ 10.2 (br s, 1H), 8.00 (m, 1H), 7.28 (m, 5H), 7.02 (m, 3H), 6.45 (br s, 1H), 4.15 (d, 1H), 4.05 (m, 1H), 3.55 (d, 1H);
and the slower eluting product, 3-bromo-N-(2-fluorophenyl)-2-oxo-4-phenyl-3-pyrrolidine-carboxamide, a compound of the present invention, as a clear yellow oil (0.31g):
1H NMR δ 9.55 (br s, 1H), 8.25 (t, 1H), 7.48 (d, 2H), 7.38 (m, 3H), 7.11 (m, 3H), 6.85 (br s, 1H), 4.45 (m, 1H), 3.77 (m, 1H), 3.65 (m, 1H).

SYNTHESIS EXAMPLE 3


Preparation of 4-(3,4-difluorophenyl)-N-(2-fluorophenyl)-1-hydroxy-2-oxo-3-pyrrolidinecarboxamide (Compound 44)


Step A: Preparation of ethyl 3-[(2-fluorophenyl)amino]-3-oxopropanote



[0097] To a stirred solution of 2-fluoroaniline (10 g, 90.0 mmol) and triethylamine (9.1 g, 90.0 mmol) in dichloromethane (50 mL) at 0 °C was added dropwise over 10 minutes a solution of ethyl malonyl chloride (15.5 g, 90.0 mmol) in dichloromethane (30 mL). The resulting mixture was stirred at room temperature for 24 h. The reaction mixture was then poured into water (100 mL), and the organic layer was separated, washed with water (50 mL) and brine (50 mL), dried (MgSO4) and concentrated under reduced pressure to provide the title compound as an amber oil (19.0 g).
1H NMR δ 9.46 (br s, 1H), 8.28 (m,1H), 7.1 (m, 2H), 4.26 (m, 2H), 3.51 (s, 2H), 1.32 (t, 3H).

Step B: Preparation of ethyl 3-(3,4-difluorophenyl)-2-[[(2-fluorophenyl)amino]-carbonyl]-2-propenoate



[0098] A solution of ethyl 3-[(2-fluorophenyl)amino]-3-oxopropanote (i.e. the product of Step A, 20.27 g, 90.0 mmol), 3,4-difluorobenzaldehyde (16.62 g, 117 mmol), acetic acid (2.6 mL, 45 mmol) and piperidine (0.89 mL, 9.0 mmol) in toluene (150 mL) was refluxed for 10 h with continuous removal of water (Dean-Stark trap). The reaction mixture was then cooled to room temperature and poured into water (100 mL). The organic layer was separated, and the water layer was extracted with ethyl acetate (3 × 50 mL). The combined organic extracts were washed with aqueous hydrochloric acid (1 N, 100 mL), dried (MgSO4) and concentrated under reduced pressure to give a solid residue. Recrystallization of the solid from diethyl ether (100 mL) afforded the title compound as a white solid (10.5 g).
1H NMR δ 8.26-8.48 (m, 1H), 8.15 (m, 1H), 7.74 (s, 1H), 7.51 (m, 1H), 7.35 (m, 1H), 7.11 (m, 4H), 4.35 (m, 2H), 1.36 (t, 3H).

Step C: Preparation of ethyl 3,4-difluoro- α-[[(2-fluorophenyl)amino]carbonyl]-β-(nitromethyl)benzenepropanoate



[0099] To a stirred suspension of ethyl 3-(3,4-difluorophenyl)-2-[[(2-fluorophenyl)amino]-carbonyl]-2-propenoate (i.e. the product of Step B, 4.42 g, 12.7 mmol) and nitromethane (17 mL, 317.5 mmol) at -20 °C was added 1,1,3,3-tetramethylguanidine (0.288 mL, 2.3 mmol). The mixture was stirred at -20 °C for 30 minutes, and then allowed to come to room temperature and stirred for an additional 2 h. The reaction mixture was diluted with dichloromethane (50 mL) and extracted with water (3 × 25 mL). The organic layer was dried (MgSO4) and concentrated under reduced pressure to provide a solid residue. The solid was chromatographed on silica gel, eluted with 0-100% ethyl acetate in hexane, to provide the title compound as a white solid (4.42 g).
1H NMR δ 8.6 (br s, 1H), 8.00-8.30 (m, 3H), 7.23 (m, 4H), 5.41 (m, 1H), 4.6 (m, 1H), 4.35 (m, 2H), 3.77-4.00 (m, 2H), 1.45 (m, 3H).

Step D: Preparation of 4-(3,4-difluorophenyl)-N-(2-fluorophenyl)-1-hydroxy-2-oxo-3 -pyrrolidinecarboxamide



[0100] A mixture of ethyl 3,4-difluoro-α-[[(2-fluorophenyl)amino]carbonyl]-β-(nitromethyl)-benzenepropanoate (i.e. the product of Step C, 0.50 g, 1.22 mmol), 5% palladium on carbon (0.25 g) and methanol-ethyl acetate (1:1 by volume, 10 mL) was stirred at room temperature for 30 minutes, then cooled to at 0 °C and treated with ammonium formate (0.5 g). The resulting mixture was stirred for 1 h at room temperature. Additional 5% palladium on carbon (0.25 g) and ammonium formate (0.5 g) were added, and stirring at room temperature was continued for an additional 4 h. The reaction mixture was then filtered, and the filtrate was concentrated under reduced pressure to provide a residue, which was suspended in water (10 mL) and extracted with ethyl acetate (3 × 20 mL). The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure to provide an oil, which on recrystallization from dichloromethane afforded the title product, a compound of the present invention, as a white solid (0.1 g).
1H NMR (DMSO-d6) δ 10.11 (br s, 2H), 8.00 (m, 1H), 7.71 (m, 1H), 7.42 (m, 1H), 7.33 (m, 3H), 7.1 (m, 1H), 4.25-3.61 (m, 4H).

SYNTHESIS EXAMPLE 4


Preparation of 2-amino-4-(3,4-difluorophenyl)-N-(2- fluorophenyl)dihydro-3H-pyrrole-3-carboxamide (Compound 95)


Step A: Preparation of 4-(3,4-difluorophenyl)-N-(2-fluorophenyl)-2-oxo-3 -pyrrolidinecarboxamide



[0101] To a stirred mixture of ethyl 3,4-difluoro-α-[[(2-fluorophenyl)amino]carbonyl]-β-(nitromethyl)benzenepropanoate (i.e. the product of Example 3 Step C, 3.346 g, 8.16 mmol) and nickel(II) acetate tetrahydrate (10.15 g, 40.8 mmol) in ethanol (50 mL) at 0 °C, was added portionwise sodium borohydride (1.54 g, 40.8 mmol), and the resulting mixture was stirred at room temperature for 24 h. The reaction mixture was concentrated under reduced pressure, dissolved in ethyl acetate (100 mL) and washed successively with saturated ammonium chloride solution (50 mL), water (2 × 25 mL) and saturated sodium chloride (20 mL). The organic layer was dried (MgSO4) and concentrated under reduced pressure to provide a solid residue. The residue was chromatographed on silica gel, eluted with 0-100% ethyl acetate in hexane, to provide the title compound as a white solid (0.746 g).
1H NMR δ 9.67 (br s, 1H), 8.21 (m, 1H), 7.09 (m, 6H), 4.75 (br s, 1H), 4.21 (m,1H), 3.82 (m, 1H), 3.52 (m, 1H), 3.43 (m, 1H).

Step B: Preparation of 4-(3,4-difluorophenyl)-N-(2-fluorophenyl)dihydro-2-methoxy-3H-pyrrole-3-carboxamide



[0102] A mixture of 4-(3,4-difluorophenyl)-N-(2-fluorophenyl)-2-oxo-3-pyrrolidine-carboxamide (i.e. the product of Step A, 0.187 g, 0.56 mmol) and trimethyloxonium tetrafluoroborate (0.083 g, 0.56 mmol) in dichloromethane (5 mL) was stirred under an atmosphere of nitrogen for 2 days. The reaction mixture was then treated with 1 N aqueous sodium hydroxide until basic (pH 10) and extracted with dichloromethane (3 × 5 mL). The organic layer was dried (MgSO4) and concentrated under reduced pressure to provide title compound as light yellow oil (0.138 g).
1H NMR δ 9.7 (br s, 1H), 8.62 (m, 1H), 8.25 (s, 1H), 7.26 (m, 4H),7.00 (m, 1H), 4.26 (m, 2H), 4.00 (s, 3H), 3.42 (m, 2H).

Step C: Preparation of 2-amino-4-(3,4-difluorophenyl)-N-(2-fluorophenyl)dihydro-3H-pyrrole-3-carboxamide



[0103] A mixture of 4-(3,4-difluorophenyl)-N-(2-fluorophenyl)dihydro-2-methoxy-3H-pyrrole-3-carboxamide (i.e. the product Step B, 0.10 g, 0.287 mmol) and aqueous ammonium hydroxide (50%, 0.5 mL) in ethanol (2 mL) was heated in microwave apparatus for 10 minutes. The reaction mixture was concentrated under reduced pressure and the residue chromatographed on silica gel, eluted with 0-100% ethyl acetate/hexane, to afford the title product, a compound of the present invention, as a solid (0.016 g).
1H NMR δ 9.67 (br s, 1H), 8.21 (m, 1H), 7.27-7.01 (m, 6H), 6.50 (br s, 1H), 5.00 (br s, 1H), 4.26 (m, 1H), 3.82 (m, 1H), 3.55 (m, 1H), 3.43 (m, 1H).

SYNTHESIS EXAMPLE 5


Preparation of (3R,4S)-N-(2-fluorophenyl)-2-oxo-4-[3-(trifluoromethyl)phenyl]-3-pyrrolidinecarboxamide (Compound 204)


Step A: Preparation of 1-[(E)-2-nitroethenyl]-3-(trifluoromethyl)benzene



[0104] To a stirred solution of 3-(trifluoromethyl)benzaldehyde (12.2 g, 70.1 mmol) in methanol (50 mL) was added nitromethane (4.34 g, 71.1 mmol). The mixture was cooled to 2 °C and sodium hydroxide (5.65 g, 70.6 mmol) was added as a 50% solution in 24.3 mL of water dropwise over 15 min. An exotherm was noted and additional ice was added to maintain the temperature below 10 °C while stirring for an additional 1 h. The reaction mixture was poured into 75 mL (75 mmol) of 1 N hydrochloric acid, rinsing the flask with 10 mL of methanol/water. The quenched reaction mixture was transferred to a separatory funnel and extracted with 150 mL of toluene. The aqueous layer was separated and concentrated under vacuum to yield 15.84 g of a yellow oil.

[0105] The intermediate thus obtained (15.84 g, 67.3 mmol) was taken up in 160 mL dichloromethane. The solution was cooled to 3 °C and methanesulfonyl chloride (8.03 g, 71.1 mmol) was added via pipette as a solution in 50 mL of dichloromethane. A solution of triethylamine (14.2 g, 140 mmol) in 50 mL of dichloromethane was then added dropwise over 50 min, and the resulting solution was stirred for 2 h. The reaction mixture was poured into 150 mL (150 mmol) of 1 N hydrochloric acid and transferred to a separatory funnel. The layers were separated and the organic layer was washed with 150 mL water and then filtered. The organic layer was concentrated under reduced pressure and the crude solid was tritrated with hexanes to yield 12.09 g of product as a yellow solid.
1H NMR (500 MHz) δ 7.54-7.66 (m, 2H) 7.69-7.84 (m, 3H) 7.96-8.08 (m, 1H).

Step B: Preparation of 1,3-diethyl 2-[(1S)-2-nitro-1-[3-(trifluoromethyl)phenyl]ethyl]propanedioate



[0106] To a stirred mixture of 1-[(E)-2-nitroethenyl]-3-(trifluoromethyl)benzene (i.e. the product of Step A, 3 g, 13.8 mmol) and diethyl malonate (3.319 g, 20.7 mmol) in toluene (1.5 mL) was added Ni(II) bis[(R,R)-N,N'-dibenzylcyclohexane-1,2-diamine]bromide (prepared as described in J. Am. Chem. Soc. 2005, 127, 9958-9959; 0.111g, 0.1 mmol). The resulting solution was stirred at 55 °C for 16 h. The solution was diluted with dichloromethane (20 mL) and concentrated under reduced pressure onto silica gel and purified by chromatography eluting with a gradient of ethyl acetate in hexanes (0 to 50%) to give 3.6 g of a light yellow oil. ER 94:6 (major eluting at 26.5 min, minor eluting at 20.3 min).
1H NMR (500 MHz) δ 7.54-7.60 (m, 1H), 7.43-7.48 (m, 2H), 7.51 (s, 1H), 4.83-5.00 (m, 2H), 4.17-4.35 (m, 3H), 3.98-4.06 (m, 2H), 3.77-3.85 (m, 1H), 1.20-1.29 (m, 3H), 0.99-1.10 (m, 3H). 19F NMR (471 MHz) δ -62.78 (s, 3F). ESI [M-1] 376.3.

Step C: Preparation of ethyl (3R,4S)-2-oxo-4-[3-(trifluoromethyl)phenyl]-3-pyrrolidinecarboxylate



[0107] A stirred mixture of 1,3-diethyl 2-[(1S)-2-nitro-1-[3-(trifluoromethyl)phenyl]ethyl]propanedioate (i.e. the product of Step B, 3.24 g, 8.48 mmol), nickel(II) chloride hexahydrate (2.01 g, 8.48 mmol) and ethanol (60 mL) was cooled in an ice bath and treated with sodium borohydride (0.97 g, 25.8 mmol) in 0.5 g portions added over 5 min. The resulting mixture was stirred at 26 °C for 18 h. Saturated ammonium chloride solution (120 mL) and ethyl acetate (120 mL) were then added, the mixture was stirred for 1 h and then filtered through a pad of Celite® diatomaceous filter aid to remove insoluble particulates. The layers of the filtrate were separated, and the aqueous layer was extracted with ethyl acetate (2 × 100 mL). The combined organic extracts were washed with saturated ammonium chloride solution (100 mL), brine (100 mL), dried (MgSO4) and concentrated under reduced pressure to afford the title compound as a thick yellow oil (2.66 g) which was used without purification.
1H NMR (500 MHz) δ 7.38-7.62 (m, 4H), 6.50 (br s, 1H), 4.21-4.31 (m, 2H), 4.15-4.21 (m, 1H), 3.82-3.92 (m, 1H), 3.51-3.58 (m, 1H), 3.37-3.50 (m, 1H), 1.27-1.34 (m, 3H). 19F NMR (471 MHz) δ -62.70 (s, 3F). ESI; [M+1] = 302.0.

Step D: Preparation of (3R,4S)-2-oxo-4-[3-(trifluoromethyl)phenyl]-3-pyrrolidinecarboxylic acid



[0108] A mixture of ethyl (3R,4S)-2-oxo-4-[3-(trifluoromethyl)phenyl]-3-pyrrolidinecarboxylate (i.e. the product of Step C, 2.66 g, 8.8 mmol) and aqueous sodium hydroxide (50 wt%, 2.12 g, 26.5 mmol) in ethanol (30 mL) was stirred at 26 °C for 18 h. The reaction mixture was then diluted with water (50 mL) and extracted with diethyl ether (2 × 50 mL). The aqueous phase was acidified with concentrated hydrochloric acid to pH 2 and extracted with dichloromethane (3 × 50 mL). The combined dichloromethane extracts were washed with brine, dried (MgSO4), and concentrated under reduced pressure to afford the title compound as a white solid (2.05 g).
1H NMR (500 MHz, acetone-d6) δ 11.50 (br s, 1H), 7.70-7.89 (m, 2H), 7.56-7.68 (m, 2H), 7.45 (br s, 1H), 4.09-4.21 (m, 1H), 3.83-3.92 (m, 1H), 3.73-3.81 (m, 1H), 3.42-3.55 (m, 1H). 19F NMR (471 MHz, acetone-d6) δ -63.03 (s, 3F). ESI [M+1] 274.0.

Step E: Preparation of (3R,4S)-N-(2-fluorophenyl)-2-oxo-4-[3-(trifluoromethyl)phenyl] -3 -pyrrolidinecarboxamide



[0109] A mixture of (3R,4S)-2-oxo-4-[3-(trifluoromethyl)phenyl]-3-pyrrolidinecarboxylic acid (i.e. the product of Step D, 2.0 g, 7.32 mmol), triethylamine (3.06 mL, 21.96 mmol) and 2-fluoroaniline (0.85 mL, 8.78 mmol) in dichloromethane (50 mL) was stirred at ambient temperature for 30 min, and then treated with propylphosphonic anhydride in ethyl acetate (50%, 7.92 g, 12.44 mmol). The resulting mixture was stirred at ambient temperature for 18 h. The reaction mixture was then concentrated under reduced pressure, and the residue was chromatographed on silica gel, eluted with 0-100% ethyl acetate in hexanes, to afford a solid residue which on trituration with 1-chlorobutane afforded the title product, a compound of the present invention, as a white solid (1.9 g). ER 88:12 (major eluting at 25.86 min, minor eluting at 17.66 min). Specific Rotation +74.71 at 23.4 °C at 589 nm, as a 1% solution (1g/100 mL) in CHCl3.
1H NMR (500 MHz, acetone-d6) δ 10.05 (br s, 1H), 8.21-8.35 (m, 1H), 7.77-7.91 (m, 2H), 7.58-7.66 (m, 2H), 7.51 (br s, 1H), 7.02-7.22 (m, 3H), 4.18-4.30 (m, 1H), 3.94-4.04 (m, 1H), 3.84-3.93 (m, 1H), 3.42-3.53 (m, 1H). 19F NMR (471 MHz, acetone-d6) δ -62.93 (s, 3F), -131.13 --131.02 (m, 1F).

SYNTHESIS EXAMPLE 6


Preparation of (3R,4S)-N-(2-fluorophenyl)-1-methyl-2-oxo-4-[3-(trifluoromethyl)phenyl]-3-pyrrolidinecarboxamide (Compound 351)


Step A Preparation of (4S)-4-[3-(trifluoromethyl)phenyl]-2-pyrrolidinone



[0110] A mixture of (3R,4S)-2-oxo-4-[3-(trifluoromethyl)phenyl]-3-pyrrolidinecarboxylic acid acid (i.e. the product of Example 5, Step D, 1.5 g, 5.5 mmol) and toluene-4-sulfonic acid (0.010 g, 0.055 mmol) in toluene (12 mL) was stirred at 90 °C overnight. The reaction mixture was then concentrated under reduced pressure to afford a clear oil (1.29 g). The crude product was used without further purification.
1H NMR (500 MHz) δ 7.36-7.59 (m, 4H), 6.84 (br s, 1H), 3.70-3.88 (m, 2H), 3.35-3.50 (m, 1H), 2.72-2.87 (m, 1H), 2.44-2.58 (m, 1H). 19F NMR (471 MHz) δ -62.66 (s, 3F).

Step B: Preparation of (4S)-1-methyl-4-[3-(trifluoromethyl)phenyl]-2-pyrrolidinone



[0111] To a solution of (4S)-4-[3-(trifluoromethyl)phenyl]-2-pyrrolidinone (i.e. the product of Step A, 1.29 g, 5.6 mmol) in N,N-dimethylformamide (7 mL) was added sodium hydride (60% dispersion in mineral oil, 0.25 g, 6.2 mmol) in portions. The mixture was stirred for 10 min and then iodomethane (0.88 mL, 14.1 mmol) was added. The solution was stirred overnight at ambient temperature. The reaction mixture was diluted with water and extracted with diethyl ether (2 x 50 mL). The organic layer was washed with water, brine and then dried (MgSO4), filtered and concentrated under reduced pressure. The crude residue was chromatographed on silica gel, eluted with 0-20% ethyl acetate in dichloromethane, to afford a light brown oil (0.775 g).
1H NMR (500 MHz) δ 7.38-7.57 (m, 4H), 3.75-3.83 (m, 1H), 3.59-3.70 (m, 1H), 3.38-3.45 (m, 1H), 2.90-2.94 (m, 3H), 2.80-2.89 (m, 1H), 2.48-2.58 (m, 1H). 19F NMR (471 MHz) δ -62.67 (s, 3F).

Step C Preparation of (3R,4S)-N-(2-fluorophenyl)-1-methyl-2-oxo-4-[3-(trifluoromethyl)phenyl] -3 -pyrrolidinecarboxamide



[0112] A solution of (4S)-1-methyl-4-[3-(trifluoromethyl)phenyl]-2-pyrrolidinone (i.e. the product of Step B, 0.350 g, 1.44 mmol) in tetrahydrofuran (5 mL) was cooled to -78 °C. To this mixture lithium bis(trimethylsilyl)amicle (1.6 mL, 1.6 mmol as a 1 M solution in tetrahydrofuran) was added dropwise and the resulting solution was stirred for 30 min. Then 1-fluoro-2-isocyanatobenzene (0.17 mL, 1.44 mmol) was added dropwise and the solution was stirred for 2 h at -78 °C. The reaction mixture was quenched with saturated aqueous ammonium chloride (10 mL), warmed to ambient temperature and the aqueous layer was extracted with ethyl acetate (3 x 25 mL). The organic layers were combined, washed with brine and then dried (MgSO4), filtered and concentrated under reduced pressure onto silica gel. The crude residue was chromatographed on silica gel, eluting with 0 to 40% ethyl acetate in hexanes, to afford a light pink solid (0.223 g).
1H NMR (500 MHz) δ 9.93 (br s, 1H), 8.15-8.27 (m, 1H), 7.38-7.65 (m, 4H), 6.93-7.15 (m, 3H), 4.10-4.23 (m, 1H), 3.72-3.88 (m, 1H), 3.56-3.68 (m, 1H), 3.39-3.53 (m, 1H), 2.90-3.06 (m, 3H). 19F NMR (471 MHz) δ -62.55 (s, 3F), -129.83 - -129.50 (m, 1F). ESI [M+1] 381.0.

SYNTHESIS EXAMPLE 7


Preparation of 1,3-diethyl 2-[(1S)-1-(3,4-difluorophenyl)-2-nitro-ethyl]propanedioate (Intermediate to Prepare Compound 103)


Step A: Preparation of 1,3-diethyl 2-[(1S)-1-(3,4-difluorophenyl)-2-nitro-ethyl]propanedioate



[0113] To a stirred mixture of 1-[(E)-2-nitroethenyl]-3,4-difluorobenzene (preprared as described generally in WO2008/39882 A1, 1.67 g, 9.0 mmol) and diethyl malonate (1.73 g, 10.8 mmol) in toluene (10 mL) was added Ni(II) bis[(R,R)-N,N'-dibenzylcyclohexane-1,2-diamine]bromide (prepared as described in J. Am. Chem. Soc. 2005, 127, 9958-9959; 0.072 g, 0.1 mmol). The resulting solution was stirred at ambient temperature for 72 h. The solution was diluted with dichloromethane (20 mL) and concentrated under reduced pressure onto silica gel and purified by silica gel chromatography eluting with a gradient of ethyl acetate in hexanes (0 to 50%) to provide 2.18 g of a light yellow waxy solid. ER 96:4 (major eluting at 37.05 min, minor eluting at 27.09 min).
1H NMR (500 MHz) δ 7.06-7.16 (m, 2H), 6.95-7.03 (m, 1H), 4.73-4.94 (m, 2H), 4.16-4.29 (m, 3H), 4.01-4.10 (m, 2H), 3.71-3.79 (m, 1H), 1.22-1.30 (m, 3H), 1.07-1.15 (m, 3H). 19F NMR (471 MHz) δ -137.66 - -137.47 (m, 1F) -136.10 - -135.87 (m, 1F). ESI [M+1]; 346.4

[0114] By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 6800 can be prepared. The following abbreviations are used in the Tables which follow: t means tertiary, s means secondary, n means normal, i means iso, c means cyclo, Me means methyl, Et means ethyl, Pr means propyl, Bu means butyl, i-Pr means isopropyl, c-Pr cyclopropyl, t-Bu means tertiary butyl, c-Bu means cyclobutyl, Ph means phenyl, OMe means methoxy, OEt means ethoxy, SMe means methylthio, NHMe means methylamino, CN means cyano, NO2 means nitro, TMS means trimethylsilyl, SOMe means methylsulfinyl, C2F5 means CF2CF3 and SO2Me means methylsulfonyl.
Table 1
 

 
Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F); and Q1 is
Q1Q1Q1
Ph(3-Cl) Ph(3-NO2) 2-Thienyl(4-F)
Ph(3-F) Ph(3-Ph) 2-Thienyl(4-Cl)
Ph(3-Br) Ph(3-COMe) 2-Thienyl(4-CF3)
Ph(3-Me) Ph(3-OCOMe) 2-Thienyl(5-F)
Ph(3-Et) Ph(3-CO2Me) 2-Thienyl(5-Cl)
Ph(3-t-Bu) Ph(3-OCO2Me) 2-Thienyl(5-CF3)
Ph(3-i-Pr) Ph(3-TMS) Ph(4-Cl)
Ph(3-c-Pr) Ph(3-SF5) Ph(4-F)
Ph(3-cyclohexyl) Ph[3-(1H-pyrazol-1-yl)] Ph(4-Br)
Ph(3-CH=CH2) Ph[3-(2H-1,2,3-triazol-2-yl)] Ph(4-Me)
Ph(3-CF3) Ph[3-(1H-imidazol-1-yl)] Ph(4-Et)
Ph(3-CH2CF3) Ph[3-(3-pyridinyl)] Ph(4-t-Bu)
Ph(3-CHF2) Ph[3-(4-pyridinyl)] Ph(4-i-Pr)
Ph(3-CH2F) Ph[3-(2-pyridinyl)] Ph(4-c-Pr)
Ph(3-OCF3) 4-Pyridinyl(2-CF3) Ph(4-cyclohexyl)
Ph(3-OCH2F) 4-Pyridinyl(2-Cl) Ph(4-CH=CH2)
Ph(3-SCF3) 4-Pyridinyl(2-F) Ph(4-CF3)
Ph(3-SMe) 4-Pyridinyl(2-OCF3) Ph(4-CH2CF3)
Ph(3-SOMe) 4-Pyridinyl(2-Me) Ph(4-CHF2)
3-SO2Me 4-Pyridinyl(2-Br) Ph(4-CH2F)
Ph(3-OSO2Me) 4-Pyridinyl Ph(4-OCF3)
Ph(3-C≡CH) 1H-Pyrazol-4-yl-(1-Me) Ph(4-OCH2F)
Ph(3-OMe) 1H-Pyriazol-4-yl(1-CH2CF3) Ph(4-SCF3)
Ph(3-OEt) 1H-Imidazol-2-yl(1-Me) Ph(4-SMe)
Ph(3-NHCO2-t-Bu) 1H-Imidazol-2-yl(1-CH2CF3) Ph(4-SOMe)
Ph(3-NHCOMe) 1H-Imidazol-2-yl(1-Me,5-Cl) Ph(4-SO2Me)
Ph(3-NHCOCF3) 1H-Imidazol-2-yl(1-Me,5-F) Ph(4-OSO2Me)
Ph(3-CN) 2-Thienyl Ph(4-C≡CH)
Ph(4-OMe) 3-Thienyl(5-Cl) Ph(3-Br,4-OCHF2)
Ph(4-OEt) 3-Thienyl(5-CF3) Ph(3-Br,4-SO2Me)
Ph(4-NHCO2-t-Bu) Ph(3,4-di-Cl) Ph(3-Br,4-TMS)
Ph(4-NHCOMe) Ph(3-Cl,4-F) Ph(3-Br,4-CN)
Ph(4-NHCOCF3) Ph(3-Cl,4-Br) Ph(3-Me,4-Cl)
Ph(4-CN) Ph(3-Cl,4-Me) Ph(3-Me,4-F)
Ph(4-NO2) Ph(3-Cl,4-t-Bu) Ph(3-Me,4-Br)
Ph(4-Ph) Ph(3-Cl,4-c-Pr) Ph(3,4-di-Me)
Ph(4-COMe) Ph(3-Cl,4-CF3) Ph(3-Me,4-t-Bu)
Ph(4-OCOMe) Ph(3-Cl,4-CHF2) Ph(3-Me,4-c-Pr)
Ph(4-CO2Me) Ph(3-Cl,4-OCF3) Ph(3-Me,4-CF3)
Ph(4-OCO2Me) Ph(3-Cl,4-OCHF2) Ph(3-Me,4-OCF3)
Ph(4-TMS) Ph(3-Cl,4-SO2Me) Ph(3-Me,4-OCHF2)
Ph(4-SF5) Ph(3-Cl,4-TMS) Ph(3-Me,4-SO2Me)
Ph(1H-pyrazol-1-yl) Ph(3-Cl,4-CN) Ph(3-Me,4-TMS)
Ph(2H-1,2,3-triazol-2-yl) Ph(3-F,4-Cl) Ph(3-Me,4-CN)
Ph(1H-imidazol-1-yl) Ph(3,4-di-F)* Ph(3-t-Bu,4-Cl)
Ph[4-(3-pyridinyl)] Ph(3-F,4-Br) Ph(3-t-Bu,4-F)
Ph[4-(4-pyridinyl)] Ph(3-F,4-Me) Ph(3-t-Bu,4-Br)
Ph[4-(2-pyridinyl)] Ph(3-F,4-t-Bu) Ph(3-t-Bu,4-Me)
3-Pyridinyl(5-CF3) Ph(3-F,4-c-Pr) Ph(3,4-di-t-Bu)
3-Pyridinyl(5-Cl) Ph(3-F,4-CF3) Ph(3-t-Bu,4-c-Pr)
3-Pyridinyl(5-F) Ph(3-F,4-CHF2) Ph(3-t-Bu,4-CF3)
3-Pyridinyl(5-OCF3) Ph(3-F,4-OCF3) Ph(3-t-Bu,4-CHF2)
3-Pyridinyl(5-Me) Ph(3-F,4-OCHF2) Ph(3-t-Bu,4-OCF3)
3-Pyridinyl(5-Br) Ph(3-F,4-SO2Me) Ph(3-t-Bu,4-OCHF2)
3-Pyridinyl Ph(3-F,4-TMS) Ph(3-t-Bu,4-SO2Me)
1H-Pyrazol-3-yl(1-Me) Ph(3-F,4-CN) Ph(3-t-Bu,4-TMS)
1H-Pyrazol-3-yl(1-CH2CF3) Ph(3-F,4-SF5) Ph(3-t-Bu,4-CN)
1H-Pyrazol-3-yl(1-Me,4-F) Ph(3-Br,4-Cl) Ph(3-c-Pr,4-Cl)
1H-Pyrazol-3 -yl(1-Me,4-Cl) Ph(3-Br,4-F) Ph(3-c-Pr,4-F)
1H-Imidazol-5-yl(1-Me) Ph(3,4-di-Br) Ph(3-c-Pr,4-Br)
1H-Imidazol-5-yl(1-CH2CF3) Ph(3-Br,4-Me) Ph(3-c-Pr,4-Me)
1H-Imidazol-4-yl(1-Me) Ph(3-Br,4-c-Pr) Ph(3-c-Pr,4-t-Bu)
1H-Imidazol-4-yl(1-CH2CF3) Ph(3-Br,4-CF3) Ph(3,4-di-c-Pr)
3-Thienyl Ph(3-Br,4-CHF2) Ph(3-c-Pr,4-CF3)
3-Thienyl(5-F) Ph(3-Br,4-OCF3) Ph(3-c-Pr,4-CHF2)
Ph(3-c-Pr,4-OCF3) Ph(3-SO2Me,4-CF3) Ph(2-F,3-Cl,4-Me)
Ph(3-c-Pr,4-OCHF2) Ph(3-SO2Me,4-CHF2) Ph(2-F,3-Cl,4-t-Bu)
Ph(3-c-Pr,4-SO2Me) Ph(3-SO2Me,4-OCF3) Ph(2-F,3-Cl,4-c-Pr)
Ph(3-c-Pr,4-TMS) Ph(3-SO2Me,4-OCHF2) Ph(2-F,3-Cl,4-CF3)
Ph(3-c-Pr,4-CN) Ph(3,4-di-SO2Me) Ph(2-F,3-Cl,4-CHF2)
Ph(3-CF3,4-Cl) Ph(3-SO2Me,4-TMS) Ph(2-F,3-Cl,4-OCF3)
Ph(3-CF3,4-F) Ph(3-SO2Me,4-CN) Ph(2-F,3-Cl,4-OCHF2)
Ph(3-CF3,4-Br) Ph(3-CHF2,4-Cl) Ph(2-F,3-Cl,4-SO2Me)
Ph(3-CF3,4-Me) Ph(3-CHF2,4-F) Ph(2-F,3-Cl,4-TMS)
Ph(3-CF3,4-t-Bu) Ph(3-CHF2,4-Br) Ph(2-F,3-Cl,4-CN)
Ph(3-CF3,4-c-Pr) Ph(3-CHF2,4-Me) Ph(2-F,3-F,4-Cl)
Ph(3,4-di-CF3) Ph(3-CHF2,4-t-Bu) Ph(2-F,3-F,4-F)
Ph(3-CF3,4-CHF2) Ph(3-CHF2,4-c-Pr) Ph(2-F,3-F,4-Br)
Ph(3-CF3,4-OCF3) Ph(3-CHF2,4-CF3) Ph(2-F,3-F,4-Me)
Ph(3-CF3,4-OCHF2) Ph(3-CHF2,4-CHF2) Ph(2-F,3-F,4-t-Bu)
Ph(3-CF3,4-SO2Me) Ph(3-CHF2,4-OCF3) Ph(2-F,3-F,4-c-Pr)
Ph(3-CF3,4-TMS) Ph(3-CHF2,4-OCHF2) Ph(2-F,3-F,4-CF3)
Ph(3-CF3,4-CN) Ph(3-CHF2,4-SO2Me) Ph(2-F,3-F,4-CHF2)
Ph(3-OCF3,4-Cl) Ph(3-CHF2,4-TMS) Ph(2-F,3-F,4-OCF3)
Ph(3-OCF3,4-F) Ph(3-CHF2,4-CN) Ph(2-F,3-F,4-OCHF2)
Ph(3-OCF3,4-Br) Ph(3-CN,4-Cl) Ph(2-F,3-F,4-SO2Me)
Ph(3-OCF3,4-Me) Ph(3-CN,4-F) Ph(2-F,3-F,4-TMS)
Ph(3-OCF3,4-t-Bu) Ph(3-CN,4-Br) Ph(2-F,3-F,4-CN)
Ph(3-OCF3,4-c-Pr) Ph(3-CN,4-Me) Ph(2-F,3-Br,4-Cl)
Ph(3-OCF3-4-CF3) Ph(3-(ZN,4-t-Bu) Ph(2-F,3-Br,4-F)
Ph(3-OCF3,4-CHF2) Ph(3-CN,4-c-Pr) Ph(2-F,3-Br,4-Br)
Ph(3,4-di-OCF3) Ph(3-CN,4-CF3) Ph(2-F,3-Br,4-Me)
Ph(3-OCF3,4-OCHF2) Ph(3-CN,4-CHF2) Ph(2-F,3-Br,4-t-Bu)
Ph(3-OCF3,4-SO2Me) Ph(3-CN,4-OCF3) Ph(2-F,3-Br,4-c-Pr)
Ph(3-OCF3,4-TMS) Ph(3-CN,4-OCHF2) Ph(2-F,3-Br,4-CF3)
Ph(3-OCF3,4-CN) Ph(3-CN,4-SO2Me) Ph(2-F,3-Br,4-CHF2)
Ph(3-SO2Me,4-Cl) Ph(3-CN,4-TMS) Ph(2-F,3-Br,4-OCF3)
Ph(3-SO2Me,4-F) Ph(3,4-di-CN) Ph(2-F,3-Br,4-OCHF2)
Ph(3-SO2Me,4-Br) Ph(3-SF5,4-F) Ph(2-F,3-Br,4-SO2Me)
Ph(3-SO2Me,4-Me) Ph(2-F,3-Cl,4-Cl) Ph(2-F,3-Br,4-TMS)
Ph(3-SO2Me,4-t-Bu) Ph(2-F,3-Cl,4-F) Ph(2-F,3-Br,4-CN)
Ph(3-SO2Me,4-c-Pr) Ph(2-F,3-Cl,4-Br) Ph(2-F,3-Me,4-Cl)
Ph(2-F,3-Me,4-F) Ph(2-F,3-CF3,4-Cl) Ph(2-F,3-SO2Me,4-TMS)
Ph(2-F,3-Me,4-Br) Ph(2-F,3-CF3,4-F) Ph(2-F,3-SO2Me,4-CN)
Ph(2-F,3-Me,4-Me) Ph(2-F,3-CF3,4-Br) Ph(2-F,3-CHF2,4-Cl)
Ph(2-F,3-Me,4-t-Bu) Ph(2-F,3-CF3,4-Me) Ph(2-F,3-CHF2,4-F)
Ph(2-F,3-Me,4-CF3) Ph(2-F,3-CF3,4-t-Bu) Ph(2-F,3-CHF2,4-Br)
Ph(2-F,3-Me,4-CHF2) Ph(2-F,3-CF3,4-c-Pr) Ph(2-F,3-CHF2,4-Me)
Ph(2-F,3-Me,4-OCF3) Ph(2-F,3-CF3,4-CF3) Ph(2-F,3-CHF2,4-t-Bu)
Ph(2-F,3-Me,4-OCHF2) Ph(2-F,3-CF3,4-CHF2) Ph(2-F,3-CHF2,4-c-Pr)
Ph(2-F,3-Me,4-SO2Me) Ph(2-F,3-CF3,4-OCF3) Ph(2-F,3-CHF2,4-CF3)
Ph(2-F,3-Me,4-TMS) Ph(2-F,3-CF3,4-OCHF2) Ph(2-F,3-CHF2,4-CHF2)
Ph(2-F,3-Me,4-CN) Ph(2-F,3-CF3,4-SO2Me) Ph(2-F,3-CHF2,4-OCF3)
Ph(2-F,3-t-Bu,4-Cl) Ph(2-F,3-CF3,4-TMS) Ph(2-F,3-CHF2,4-OCHF2)
Ph(2-F,3-t-Bu,4-F) Ph(2-F,3-CF3,4-CN) Ph(2-F,3-CHF2,4-SO2Me)
Ph(2-F,3-t-Bu,4-Br) Ph(2-F,3-OCF3,4-Cl) Ph(2-F,3-CHF2,4-TMS)
Ph(2-F,3-t-Bu,4-Me) Ph(2-F,3-OCF3,4-F) Ph(2-F,3-CHF2,4-CN)
Ph(2-F,3-t-Bu,4-t-Bu) Ph(2-F,3-OCF3,4-Br) Ph(2-F,3-CN,4-Cl)
Ph(2-F,3-t-Bu,4-c-Pr) Ph(2-F,3-OCF3,4-Me) Ph(2-F,3-CN,4-F)
Ph(2-F,3-t-Bu,4-CF3) Ph(2-F,3-OCF3,4-t-Bu) Ph(2-F,3-CN,4-Br)
Ph(2-F,3-t-Bu,4-CHF2) Ph(2-F,3-OCF3,4-c-Pr) Ph(2-F,3-CN,4-Me)
Ph(2-F,3-t-Bu,4-OCF3) Ph(2-F,3-OCF3,4-CF3) Ph(2-F,3-CN,4-t-Bu)
Ph(2-F,3-t-Bu,4-OCHF2) Ph(2-F,3-OCF3,4-CHF2) Ph(2-F,3-CN,4-c-Pr)
Ph(2-F,3-t-Bu,4-SO2Me) Ph(2-F,3-OCF3,4-OCF3) Ph(2-F,3-CN,4-CF3)
Ph(2-F,3-t-Bu,4-TMS) Ph(2-F,3-OCF3,4-OCHF2) Ph(2-F,3-CN,4-CHF2)
Ph(2-F,3-t-Bu,4-CN) Ph(2-F,3-OCF3,4-SO2Me) Ph(2-F,3-CN,4-OCF3)
Ph(2-F,3-c-Pr,4-Cl) Ph(2-F,3-OCF3,4-TMS) Ph(2-F,3-CN,4-OCHF2)
Ph(2-F,3-c-Pr,4-F) Ph(2-F,3-OCF3,4-CN) Ph(2-F,3-CN,4-SO2Me)
Ph(2-F,3-c-Pr,4-Br) Ph(2-F,3-SO2Me,4-Cl) Ph(2-F,3-CN,4-TMS)
Ph(2-F,3-c-Pr,4-Me) Ph(2-F,3-SO2Me,4-F) Ph(2-F,3-CN,4-CN)
Ph(2-F,3-c-Pr,4-t-Bu) Ph(2-F,3-SO2Me,4-Br) Ph(2-F,4-Cl)
Ph(2-F,3,4-di-c-Pr) Ph(2-F,3-SO2Me,4-Me) Ph(2-F,4-F)
Ph(2-F,3-c-Pr,4-CF3) Ph(2-F,3-SO2Me,4-t-Bu) Ph(2-F,4-Br)
Ph(2-F,3-c-Pr,4-CHF2 Ph(2-F,3-SO2Me,4-c-Pr) Ph(2-F,4-Me)
Ph(2-F,3-c-Pr,4-OCF3) Ph(2-F,3-SO2Me,4-CF3) Ph(2-F,4-t-Bu)
Ph(2-F,3-c-Pr,4-OCHF2) Ph(2-F,3-SO2Me,4-CHF2) Ph(2-F,4-c-Pr)
Ph(2-F,3-c-Pr,4-SO2Me) Ph(2-F,3-SO2Me,4-OCF3) Ph(2-F,4-CF3)
Ph(2-F,3-c-Pr,4-TMS) Ph(2-F,3-SO2Me,4-OCHF2) Ph(2-F,4-CHF2)
Ph(2-F,3-c-Pr,4-CN) Ph(2-F,3,4-di-SO2Me) Ph(2-F,4-OCF3)
Ph(2-F,4-OCHF2) Ph(2-SMe) Ph(2-OPh)
Ph(2-F,4-SO2Me) Ph(2-SOMe) Ph(2-C≡CCF3)
Ph(2-F,4-TMS) Ph(2-SO2Me) Ph(2-CH=CF2)
Ph(2-F,4-CN) Ph(2-OSO2Me) Ph(2-CH=CCl2)
Ph(2-F,3-Cl) Ph(2-C≡CH) Ph(2-CH=CBr2)
Ph(2-F,3-F) Ph(2-OMe) Ph(2-OCH=CH2)
Ph(2-F,3-Br) Ph(2-OEt) Ph(2-OCH=CF2)
Ph(2-F,3-Me) Ph(2-NHCO2-t-Bu) Ph(2-OCH=CCl2)
Ph(2-F,3-t-Bu) Ph(2-NHCOMe) Ph(2-OCH=CBr2)
Ph(2-F,3-c-Pr) Ph(2-NHCOCF3) Ph(2-CH2CH=CH2)
Ph(2-F,3-CF3) Ph(2-CN) Ph(2-CH2CH=CF2)
Ph(2-F,3-CHF2) Ph(2-NO2) Ph(2-CH2CH=CCl2)
Ph(2-F,3-OCF3) Ph(2-Ph) Ph(2-CH2CH=CBr2)
Ph(2-F,3-OCHF2) Ph(2-COMe) Ph(2-OCH2CH=CH2)
Ph(2-F,3-SO2Me) Ph(2-OCOMe) Ph(2-OCH2CH=CF2)
Ph(2-F,3-TMS) Ph(2-CO2Me) Ph(2-OCH2CH=CCl2)
Ph(2-F,3-CN) Ph(2-OCO2Me) Ph(2-OCH2CH=CBr2)
Ph(2-Cl) Ph(2-TMS) Ph(2-SCF2H)
Ph(2-F) Ph[2-(1H-pyrazol-1-yl)] Ph(2-SCF2CF2H)
Ph(2-Br) Ph[2-(2H-1,2,3-triazol-2-yl)] Ph(3-I)
Ph(2-I) Ph[2-(1H-imidazo)-1-yl)] Ph(3-n-Pr)
Ph(2-Me) Ph[2-(3-pyridinyl)] Ph(3-CF2H)
Ph(2-Et) Ph[2-(4-pyridinyl)] Ph(3-OCF2H)
Ph(2-n-Pr) Ph[2-(2-pyridinyl)] Ph(3-SO2Me)
Ph(2-t-Bu) Ph(2-C2F5) Ph(3-C2F5)
Ph(2-i-Pr) Ph(2-CF2CF2H) Ph(3-CF2CF2H)
Ph(2-c-Pr) Ph(2-OCF2CF2H) Ph(3-OCF2CF2H)
Ph(2-cyclohexyl) Ph(2-OC2F5) Ph(3-OC2F5)
Ph(2-CH=CH2) Ph(2-OCH2CF3) Ph(3-OCH2CF3)
Ph(2-CF3) Ph(2-OCH2C≡CH) Ph(3-OCH2C≡CH)
Ph(2-CH2CF3) Ph(2-OCH2C≡CCF3) Ph(3-OCH2C≡CCF3)
Ph(2-CF2H) Ph(2-OCH2C≡CCF2H) Ph(3-OCH2C≡CCF2H)
Ph(2-CH2F) Ph(2-OCH2C≡CCH3) Ph(3-OCH2C≡CCH3)
Ph(2-OCF3) Ph(2-OCH2C≡C-c-Pr) Ph(3-OCH2C≡C-c-Pr)
Ph(2-OCH2F) Ph(2-C≡CCF2H) Ph(3-C≡CCF2H)
Ph(2-OCF2H) Ph(2-C≡CCH3) Ph(3-C≡CCH3)
Ph(2-SCF3) Ph(2-C≡C-c-Pr) Ph(3-C≡C-c-Pr)
Ph(3-OPh) Ph(2-Cl,3-OCF2H) Ph(2-Cl,3-C≡CCH3)
Ph(3-C≡CCF3) Ph(2-Cl,3-SCF3) Ph(2-Cl,3-C≡C-c-Pr)
Ph(3-CH=CF2) Ph(2-Cl,3-SMe) Ph(2-Cl,3-OPh)
Ph(3-CH=CCl2) Ph(2-Cl,3-SOMe) Ph(2-Cl,3-C≡CCF3)
Ph(3-CH=CBr2) Ph(2-Cl,3-SO2Me) Ph(2-Cl,3-CH=CF2)
Ph(3-OCH=CH2) Ph(2-Cl,3-OSO2Me) Ph(2-Cl,3-CH=CCl2)
Ph(3-OCH=CF2) Ph(2-Cl,3-C≡CH) Ph(2-Cl,3-CH=CBr2)
Ph(3-OCH=CCl2) Ph(2-Cl,3-OMe) Ph(2-Cl,3-OCH=CH2)
Ph(3-OCH=CBr2) Ph(2-Cl,3-OEt) Ph(2-Cl,3-OCH=CF2)
Ph(3-CH2CH=CH2) Ph(2-Cl,3-NHCO2-t-Bu) Ph(2-Cl,3-OCH=CCl2)
Ph(3-CH2CH=CF2) Ph(2-Cl,3-NHCOMe) Ph(2-Cl,3-OCH=CBr2)
Ph(3-CH2CH=CCl2) Ph(2-Cl,3-NHCOCF3) Ph(2-Cl,3-CH2CH=CH2)
Ph(3-CH2CH=CBr2) Ph(2-Cl,3-CN) Ph(2-Cl,3-CH2CH=CF2)
Ph(3-OCH2CH=CH2) Ph(2-Cl,3-NO2) Ph(2-Cl,3-CH2CH=CCl2)
Ph(3-OCH2CH=CF2) Ph(2-Cl,3-Ph) Ph(2-Cl,3-CH2CH=CBr2)
Ph(3-OCH2CH=CCl2) Ph(2-Cl,3-COMe) Ph(2-Cl,3-OCH2CH=CH2)
Ph(3-OCH2CH=CBr2) Ph(2-Cl,3-OCOMe) Ph(2-Cl,3-OCH2CH=CF2)
Ph(3-SCF2H) Ph(2-Cl,3-CO2Me) Ph(2-Cl,3-OCH2CH=CCl2)
Ph(3-SCF2CF2H) Ph(2-Cl,3-OCO2Me) Ph(2-Cl,3-OCH2CH=CBr2)
Ph(2-Cl,3-Cl) Ph(2-Cl,3-TMS) Ph(2-Cl,3-SCF2H)
Ph(2-Cl,3-F) Ph[3-(2-Cl,1H-pyrazol-1-yl)] Ph(2-Cl,3-SCF2CF2H)
Ph(2-Cl,3-Br) Ph[3-(2-Cl,2H-1,2,3-triazol-2-yl)] Ph(2-F,3-F)
Ph(2-Cl,3-I) Ph[3-(2-Cl,1H-imidazol-1-yl)] Ph(2-F,3-Br)
Ph(2-Cl,3-Me) Ph[3-(2-Cl,3-pyridinyl)] Ph(2-F,3-I)
Ph(2-Cl,3-Et) Ph[3-(2-Cl,4-pyridinyl)] Ph(2-F,3-Me)
Ph(2-Cl,3-n-Pr) Ph[3-(2-Cl,2-pyridinyl)] Ph(2-F,3-Et)
Ph(2-Cl,3-t-Bu) Ph(2-Cl,3-C2F5) Ph(2-F,3-n-Pr)
Ph(2-Cl,3-i-Pr) Ph(2-Cl,3-CF2CF2H) Ph(2-F,3-t-Bu)
Ph(2-Cl,3-c-Pr) Ph(2-Cl,3-OCF2CF2H) Ph(2-F,3-i-Pr)
Ph(2-Cl,3-cyclohexyl) Ph(2-Cl,3-OC2F5) Ph(2-F,3-cyclohexyl)
Ph(2-Cl,3-CH=CH2) Ph(2-Cl,3-OCH2CF3) Ph(2-F,3-CH=CH2)
Ph(2-Cl,3-CF3) Ph(2-Cl,3-OCH2C≡CH) Ph(2-F,3-CF3)
Ph(2-Cl,3-CH2CF3) Ph(2-Cl,3-OCH2C≡CCF3) Ph(2-F,3-CH2CF3)
Ph(2-Cl,3-CF2H) Ph(2-Cl,3-OCH2C≡CCF2H) Ph(2-F,3-CF2H)
Ph(2-Cl,3-CH2F) Ph(2-Cl,3-OCH2C≡CCH3) Ph(2-F,3-CH2F)
Ph(2-Cl,3-OCF3) Ph(2-Cl,3-OCH2C≡C-c-Pr) Ph(2-F,3-OCH2F)
Ph(2-Cl,3-OCH2F) Ph(2-Cl,3-C≡CCF2H) Ph(2-F,3-OCF2H)
Ph(2-F,3-SCF3) Ph(2-F,3-CH=CCl2) 2-Furanyl(4-CF3)
Ph(2-F,3-SMe) Ph(2-F,3-CH=CBr2) 2-Furanyl(5-F)
Ph(2-F,3-SOMe) Ph(2-F,3-OCH=CH2) 2-Furanyl(5-Cl)
Ph(2-F,3-SO2Me) Ph(2-F,3-OCH=CF2) 2-Furanyl(5-CF3)
Ph(2-F,3-OSO2Me) Ph(2-F,3-OCH=CCl2) 2-Furanyl(4-Me)
Ph(2-F,3-C=CH) Ph(2-F,3-OCH=CBr2) 2-Furanyl(4-Et)
Ph(2-F,3-OMe) Ph(2-F,3-CH2CH=CH2) 2-Furanyl(4-i-Pr)
Ph(2-F,3-OEt) Ph(2-F,3-CH2CH=CF2) 2-Furanyl(4-c-Pr)
Ph(2-F,3-NHCO2-t-Bu) Ph(2-F,3-CH2CH=CCl2) 2-Furanyl(4-CF2H)
Ph(2-F,3-NHCOMe) Ph(2-F,3-CH2CH=CBr2) 2-Furanyl(4-OCF2H)
Ph(2-F,3-NHCOCF3) Ph(2-F,3-OCH2CH=CH2) 2-Furanyl(4-OCF2CF2H)
Ph(2-F,3-NO2) Ph(2-F,3-OCH2CH=CF2) 2-Furanyl(5-Me)
Ph(2-F,3-Ph) Ph(2-F,3-OCH2CH=CCl2) 2-Furanyl(5-Et)
Ph(2-F,3-COMe) Ph(2-F,3-OCH2CH=CBr2) 2-Furanyl(5-i-Pr)
Ph(2-F,3-OCOMe) Ph(2-F,3-SCF2H) 2-Furanyl(5-c-Pr)
Ph(2-F,3-CO2Me) Ph(2-F,3-SCF2CF2H) 2-Furanyl(5-CF2H)
Ph(2-F,3-OCO2Me) Ph(2-F,3-SF5) 2-Furanyl(5-OCF2H)
Ph[3-(2-F,1H-imidazol-1-yl)] 4-Pyridinyl(5-OCF2H) 2-Furanyl(5-OCF2CF2H)
Ph[3-(2-F,3-pyridinyl)] 4-Pyridinyl(5-CF2H) 2-Furanyl(5-OC2F5)
Ph[3-(2-F,4-pyridinyl)] 4-Pyridinyl(5-OCF2CF2H) Ph(4-I)
Ph[3-(2-F,2-pyridinyl)] 2-Thienyl(4-Me) Ph(4-n-Pr)
Ph(2-F,3-C2F5) 2-Thienyl(4-Et) Ph(4-OCHF2)
Ph(2-F,3-CF2CF2H) 2-Thienyl(4-i-Pr) Ph(4-C2F5)
Ph(2-F,3-OCF2CF2H) 2-Thienyl(4-c-Pr) Ph(4-CF2CF2H)
Ph(2-F,3-OC2F5) 2-Thienyl(4-CF2H) Ph(4-OCF2CF2H)
Ph(2-F,3-OCH2CF3) 2-Thienyl(4-OCF2H) Ph(4-OC2F5)
Ph(2-F,3-OCH2C≡CH) 2-Thienyl(4-OCF2CF2H) Ph(4-OCH2CF3)
Ph(2-F,3-OCH2C≡CCF3) 2-Thienyl(5-Me) Ph(4-OCH2C≡CH)
Ph(2-F,3-OCH2C≡CCF2H) 2-Thienyl(5-Et) Ph(4-0CH2C≡CCF3)
Ph(2-F,3-OCH2C≡CCH3) 2-Thienyl(5-i-Pr) Ph(4-OCH2C≡CCF2H)
Ph(2-F,3-OCH2C≡C-c-Pr) 2-Thienyl(5-c-Pr) Ph(4-OCH2C≡CCH3)
Ph(2-F,3-C≡CCF2H) 2-Thienyl(5-CF2H) Ph(4-OCH2C≡C-c-Pr)
Ph(2-F,3-C≡CCH3) 2-Thienyl(5-OCF2H) Ph(4-C≡CCF2H)
Ph(2-F,3-C≡C-c-Pr) 2-Thienyl(5-OCF2CF2H) Ph(4-C≡CCH3)
Ph(2-F,3-OPh) 2-Thienyl(5-OC2F5) Ph(4-C≡C-c-Pr)
Ph(2-F,3-C≡CCF3) 2-Furanyl(4-F) Ph(4-OPh)
Ph(2-F,3-CH=CF2) 2-Furanyl(4-Cl) Ph(4-C≡CCF3)
Ph(4-CH=CF2) Ph(2-Cl,4-SMe) Ph(2-Cl,4-OCH=CF2)
Ph(4-CH=CCl2) Ph(2-Cl,4-SOMe) Ph(2-Cl,4-OCH=CCl2)
Ph(4-CH=CBr2) Ph(2-Cl,4-SO2Me) Ph(2-Cl,4-OCH=CBr2)
Ph(4-OCH=CH2) Ph(2-Cl,4-OSO2Me) Ph(2-Cl,4-CH2CH=CH2)
Ph(4-OCH=CF2) Ph(2-Cl,4-C≡CH) Ph(2-Cl,4-CH2CH=CF2)
Ph(4-OCH=CCl2) Ph(2-Cl,4-OMe) Ph(2-Cl,4-CH2CH=CCl2)
Ph(4-OCH=CBr2) Ph(2-Cl,4-OEt) Ph(2-Cl,4-CH2CH=CBr2)
Ph(4-CH2CH=CH2) Ph(2-Cl,4-NHCO2-t-Bu) Ph(2-Cl,4-OCH2CH=CH2)
Ph(4-CH2CH=CF2) Ph(2-Cl,4-NHCOMe) Ph(2-Cl,4-OCH2CH=CF2)
Ph(4-CH2CH=CCl2) Ph(2-Cl,4-NHCOCF3) Ph(2-Cl,4-OCH2CH=CCl2)
Ph(4-CH2CH=CBr2) Ph(2-Cl,4-CN) Ph(2-Cl,4-OCH2CH=CBr2)
Ph(4-OCH2CH=CH2) Ph(2-Cl,4-NO2) Ph(2-Cl,4-SCF2H)
Ph(4-OCH2CH=CF2) Ph(2-Cl,4-Ph) Ph(2-Cl,4-SCF2CF2H)
Ph(4-OCH2CH=CCl2) Ph(2-Cl,4-COMe) Ph(2-F,4-Cl)
Ph(4-OCH2CH=CBr2) Ph(2-Cl,4-OCOMe) Ph(2,4-di-F)
Ph(4-SCF2H) Ph(2-Cl,4-CO2Me) Ph(2-F,4-Br)
Ph(4-SCF2CF2H) Ph(2-Cl,4-OCO2Me) Ph(2-F,4-I)
Ph(2,4-di-Cl) Ph(2-Cl,4-TMS) Ph(2-F,4-Me)
Ph(2-Cl,4-F) Ph(2-Cl,4-C2F5) Ph(2-F,4-Et)
Ph(2-Cl,4-Br) Ph(2-Cl,4-CF2CF2H) Ph(2-F,4-n-Pr)
Ph(2-Cl,4-I) Ph(2-Cl,4-OCF2CF2H) Ph(2-F,4-t-Bu)
Ph(2-Cl,4-Me) Ph(2-Cl,4-OC2F5) Ph(2-F,4-i-Pr)
Ph(2-Cl,4-Et) Ph(2-Cl,4-OCH2CF3) Ph(2-F,4-cyclohexyl)
Ph(2-Cl,4-n-Pr) Ph(2-Cl,4-OCH2C≡CH) Ph(2-F,4-CH=CH2)
Ph(2-Cl,4-t-Bu) Ph(2-Cl,4-OCH2C≡CCF3) Ph(2-F,4-CF3)
Ph(2-Cl,4-i-Pr) Ph(2-Cl,4-OCH2C≡CCF2H) Ph(2-F,4-CH2CF3)
Ph(2-Cl,4-c-Pr) Ph(2-Cl,4-OCH2C≡CCH3) Ph(2-F,4-CHF2)
Ph(2-Cl,4-cyclohexyl) Ph(2-Cl,4-OCH2C≡C-c-Pr) Ph(2-F,4-CH2F)
Ph(2-Cl,4-CH=CH2) Ph(2-Cl,4-C≡CCF2H) Ph(2-F,4-OCF3)
Ph(2-Cl,4-CF3) Ph(2-Cl,4-C≡CCH3) Ph(2-F,4-OCH2F)
Ph(2-Cl,4-CH2CF3) Ph(2-Cl,4-C≡C-c-Pr) Ph(2-F,4-OCHF2)
Ph(2-Cl,4-CHF2) Ph(2-Cl,4-OPh) Ph(2-F,4-SCF3)
Ph(2-Cl,4-CH2F) Ph(2-Cl,4-C≡CCF3) Ph(2-F,4-SMe)
Ph(2-Cl,4-OCF3) Ph(2-Cl,4-CH=CF2) Ph(2-F,4-SOMe)
Ph(2-Cl,4-OCH2F) Ph(2-Cl,4-CH=CCl2) Ph(2-F,4-SO2Me)
Ph(2-Cl,4-OCHF2) Ph(2-Cl,4-CH=CBr2) Ph(2-F,4-OSO2Me)
Ph(2-Cl,4-SCF3) Ph(2-Cl,4-OCH=CH2) Ph(2-F,4-C≡CH)
Ph(2-F,4-OMe) Ph(2-F,4-CH2CH=CBr2) Ph(3-Cl,4-OMe)
Ph(2-F,4-OEt) Ph(2-F,4-OCH2CH=CH2) Ph(3-Cl,4-OCF2CF2H)
Ph(2-F,4-NHCO2-t-Bu) Ph(2-F,4-OCH2CH=CF2) Ph(3-Cl,4-OC2F5)
Ph(2-F,4-NHCOMe) Ph(2-F,4-OCH2CH=CCl2) Ph(3,4-di-F)
Ph(2-F,4-NHCOCF3) Ph(2-F,4-OCH2CH=CBr2) Ph(3-F,4-I)
Ph(2-F,4-CN) Ph(2-F,4-SCF2H) Ph(3-F,4-Et)
Ph(2-F,4-NO2) Ph(2-F,4-SCF2CF2H) Ph(3-F,4-n-Pr)
Ph(2-F,4-Ph) Ph(2-F,4-SF5) Ph(3-F,4-i-Pr)
Ph(2-F,4-COMe) 3-Pyridinyl(5-OCF2H) Ph(3-F,4-C2F5)
Ph(2-F,4-OCOMe) 3-Pyridinyl(5-CF2H) Ph(3-F,4-CF2CF2H)
Ph(2-F,4-CO2Me) 3-Pyridinyl(5-OCF2CF2H) Ph(3-F,4-CF2H)
Ph(2-F,4-OCO2Me) 3-Thienyl(4-Me) Ph(3-F,4-OMe)
Ph(2-F,4-C2F5) 3-Thienyl(4-Et) Ph(3-F,4-OCF2CF2H)
Ph(2-F,4-CF2CF2H) 3-Thienyl(4-i-Pr) Ph(3-F,4-OC2F5)
Ph(2-F,4-OCF2CF2H) 3-Thienyl(4-c-Pr) Ph(3-Br,4-I)
Ph(2-F,4-OC2F5) 3-Thienyl(4-CF2H) Ph(3-Br,4-Et)
Ph(2-F,4-OCH2CF3) 3-Thienyl(4-OCF2H) Ph(3-Br,4-n-Pr)
Ph(2-F,4-OCH2C≡CH) 3-Thienyl(4-OCF2CF2H) Ph(3-Br,4-t-Bu)
Ph(2-F,4-OCH2C≡CCF3) 3-Thienyl(4-OC2F5) Ph(3-Br,4-i-Pr)
Ph(2-F,4-OCH2C≡CCF2H) 3-Furanyl(5-F) Ph(3-Br,4-C2F5)
Ph(2-F,4-OCH2C≡CCH3) 3-Furanyl(5-Cl) Ph(3-Br,4-CF2CF2H)
Ph(2-F,4-OCH2C≡C-c-Pr) 3-Furanyl(5-CF3) Ph(3-Br,4-CF2H)
Ph(2-F,4-C≡CCF2H) 3-Furanyl(4-Me) Ph(3-Br,4-OMe)
Ph(2-F,4-C≡CCH3) 3-Furanyl(4-Et) Ph(3-Br,4-OCF2CF2H)
Ph(2-F,4-C≡C-c-Pr) 3-Furanyl(4-i-Pr) Ph(3-Br,4-OC2F5)
Ph(2-F,4-OPh) 3-Furanyl(4-c-Pr) Ph(3-I,4-Cl)
Ph(2-F,4-C≡CCF3) 3-Furanyl(4-CF2H) Ph(3-I,4-F)
Ph(2-F,4-CH=CF2) 3-Furanyl(4-OCF2H) Ph(3-I,4-Br)
Ph(2-F,4-CH=CCl2) 3-Furanyl(4-OCF2CF2H) Ph(3,4-di-I)
Ph(2-F,4-CH=CBr2) 3-Furanyl(4-OC2F5) Ph(3-I,4-Me)
Ph(2-F,4-OCH=CH2) Ph(3-Cl,4-I) Ph(3-I,4-Et)
Ph(2-F,4-OCH=CF2) Ph(3-Cl,4-Et) Ph(3-I,4-n-Pr)
Ph(2-F,4-OCH=CCl2) Ph(3-Cl,4-n-Pr) Ph(3-I,4-t-Bu)
Ph(2-F,4-OCH=CBr2) Ph(3-Cl,4-i-Pr) Ph(3-I,4-i-Pr)
Ph(2-F,4-CH2CH=CH2) Ph(3-Cl,4-C2F5) Ph(3-I,4-c-Pr)
Ph(2-F,4-CH2CH=CF2) Ph(3-Cl,4-CF2CF2H) Ph(3-I,4-CF3)
Ph(2-F,4-CH2CH=CCl2) Ph(3-Cl,4-CF2H) Ph(3-I,4-C2F5)
Ph(3-I,4-CF2CF2H) Ph(3-Et,4-OCF2CF2H) Ph(3-i-Pr,4-Cl)
Ph(3-I,4-CF2H) Ph(3-Et,4-OC2F5) Ph(3-i-Pr,4-F)
Ph(3-I,4-OMe) Ph(3-Et,4-SO2Me) Ph(3-i-Pr,4-Br)
Ph(3-I,4-OCF3) Ph(3-Et,4-TMS) Ph(3-i-Pr,4-I)
Ph(3-I,4-OCHF2) Ph(3-Et,4-CN) Ph(3-i-Pr,4-Me)
Ph(3-I,4-OCF2CF2H) Ph(3-n-Pr,4-Cl) Ph(3-i-Pr,4-Et)
Ph(3-I,4-OC2F5) Ph(3-n-Pr,4-F) Ph(3-i-Pr,4-n-Pr)
Ph(3-I,4-SO2Me) Ph(3-n-Pr,4-Br) Ph(3-i-Pr,4-t-Bu)
Ph(3-I,4-TMS) Ph(3-n-Pr,4-I) Ph(3,4-di-i-Pr)
Ph(3-I,4-CN) Ph(3-n-Pr,4-Me) Ph(3-i-Pr,4-c-Pr)
Ph(3-Me,4-I) Ph(3-n-Pr,4-Et) Ph(3-i-Pr,4-CF3)
Ph(3-Me,4-Et) Ph(3,4-di-n-Pr) Ph(3-i-Pr,4-C2F5)
Ph(3-Me,4-n-Pr) Ph(3-n-Pr,4-t-Bu) Ph(3-i-Pr,4-CF2CF2H)
Ph(3-Me,4-i-Pr) Ph(3-n-Pr,4-i-Pr) Ph(3-i-Pr,4-CF2H)
Ph(3-Me,4-C2F5) Ph(3-n-Pr,4-c-Pr) Ph(3-i-Pr,4-OMe)
Ph(3-Me,4-CF2CF2H) Ph(3-n-Pr,4-CF3) Ph(3-i-Pr,4-OCF3)
Ph(3-Me,4-CF2H) Ph(3-n-Pr,4-C2F5) Ph(3-i-Pr,4-OCHF2)
Ph(3-Me,4-OMe) Ph(3-n-Pr,4-CF2CF2H) Ph(3-i-Pr,4-OCF2CF2H)
Ph(3-Me,4-OCF2CF2H) Ph(3-n-Pr,4-CF2H) Ph(3-i-Pr,4-OC2F5)
Ph(3-Me,4-OC2F5) Ph(3-n-Pr,4-OMe) Ph(3-i-Pr,4-SO2Me)
Ph(3-Et,4-Cl) Ph(3-n-Pr,4-OCF3) Ph(3-i-Pr,4-TMS)
Ph(3-Et,4-F) Ph(3-n-Pr,4-OCHF2) Ph(3-i-Pr,4-CN)
Ph(3-Et,4-Br) Ph(3-n-Pr,4-OCF2CF2H) Ph(3-c-Pr,4-I)
Ph(3-Et,4-I) Ph(3-n-Pr,4-OC2F5) Ph(3-c-Pr,4-Et)
Ph(3-Et,4-Me) Ph(3-n-Pr,4-SO2Me) Ph(3-c-Pr,4-n-Pr)
Ph(3,4-di-Et) Ph(3-n-Pr,4-TMS) Ph(3-c-Pr,4-i-Pr)
Ph(3-Et,4-n-Pr) Ph(3-n-Pr,4-CN) Ph(3-c-Pr,4-C2F5)
Ph(3-Et,4-t-Bu) Ph(3-t-Bu,4-I) Ph(3-c-Pr,4-CF2CF2H)
Ph(3-Et,4-i-Pr) Ph(3-t-Bu,4-Et) Ph(3-c-Pr,4-CF2H)
Ph(3-Et,4-c-Pr) Ph(3-t-Bu,4-n-Pr) Ph(3-c-Pr,4-OMe)
Ph(3-Et,4-CF3) Ph(3-t-Bu,4-i-Pr) Ph(3-c-Pr,4-OCF2CF2H)
Ph(3-Et,4-C2F5) Ph(3-t-Bu,4-C2F5) Ph(3-c-Pr,4-OC2F5)
Ph(3-Et,4-CF2CF2H) Ph(3-t-Bu,4-CF2CF2H) Ph(3-CF3,4-I)
Ph(3-Et,4-CF2H) Ph(3-t-Bu,4-CF2H) Ph(3-CF3,4-Et)
Ph(3-Et,4-OMe) Ph(3-t-Bu,4-OMe) Ph(3-CF3,4-n-Pr)
Ph(3-Et,4-OCF3) Ph(3-t-Bu,4-OCF2CF2H) Ph(3-CF3,4-i-Pr)
Ph(3-Et,4-OCHF2) Ph(3-t-Bu,4-OC2F5) Ph(3-CF3,4-C2F5)
Ph(3-CF3,4-CF2CF2H) Ph(3-CF2CF2H,4-c-Pr) Ph(3-OMe,4-Br)
Ph(3-CF3,4-CF2H) Ph(3-CF2CF2H,4-CF3) Ph(3-OMe,4-I)
Ph(3-CF3,4-OMe) Ph(3-CF2CF2H,4-C2F5) Ph(3-OMe,4-Me)
Ph(3-CF3,4-OCF2CF2H) Ph(3,4-di-CF2CF2H) Ph(3-OMe,4-Et)
Ph(3-CF3,4-OC2F5) Ph(3-CF2CF2H,4-CF2H) Ph(3-OMe,4-n-Pr)
Ph(3-CF3,4-TMS) Ph(3-CF2CF2H,4-OMe) Ph(3-OMe,4-t-Bu)
Ph(3-C2F5,4-Cl) Ph(3-CF2CF2H,4-OCF3) Ph(3-OMe,4-i-Pr)
Ph(3-C2F5,4-F) Ph(3-CF2CF2H,4-OCHF2) Ph(3-OMe,4-c-Pr)
Ph(3-C2F5,4-Br) Ph(3-CF2CF2H,4-OCF2CF2H) Ph(3-OMe,4-CF3)
Ph(3-C2F5,4-I) Ph(3-CF2CF2H,4-OC2F5) Ph(3-OMe,4-C2F5)
Ph(3-C2F5,4-Me) Ph(3-CF2CF2H,4-SO2Me) Ph(3-OMe,4-CF2CF2H)
Ph(3-C2F5,4-Et) Ph(3-CF2CF2H,4-TMS) Ph(3-OMe,4-CF2H)
Ph(3-C2F5,4-n-Pr) Ph(3-CF2CF2H,4-CN) Ph(3,4-di-OMe)
Ph(3-C2F5,4-t-Bu) Ph(3-CF2H,4-Cl) Ph(3-OMe,4-OCF3)
Ph(3-C2F5,4-i-Pr) Ph(3-CF2H,4-F) Ph(3-OMe,4-OCHF2)
Ph(3-C2F5,4-c-Pr) Ph(3-CF2H,4-Br) Ph(3-OMe,4-OCF2CF2H)
Ph(3-C2F5CF3,4-CF3) Ph(3-CF2H,4-I) Ph(3-OMe,4-OC2F5)
Ph(3,4-di-C2F5) Ph(3-CF2H,4-Me) Ph(3-OMe,4-SO2Me)
Ph(3-C2F5,4-CF2CF2H) Ph(3-CF2H,4-Et) Ph(3-OMe,4-TMS)
Ph(3-C2F5,4-CF2H) Ph(3-CF2H,4-n-Pr) Ph(3-OMe,4-CN)
Ph(3-C2F5,4-OMe) Ph(3-CF2H,4-t-Bu) Ph(3-OCF3,4-I)
Ph(3-C2F5,4-OCF3) Ph(3-CF2H,4-i-Pr) Ph(3-OCF3,4-Et)
Ph(3-C2F5,4-OCHF2) Ph(3-CF2H,4-c-Pr) Ph(3-OCF3,4-n-Pr)
Ph(3-C2F5,4-OCF2CF2H) Ph(3-CF2H,4-CF3) Ph(3-OCF3,4-i-Pr)
Ph(3-C2F5,4-OC2F5) Ph(3-CF2H,4-C2F5) Ph(3-OCF3,4-CF3)
Ph(3-C2F5,4-SO2Me) Ph(3-CF2H,4-CF2CF2H) Ph(3-OCF3,4-C2F5)
Ph(3-C2F5,4-TMS) Ph(3,4-di-CF2H) Ph(3-OCF3,4-CF2CF2H)
Ph(3-C2F5,4-CN) Ph(3-CF2H,4-OMe) Ph(3-OCF3,4-CF2H)
Ph(3-CF2CF2H,4-Cl) Ph(3-CF2H,4-OCF3) Ph(3-OCF3,4-OMe)
Ph(3-CF2CF2H,4-F) Ph(3-CF2H,4-OCHF2) Ph(3-OCF3,4-OCF2CF2H)
Ph(3-CF2CF2H,4-Br) Ph(3-CF2H,4-OCF2CF2H) Ph(3-OCF3,4-OC2F5)
Ph(3-CF2CF2H,4-I) Ph(3-CF2H,4-OC2F5) Ph(3-OCHF2,4-Cl)
Ph(3-CF2CF2H,4-Me) Ph(3-CF2H,4-SO2Me) Ph(3-OCHF2,4-F)
Ph(3-CF2CF2H,4-Et) Ph(3-CF2H,4-TMS) Ph(3-OCHF2,4-Br)
Ph(3-CF2CF2H,4-n-Pr) Ph(3-CF2H,4-CN) Ph(3-OCHF2,4-I)
Ph(3-CF2CF2H,4-t-Bu) Ph(3-OMe,4-Cl) Ph(3-OCHF2,4-Me)
Ph(3-CF2CF2H,4-i-Pr) Ph(3-OMe,4-F) Ph(3-OCHF2,4-Et)
Ph(3-OCHF2,4-n-Pr) Ph(3-OCF2CF2H,4-CN) Ph(3-TMS,4-Me)
Ph(3-OCHF2,4-t-Bu) Ph(3-OC2F5,4-Cl) Ph(3-TMS,4-Et)
Ph(3-OCHF2,4-i-Pr) Ph(3-OC2F5,4-F) Ph(3-TMS,4-n-Pr)
Ph(3-OCHF2,4-c-Pr) Ph(3-OC2F5,4-Br) Ph(3-TMS,4-t-Bu)
Ph(3-OCHF2CF3,4-CF3) Ph(3-OC2F5,4-I) Ph(3-TMS,4-i-Pr)
Ph(3-OC2F5,4-C2F5) Ph(3-OC2F5,4-Me) Ph(3-TMS,4-c-Pr)
Ph(3-OCHF2,4-CF2CF2H) Ph(3-OC2F5,4-Et) Ph(3-TMS,4-CF3)
Ph(3-OCHF2,4-CF2H) Ph(3-OC2F5,4-n-Pr) Ph(3-TMS,4-C2F5)
Ph(3-OCHF2,4-OMe) Ph(3-OC2F5,4-t-Bu) Ph(3-TMS,4-CF2CF2H)
Ph(3-OCHF2,4-OCF3) Ph(3-OC2F5,4-i-Pr) Ph(3-TMS,4-CF2H)
Ph(3,4-di-OCHF2) Ph(3-OC2F5,4-c-Pr) Ph(3-TMS,4-OMe)
Ph(3-OCHF2,4-OCF2CF2H) Ph(3-OC2F5CF3,4-CF3) Ph(3-TMS,4-OCF3)
Ph(3-OCHF2,4-OC2F5) Ph(3-OC2F5,4-CF2CF2H) Ph(3-TMS,4-OCHF2)
Ph(3-OCHF2,4-SO2Me) Ph(3-OC2F5,4-CF2H) Ph(3-TMS,4-OCF2CF2H)
Ph(3-OCHF2,4-TMS) Ph(3-OC2F5,4-OMe) Ph(3-TMS,4-OC2F5)
Ph(3-OCHF2,4-CN) Ph(3-OC2F5,4-OCF3) Ph(3-TMS,4-SO2Me)
Ph(3-OCF2CF2H,4-Cl) Ph(3-OC2F5,4-OCHF2) Ph(3,4-di-TMS)
Ph(3-OCF2CF2H,4-F) Ph(3-OC2F5,4-OCF2CF2H) Ph(3-TMS,4-CN)
Ph(3-OCF2CF2H,4-Br) Ph(3,4-di-OC2F5) Ph(3-CN,4-I)
Ph(3-OCF2CF2H,4-I) Ph(3-OC2F5,4-SO2Me) Ph(3-CN,4-Et)
Ph(3-OCF2CF2H,4-Me) Ph(3-OC2F5,4-TMS) Ph(3-CN,4-n-Pr)
Ph(3-OCF2CF2H,4-Et) Ph(3-OC2F5,4-CN) Ph(3-CN,4-i-Pr)
Ph(3-OCF2CF2H,4-n-Pr) Ph(3-SO2Me,4-I) Ph(3-CN,4-C2F5)
Ph(3-OCF2CF2H,4-t-Bu) Ph(3-SO2Me,4-Et) Ph(3-CN,4-CF2CF2H)
Ph(3-OCF2CF2H,4-i-Pr) Ph(3-SO2Me,4-n-Pr) Ph(3-CN,4-CF2H)
Ph(3-OCF2CF2H,4-c-Pr) Ph(3-SO2Me,4-i-Pr) Ph(3-CN,4-OMe)
Ph(3-OCF2CF2H,4-CF3) Ph(3-SO2MeCF3,4-CF3) Ph(3-CN,4-OCF2CF2H)
Ph(3-OCF2CF2H,4-C2F5) Ph(3-SO2Me,4-C2F5) Ph(3-CN,4-OC2F5)
Ph(3-OCF2CF2H,4-CF2CF2H) Ph(3-SO2Me,4-CF2CF2H) Ph(3,5-di-Cl)
Ph(3-OCF2CF2H,4-CF2H) Ph(3-SO2Me,4-CF2H) Ph(3-Cl,5-F)
Ph(3-OCF2CF2H,4-OMe) Ph(3-SO2Me,4-OMe) Ph(3-Cl,5-Br)
Ph(3-OCF2CF2H,4-OCF3) Ph(3-SO2Me,4-OCF2CF2H) Ph(3-Cl,5-I)
Ph(3-OCF2CF2H,4-OCHF2) Ph(3-SO2Me,4-OC2F5) Ph(3-Cl,5-Me)
Ph(3,4-di-OCF2CF2H) Ph(3-TMS,4-Cl) Ph(3-Cl,5-Et)
Ph(3-OCF2CF2H,4-OC2F5) Ph(3-TMS,4-F) Ph(3-Cl,5-n-Pr)
Ph(3-OCF2CF2H,4-SO2Me) Ph(3-TMS,4-Br) Ph(3-Cl,5-t-Bu)
Ph(3-OCF2CF2H,4-TMS) Ph(3-TMS,4-I) Ph(3-Cl,5-i-Pr)
Ph(3-Cl,5-c-Pr) Ph(3,5-di-Br) Ph(3-I,5-OCF2CF2H)
Ph(3-Cl,5-CF3) Ph(3-Br,5-I) Ph(3-I,5-OC2F5)
Ph(3-Cl,5-C2F5) Ph(3-Br,5-Me) Ph(3-I,5-SO2Me)
Ph(3-Cl,5-CF2CF2H) Ph(3-Br,5-Et) Ph(3-I,5-TMS)
Ph(3-Cl,5-CF2H) Ph(3-Br,5-n-Pr) Ph(3-I,5-CN)
Ph(3-Cl,5-OMe) Ph(3-Br,5-t-Bu) Ph(3-Me,5-Cl)
Ph(3-Cl,5-OCF3) Ph(3-Br,5-i-Pr) Ph(3-Me,5-F)
Ph(3-Cl,5-OCHF2) Ph(3-Br,5-c-Pr) Ph(3-Me,5-Br)
Ph(3-Cl,5-OCF2CF2H) Ph(3-Br,5-CF3) Ph(3-Me,5-I)
Ph(3-Cl,5-OC2F5) Ph(3-Br,5-C2F5) Ph(3,5-di-Me)
Ph(3-Cl,5-SO2Me) Ph(3-Br,5-CF2CF2H) Ph(3-Me,5-Et)
Ph(3-Cl,5-TMS) Ph(3-Br,5-CF2H) Ph(3-Me,5-n-Pr)
Ph(3-Cl,5-CN) Ph(3-Br,5-OMe) Ph(3-Me,5-t-Bu)
Ph(3-F,5-Cl) Ph(3-Br,5-OCF3) Ph(3-Me,5-i-Pr)
Ph(3,5-di-F) Ph(3-Br,5-OCHF2) Ph(3-Me,5-c-Pr)
Ph(3-F,5-Br) Ph(3-Br,5-OCF2CF2H) Ph(3-Me,5-CF3)
Ph(3-F,5-I) Ph(3-Br,5-OC2F5) Ph(3-Me,5-C2F5)
Ph(3-F,5-Me) Ph(3-Br,5-SO2Me) Ph(3-Me,5-CF2CF2H)
Ph(3-F,5-Et) Ph(3-Br,5-TMS) Ph(3-Me,5-CF2H)
Ph(3-F,5-n-Pr) Ph(3-Br,5-CN) Ph(3-Me,5-OMe)
Ph(3-F,5-t-Bu) Ph(3-I,5-Cl) Ph(3-Me,5-OCF3)
Ph(3-F,5-i-Pr) Ph(3-I,5-F) Ph(3-Me,5-OCHF2)
Ph(3-F,5-c-Pr) Ph(3-I,5-Br) Ph(3-Me,5-OCF2CF2H)
Ph(3-F,5-CF3) Ph(3,5-di-I) Ph(3-Me,5-OC2F5)
Ph(3-F,5-C2F5) Ph(3-I,5-Me) Ph(3-Me,5-SO2Me)
Ph(3-F,5-CF2CF2H) Ph(3-I,5-Et) Ph(3-Me,5-TMS)
Ph(3-F,5-CF2H) Ph(3-I,5-n-Pr) Ph(3-Me,5-CN)
Ph(3-F,5-OMe) Ph(3-I,5-t-Bu) Ph(3-Et,5-Cl)
Ph(3-F,5-OCF3) Ph(3-I,5-i-Pr) Ph(3-Et,5-F)
Ph(3-F,5-OCHF2) Ph(3-I,5-c-Pr) Ph(3-Et,5-Br)
Ph(3-F,5-OCF2CF2H) Ph(3-I,5-CF3) Ph(3-Et,5-I)
Ph(3-F,5-OC2F5) Ph(3-I,5-C2F5) Ph(3-Et,5-Me)
Ph(3-F,5-SO2Me) Ph(3-I,5-CF2CF2H) Ph(3,5-di-Et)
Ph(3-F,5-TMS) Ph(3-I,5-CF2H) Ph(3-Et,5-n-Pr)
Ph(3-F,5-CN) Ph(3-I,5-OMe) Ph(3-Et,5-t-Bu)
Ph(3-Br,5-Cl) Ph(3-I,5-OCF3) Ph(3-Et,5-i-Pr)
Ph(3-Br,5-F) Ph(3-I,5-OCHF2) Ph(3-Et,5-c-Pr)
Ph(3-Et,5-CF3) Ph(3-t-Bu,5-I) Ph(3-i-Pr,5-OC2F5)
Ph(3-Et,5-C2F5) Ph(3-t-Bu,5-Me) Ph(3-i-Pr,5-SO2Me)
Ph(3-Et,5-CF2CF2H) Ph(3-t-Bu,5-Et) Ph(3-i-Pr,5-TMS)
Ph(3-Et,5-CF2H) Ph(3-t-Bu,5-n-Pr) Ph(3-i-Pr,5-CN)
Ph(3-Et,5-OMe) Ph(3,5-di-t-Bu) Ph(3-c-Pr,5-Cl)
Ph(3-Et,5-OCF3) Ph(3-t-Bu,5-i-Pr) Ph(3-c-Pr,5-F)
Ph(3-Et,5-OCHF2) Ph(3-t-Bu,5-c-Pr) Ph(3-c-Pr,5-Br)
Ph(3-Et,5-OCF2CF2H) Ph(3-t-Bu,5-CF3) Ph(3-c-Pr,5-I)
Ph(3-Et,5-OC2F5) Ph(3-t-Bu,5-C2F5) Ph(3-c-Pr,5-Me)
Ph(3-Et,5-SO2Me) Ph(3-t-Bu,5-CF2CF2H) Ph(3-c-Pr,5-Et)
Ph(3-Et,5-TMS) Ph(3-t-Bu,5-CF2H) Ph(3-c-Pr,5-n-Pr)
Ph(3-Et,5-CN) Ph(3-t-Bu,5-OMe) Ph(3-c-Pr,5-t-Bu)
Ph(3-n-Pr,5-Cl) Ph(3-t-Bu,5-OCF3) Ph(3-c-Pr,5-i-Pr)
Ph(3-n-Pr,5-F) Ph(3-t-Bu,5-OCHF2) Ph(3,5-di-c-Pr)
Ph(3-n-Pr,S-Br) Ph(3-t-Bu,5-OCF2CF2H) Ph(3-c-Pr,5-CF3)
Ph(3-n-Pr,5-I) Ph(3-t-Bu,5-OC2F5) Ph(3-c-Pr,5-C2F5)
Ph(3-n-Pr,5-Me) Ph(3-t-Bu,5-SO2Me) Ph(3-c-Pr,5-CF2CF2H)
Ph(3-n-Pr,5-Et) Ph(3-t-Bu,5-TMS) Ph(3-c-Pr,5-CF2H)
Ph(3,5-di-n-Pr) Ph(3-t-Bu,5-CN) Ph(3-c-Pr,5-OMe)
Ph(3-n-Pr,5-t-Bu) Ph(3-i-Pr,5-Cl) Ph(3-c-Pr,5-OCF3)
Ph(3-n-Pr,5-i-Pr) Ph(3-i-Pr,5-F) Ph(3-c-Pr,5-OCHF2)
Ph(3-n-Pr,5-c-Pr) Ph(3-i-Pr,5-Br) Ph(3-c-Pr,5-OCF2CF2H)
Ph(3-n-Pr,5-CF3) Ph(3-i-Pr,5-I) Ph(3-c-Pr,5-OC2F5)
Ph(3-n-Pr,5-C2F5) Ph(3-i-Pr,5-Me) Ph(3-c-Pr,5-SO2Me)
Ph(3-n-Pr,5-CF2CF2H) Ph(3-i-Pr,5-Et) Ph(3-c-Pr,5-TMS)
Ph(3-n-Pr,5-CF2H) Ph(3-i-Pr,5-n-Pr) Ph(3-c-Pr,5-CN)
Ph(3-n-Pr,5-OMe) Ph(3-i-Pr,5-t-Bu) Ph(3-CF3,5-Cl)
Ph(3-n-Pr,5-OCF3) Ph(3,5-di-i-Pr) Ph(3-CF3,5-F)
Ph(3-n-Pr,5-OCHF2) Ph(3-i-Pr,5-c-Pr) Ph(3-CF3,5-Br)
Ph(3-n-Pr,5-OCF2CF2H) Ph(3-i-Pr,5-CF3) Ph(3-CF3,5-I)
Ph(3-n-Pr,5-OC2F5) Ph(3-i-Pr,5-C2F5) Ph(3-CF3,5-Me)
Ph(3-n-Pr,5-SO2Me) Ph(3-i-Pr,5-CF2CF2H) Ph(3-CF3,5-Et)
Ph(3-n-Pr,5-TMS) Ph(3-i-Pr,5-CF2H) Ph(3-CF3,5-n-Pr)
Ph(3-n-Pr,5-CN) Ph(3-i-Pr,5-OMe) Ph(3-CF3,5-t-Bu)
Ph(3-t-Bu,5-Cl) Ph(3-i-Pr,5-OCF3) Ph(3-CF3,5-i-Pr)
Ph(3-t-Bu,5-F) Ph(3-i-Pr,5-OCHF2) Ph(3-CF3,5-c-Pr)
Ph(3-t-Bu,5-Br) Ph(3-i-Pr,5-OCF2CF2H) Ph(3,5-di-CF3)
Ph(3-CF3,5-C2F5) Ph(3-CF2CF2H,5-Me) Ph(3-CF2H,5-SO2Me)
Ph(3-CF3,5-CF2CF2H) Ph(3-CF2CF2H,5-Et) Ph(3-CF2H,5-TMS)
Ph(3-CF3,5-CF2H) Ph(3-CF2CF2H,5-n-Pr) Ph(3-CF2H,5-CN)
Ph(3-CF3,5-OMe) Ph(3-CF2CF2H,5-t-Bu) Ph(3-OMe,5-Cl)
Ph(3-CF3,5-OCF3) Ph(3-CF2CF2H,5-i-Pr) Ph(3-OMe,5-F)
Ph(3-CF3,5-OCHF2) Ph(3-CF2CF2H,5-c-Pr) Ph(3-OMe,5-Br)
Ph(3-CF3,5-OCF2CF2H) Ph(3-CF2CF2H,5-CF3) Ph(3-OMe,5-I)
Ph(3-CF3,5-OC2F5) Ph(3-CF2CF2H,5-C2F5) Ph(3-OMe,5-Me)
Ph(3-CF3,5-SO2Me) Ph(3,5-di-CF2CF2H) Ph(3-OMe,5-Et)
Ph(3-CF3,5-TMS) Ph(3-CF2CF2H,5-CF2H) Ph(3-OMe,5-n-Pr)
Ph(3-CF3,5-CN) Ph(3-CF2CF2H,5-OMe) Ph(3-OMe,5-t-Bu)
Ph(3-C2F5,5-Cl) Ph(3-CF2CF2H,5-OCF3) Ph(3-OMe,5-i-Pr)
Ph(3-C2F5,5-F) Ph(3-CF2CF2H,5-OCHF2) Ph(3-OMe,5-c-Pr)
Ph(3-C2F5,5-Br) Ph(3-CF2CF2H,5-OCF2CF2H) Ph(3-OMeCF3,5-CF3)
Ph(3-C2F5,5-I) Ph(3-CF2CF2H,5-OC2F5) Ph(3-OMe,5-C2F5)
Ph(3-C2F5,5-Me) Ph(3-CF2CF2H,5-SO2Me) Ph(3-OMe,5-CF2CF2H)
Ph(3-C2F5,5-Et) Ph(3-CF2CF2H,5-TMS) Ph(3-OMe,5-CF2H)
Ph(3-C2F5,5-n-Pr) Ph(3-CF2CF2H,5-CN) Ph(3,5-di-OMe)
Ph(3-C2F5,5-t-Bu) Ph(3-CF2H,5-Cl) Ph(3-OMe,5-OCF3)
Ph(3-C2F5,5-i-Pr) Ph(3-CF2H,5-F) Ph(3-OMe,5-OCHF2)
Ph(3-C2F5,5-c-Pr) Ph(3-CF2H,5-Br) Ph(3-OMe,5-OCF2CF2H)
Ph(3-C2F5CF3,5-CF3) Ph(3-CF2H,5-I) Ph(3-OMe,5-OC2F5)
Ph(3,5-di-C2F5) Ph(3-CF2H,5-Me) Ph(3-OMe,5-SO2Me)
Ph(3-C2F5,5-CF2CF2H) Ph(3-CF2H,5-Et) Ph(3-OMe,5-TMS)
Ph(3-C2F5,5-CF2H) Ph(3-CF2H,5-n-Pr) Ph(3-OMe,5-CN)
Ph(3-C2F5,5-OMe) Ph(3-CF2H,5-t-Bu) Ph(3-OCF3,5-Cl)
Ph(3-C2F5,5-OCF3) Ph(3-CF2H,5-i-Pr) Ph(3-OCF3,5-F)
Ph(3-C2F5,5-OCHF2) Ph(3-CF2H,5-c-Pr) Ph(3-OCF3,5-Br)
Ph(3-C2F5,5-OCF2CF2H) Ph(3-CF2H,5-CF3) Ph(3-OCF3,5-I)
Ph(3-C2F5,5-OC2F5) Ph(3-CF2H,5-C2F5) Ph(3-OCF3,5-Me)
Ph(3-C2F5,5-SO2Me) Ph(3-CF2H,5-CF2CF2H) Ph(3-OCF3,5-Et)
Ph(3-C2F5,5-TMS) Ph(3,5-di-CF2H) Ph(3-OCF3,5-n-Pr)
Ph(3-C2F5,5-CN) Ph(3-CF2H,5-OMe) Ph(3-OCF3,5-t-Bu)
Ph(3-CF2CF2H,5-Cl) Ph(3-CF2H,5-OCF3) Ph(3-OCF3,5-i-Pr)
Ph(3-CF2CF2H,5-F) Ph(3-CF2H,5-OCHF2) Ph(3-OCF3,5-c-Pr)
Ph(3-CF2CF2H,5-Br) Ph(3-CF2H,5-OCF2CF2H) Ph(3-OCF3,5-CF3)
Ph(3-CF2CF2H,5-I) Ph(3-CF2H,5-OC2F5) Ph(3-OCF3,5-C2F5)
Ph(3-OCF3,5-CF2CF2H) Ph(3-OCF2CF2H,5-Et) Ph(3-OC2F5,5-CN)
Ph(3-OCF3,5-CF2H) Ph(3-OCF2CF2H,5-n-Pr) Ph(3-SO2Me,5-Cl)
Ph(3-OCF3,5-OMe) Ph(3-OCF2CF2H,5-t-Bu) Ph(3-SO2Me,5-F)
Ph(3,5-di-OCF3) Ph(3-OCF2CF2H,5-i-Pr) Ph(3-SO2Me,5-Br)
Ph(3-OCF3,5-OCHF2) Ph(3-OCF2CF2H,5-c-Pr) Ph(3-SO2Me,5-I)
Ph(3-OCF3,5-OCF2CF2H) Ph(3-OCF2CF2H,5-CF3) Ph(3-SO2Me,5-Me)
Ph(3-OCF3,5-OC2F5) Ph(3-OCF2CF2H,5-C2F5) Ph(3-SO2Me,5-Et)
Ph(3-OCF3,5-SO2Me) Ph(3-OCF2CF2H,5-CF2CF2H) Ph(3-SO2Me,5-n-Pr)
Ph(3-OCF3,5-TMS) Ph(3-OCF2CF2H,5-CF2H) Ph(3-SO2Me,5-t-Bu)
Ph(3-OCF3,5-CN) Ph(3-OCF2CF2H,5-OMe) Ph(3-SO2Me,5-i-Pr)
Ph(3-OCHF2,5-Cl) Ph(3-OCF2CF2H,5-OCF3) Ph(3-SO2Me,5-c-Pr)
Ph(3-OCHF2,5-F) Ph(3-OCF2CF2H,5-OCHF2) Ph(3-SO2MeCF3,5-CF3)
Ph(3-OCHF2,5-Br) Ph(3,5-di-OCF2CF2H) Ph(3-SO2Me,5-C2F5)
Ph(3-OCHF2,5-I) Ph(3-OCF2CF2H,5-OC2F5) Ph(3-SO2Me,5-CF2CF2H)
Ph(3-OCHF2,5-Me) Ph(3-OCF2CF2H,5-SO2Me) Ph(3-SO2Me,5-CF2H)
Ph(3-OCHF2,5-Et) Ph(3-OCF2CF2H,5-TMS) Ph(3-SO2Me,5-OMe)
Ph(3-OCHF2,5-n-Pr) Ph(3-OCF2CF2H,5-CN) Ph(3-SO2Me,5-OCF3)
Ph(3-OCHF2,5-t-Bu) Ph(3-OC2F5,5-Cl) Ph(3-SO2Me,5-OCHF2)
Ph(3-OCHF2,5-i-Pr) Ph(3-OC2F5,5-F) Ph(3-SO2Me,5-OCF2CF2H)
Ph(3-OCHF2,5-c-Pr) Ph(3-OC2F5,5-Br) Ph(3-SO2Me,5-OC2F5)
Ph(3-OCHF2CF3,5-CF3) Ph(3-OC2F5,5-I) Ph(3,5-di-SO2Me)
Ph(3-OC2F5,5-C2F5) Ph(3-OC2F5,5-Me) Ph(3-SO2Me,5-TMS)
Ph(3-OCHF2,5-CF2CF2H) Ph(3-OC2F5,5-Et) Ph(3-SO2Me,5-CN)
Ph(3-OCHF2,5-CF2H) Ph(3-OC2F5,5-n-Pr) Ph(3-TMS,5-Cl)
Ph(3-OCHF2,5-OMe) Ph(3-OC2F5,5-t-Bu) Ph(3-TMS,5-F)
Ph(3-OCHF2,5-OCF3) Ph(3-OC2F5,5-i-Pr) Ph(3-TMS,5-Br)
Ph(3,5-di-OCHF2) Ph(3-OC2F5,5-c-Pr) Ph(3-TMS,5-I)
Ph(3-OCHF2,5-OCF2CF2H) Ph(3-OC2F5CF3,5-CF3) Ph(3-TMS,5-Me)
Ph(3-OCHF2,5-OC2F5) Ph(3-OC2F5,5-CF2CF2H) Ph(3-TMS,5-Et)
Ph(3-OCHF2,5-SO2Me) Ph(3-OC2F5,5-CF2H) Ph(3-TMS,5-n-Pr)
Ph(3-OCHF2,5-TMS) Ph(3-OC2F5,5-OMe) Ph(3-TMS,5-t-Bu)
Ph(3-OCHF2,5-CN) Ph(3-OC2F5,5-OCF3) Ph(3-TMS,5-i-Pr)
Ph(3-OCF2CF2H,5-Cl) Ph(3-OC2F5,5-OCHF2) Ph(3-TMS,5-c-Pr)
Ph(3-OCF2CF2H,5-F) Ph(3,5-di-OC2F5) Ph(3-TMS,5-CF3)
Ph(3-OCF2CF2H,5-Br) Ph(3,5-di-OC2F5) Ph(3-TMS,5-C2F5)
Ph(3-OCF2CF2H,5-I) Ph(3-OC2F5,5-SO2Me) Ph(3-TMS,5-CF2CF2H)
Ph(3-OCF2CF2H,5-Me) Ph(3-OC2F5,5-TMS) Ph(3-TMS,5-CF2H)
Ph(3-TMS,5-OMe) Ph(2-Cl,3-Cl,4-t-Bu) Ph(2-Cl,3-Br,4-Cl)
Ph(3-TMS,5-OCF3) Ph(2-Cl,3-Cl,4-i-Pr) Ph(2-Cl,3-Br,4-F)
Ph(3-TMS,5-OCHF2) Ph(2-Cl,3-Cl,4-c-Pr) Ph(2-Cl,3,4-di-Br)
Ph(3-TMS,5-OCF2CF2H) Ph(2-Cl,3-Cl,4-CF3) Ph(2-Cl,3-Br,4-I)
Ph(3-TMS,5-OC2F5) Ph(2-Cl,3-Cl,4-C2F5) Ph(2-Cl,3-Br,4-Me)
Ph(3-TMS,5-SO2Me) Ph(2-Cl,3-Cl,4-CF2CF2H) Ph(2-Cl,3-Br,4-Et)
Ph(3,5-di-TMS) Ph(2-Cl,3-Cl,4-CF2H) Ph(2-Cl,3-Br,4-n-Pr)
Ph(3-TMS,5-CN) Ph(2-Cl,3-Cl,4-OMe) Ph(2-Cl,3-Br,4-t-Bu)
Ph(3-CN,5-Cl) Ph(2-Cl,3-Cl,4-OCF3) Ph(2-Cl,3-Br,4-i-Pr)
Ph(3-CN,5-F) Ph(2-Cl,3-Cl,4-OCHF2) Ph(2-Cl,3-Br,4-c-Pr)
Ph(3-CN,5-Br) Ph(2-Cl,3-Cl,4-OCF2CF2H) Ph(2-Cl,3-Br,4-CF3)
Ph(3-CN,5-I) Ph(2-Cl,3-Cl,4-OC2F5) Ph(2-Cl,3-Br,4-C2F5)
Ph(3-CN,5-Me) Ph(2-Cl,3-Cl,4-SO2Me) Ph(2-Cl,3-Br,4-CF2CF2H)
Ph(3-CN,5-Et) Ph(2-Cl,3-Cl,4-TMS) Ph(2-Cl,3-Br,4-CF2H)
Ph(3-CN,5-n-Pr) Ph(2-Cl,3-Cl,4-CN) Ph(2-Cl,3-Br,4-OMe)
Ph(3-CN,5-t-Bu) Ph(2-Cl,3-F,4-Cl) Ph(2-Cl,3-Br,4-OCF3)
Ph(3-CN,5-i-Pr) Ph(2-Cl,3,4-di-F) Ph(2-Cl,3-Br,4-OCHF2)
Ph(3-CN,5-c-Pr) Ph(2-Cl,3-F,4-Br) Ph(2-Cl,3-Br,4-OCF2CF2H)
Ph(3-CN,5-CF3) Ph(2-Cl,3-F,4-I) Ph(2-Cl,3-Br,4-OC2F5)
Ph(3-CN,5-C2F5) Ph(2-Cl,3-F,4-Me) Ph(2-Cl,3-Br,4-SO2Me)
Ph(3-CN,5-CF2CF2H) Ph(2-Cl,3-F,4-Et) Ph(2-Cl,3-Br,4-TMS)
Ph(3-CN,5-CF2H) Ph(2-Cl,3-F,4-n-Pr) Ph(2-Cl,3-Br,4-CN)
Ph(3-CN,5-OMe) Ph(2-Cl,3-F,4-t-Bu) Ph(2-Cl,3-I,4-Cl)
Ph(3-CN,5-OCF3) Ph(2-Cl,3-F,4-i-Pr) Ph(2-Cl,3-I,4-F)
Ph(3-CN,5-OCHF2) Ph(2-Cl,3-F,4-c-Pr) Ph(2-Cl,3-I,4-Br)
Ph(3-CN,5-OCF2CF2H) Ph(2-Cl,3-F,4-CF3) Ph(2-Cl,3,4-di-I)
Ph(3-CN,5-OC2F5) Ph(2-Cl,3-F,4-C2F5) Ph(2-Cl,3-I,4-Me)
Ph(3-CN,5-SO2Me) Ph(2-Cl,3-F,4-CF2CF2H) Ph(2-Cl,3-I,4-Et)
Ph(3-CN,5-TMS) Ph(2-Cl,3-F,4-CF2H) Ph(2-Cl,3-I,4-n-Pr)
Ph(3,5-di-CN) Ph(2-Cl,3-F,4-OMe) Ph(2-Cl,3-I,4-t-Bu)
Ph(2,3,4-tri-Cl) Ph(2-Cl,3-F,4-OCF3) Ph(2-Cl,3-I,4-i-Pr)
Ph(2-Cl,3-Cl,4-F) Ph(2-Cl,3-F,4-OCHF2) Ph(2-Cl,3-I,4-c-Pr)
Ph(2-Cl,3-Cl,4-Br) Ph(2-Cl,3-F,4-OCF2CF2H) Ph(2-Cl,3-I,4-CF3)
Ph(2-Cl,3-Cl,4-I) Ph(2-Cl,3-F,4-OC2F5) Ph(2-Cl,3-I,4-C2F5)
Ph(2-Cl,3-Cl,4-Me) Ph(2-Cl,3-F,4-SO2Me) Ph(2-Cl,3-I,4-CF2CF2H)
Ph(2-Cl,3-Cl,4-Et) Ph(2-Cl,3-F,4-TMS) Ph(2-Cl,3-I,4-CF2H)
Ph(2-Cl,3-Cl,4-n-Pr) Ph(2-Cl,3-F,4-CN) Ph(2-Cl,3-I,4-OMe)
Ph(2-Cl,3-I,4-OCF3) Ph(2-Cl,3-Et,4-i-Pr) Ph(2-Cl,3-t-Bu,4-F)
Ph(2-Cl,3-I,4-OCHF2) Ph(2-Cl,3-Et,4-c-Pr) Ph(2-Cl,3-t-Bu,4-Br)
Ph(2-Cl,3-I,4-OCF2CF2H) Ph(2-Cl,3-Et,4-CF3) Ph(2-Cl,3-t-Bu,4-I)
Ph(2-Cl,3-I,4-OC2F5) Ph(2-Cl,3-Et,4-C2F5) Ph(2-Cl,3-t-Bu,4-Me)
Ph(2-Cl,3-I,4-SO2Me) Ph(2-Cl,3-Et,4-CF2CF2H) Ph(2-Cl,3-t-Bu,4-Et)
Ph(2-Cl,3-I,4-TMS) Ph(2-Cl,3-Et,4-CF2H) Ph(2-Cl,3-t-Bu,4-n-Pr)
Ph(2-Cl,3-I,4-CN) Ph(2-Cl,3-Et,4-OMe) Ph(2-C1,3,4-di-t-Bu)
Ph(2-Cl,3-Me,4-Cl) Ph(2-Cl,3-Et,4-OCF3) Ph(2-Cl,3-t-Bu,4-i-Pr)
Ph(2-Cl,3-Me,4-F) Ph(2-Cl,3-Et,4-OCHF2) Ph(2-Cl,3-t-Bu,4-c-Pr)
Ph(2-Cl,3-Me,4-Br) Ph(2-Cl,3-Et,4-OCF2CF2H) Ph(2-Cl,3-t-Bu,4-CF3)
Ph(2-Cl,3-Me,4-I) Ph(2-Cl,3-Et,4-OC2F5) Ph(2-Cl,3-t-Bu,4-C2F5)
Ph(2-Cl,3,4-di-Me) Ph(2-Cl,3-Et,4-SO2Me) Ph(2-Cl,3-t-Bu,4-CF2CF2H)
Ph(2-Cl,3-Me,4-Et) Ph(2-Cl,3-Et,4-TMS) Ph(2-Cl,3-t-Bu,4-CF2H)
Ph(2-Cl,3-Me,4-n-Pr) Ph(2-Cl,3-Et,4-CN) Ph(2-Cl,3-t-Bu,4-OMe)
Ph(2-Cl,3-Me,4-t-Bu) Ph(2-Cl,3-n-Pr,4-Cl) Ph(2-Cl,3-t-Bu,4-OCF3)
Ph(2-Cl,3-Me,4-i-Pr) Ph(2-Ct,3-n-Pr,4-F) Ph(2-Cl,3-t-Bu,4-OCHF2)
Ph(2-Cl,3-Me,4-c-Pr) Ph(2-Cl,3-n-Pr,4-Br) Ph(2-Cl,3-t-Bu,4-OCF2CF2H)
Ph(2-Cl,3-Me,4-CF3) Ph(2-Cl,3-n-Pr,4-I) Ph(2-Cl,3-t-Bu,4-OC2F5)
Ph(2-Cl,3-Me,4-C2F5) Ph(2-Cl,3-n-Pr,4-Me) Ph(2-Cl,3-t-Bu,4-SO2Me)
Ph(2-Cl,3-Me,4-CF2CF2H) Ph(2-Cl,3-n-Pr,4-Et) Ph(2-Cl,3-t-Bu,4-TMS)
Ph(2-Cl,3-Me,4-CF2H) Ph(2-Cl,3,4-di-n-Pr) Ph(2-Cl,3-t-Bu,4-CN)
Ph(2-Cl,3-Me,4-OMe) Ph(2-Cl,3-n-Pr,4-t-Bu) Ph(2-Cl,3-i-Pr,4-Cl)
Ph(2-Cl,3-Me,4-OCF3) Ph(2-Cl,3-n-Pr,4-i-Pr) Ph(2-Cl,3-i-Pr,4-F)
Ph(2-Cl,3-Me,4-OCHF2) Ph(2-Cl,3-n-Pr,4-c-Pr) Ph(2-Cl,3-i-Pr,4-Br)
Ph(2-Cl,3-Me,4-OCF2CF2H) Ph(2-Cl,3-n-Pr,4-CF3) Ph(2-Cl,3-i-Pr,4-I)
Ph(2-Cl,3-Me,4-OC2F5) Ph(2-Cl,3-n-Pr,4-C2F5) Ph(2-Cl,3-i-Pr,4-Me)
Ph(2-Cl,3-Me,4-SO2Me) Ph(2-Cl,3-n-Pr,4-CF2CF2H) Ph(2-Cl,3-i-Pr,4-Et)
Ph(2-Cl,3-Me,4-TMS) Ph(2-Cl,3-n-Pr,4-CF2H) Ph(2-Cl,3-i-Pr,4-n-Pr)
Ph(2-Cl,3-Me,4-CN) Ph(2-Cl,3-n-Pr,4-OMe) Ph(2-Cl,3-i-Pr,4-t-Bu)
Ph(2-Cl,3-Et,4-Cl) Ph(2-Cl,3-n-Pr,4-OCF3) Ph(2-Cl,3,4-di-i-Pr)
Ph(2-Cl,3-Et,4-F) Ph(2-Cl,3-n-Pr,4-OCHF2) Ph(2-Cl,3-i-Pr,4-c-Pr)
Ph(2-Cl,3-Et,4-Br) Ph(2-Cl,3-n-Pr,4-OCF2CF2H) Ph(2-Cl,3-i-Pr,4-CF3)
Ph(2-Cl,3-Et,4-I) Ph(2-Cl,3-n-Pr,4-OC2F5) Ph(2-Cl,3-i-Pr,4-C2F5)
Ph(2-Cl,3-Et,4-Me) Ph(2-Cl,3-n-Pr,4-SO2Me) Ph(2-Cl,3-i-Pr,4-CF2CF2H)
Ph(2-Cl,3,4-di-Et) Ph(2-Cl,3-n-Pr,4-TMS) Ph(2-Cl,3-i-Pr,4-CF2H)
Ph(2-Cl,3-Et,4-n-Pr) Ph(2-Cl,3-n-Pr,4-CN) Ph(2-Cl,3-i-Pr,4-OMe)
Ph(2-Cl,3-Et,4-t-Bu) Ph(2-Cl,3-t-Bu,4-Cl) Ph(2-Cl,3-i-Pr,4-OCF3)
Ph(2-Cl,3-i-Pr,4-OCHF2) Ph(2-Cl,3-CF3,4-c-Pr) Ph(2-Cl,3-CF2CF2H,4-Br)
Ph(2-Cl,3-i-Pr,4-OCF2CF2H) Ph(2-Cl,3,4-di-CF3) Ph(2-Cl,3-CF2CF2H,4-I)
Ph(2-Cl,3-i-Pr,4-OC2F5) Ph(2-Cl,3-CF3,4-C2F5) Ph(2-Cl,3-CF2CF2H,4-Me)
Ph(2-Cl,3-i-Pr,4-SO2Me) Ph(2-Cl,3-CF3,4-CF2CF2H) Ph(2-Cl,3-CF2CF2H,4-Et)
Ph(2-Cl,3-i-Pr,4-TMS) Ph(2-Cl,3-CF3,4-CF2H) Ph(2-Cl,3-CF2CF2H,4-n-Pr)
Ph(2-Cl,3-i-Pr,4-CN) Ph(2-Cl,3-CF3,4-OMe) Ph(2-Cl,3-CF2CF2H,4-t-Bu)
Ph(2-Cl,3-c-Pr,4-Cl) Ph(2-Cl,3-CF3,4-OCF3) Ph(2-Cl,3-CF2CF2H,4-i-Pr)
Ph(2-Cl,3-c-Pr,4-F) Ph(2-Cl,3-CF3,4-OCHF2) Ph(2-Cl,3-CF2CF2H,4-c-Pr)
Ph(2-Cl,3-c-Pr,4-Br) Ph(2-Cl,3-CF3,4-OCF2CF2H) Ph(2-Cl,3-CF2CF2H,4-CF3)
Ph(2-Cl,3-c-Pr,4-I) Ph(2-Cl,3-CF3,4-OC2F5) Ph(2-Cl,3-CF2CF2H,4-C2F5)
Ph(2-Cl,3-c-Pr,4-Me) Ph(2-Cl,3-CF3,4-SO2Me) Ph(2-Cl,3,4-di-CF2CF2H)
Ph(2-Cl,3-c-Pr,4-Et) Ph(2-Cl,3-CF3,4-TMS) Ph(2-Cl,3-CF2CF2H,4-CF2H)
Ph(2-Cl,3-c-Pr,4-n-Pr) Ph(2-Cl,3-CF3,4-CN) Ph(2-Cl,3-CF2CF2H,4-OMe)
Ph(2-Cl,3-c-Pr,4-t-Bu) Ph(2-Cl,3-C2F5,4-Cl) Ph(2-Cl,3-CF2CF2H,4-OCF3)
Ph(2-Cl,3-c-Pr,4-i-Pr) Ph(2-Cl,3-C2F5,4-F) Ph(2-Cl,3-CF2CF2H,4-OCHF2)
Ph(2-Cl,3,4-di-c-Pr) Ph(2-Cl,3-C2F5,4-Br) Ph(2-Cl,3-CF2CF2H,4-OCF2CF2H)
Ph(2-Cl,3-c-Pr,4-CF3) Ph(2-Cl,3-C2F5,4-I)  
Ph(2-Cl,3-c-Pr,4-C2F5) Ph(2-Cl,3-C2F5,4-Me) Ph(2-Cl,3-CF2CF2H,4-OC2F5)
Ph(2-Cl,3-c-Pr,4-CF2CF2H) Ph(2-Cl,3-C2F5,4-Et) Ph(2-Cl,3-CF2CF2H,4-SO2Me)
Ph(2-Cl,3-c-Pr,4-CF2H) Ph(2-Cl,3-C2F5,4-n-Pr) Ph(2-Cl,3-CF2CF2H,4-TMS)
Ph(2-Cl,3-c-Pr,4-OMe) Ph(2-Cl,3-C2F5,4-t-Bu) Ph(2-Cl,3-CF2CF2H,4-CN)
Ph(2-Cl,3-c-Pr,4-OCF3) Ph(2-Cl,3-C2F5,4-i-Pr) Ph(2-Cl,3-CF2H,4-Cl)
Ph(2-Cl,3-c-Pr,4-OCHF2) Ph(2-Cl,3-C2F5,4-c-Pr) Ph(2-Cl,3-CF2H,4-F)
Ph(2-Cl,3-c-Pr,4-OCF2CF2H) Ph(2-Cl,3-C2F5CF3,4-CF3) Ph(2-Cl,3-CF2H,4-Br)
Ph(2-Cl,3-c-Pr,4-OC2F5) Ph(2-Cl,3,4-di-C2F5) Ph(2-Cl,3-CF2H,4-I)
Ph(2-Cl,3-c-Pr,4-SO2Me) Ph(2-Cl,3-C2F5,4-CF2CF2H) Ph(2-Cl,3-CF2H,4-Me)
Ph(2-Cl,3-c-Pr,4-TMS) Ph(2-Cl,3-C2F5,4-CF2H) Ph(2-Cl,3-CF2H,4-Et)
Ph(2-Cl,3-c-Pr,4-CN) Ph(2-Cl,3-C2F5,4-OMe) Ph(2-Cl,3-CF2H,4-n-Pr)
Ph(2-Cl,3-CF3,4-Cl) Ph(2-Cl,3-C2F5,4-OCF3) Ph(2-Cl,3-CF2H,4-t-Bu)
Ph(2-Cl,3-CF3,4-F) Ph(2-Cl,3-C2F5,4-OCHF2) Ph(2-Cl,3-CF2H,4-i-Pr)
Ph(2-Cl,3-CF3,4-Br) Ph(2-Cl,3-C2F5,4-OCF2CF2H) Ph(2-Cl,3-CF2H,4-c-Pr)
Ph(2-Cl,3-CF3,4-I) Ph(2-Cl,3-C2F5,4-OC2F5) Ph(2-Cl,3-CF2H,4-CF3)
Ph(2-Cl,3-CF3,4-Me) Ph(2-Cl,3-C2F5,4-SO2Me) Ph(2-Cl,3-CF2H,4-C2F5)
Ph(2-Cl,3-CF3,4-Et) Ph(2-Cl,3-C2F5,4-TMS) Ph(2-Cl,3-CF2H,4-CF2CF2H)
Ph(2-Cl,3-CF3,4-n-Pr) Ph(2-Cl,3-C2F5,4-CN) Ph(2-Cl,3,4-di-CF2H)
Ph(2-Cl,3-CF3,4-t-Bu) Ph(2-Cl,3-CF2CF2H,4-Cl) Ph(2-Cl,3-CF2H,4-OMe)
Ph(2-Cl,3-CF3,4-i-Pr) Ph(2-Cl,3-CF2CF2H,4-F) Ph(2-Cl,3-CF2H,4-OCF3)
Ph(2-Cl,3-CF2H,4-OCHF2) Ph(2-Cl,3-OCF3,4-c-Pr) Ph(2-Cl,3-OCF2CF2H,4-Br)
Ph(2-Cl,3-CF2H,4-OCF2CF2H) Ph(2-Cl,3-OCF3,4-CF3) Ph(2-Cl,3-OCF2CF2H,4-I)
Ph(2-Cl,3-CF2H,4-OC2F5) Ph(2-Cl,3-OCF3,4-C2F5) Ph(2-Cl,3-OCF2CF2H,4-Me)
Ph(2-Cl,3-CF2H,4-SO2Me) Ph(2-Cl,3-OCF3,4-CF2CF2H) Ph(2-Cl,3-OCF2CF2H,4-Et)
Ph(2-Cl,3-CF2H,4-TMS) Ph(2-Cl,3-OCF3,4-CF2H) Ph(2-Cl,3-OCF2CF2H,4-n-Pr)
Ph(2-Cl,3-CF2H,4-CN) Ph(2-Cl,3-OCF3,4-OMe) Ph(2-Cl,3-OCF2CF2H,4-t-Bu)
Ph(2-Cl,3-OMe,4-Cl) Ph(2-Cl,3,4-di-OCF3) Ph(2-Cl,3-OCF2CF2H,4-i-Pr)
Ph(2-Cl,3-OMe,4-F) Ph(2-Cl,3-OCF3,4-OCHF2) Ph(2-Cl,3-OCF2CF2H,4-c-Pr)
Ph(2-Cl,3-OMe,4-Br) Ph(2-Cl,3-OCF3,4-OCF2CF2H) Ph(2-Cl,3-OCF2CF2H,4-CF3)
Ph(2-Cl,3-OMe,4-I) Ph(2-Cl,3-OCF3,4-OC2F5) Ph(2-Cl,3-OCF2CF2H,4-C2F5)
Ph(2-Cl,3-OMe,4-Me) Ph(2-Cl,3-OCF3,4-SO2Me) Ph(2-Cl,3-OCF2CF2H,4-CF2CF2H)
Ph(2-Cl,3-OMe,4-Et) Ph(2-Cl,3-OCF3,4-TMS)  
Ph(2-Cl,3-OMe,4-n-Pr) Ph(2-Cl,3-OCF3,4-CN) Ph(2-Cl,3-OCF2CF2H,4-CF2H)
Ph(2-Cl,3-OMe,4-t-Bu) Ph(2-Cl,3-OCHF2,4-Cl) Ph(2-Cl,3-OCF2CF2H,4-OMe)
Ph(2-Cl,3-OMe,4-i-Pr) Ph(2-Cl,3-OCHF2,4-F) Ph(2-Cl,3-OCF2CF2H,4-OCF3)
Ph(2-Cl,3-OMe,4-c-Pr) Ph(2-Cl,3-OCHF2,4-Br) Ph(2-Cl,3-OCF2CF2H,4-OCHF2)
Ph(2-Cl,3-OMe,4-CF3) Ph(2-Cl,3-OCHF2,4-I) Ph(2-Cl,3,4-di-OCF2CF2H)
Ph(2-Cl,3-OMe,4-C2F5) Ph(2-Cl,3-OCHF2,4-Me) Ph(2-Cl,3-OCF2CF2H,4-OC2F5)
Ph(2-Cl,3-OMe,4-CF2CF2H) Ph(2-Cl,3-OCHF2,4-Et) Ph(2-Cl,3-OCF2CF2H,4-SO2Me)
Ph(2-Cl,3-OMe,4-CF2H) Ph(2-Cl,3-OCHF2,4-n-Pr) Ph(2-Cl,3-OCF2CF2H,4-TMS)
Ph(2-Cl,3,4-di-OMe) Ph(2-Cl,3-OCHF2,4-t-Bu) Ph(2-Cl,3-OCF2CF2H,4-CN)
Ph(2-Cl,3-OMe,4-OCF3) Ph(2-Cl,3-OCHF2,4-i-Pr) Ph(2-Cl,3-OC2F5,4-Cl)
Ph(2-Cl,3-OMe,4-OCHF2) Ph(2-Cl,3-OCHF2,4-c-Pr) Ph(2-Cl,3-OC2F5,4-F)
Ph(2-Cl,3-OMe,4-OCF2CF2H) Ph(2-Cl,3-OCHF2CF3,4-CF3) Ph(2-Cl,3-OC2F5,4-Br)
Ph(2-Cl,3-OMe,4-OC2F5) Ph(2-Cl,3-OC2F5,4-C2F5) Ph(2-Cl,3-OC2F5,4-I)
Ph(2-Cl,3-OMe,4-SO2Me) Ph(2-Cl,3-OCHF2,4-CF2CF2H) Ph(2-Cl,3-OC2F5,4-Me)
Ph(2-Cl,3-OMe,4-TMS) Ph(2-Cl,3-OCHF2,4-CF2H) Ph(2-Cl,3-OC2F5,4-Et)
Ph(2-Cl,3-OMe,4-CN) Ph(2-Cl,3-OCHF2,4-OMe) Ph(2-Cl,3-OC2F5,4-n-Pr)
Ph(2-Cl,3-OCF3,4-Cl) Ph(2-Cl,3-OCHF2,4-OCF3) Ph(2-Cl,3-OC2F5,4-t-Bu)
Ph(2-Cl,3-OCF3,4-F) Ph(2-Cl,3,4-di-OCHF2) Ph(2-Cl,3-OC2F5,4-i-Pr)
Ph(2-Cl,3-OCF3,4-Br) Ph(2-Cl,3-OCHF2,4-OCF2CF2H) Ph(2-Cl,3-OC2F5,4-c-Pr)
Ph(2-Cl,3-OCF3,4-I) Ph(2-Cl,3-OCHF2,4-OC2F5) Ph(2-Cl,3-OC2F5CF3,4-CF3)
Ph(2-Cl,3-OCF3,4-Me) Ph(2-Cl,3-OCHF2,4-SO2Me) Ph(2-Cl,3-OC2F5,4-CF2CF2H)
Ph(2-Cl,3-OCF3,4-Et) Ph(2-Cl,3-OCHF2,4-TMS) Ph(2-Cl,3-OC2F5,4-CF2H)
Ph(2-Cl,3-OCF3,4-n-Pr) Ph(2-Cl,3-OCHF2,4-CN) Ph(2-Cl,3-OC2F5,4-OMe)
Ph(2-Cl,3-OCF3,4-t-Bu) Ph(2-Cl,3-OCF2CF2H,4-Cl) Ph(2-Cl,3-OC2F5,4-OCF3)
Ph(2-Cl,3-OCF3,4-i-Pr) Ph(2-Cl,3-OCF2CF2H,4-F) Ph(2-Cl,3-OC2F5,4-OCHF2)
Ph(2-Cl,3-OC2F5,4-OCF2CF2H) Ph(2-Cl,3-TMS,4-CF3) Ph(2-Cl,3-Cl,5-I)
Ph(2-Cl,3,4-di-OC2F5) Ph(2-Cl,3-TMS,4-C2F5) Ph(2-Cl,3-Cl,5-Me)
Ph(2-Cl,3-OC2F5,4-SO2Me) Ph(2-Cl,3-TMS,4-CF2CF2H) Ph(2-Cl,3-Cl,5-Et)
Ph(2-Cl,3-OC2F5,4-TMS) Ph(2-Cl,3-TMS,4-CF2H) Ph(2-Cl,3-Cl,5-n-Pr)
Ph(2-Cl,3-OC2F5,4-CN) Ph(2-Cl,3-TMS,4-OMe) Ph(2-Cl,3-Cl,5-t-Bu)
Ph(2-Cl,3-SO2Me,4-Cl) Ph(2-Cl,3-TMS,4-OCF3) Ph(2-Cl,3-Cl,5-i-Pr)
Ph(2-Cl,3-SO2Me,4-F) Ph(2-Cl,3-TMS,4-OCHF2) Ph(2-Cl,3-Cl,5-c-Pr)
Ph(2-Cl,3-SO2Me,4-Br) Ph(2-Cl,3-TMS,4-OCF2CF2H) Ph(2-Cl,3-Cl,5-CF3)
Ph(2-Cl,3-SO2Me,4-I) Ph(2-Cl,3-TMS,4-OC2F5) Ph(2-Cl,3-Cl,5-C2F5)
Ph(2-Cl,3-SO2Me,4-Me) Ph(2-Cl,3-TMS,4-SO2Me) Ph(2-Cl,3-Cl,5-CF2CF2H)
Ph(2-Cl,3-SO2Me,4-Et) Ph(2-Cl,3,4-di-TMS) Ph(2-Cl,3-Cl,5-CF2H)
Ph(2-Cl,3-SO2Me,4-n-Pr) Ph(2-Cl,3-TMS,4-CN) Ph(2-Cl,3-Cl,5-OMe)
Ph(2-Cl,3-SO2Me,4-t-Bu) Ph(2-Cl,3-CN,4-Cl) Ph(2-Cl,3-Cl,5-OCF3)
Ph(2-Cl,3-SO2Me,4-i-Pr) Ph(2-Cl,3-CN,4-F) Ph(2-Cl,3-Cl,5-OCHF2)
Ph(2-Cl,3-SO2Me,4-c-Pr) Ph(2-Cl,3-CN,4-Br) Ph(2-Cl,3-Cl,5-OCF2CF2H)
Ph(2-Cl,3-SO2MeCF3,4-CF3) Ph(2-Cl,3-CN,4-I) Ph(2-Cl,3-Cl,5-OC2F5)
Ph(2-Cl,3-SO2Me,4-C2F5) Ph(2-Cl,3-CN,4-Me) Ph(2-Cl,3-Cl,5-SO2Me)
Ph(2-Cl,3-SO2Me,4-CF2CF2H) Ph(2-Cl,3-CN,4-Et) Ph(2-Cl,3-Cl,5-TMS)
Ph(2-Cl,3-SO2Me,4-CF2H) Ph(2-Cl,3-CN,4-n-Pr) Ph(2-Cl,3-Cl,5-CN)
Ph(2-Cl,3-SO2Me,4-OMe) Ph(2-Cl,3-CN,4-t-Bu) Ph(2-Cl,3-F,5-Cl)
Ph(2-Cl,3-SO2Me,4-OCF3) Ph(2-Cl,3-CN,4-i-Pr) Ph(2-Cl,3,5-di-F)
Ph(2-Cl,3-SO2Me,4-OCHF2) Ph(2-Cl,3-CN,4-c-Pr) Ph(2-Cl,3-F,5-Br)
Ph(2-Cl,3-SO2Me,4-OCF2CF2H) Ph(2-Cl,3-CN,4-CF3) Ph(2-Cl,3-F,5-I)
Ph(2-Cl,3-SO2Me,4-OC2F5) Ph(2-Cl,3-CN,4-C2F5) Ph(2-Cl,3-F,5-Me)
Ph(2-Cl,3,4-di-SO2Me) Ph(2-Cl,3-CN,4-CF2CF2H) Ph(2-Cl,3-F,5-Et)
Ph(2-Cl,3-SO2Me,4-TMS) Ph(2-Cl,3-CN,4-CF2H) Ph(2-Cl,3-F,5-n-Pr)
Ph(2-Cl,3-SO2Me,4-CN) Ph(2-Cl,3-CN,4-OMe) Ph(2-Cl,3-F,5-t-Bu)
Ph(2-Cl,3-TMS,4-Cl) Ph(2-Cl,3-CN,4-OCF3) Ph(2-Cl,3-F,5-i-Pr)
Ph(2-Cl,3-TMS,4-F) Ph(2-Cl,3-CN,4-OCHF2) Ph(2-Cl,3-F,5-c-Pr)
Ph(2-Cl,3-TMS,4-Br) Ph(2-Cl,3-CN,4-OCF2CF2H) Ph(2-Cl,3-F,5-CF3)
Ph(2-Cl,3-TMS,4-I) Ph(2-Cl,3-CN,4-OC2F5) Ph(2-Cl,3-F,5-C2F5)
Ph(2-Cl,3-TMS,4-Me) Ph(2-Cl,3-CN,4-SO2Me) Ph(2-Cl,3-F,5-CF2CF2H)
Ph(2-Cl,3-TMS,4-Et) Ph(2-Cl,3-CN,4-TMS) Ph(2-Cl,3-F,5-CF2H)
Ph(2-Cl,3-TMS,4-n-Pr) Ph(2-Cl,3,4-di-CN) Ph(2-Cl,3-F,5-OMe)
Ph(2-Cl,3-TMS,4-t-Bu) Ph(2,3,5-tri-Cl) Ph(2-Cl,3-F,5-OCF3)
Ph(2-Cl,3-TMS,4-i-Pr) Ph(2-Cl,3-Cl,5-F) Ph(2-Cl,3-F,5-OCHF2)
Ph(2-Cl,3-TMS,4-c-Pr) Ph(2-Cl,3-Cl,5-Br) Ph(2-Cl,3-F,5-OCF2CF2H)
Ph(2-Cl,3-F,5-OC2F5) Ph(2-Cl,3-I,5-C2F5) Ph(2-Cl,3-Et,5-Me)
Ph(2-Cl,3-F,5-SO2Me) Ph(2-Cl,3-I,5-CF2CF2H) Ph(2-Cl,3,5-di-Et)
Ph(2-Cl,3-F,5-TMS) Ph(2-Cl,3-I,5-CF2H) Ph(2-Cl,3-Et,5-n-Pr)
Ph(2-Cl,3-F,5-CN) Ph(2-Cl,3-I,5-OMe) Ph(2-Cl,3-Et,5-t-Bu)
Ph(2-Cl,3-Br,5-Cl) Ph(2-Cl,3-I,5-OCF3) Ph(2-Cl,3-Et,5-i-Pr)
Ph(2-Cl,3-Br,5-F) Ph(2-Cl,3-I,5-OCHF2) Ph(2-Cl,3-Et,5-c-Pr)
Ph(2-Cl,3,5-di-Br) Ph(2-Cl,3-I,5-OCF2CF2H) Ph(2-Cl,3-Et,5-CF3)
Ph(2-Cl,3-Br,5-I) Ph(2-Cl,3-I,5-OC2F5) Ph(2-Cl,3-Et,5-C2F5)
Ph(2-Cl,3-Br,5-Me) Ph(2-Cl,3-I,5-SO2Me) Ph(2-Cl,3-Et,5-CF2CF2H)
Ph(2-Cl,3-Br,5-Et) Ph(2-Cl,3-I,5-TMS) Ph(2-Cl,3-Et,5-CF2H)
Ph(2-Cl,3-Br,5-n-Pr) Ph(2-Cl,3-I,5-CN) Ph(2-Cl,3-Et,5-OMe)
Ph(2-Cl,3-Br,5-t-Bu) Ph(2-Cl,3-Me,5-Cl) Ph(2-Cl,3-Et,5-OCF3)
Ph(2-Cl,3-Br,5-i-Pr) Ph(2-Cl,3-Me,5-F) Ph(2-Cl,3-Et,5-OCHF2)
Ph(2-Cl,3-Br,5-c-Pr) Ph(2-Cl,3-Me,5-Br) Ph(2-Cl,3-Et,5-OCF2CF2H)
Ph(2-Cl,3-Br,5-CF3) Ph(2-Cl,3-Me,5-I) Ph(2-Cl,3-Et,5-OC2F5)
Ph(2-Cl,3-Br,5-C2F5) Ph(2-Cl,3,5-di-Me) Ph(2-Cl,3-Et,5-SO2Me)
Ph(2-Cl,3-Br,5-CF2CF2H) Ph(2-Cl,3-Me,5-Et) Ph(2-Cl,3-Et,5-TMS)
Ph(2-Cl,3-Br,5-CF2H) Ph(2-Cl,3-Me,5-n-Pr) Ph(2-Cl,3-Et,5-CN)
Ph(2-Cl,3-Br,5-OMe) Ph(2-Cl,3-Me,5-t-Bu) Ph(2-Cl,3-n-Pr,S-Cl)
Ph(2-Cl,3-Br,5-OCF3) Ph(2-Cl,3-Me,5-i-Pr) Ph(2-Cl,3-n-Pr,5-F)
Ph(2-Cl,3-Br,5-OCHF2) Ph(2-Cl,3-Me,5-c-Pr) Ph(2-Cl,3-n-Pr,5-Br)
Ph(2-Cl,3-Br,5-OCF2CF2H) Ph(2-Cl,3-Me,5-CF3) Ph(2-Cl,3-n-Pr,5-I)
Ph(2-Cl,3-Br,5-OC2F5) Ph(2-Cl,3-Me,5-C2F5) Ph(2-Cl,3-n-Pr,5-Me)
Ph(2-Cl,3-Br,5-SO2Me) Ph(2-Cl,3-Me,5-CF2CF2H) Ph(2-Cl,3-n-Pr,5-Et)
Ph(2-Cl,3-Br,5-TMS) Ph(2-Cl,3-Me,5-CF2H) Ph(2-Cl,3,5-di-n-Pr)
Ph(2-Cl,3-Br,5-CN) Ph(2-Cl,3-Me,5-OMe) Ph(2-Cl,3-n-Pr,5-t-Bu)
Ph(2-Cl,3-I,5-Cl) Ph(2-Cl,3-Me,5-OCF3) Ph(2-Cl,3-n-Pr,5-i-Pr)
Ph(2-Cl,3-I,5-F) Ph(2-Cl,3-Me,5-OCHF2) Ph(2-Cl,3-n-Pr,5-c-Pr)
Ph(2-Cl,3-I,5-Br) Ph(2-Cl,3-Me,5-OCF2CF2H) Ph(2-Cl,3-n-Pr,5-CF3)
Ph(2-Cl,3,5-di-I) Ph(2-Cl,3-Me,5-OC2F5) Ph(2-Cl,3-n-Pr,5-C2F5)
Ph(2-Cl,3-I,5-Me) Ph(2-Cl,3-Me,5-SO2Me) Ph(2-Cl,3-n-Pr,5-CF2CF2H)
Ph(2-Cl,3-I,5-Et) Ph(2-Cl,3-Me,5-TMS) Ph(2-Cl,3-n-Pr,5-CF2H)
Ph(2-Cl,3-I,5-n-Pr) Ph(2-Cl,3-Me,5-CN) Ph(2-Cl,3-n-Pr,5-OMe)
Ph(2-Cl,3-I,5-t-Bu) Ph(2-Cl,3-Et,5-Cl) Ph(2-Cl,3-n-Pr,5-OCF3)
Ph(2-Cl,3-I,5-i-Pr) Ph(2-Cl,3-Et,5-F) Ph(2-Cl,3-n-Pr,5-OCHF2)
Ph(2-Cl,3-I,5-c-Pr) Ph(2-Cl,3-Et,5-Br) Ph(2-Cl,3-n-Pr,S-OCF2CF2H)
Ph(2-Cl,3-I,5-CF3) Ph(2-Cl,3-Et,5-I) Ph(2-Cl,3-n-Pr,5-OC2F5)
Ph(2-Cl,3-n-Pr,5-SO2Me) Ph(2-Cl,3-i-Pr,5-CF2CF2H) Ph(2-Cl,3-CF3,5-Et)
Ph(2-Cl,3-n-Pr,5-TMS) Ph(2-Cl,3-i-Pr,5-CF2H) Ph(2-Cl,3-CF3,5-n-Pr)
Ph(2-Cl,3-n-Pr,5-CN) Ph(2-Cl,3-i-Pr,5-OMe) Ph(2-Cl,3-CF3,5-t-Bu)
Ph(2-Cl,3-t-Bu,5-Cl) Ph(2-Cl,3-i-Pr,5-OCF3) Ph(2-Cl,3-CF3,5-i-Pr)
Ph(2-Cl,3-t-Bu,5-F) Ph(2-Cl,3-i-Pr,5-OCHF2) Ph(2-Cl,3-CF3,5-c-Pr)
Ph(2-Cl,3-t-Bu,5-Br) Ph(2-Cl,3-i-Pr,5-OCF2CF2H) Ph(2-Cl,3,5-di-CF3)
Ph(2-Cl,3-t-Bu,5-I) Ph(2-Cl,3-i-Pr,5-OC2F5) Ph(2-Cl,3-CF3,5-C2F5)
Ph(2-Cl,3-t-Bu,5-Me) Ph(2-Cl,3-i-Pr,5-SO2Me) Ph(2-Cl,3-CF3,5-CF2CF2H)
Ph(2-Cl,3-t-Bu,5-Et) Ph(2-Cl,3-i-Pr,5-TMS) Ph(2-Cl,3-CF3,5-CF2H)
Ph(2-Cl,3-t-Bu,5-n-Pr) Ph(2-Cl,3-i-Pr,5-CN) Ph(2-Cl,3-CF3,5-OMe)
Ph(2-Cl,3,5-di-t-Bu) Ph(2-Cl,3-c-Pr,5-Cl) Ph(2-Cl,3-CF3,5-OCF3)
Ph(2-Cl,3-t-Bu,5-i-Pr) Ph(2-Cl,3-c-Pr,5-F) Ph(2-Cl,3-CF3,5-OCHF2)
Ph(2-Cl,3-t-Bu,5-c-Pr) Ph(2-Cl,3-c-Pr,5-Br) Ph(2-Cl,3-CF3,5-OCF2CF2H)
Ph(2-Cl,3-t-Bu,5-CF3) Ph(2-Cl,3-c-Pr,5-I) Ph(2-Cl,3-CF3,5-OC2F5)
Ph(2-Cl,3-t-Bu,5-C2F5) Ph(2-Cl,3-c-Pr,5-Me) Ph(2-Cl,3-CF3,5-SO2Me)
Ph(2-Cl,3-t-Bu,5-CF2CF2H) Ph(2-Cl,3-c-Pr,5-Et) Ph(2-Cl,3-CF3,5-TMS)
Ph(2-Cl,3-t-Bu,5-CF2H) Ph(2-Cl,3-c-Pr,5-n-Pr) Ph(2-Cl,3-CF3,5-CN)
Ph(2-Cl,3-t-Bu,5-OMe) Ph(2-Cl,3-c-Pr,5-t-Bu) Ph(2-Cl,3-C2F5,5-Cl)
Ph(2-Cl,3-t-Bu,5-OCF3) Ph(2-Cl,3-c-Pr,5-i-Pr) Ph(2-Cl,3-C2F5,5-F)
Ph(2-Cl,3-t-Bu,5-OCHF2) Ph(2-Cl,3,5-di-c-Pr) Ph(2-Cl,3-C2F5,5-Br)
Ph(2-Cl,3-t-Bu,5-OCF2CF2H) Ph(2-Cl,3-c-Pr,5-CF3) Ph(2-Cl,3-C2F5,5-I)
Ph(2-Cl,3-t-Bu,5-OC2F5) Ph(2-Cl,3-c-Pr,5-C2F5) Ph(2-Cl,3-C2F5,5-Me)
Ph(2-Cl,3-t-Bu,5-SO2Me) Ph(2-Cl,3-c-Pr,5-CF2CF2H) Ph(2-Cl,3-C2F5,5-Et)
Ph(2-Cl,3-t-Bu,5-TMS) Ph(2-Cl,3-c-Pr,5-CF2H) Ph(2-Cl,3-C2F5,5-n-Pr)
Ph(2-Cl,3-t-Bu,5-CN) Ph(2-Cl,3-c-Pr,5-OMe) Ph(2-Cl,3-C2F5,5-t-Bu)
Ph(2-Cl,3-i-Pr,5-Cl) Ph(2-Cl,3-c-Pr,5-OCF3) Ph(2-Cl,3-C2F5,5-i-Pr)
Ph(2-Cl,3-i-Pr,5-F) Ph(2-Cl,3-c-Pr,5-OCHF2) Ph(2-Cl,3-C2F5,5-c-Pr)
Ph(2-Cl,3-i-Pr,5-Br) Ph(2-Cl,3-c-Pr,5-OCF2CF2H) Ph(2-Cl,3-C2F5CF3,5-CF3)
Ph(2-Cl,3-i-Pr,5-I) Ph(2-Cl,3-c-Pr,5-OC2F5) Ph(2-Cl,3,5-di-C2F5)
Ph(2-Cl,3-i-Pr,5-Me) Ph(2-Cl,3-c-Pr,5-SO2Me) Ph(2-Cl,3-C2F5,5-CF2CF2H)
Ph(2-Cl,3-i-Pr,5-Et) Ph(2-Cl,3-c-Pr,5-TMS) Ph(2-Cl,3-C2F5,5-CF2H)
Ph(2-Cl,3-i-Pr,5-n-Pr) Ph(2-Cl,3-c-Pr,5-CN) Ph(2-Cl,3-C2F5,5-OMe)
Ph(2-Cl,3-i-Pr,5-t-Bu) Ph(2-Cl,3-CF3,5-Cl) Ph(2-Cl,3-C2F5,5-OCF3)
Ph(2-Cl,3,5-di-i-Pr) Ph(2-Cl,3-CF3,5-F) Ph(2-Cl,3-C2F5,5-OCHF2)
Ph(2-Cl,3-i-Pr,5-c-Pr) Ph(2-Cl,3-CF3,5-Br) Ph(2-Cl,3-C2F5,5-OCF2CF2H)
Ph(2-Cl,3-i-Pr,5-CF3) Ph(2-Cl,3-CF3,5-I) Ph(2-Cl,3-C2F5,5-OC2F5)
Ph(2-Cl,3-i-Pr,5-C2F5) Ph(2-Cl,3-CF3,5-Me) Ph(2-Cl,3-C2F5,5-SO2Me)
Ph(2-Cl,3-C2F5,5-TMS) Ph(2-Cl,3-CF2H,5-CF2CF2H) Ph(2-Cl,3-OCF3,5-Et)
Ph(2-Cl,3-C2F5,5-CN) Ph(2-Cl,3,5-di-CF2H) Ph(2-Cl,3-OCF3,5-n-Pr)
Ph(2-Cl,3-CF2CF2H,5-Cl) Ph(2-Cl,3-CF2H,5-OMe) Ph(2-Cl,3-OCF3,5-t-Bu)
Ph(2-Cl,3-CF2CF2H,5-F) Ph(2-Cl,3-CF2H,5-OCF3) Ph(2-Cl,3-OCF3,5-i-Pr)
Ph(2-Cl,3-CF2CF2H,5-Br) Ph(2-Cl,3-CF2H,5-OCHF2) Ph(2-Cl,3-OCF3,5-c-Pr)
Ph(2-Cl,3-CF2CF2H,5-I) Ph(2-Cl,3-CF2H,5-OCF2CF2H) Ph(2-Cl,3-OCF3,5-CF3)
Ph(2-Cl,3-CF2CF2H,5-Me) Ph(2-Cl,3-CF2H,5-OC2F5) Ph(2-Cl,3-OCF3,5-C2F5)
Ph(2-Cl,3-CF2CF2H,5-Et) Ph(2-Cl,3-CF2H,5-SO2Me) Ph(2-Cl,3-OCF3,5-CF2CF2H)
Ph(2-Cl,3-CF2CF2H,5-n-Pr) Ph(2-Cl,3-CF2H,5-TMS) Ph(2-Cl,3-OCF3,5-CF2H)
Ph(2-Cl,3-CF2CF2H,5-t-Bu) Ph(2-Cl,3-CF2H,5-CN) Ph(2-Cl,3-OCF3,5-OMe)
Ph(2-Cl,3-CF2CF2H,5-i-Pr) Ph(2-Cl,3-OMe,5-Cl) Ph(2-Cl,3,5-di-OCF3)
Ph(2-Cl,3-CF2CF2H,5-c-Pr) Ph(2-Cl,3-OMe,5-F) Ph(2-Cl,3-OCF3,5-OCHF2)
Ph(2-Cl,3-CF2CF2H,5-CF3) Ph(2-Cl,3-OMe,5-Br) Ph(2-Cl,3-OCF3,5-OCF2CF2H)
Ph(2-Cl,3-CF2CF2H,5-C2F5) Ph(2-Cl,3-OMe,5-I) Ph(2-Cl,3-OCF3,5-OC2F5)
Ph(2-Cl,3,5-di-CF2CF2H) Ph(2-Cl,3-OMe,5-Me) Ph(2-Cl,3-OCF3,5-SO2Me)
Ph(2-Cl,3-CF2CF2H,5-CF2H) Ph(2-Cl,3-OMe,5-Et) Ph(2-Cl,3-OCF3,5-TMS)
Ph(2-Cl,3-CF2CF2H,5-OMe) Ph(2-Cl,3-OMe,5-n-Pr) Ph(2-Cl,3-OCF3,5-CN)
Ph(2-Cl,3-CF2CF2H,5-OCF3) Ph(2-Cl,3-OMe,5-t-Bu) Ph(2-Cl,3-OCHF2,5-Cl)
Ph(2-Cl,3-CF2CF2H,5-OCHF2) Ph(2-Cl,3-OMe,5-i-Pr) Ph(2-Cl,3-OCHF2,5-F)
Ph(2-Cl,3-CF2CF2H,5-OCF2CF2H) Ph(2-Cl,3-OMe,5-c-Pr) Ph(2-Cl,3-OCHF2,5-Br)
  Ph(2-Cl,3-OMe,5-CF3) Ph(2-Cl,3-OCHF2,5-I)
Ph(2-Cl,3-CF2CF2H,5-OC2F5) Ph(2-Cl,3-OMe,5-C2F5) Ph(2-Cl,3-OCHF2,5-Me)
Ph(2-Cl,3-CF2CF2H,5-SO2Me) Ph(2-Cl,3-OMe,5-CF2CF2H) Ph(2-Cl,3-OCHF2,5-Et)
Ph(2-Cl,3-CF2CF2H,5-TMS) Ph(2-Cl,3-OMe,5-CF2H) Ph(2-Cl,3-OCHF2,5-n-Pr)
Ph(2-Cl,3-CF2CF2H,5-CN) Ph(2-Cl,3,5-di-OMe) Ph(2-Cl,3-OCHF2,5-t-Bu)
Ph(2-Cl,3-CF2H,5-Cl) Ph(2-Cl,3-OMe,5-OCF3) Ph(2-Cl,3-OCHF2,5-i-Pr)
Ph(2-Cl,3-CF2H,5-F) Ph(2-Cl,3-OMe,5-OCHF2) Ph(2-Cl,3-OCHF2,5-c-Pr)
Ph(2-Cl,3-CF2H,5-Br) Ph(2-Cl,3-OMe,5-OCF2CF2H) Ph(2-Cl,3-OCHF2CF3,5-CF3)
Ph(2-Cl,3-CF2H,5-I) Ph(2-Cl,3-OMe,5-OC2F5) Ph(2-Cl,3-OC2F5,5-C2F5)
Ph(2-Cl,3-CF2H,5-Me) Ph(2-Cl,3-OMe,5-SO2Me) Ph(2-Cl,3-OCHF2,5-CF2CF2H)
Ph(2-Cl,3-CF2H,5-Et) Ph(2-Cl,3-OMe,5-TMS) Ph(2-Cl,3-OCHF2,5-CF2H)
Ph(2-Cl,3-CF2H,5-n-Pr) Ph(2-Cl,3-OMe,5-CN) Ph(2-Cl,3-OCHF2,5-OMe)
Ph(2-Cl,3-CF2H,5-t-Bu) Ph(2-Cl,3-OCF3,5-Cl) Ph(2-Cl,3-OCHF2,5-OCF3)
Ph(2-Cl,3-CF2H,5-i-Pr) Ph(2-Cl,3-OCF3,5-F) Ph(2-Cl,3,5-di-OCHF2)
Ph(2-Cl,3-CF2H,5-c-Pr) Ph(2-Cl,3-OCF3,5-Br) Ph(2-Cl,3-OCHF2,5-OCF2CF2H)
Ph(2-Cl,3-CF2H,5-CF3) Ph(2-Cl,3-OCF3,5-I) Ph(2-Cl,3-OCHF2,5-OC2F5)
Ph(2-Cl,3-CF2H,5-C2F5) Ph(2-Cl,3-OCF3,5-Me) Ph(2-Cl,3-OCHF2,5-SO2Me)
Ph(2-Cl,3-OCHF2,5-TMS) Ph(2-Cl,3-OC2F5,5-CF2H) Ph(2-Cl,3-TMS,5-n-Pr)
Ph(2-Cl,3-OCHF2,5-CN) Ph(2-Cl,3-OC2F5,5-OMe) Ph(2-Cl,3-TMS,5-t-Bu)
Ph(2-Cl,3-OCF2CF2H,5-Cl) Ph(2-Cl,3-OC2F5,5-OCF3) Ph(2-Cl,3-TMS,5-i-Pr)
Ph(2-Cl,3-OCF2CF2H,5-F) Ph(2-Cl,3-OC2F5,5-OCHF2) Ph(2-Cl,3-TMS,5-c-Pr)
Ph(2-Cl,3-OCF2CF2H,5-Br) Ph(2-Cl,3-OC2F5,5-OCF2CF2H) Ph(2-Cl,3-TMS,5-CF3)
Ph(2-Cl,3-OCF2CF2H,5-I) Ph(2-Cl,3,5-di-OC2F5) Ph(2-Cl,3-TMS,5-C2F5)
Ph(2-Cl,3-OCF2CF2H,5-Me) Ph(2-Cl,3-OC2F5,5-SO2Me) Ph(2-Cl,3-TMS,5-CF2CF2H)
Ph(2-Cl,3-OCF2CF2H,5-Et) Ph(2-Cl,3-OC2F5,5-TMS) Ph(2-Cl,3-TMS,5-CF2H)
Ph(2-Cl,3-OCF2CF2H,5-n-Pr) Ph(2-Cl,3-OC2F5,5-CN) Ph(2-Cl,3-TMS,5-OMe)
Ph(2-Cl,3-OCF2CF2H,5-t-Bu) Ph(2-Cl,3-SO2Me,5-Cl) Ph(2-Cl,3-TMS,5-OCF3)
Ph(2-Cl,3-OCF2CF2H,5-i-Pr) Ph(2-Cl,3-SO2Me,5-F) Ph(2-Cl,3-TMS,5-OCHF2)
Ph(2-Cl,3-OCF2CF2H,5-c-Pr) Ph(2-Cl,3-SO2Me,5-Br) Ph(2-Cl,3-TMS,5-OCF2CF2H)
Ph(2-Cl,3-OCF2CF2H,5-CF3) Ph(2-Cl,3-SO2Me,5-I) Ph(2-Cl,3-TMS,5-OC2F5)
Ph(2-Cl,3-OCF2CF2H,5-C2F5) Ph(2-Cl,3-SO2Me,5-Me) Ph(2-Cl,3-TMS,5-SO2Me)
Ph(2-Cl,3-OCF2CF2H,5-CF2CF2H) Ph(2-Cl,3-SO2Me,5-Et) Ph(2-Cl,3,5-di-TMS)
  Ph(2-Cl,3-SO2Me,5-n-Pr) Ph(2-Cl,3-TMS,5-CN)
Ph(2-Cl,3-OCF2CF2H,5-CF2H) Ph(2-Cl,3-SO2Me,5-t-Bu) Ph(2-Cl,3-CN,5-Cl)
Ph(2-Cl,3-OCF2CF2H,5-OMe) Ph(2-Cl,3-SO2Me,5-i-Pr) Ph(2-Cl,3-CN,5-F)
Ph(2-Cl,3-OCF2CF2H,5-OCF3) Ph(2-Cl,3-SO2Me,5-c-Pr) Ph(2-Cl,3-CN,5-Br)
Ph(2-Cl,3-OCF2CF2H,5-OCHF2) Ph(2-Cl,3-SO2MeCF3,5-CF3) Ph(2-Cl,3-CN,5-I)
Ph(2-Cl,3,5-di-OCF2CF2H) Ph(2-Cl,3-SO2Me,5-C2F5) Ph(2-Cl,3-CN,5-Me)
Ph(2-Cl,3-OCF2CF2H,5-OC2F5) Ph(2-Cl,3-SO2Me,5-CF2CF2H) Ph(2-Cl,3-CN,5-Et)
Ph(2-Cl,3-OCF2CF2H,5-SO2Me) Ph(2-Cl,3-SO2Me,5-CF2H) Ph(2-Cl,3-CN,5-n-Pr)
Ph(2-Cl,3-OCF2CF2H,5-TMS) Ph(2-Cl,3-SO2Me,5-OMe) Ph(2-Cl,3-CN,5-t-Bu)
Ph(2-Cl,3-OCF2CF2H,5-CN) Ph(2-Cl,3-SO2Me,5-OCF3) Ph(2-Cl,3-CN,5-i-Pr)
Ph(2-Cl,3-OC2F5,5-Cl) Ph(2-Cl,3-SO2Me,5-OCHF2) Ph(2-Cl,3-CN,5-c-Pr)
Ph(2-Cl,3-OC2F5,5-F) Ph(2-Cl,3-SO2Me,5-OCF2CF2H) Ph(2-Cl,3-CN,5-CF3)
Ph(2-Cl,3-OC2F5,5-Br) Ph(2-Cl3-SO2Me,5-OC2F5) Ph(2-Cl,3-CN,5-C2F5)
Ph(2-Cl,3-OC2F5,5-I) Ph(2-Cl,3,5-di-SO2Me) Ph(2-Cl,3-CN,5-CF2CF2H)
Ph(2-Cl,3-OC2F5,5-Me) Ph(2-Cl,3-SO2Me,5-TMS) Ph(2-Cl,3-CN,5-CF2H)
Ph(2-Cl,3-OC2F5,5-Et) Ph(2-Cl,3-SO2Me,5-CN) Ph(2-Cl,3-CN,5-OMe)
Ph(2-Cl,3-OC2F5,5-n-Pr) Ph(2-Cl,3-TMS,5-Cl) Ph(2-Cl,3-CN,5-OCF3)
Ph(2-Cl,3-OC2F5,5-t-Bu) Ph(2-Cl,3-TMS,5-F) Ph(2-Cl,3-CN,5-OCHF2)
Ph(2-Cl,3-OC2F5,5-i-Pr) Ph(2-Cl,3-TMS,5-Br) Ph(2-Cl,3-CN,5-OCF2CF2H)
Ph(2-Cl,3-OC2F5,5-c-Pr) Ph(2-Cl,3-TMS,5-I) Ph(2-Cl,3-CN,5-OC2F5)
Ph(2-Cl,3-OC2F5CF3,5-CF3) Ph(2-Cl,3-TMS,5-Me) Ph(2-Cl,3-CN,5-SO2Me)
Ph(2-Cl,3-OC2F5,5-CF2CF2H) Ph(2-Cl,3-TMS,5-Et) Ph(2-Cl,3-CN,5-TMS)
Ph(2-Cl,3,5-di-CN) Ph(2-Cl,4-F,5-OMe) Ph(2-Cl,4-I,5-t-Bu)
Ph(2,4,5-tri-Cl) Ph(2-Cl,4-F,5-OCF3) Ph(2-Cl,4-I,5-i-Pr)
Ph(2-Cl,4-Cl,5-F) Ph(2-Cl,4-F,5-OCHF2) Ph(2-Cl,4-I,5-c-Pr)
Ph(2-Cl,4-Cl,5-Br) Ph(2-Cl,4-F,5-OCF2CF2H) Ph(2-Cl,4-I,5-CF3)
Ph(2-Cl,4-Cl,5-1) Ph(2-Cl,4-F,5-OC2F5) Ph(2-Cl,4-I,5-C2F5)
Ph(2-Cl,4-Cl,5-Me) Ph(2-Cl,4-F,5-SO2Me) Ph(2-Cl,4-I,5-CF2CF2H)
Ph(2-Cl,4-Cl,5-Et) Ph(2-Cl,4-F,5-TMS) Ph(2-Cl,4-I,5-CF2H)
Ph(2-Cl,4-Cl,5-n-Pr) Ph(2-Cl,4-F,5-CN) Ph(2-Cl,4-I,5-OMe)
Ph(2-Cl,4-Cl,5-t-Bu) Ph(2-Cl,4-Br,5-Cl) Ph(2-Cl,4-I,5-OCF3)
Ph(2-Cl,4-Cl,5-i-Pr) Ph(2-Cl,4-Br,5-F) Ph(2-Cl,4-I,5-OCHF2)
Ph(2-Cl,4-Cl,5-c-Pr) Ph(2-Cl,4,5-di-Br) Ph(2-Cl,4-I,5-OCF2CF2H)
Ph(2-Cl,4-Cl,5-CF3) Ph(2-Cl,4-Br,5-I) Ph(2-Cl,4-I,5-OC2F5)
Ph(2-Cl,4-Cl,5-C2F5) Ph(2-Cl,4-Br,5-Me) Ph(2-Cl,4-I,5-SO2Me)
Ph(2-Cl,4-Cl,5-CF2CF2H) Ph(2-Cl,4-Br,5-Et) Ph(2-Cl,4-I,5-TMS)
Ph(2-Cl,4-Cl,5-CF2H) Ph(2-Cl,4-Br,5-n-Pr) Ph(2-Cl,4-I,5-CN)
Ph(2-Cl,4-Cl,5-OMe) Ph(2-Cl,4-Br,5-t-Bu) Ph(2-Cl,4-Me,5-Cl)
Ph(2-Cl,4-Cl,5-OCF3) Ph(2-Cl,4-Br,5-i-Pr) Ph(2-Cl,4-Me,5-F)
Ph(2-Cl,4-Cl,5-OCHF2) Ph(2-Cl,4-Br,5-c-Pr) Ph(2-Cl,4-Me,5-Br)
Ph(2-Cl,4-Cl,5-OCF2CF2H) Ph(2-Cl,4-Br,5-CF3) Ph(2-Cl,4-Me,5-I)
Ph(2-Cl,4-Cl,5-OC2F5) Ph(2-Cl,4-Br,5-C2F5) Ph(2-Cl,4,5-di-Me)
Ph(2-Cl,4-Cl,5-SO2Me) Ph(2-Cl,4-Br,5-CF2CF2H) Ph(2-Cl,4-Me,5-Et)
Ph(2-Cl,4-Cl,5-TMS) Ph(2-Cl,4-Br,5-CF2H) Ph(2-Cl,4-Me,5-n-Pr)
Ph(2-Cl,4-Cl,5-CN) Ph(2-Cl,4-Br,5-OMe) Ph(2-Cl,4-Me,5-t-Bu)
Ph(2-Cl,4-F,5-Cl) Ph(2-Cl,4-Br,5-OCF3) Ph(2-Cl,4-Me,5-i-Pr)
Ph(2-Cl,4,5-di-F) Ph(2-Cl,4-Br,5-OCHF2) Ph(2-Cl,4-Me,5-c-Pr)
Ph(2-Cl,4-F,5-Br) Ph(2-Cl,4-Br,5-OCF2CF2H) Ph(2-Cl,4-Me,5-CF3)
Ph(2-Cl,4-F,5-I) Ph(2-Cl,4-Br,5-OC2F5) Ph(2-Cl,4-Me,5-C2F5)
Ph(2-Cl,4-F,5-Me) Ph(2-Cl,4-Br,5-SO2Me) Ph(2-Cl,4-Me,5-CF2CF2H)
Ph(2-Cl,4-F,5-Et) Ph(2-Cl,4-Br,5-TMS) Ph(2-Cl,4-Me,5-CF2H)
Ph(2-Cl,4-F,5-n-Pr) Ph(2-Cl,4-Br,5-CN) Ph(2-Cl,4-Me,5-OMe)
Ph(2-Cl,4-F,5-t-Bu) Ph(2-Cl,4-I,5-Cl) Ph(2-Cl,4-Me,5-OCF3)
Ph(2-Cl,4-F,5-i-Pr) Ph(2-Cl,4-I,5-F) Ph(2-Cl,4-Me,5-OCHF2)
Ph(2-Cl,4-F,5-c-Pr) Ph(2-Cl,4-I,5-Br) Ph(2-Cl,4-Me,5-OCF2CF2H)
Ph(2-Cl,4-F,5-CF3) Ph(2-Cl,4,5-di-I) Ph(2-Cl,4-Me,5-OC2F5)
Ph(2-Cl,4-F,5-C2F5) Ph(2-Cl,4-I,5-Me) Ph(2-Cl,4-Me,5-SO2Me)
Ph(2-Cl,4-F,5-CF2CF2H) Ph(2-Cl,4-I,5-Et) Ph(2-Cl,4-Me,5-TMS)
Ph(2-Cl,4-F,5-CF2H) Ph(2-Cl,4-1,5-n-Pr) Ph(2-Cl,4-Me,5-CN)
Ph(2-Cl,4-Et,5-Cl) Ph(2-Cl,4-n-Pr,5-OCF3) Ph(2-CI,4,5-di-i-Pr)
Ph(2-Cl,4-Et,5-F) Ph(2-Cl,4-n-Pr,5-OCHF2) Ph(2-Cl,4-i-Pr,5-c-Pr)
Ph(2-Cl,4-Et,5-Br) Ph(2-Cl,4-n-Pr,5-OCF2CF2H) Ph(2-Cl,4-i-Pr,5-CF3)
Ph(2-Cl,4-Et,5-I) Ph(2-Cl,4-n-Pr,5-OC2F5) Ph(2-Cl,4-i-Pr,5-C2F5)
Ph(2-Cl,4-Et,5-Me) Ph(2-Cl,4-n-Pr,5-SO2Me) Ph(2-Cl,4-i-Pr,5-CF2CF2H)
Ph(2-Cl,4,5-di-Et) Ph(2-Cl,4-n-Pr,5-TMS) Ph(2-Cl,4-i-Pr,5-CF2H)
Ph(2-Cl,4-Et,5-n-Pr) Ph(2-Cl,4-n-Pr,5-CN) Ph(2-Cl,4-i-Pr,5-OMe)
Ph(2-Cl,4-Et,5-t-Bu) Ph(2-Cl,4-t-Bu,5-Cl) Ph(2-Cl,4-i-Pr,5-OCF3)
Ph(2-Cl,4-Et,5-i-Pr) Ph(2-Cl,4-t-Bu,5-F) Ph(2-Cl,4-i-Pr,5-OCHF2)
Ph(2-Cl,4-Et,5-c-Pr) Ph(2-Cl,4-t-Bu,5-Br) Ph(2-Cl,4-i-Pr,5-OCF2CF2H)
Ph(2-Cl,4-Et,5-CF3) Ph(2-Cl,4-t-Bu,5-I) Ph(2-Cl,4-i-Pr,5-OC2F5)
Ph(2-Cl,4-Et,5-C2F5) Ph(2-Cl,4-t-Bu,5-Me) Ph(2-Cl,4-i-Pr,5-SO2Me)
Ph(2-Cl,4-Et,5-CF2CF2H) Ph(2-Cl,4-t-Bu,5-Et) Ph(2-Cl,4-i-Pr,5-TMS)
Ph(2-Cl,4-Et,5-CF2H) Ph(2-Cl,4-t-Bu,5-n-Pr) Ph(2-Cl,4-i-Pr,5-CN)
Ph(2-Cl,4-Et,5-OMe) Ph(2-Cl,4,5-di-t-Bu) Ph(2-Cl,4-c-Pr,5-Cl)
Ph(2-Cl,4-Et,5-OCF3) Ph(2-Cl,4-t-Bu,5-i-Pr) Ph(2-Cl,4-c-Pr,5-F)
Ph(2-Cl,4-Et,5-OCHF2) Ph(2-Cl,4-t-Bu,5-c-Pr) Ph(2-Cl,4-c-Pr,5-Br)
Ph(2-Cl,4-Et,5-OCF2CF2H) Ph(2-Cl,4-t-Bu,5-CF3) Ph(2-Cl,4-c-Pr,5-I)
Ph(2-Cl,4-Et,5-OC2F5) Ph(2-Cl,4-t-Bu,5-C2F5) Ph(2-Cl,4-c-Pr,5-Me)
Ph(2-Cl,4-Et,5-SO2Me) Ph(2-Cl,4-t-Bu,5-CF2CF2H) Ph(2-Cl,4-c-Pr,5-Et)
Ph(2-Cl,4-Et,5-TMS) Ph(2-Cl,4-t-Bu,5-CF2H) Ph(2-Cl,4-c-Pr,5-n-Pr)
Ph(2-Cl,4-Et,5-CN) Ph(2-Cl,4-t-Bu,5-OMe) Ph(2-Cl,4-c-Pr,5-t-Bu)
Ph(2-Cl,4-n-Pr,5-Cl) Ph(2-Cl,4-t-Bu,5-OCF3) Ph(2-Cl,4-c-Pr,5-i-Pr)
Ph(2-Cl,4-n-Pr,5-F) Ph(2-Cl,4-t-Bu,5-OCHF2) Ph(2-Cl,4,5-di-c-Pr)
Ph(2-Cl,4-n-Pr,5-Br) Ph(2-Cl,4-t-Bu,5-OCF2CF2H) Ph(2-Cl,4-c-Pr,5-CF3)
Ph(2-Cl,4-n-Pr,5-I) Ph(2-Cl,4-t-Bu,5-OC2F5) Ph(2-Cl,4-c-Pr,5-C2F5)
Ph(2-Cl,4-n-Pr,5-Me) Ph(2-Cl,4-t-Bu,5-SO2Me) Ph(2-Cl,4-c-Pr,5-CF2CF2H)
Ph(2-Cl,4-n-Pr,5-Et) Ph(2-Cl,4-t-Bu,5-TMS) Ph(2-Cl,4-c-Pr,5-CF2H)
Ph(2-Cl,4,5-di-n-Pr) Ph(2-Cl,4-t-Bu,5-CN) Ph(2-Cl,4-c-Pr,5-OMe)
Ph(2-Cl,4-n-Pr,5-t-Bu) Ph(2-Cl,4-i-Pr,5-Cl) Ph(2-Cl,4-c-Pr,5-OCF3)
Ph(2-Cl,4-n-Pr,5-i-Pr) Ph(2-Cl,4-i-Pr,5-F) Ph(2-Cl,4-c-Pr,5-OCHF2)
Ph(2-Cl,4-n-Pr,5-c-Pr) Ph(2-Cl,4-i-Pr,5-Br) Ph(2-Cl,4-c-Pr,5-OCF2CF2H)
Ph(2-Cl,4-n-Pr,5-CF3) Ph(2-Cl,4-i-Pr,5-I) Ph(2-Cl,4-c-Pr,5-OC2F5)
Ph(2-Cl,4-n-Pr,5-C2F5) Ph(2-Cl,4-i-Pr,5-Me) Ph(2-Cl,4-c-Pr,5-SO2Me)
Ph(2-Cl,4-n-Pr,5-CF2CF2H) Ph(2-Cl,4-i-Pr,5-Et) Ph(2-Cl,4-c-Pr,5-TMS)
Ph(2-Cl,4-n-Pr,5-CF2H) Ph(2-Cl,4-i-Pr,5-n-Pr) Ph(2-Cl,4-c-Pr,5-CN)
Ph(2-Cl,4-n-Pr,5-OMe) Ph(2-Cl,4-i-Pr,5-t-Bu) Ph(2-Cl,4-CF3,5-Cl)
Ph(2-Cl,4-CF3,5-F) Ph(2-Cl,4-CF2CF3,5-OCHF2) Ph(2-Cl,4-CF2H,5-t-Bu)
Ph(2-Cl,4-CF3,5-Br) Ph(2-Cl,4-CF2CF3,5-OCF2CF2H) Ph(2-Cl,4-CF2H,5-i-Pr)
Ph(2-Cl,4-CF3,5-I)   Ph(2-Cl,4-CF2H,5-c-Pr)
Ph(2-Cl,4-CF3,5-Me) Ph(2-Cl,4-CF2CF3,5-OC2F5) Ph(2-Cl,4-CF2H,5-CF3)
Ph(2-Cl,4-CF3,5-Et) Ph(2-Cl,4-CF2CF3,5-SO2Me) Ph(2-Cl,4-CF2H,5-C2F5)
Ph(2-Cl,4-CF3,5-n-Pr) Ph(2-Cl,4-CF2CF3,5-TMS) Ph(2-Cl,4-CF2H,5-CF2CF2H)
Ph(2-Cl,4-CF3,5-t-Bu) Ph(2-Cl,4-CF2CF3,5-CN) Ph(2-Cl,4,5-di-CF2H)
Ph(2-Cl,4-CF3,5-i-Pr) Ph(2-Cl,4-CF2CF2H,5-Cl) Ph(2-Cl,4-CF2H,5-OMe)
Ph(2-Cl,4-CF3,5-c-Pr) Ph(2-C1,4-CF2CF2H,5-F) Ph(2-Cl,4-CF2H,5-OCF3)
Ph(2-Cl,4,5-di-CF3) Ph(2-Cl,4-CF2CF2H,5-Br) Ph(2-Cl,4-CF2H,5-OCHF2)
Ph(2-Cl,4-CF3,5-C2F5) Ph(2-Cl,4-CF2CF2H,5-I) Ph(2-Cl,4-CF2H,5-OCF2CF2H)
Ph(2-Cl,4-CF3,5-CF2CF2H) Ph(2-Cl,4-CF2CF2H,5-Me) Ph(2-Cl,4-CF2H,5-OC2F5)
Ph(2-Cl,4-CF3,5-CF2H) Ph(2-Cl,4-CF2CF2H,5-Et) Ph(2-Cl,4-CF2H,5-SO2Me)
Ph(2-Cl,4-CF3,5-OMe) Ph(2-Cl,4-CF2CF2H,5-n-Pr) Ph(2-Cl,4-CF2H,5-TMS)
Ph(2-Cl,4-CF3,5-OCF3) Ph(2-Cl,4-CF2CF2H,5-t-Bu) Ph(2-Cl,4-CF2H,5-CN)
Ph(2-Cl,4-CF3,5-OCHF2) Ph(2-Cl,4-CF2CF2H,5-i-Pr) Ph(2-Cl,4-OMe,5-Cl)
Ph(2-Cl,4-CF3,5-OCF2CF2H) Ph(2-Cl,4-CF2CF2H,5-c-Pr) Ph(2-Cl,4-OMe,5-F)
Ph(2-Cl,4-CF3,5-OC2F5) Ph(2-Cl,4-CF2CF2CF3H,5-CF3) Ph(2-Cl,4-OMe,5-Br)
Ph(2-Cl,4-CF3,5-SO2Me) Ph(2-Cl,4-CF2CF2H,5-C2F5) Ph(2-Cl,4-OMe,5-I)
Ph(2-Cl,4-CF3,5-TMS) Ph(2-Cl,4,5-di-CF2CF2H) Ph(2-Cl,4-OMe,5-Me)
Ph(2-Cl,4-CF3,5-CN) Ph(2-Cl,4-CF2CF2H,5-CF2H) Ph(2-Cl,4-OMe,5-Et)
Ph(2-Cl,4-CF2CF3,5-Cl) Ph(2-Cl,4-CF2CF2H,5-OMe) Ph(2-Cl,4-OMe,5-n-Pr)
Ph(2-Cl,4-CF2CF3,5-F) Ph(2-Cl,4-CF2CF2H,5-OCF3) Ph(2-Cl,4-OMe,5-t-Bu)
Ph(2-Cl,4-CF2CF3,5-Br) Ph(2-Cl,4-CF2CF2H,5-OCHF2) Ph(2-Cl,4-OMe,5-i-Pr)
Ph(2-Cl,4-CF2CF3,5-I) Ph(2-Cl,4-CF2CF2H,5-OCF2CF2H) Ph(2-Cl,4-OMe,5-c-Pr)
Ph(2-Cl,4-CF2CF3,5-Me)   Ph(2-Cl,4-OMeCF3,5-CF3)
Ph(2-Cl,4-CF2CF3,5-Et) Ph(2-Cl,4-CF2CF2H,5-OC2F5) Ph(2-Cl,4-OMe,5-C2F5)
Ph(2-Cl,4-CF2CF3,5-n-Pr) Ph(2-Cl,4-CF2CF2H,5-SO2Me) Ph(2-Cl,4-OMe,5-CF2CF2H)
Ph(2-Cl,4-CF2CF3,5-t-Bu) Ph(2-Cl,4-CF2CF2H,5-TMS) Ph(2-Cl,4-OMe,5-CF2H)
Ph(2-Cl,4-CF2CF3,5-i-Pr) Ph(2-Cl,4-CF2CF2H,5-CN) Ph(2-Cl,4,5-di-OMe)
Ph(2-Cl,4-CF2CF3,5-c-Pr) Ph(2-Cl,4-CF2H,5-Cl) Ph(2-Cl,4-OMe,5-OCF3)
Ph(2-Cl,4-C2F5CF3,5-CF3) Ph(2-Cl,4-CF2H,5-F) Ph(2-Cl,4-OMe,5-OCHF2)
Ph(2-Cl,4,5-di-C2F5) Ph(2-Cl,4-CF2H,5-Br) Ph(2-Cl,4-OMe,5-OCF2CF2H)
Ph(2-Cl,4-CF2CF3,5-CF2CF2H) Ph(2-Cl,4-CF2H,5-I) Ph(2-Cl,4-OMe,5-OC2F5)
Ph(2-Cl,4-CF2CF3,5-CF2H) Ph(2-Cl,4-CF2H,5-Me) Ph(2-Cl,4-OMe,5-SO2Me)
Ph(2-Cl,4-CF2CF3,5-OMe) Ph(2-Cl,4-CF2H,5-Et) Ph(2-Cl,4-OMe,5-TMS)
Ph(2-Cl,4-CF2CF3,5-OCF3) Ph(2-Cl,4-CF2H,5-n-Pr) Ph(2-Cl,4-OMe,5-CN)
Ph(2-Cl,4-OCF3,5-Cl) Ph(2-Cl,4-OCHF2,5-OCF3) Ph(2-Cl,4-OCF2CF3,5-n-Pr)
Ph(2-Cl,4-OCF3,5-F) Ph(2-Cl,4,5-di-OCHF2) Ph(2-Cl,4-OCF2CF3,5-t-Bu)
Ph(2-Cl,4-OCF3,5-Br) Ph(2-Cl,4-OCHF2,5-OCF2CF2H) Ph(2-Cl,4-OCF2CF3,5-i-Pr)
Ph(2-Cl,4-OCF3,5-I) Ph(2-Cl,4-OCHF2,5-OC2F5) Ph(2-Cl,4-OCF2CF3,5-c-Pr)
Ph(2-Cl,4-OCF3,5-Me) Ph(2-Cl,4-OCHF2,5-SO2Me) Ph(2-Cl,4-OC2F5CF3,5-CF3)
Ph(2-Cl,4-OCF3,5-Et) Ph(2-Cl,4-OCHF2,5-TMS) Ph(2-Cl,4-OCF2CF3,5-CF2CF2H)
Ph(2-Cl,4-OCF3,5-n-Pr) Ph(2-Cl,4-OCHF2,5-CN)  
Ph(2-Cl,4-OCF3,5-t-Bu) Ph(2-Cl,4-OCF2CF2H,5-Cl) Ph(2-Cl,4-OCF2CF3,5-CF2H)
Ph(2-Cl,4-OCF3,5-i-Pr) Ph(2-Cl,4-OCF2CF2H,5-F) Ph(2-Cl,4-OCF2CF3,5-OMe)
Ph(2-Cl,4-OCF3,5-c-Pr) Ph(2-Cl,4-OCF2CF2H,5-Br) Ph(2-Cl,4-OCF2CF3,5-OCF3)
Ph(2-Cl,4-OCF3,5-CF3) Ph(2-Cl,4-OCF2CF2H,5-I) Ph(2-Cl,4-OCF2CF3,5-OCHF2)
Ph(2-Cl,4-OCF3,5-C2F5) Ph(2-Cl,4-OCF2CF2H,5-Me) Ph(2-Cl,4-OCF2CF3,5-OCF2CF2H)
Ph(2-Cl,4-OCF3,5-CF2CF2H) Ph(2-Cl,4-OCF2CF2H,5-Et)  
Ph(2-Cl,4-OCF3,5-CF2H) Ph(2-Cl,4-OCF2CF2H,5-n-Pr) Ph(2-Cl,4,5-di-OC2F5)
Ph(2-Cl,4-OCF3,5-OMe) Ph(2-Cl,4-OCF2CF2H,5-t-Bu) Ph(2-Cl,4-OCF2CF3,5-SO2Me)
Ph(2-Cl,4,5-di-OCF3) Ph(2-Cl,4-OCF2CF2H,5-i-Pr) Ph(2-Cl,4-OCF2CF3,5-TMS)
Ph(2-Cl,4-OCF3,5-OCHF2) Ph(2-Cl,4-OCF2CF2H,5-c-Pr) Ph(2-Cl,4-OCF2CF3,5-CN)
Ph(2-Cl,4-OCF3,5-OCF2CF2H) Ph(2-Cl,4-OCF2CF2CF3H,5-CF3) Ph(2-Cl,4-SO2Me,5-Cl)
Ph(2-Cl,4-OCF3,5-OC2F5)   Ph(2-Cl,4-SO2Me,5-F)
Ph(2-Cl,4-OCF3,5-SO2Me) Ph(2-Cl,4-OCF2CF2H,5-C2F5) Ph(2-Cl,4-SO2Me,5-Br)
Ph(2-Cl,4-OCF3,5-TMS) Ph(2-Cl,4-OCF2CF2H,5-CF2CF2H) Ph(2-Cl,4-SO2Me,5-I)
Ph(2-Cl,4-OCF3,5-CN)   Ph(2-Cl,4-SO2Me,5-Me)
Ph(2-Cl,4-OCHF2,5-Cl) Ph(2-Cl,4-OCF2CF2H,5-CF2H) Ph(2-Cl,4-SO2Me,5-Et)
Ph(2-Cl,4-OCHF2,5-F) Ph(2-Cl,4-OCF2CF2H,5-OMe) Ph(2-Cl,4-SO2Me,5-n-Pr)
Ph(2-Cl,4-OCHF2,5-Br) Ph(2-Cl,4-OCF2CF2H,5-OCF3) Ph(2-Cl,4-SO2Me,5-t-Bu)
Ph(2-Cl,4-OCHF2,5-I) Ph(2-Cl,4-OCF2CF2H,5-OCHF2) Ph(2-Cl,4-SO2Me,5-i-Pr)
Ph(2-Cl,4-OCHF2,5-Me) Ph(2-Cl,4,5-di-OCF2CF2H) Ph(2-Cl,4-SO2Me,5-c-Pr)
Ph(2-Cl,4-OCHF2,5-Et) Ph(2-Cl,4-OCF2CF2H,5-OC2F5) Ph(2-Cl,4-SO2MeCF3,5-CF3)
Ph(2-Cl,4-OCHF2,5-n-Pr) Ph(2-Cl,4-OCF2CF2H,5-SO2Me) Ph(2-Cl,4-SO2Me,5-C2F5)
Ph(2-Cl,4-OCHF2,5-t-Bn) Ph(2-Cl,4-OCF2CF2H,5-TMS) Ph(2-Cl,4-SO2Me,5-CF2CF2H)
Ph(2-Cl,4-OCHF2,5-i-Pr) Ph(2-Cl,4-OCF2CF2H,5-CN) Ph(2-Cl,4-SO2Me,5-CF2H)
Ph(2-Cl,4-OCHF2,5-c-Pr) Ph(2-Cl,4-OCF2CF3,5-Cl) Ph(2-Cl,4-SO2Me,5-OMe)
Ph(2-Cl,4-OCHF2CF3,5-CF3) Ph(2-Cl,4-OCF2CF3,5-F) Ph(2-Cl,4-SO2Me,5-OCF3)
Ph(2-Cl,4-OCF2CF3,5-C2F5) Ph(2-Cl,4-OCF2CF3,5-Br) Ph(2-Cl,4-SO2Me,5-OCHF2)
Ph(2-Cl,4-OCHF2,5-CF2CF2H) Ph(2-Cl,4-OCF2CF3,5-I) Ph(2-Cl,4-SO2Me,5-OCF2CF2H)
Ph(2-Cl,4-OCHF2,5-CF2H) Ph(2-Cl,4-OCF2CF3,5-Me) Ph(2-Cl,4-SO2Me,5-OC2F5)
Ph(2-Cl,4-OCHF2,5-OMe) Ph(2-Cl,4-OCF2CF3,5-Et) Ph(2-Cl,4,5-di-SO2Me)
Ph(2-Cl,4-SO2Me,5-TMS) Ph(2-Cl,4-CN,5-CF2H) Ph(2-F,3-F,4-OC2F5)
Ph(2-Cl,4-SO2Me,5-CN) Ph(2-Cl,4-CN,5-OMe) Ph(2-F,3-Br,4-Cl)
Ph(2-Cl,4-TMS,5-Cl) Ph(2-Cl,4-CN,5-OCF3) Ph(2-F,3,4-di-Br)
Ph(2-Cl,4-TMS,5-F) Ph(2-Cl,4-CN,5-OCHF2) Ph(2-F,3-Br,4-I)
Ph(2-Cl,4-TMS,5-Br) Ph(2-Cl,4-CN,5-OCF2CF2H) Ph(2-F,3-Br,4-Me)
Ph(2-Cl,4-TMS,5-I) Ph(2-Cl,4-CN,5-OC2F5) Ph(2-F,3-Br,4-Et)
Ph(2-Cl,4-TMS,5-Me) Ph(2-Cl,4-CN,5-SO2Me) Ph(2-F,3-Br,4-n-Pr)
Ph(2-Cl,4-TMS,5-Et) Ph(2-Cl,4-CN,5-TMS) Ph(2-F,3-Br,4-t-Bu)
Ph(2-Cl,4-TMS,5-n-Pr) Ph(2-Cl,4,5-di-CN) Ph(2-F,3-Br,4-i-Pr)
Ph(2-Cl,4-TMS,5-t-Bu) Ph(2-F,3,4-di-Cl) Ph(2-F,3-Br,4-CF3)
Ph(2-Cl,4-TMS,5-i-Pr) Ph(2-F,3-Cl,4-I) Ph(2-F,3-Br,4-C2F5)
Ph(2-Cl,4-TMS,5-c-Pr) Ph(2-F,3-Cl,4-Me) Ph(2-F,3-Br,4-CF2CF2H)
Ph(2-Cl,4-TMS,5-CF3) Ph(2-F,3-Cl,4-Et) Ph(2-F,3-Br,4-CF2H)
Ph(2-Cl,4-TMS,5-C2F5) Ph(2-F,3-Cl,4-n-Pr) Ph(2-F,3-Br,4-OMe)
Ph(2-Cl,4-TMS,5-CF2CF2H) Ph(2-F,3-Cl,4-i-Pr) Ph(2-F,3-Br,4-OCF2CF2H)
Ph(2-Cl,4-TMS,5-CF2H) Ph(2-F,3-Cl,4-CF3) Ph(2-F,3-Br,4-OC2F5)
Ph(2-Cl,4-TMS,5-OMe) Ph(2-F,3-Cl,4-C2F5) Ph(2-F,3-I,4-Cl)
Ph(2-Cl,4-TMS,5-OCF3) Ph(2-F,3-Cl,4-CF2CF2H) Ph(2-F,3-I,4-F)
Ph(2-Cl,4-TMS,5-OCHF2) Ph(2-F,3-Cl,4-CF2H) Ph(2-F,3-I,4-Br)
Ph(2-Cl,4-TMS,5-OCF2CF2H) Ph(2-F,3-Cl,4-OMe) Ph(2-F,3,4-di-I)
Ph(2-Cl,4-TMS,5-OC2F5) Ph(2-F,3-Cl,4-OCHF2) Ph(2-F,3-I,4-Me)
Ph(2-Cl,4-TMS,5-SO2Me) Ph(2-F,3-Cl,4-OCF2CF2H) Ph(2-F,3-I,4-Et)
Ph(2-Cl,4,5-di-TMS) Ph(2-F,3-Cl,4-OC2F5) Ph(2-F,3-I,4-n-Pr)
Ph(2-Cl,4-TMS,5-CN) Ph(2,3,4-tri-F) Ph(2-F,3-I,4-t-Bu)
Ph(2-Cl,4-CN,5-Cl) Ph(2-F,3-F,4-Br) Ph(2-F,3-I,4-i-Pr)
Ph(2-Cl,4-CN,5-F) Ph(2-F,3-F,4-I) Ph(2-F,3-I,4-c-Pr)
Ph(2-Cl,4-CN,5-Br) Ph(2-F,3-F,4-Et) Ph(2-F,3-I,4-CF3)
Ph(2-Cl,4-CN,5-I) Ph(2-F,3-F,4-n-Pr) Ph(2-F,3-I,4-C2F5)
Ph(2-Cl,4-CN,5-Me) Ph(2-F,3-F,4-t-Bu) Ph(2-F,3-I,4-CF2CF2H)
Ph(2-Cl,4-CN,5-Et) Ph(2-F,3-F,4-i-Pr) Ph(2-F,3-I,4-CF2H)
Ph(2-Cl,4-CN,5-n-Pr) Ph(2-F,3-F,4-CF3) Ph(2-F,3-I,4-OMe)
Ph(2-Cl,4-CN,5-t-Bu) Ph(2-F,3-F,4-C2F5) Ph(2-F,3-I,4-OCF3)
Ph(2-Cl,4-CN,5-i-Pr) Ph(2-F,3-F,4-CF2CF2H) Ph(2-F,3-I,4-OCHF2)
Ph(2-Cl,4-CN,5-c-Pr) Ph(2-F,3-F,4-CF2H) Ph(2-F,3-I,4-OCF2CF2H)
Ph(2-Cl,4-CN,5-CF3) Ph(2-F,3-F,4-OMe) Ph(2-F,3-I,4-OC2F5)
Ph(2-Cl,4-CN,5-C2F5) Ph(2-F,3-F,4-OCHF2) Ph(2-F,3-I,4-SO2Me)
Ph(2-Cl,4-CN,5-CF2CF2H) Ph(2-F,3-F,4-OCF2CF2H) Ph(2-F,3-I,4-TMS)
Ph(2-F,3-I,4-CN) Ph(2-F,3-n-Pr,4-Br) Ph(2-F,3-i-Pr,4-n-Pr)
Ph(2-F,3-Me,4-I) Ph(2-F,3-n-Pr,4-I) Ph(2-F,3-i-Pr,4-t-Bu)
Ph(2-F,3,4-di-Me) Ph(2-F,3-n-Pr,4-Me) Ph(2-F,3,4-di-i-Pr)
Ph(2-F,3-Me,4-Et) Ph(2-F,3-n-Pr,4-Et) Ph(2-F,3-i-Pr,4-c-Pr)
Ph(2-F,3-Me,4-n-Pr) Ph(2-F,3,4-di-n-Pr) Ph(2-F,3-i-Pr,4-CF3)
Ph(2-F,3-Me,4-i-Pr) Ph(2-F,3-n-Pr,4-t-Bu) Ph(2-F,3-i-Pr,4-C2F5)
Ph(2-F,3-Me,4-c-Pr) Ph(2-F,3-n-Pr,4-i-Pr) Ph(2-F,3-i-Pr,4-CF2CF2H)
Ph(2-F,3-Me,4-C2F5) Ph(2-F,3-n-Pr,4-c-Pr) Ph(2-F,3-i-Pr,4-CF2H)
Ph(2-F,3-Me,4-CF2CF2H) Ph(2-F,3-n-Pr,4-CF3) Ph(2-F,3-i-Pr,4-OMe)
Ph(2-F,3-Me,4-CF2H) Ph(2-F,3-n-Pr,4-C2F5) Ph(2-F,3-i-Pr,4-OCF3)
Ph(2-F,3-Me,4-OMe) Ph(2-F,3-n-Pr,4-CF2CF2H) Ph(2-F,3-i-Pr,4-OCHF2)
Ph(2-F,3-Me,4-OCF2CF2H) Ph(2-F,3-n-Pr,4-CF2H) Ph(2-F,3-i-Pr,4-OCF2CF2H)
Ph(2-F,3-Me,4-OC2F5) Ph(2-F,3-n-Pr,4-OMe) Ph(2-F,3-i-Pr,4-OC2F5)
Ph(2-F,3-Et,4-Cl) Ph(2-F,3-n-Pr,4-OCF3) Ph(2-F,3-i-Pr,4-SO2Me)
Ph(2-F,3-Et,4-F) Ph(2-F,3-n-Pr,4-OCHF2) Ph(2-F,3-i-Pr,4-TMS)
Ph(2-F,3-Et,4-Br) Ph(2-F,3-n-Pr,4-OCF2CF2H) Ph(2-F,3-i-Pr,4-CN)
Ph(2-F,3-Et,4-I) Ph(2-F,3-n-Pr,4-OC2F5) Ph(2-F,3-c-Pr,4-I)
Ph(2-F,3-Et,4-Me) Ph(2-F,3-n-Pr,4-SO2Me) Ph(2-F,3-c-Pr,4-Et)
Ph(2-F,3,4-di-Et) Ph(2-F,3-n-Pr,4-TMS) Ph(2-F,3-c-Pr,4-n-Pr)
Ph(2-F,3-Et,4-n-Pr) Ph(2-F,3-n-Pr,4-CN) Ph(2-F,3-c-Pr,4-i-Pr)
Ph(2-F,3-Et,4-t-Bu) Ph(2-F,3-t-Bu,4-I) Ph(2-F,3-c-Pr,4-C2F5)
Ph(2-F,3-Et,4-i-Pr) Ph(2-F,3-t-Bu,4-Et) Ph(2-F,3-c-Pr,4-CF2CF2H)
Ph(2-F,3-Et,4-c-Pr) Ph(2-F,3-t-Bu,4-n-Pr) Ph(2-F,3-c-Pr,4-CF2H)
Ph(2-F,3-Et,4-CF3) Ph(2-F,3,4-di-t-Bu) Ph(2-F,3-c-Pr,4-OMe)
Ph(2-F,3-Et,4-C2F5) Ph(2-F,3-t-Bu,4-i-Pr) Ph(2-F,3-c-Pr,4-OCF2CF2H)
Ph(2-F,3-Et,4-CF2CF2H) Ph(2-F,3-t-Bu,4-C2F5) Ph(2-F,3-c-Pr,4-OC2F5)
Ph(2-F,3-Et,4-CF2H) Ph(2-F,3-t-Bu,4-CF2CF2H) Ph(2-F,3-CF3,4-I)
Ph(2-F,3-Et,4-OMe) Ph(2-F,3-t-Bu,4-CF2H) Ph(2-F,3-CF3,4-Et)
Ph(2-F,3-Et,4-OCF3) Ph(2-F,3-t-Bu,4-OMe) Ph(2-F,3-CF3,4-n-Pr)
Ph(2-F,3-Et,4-OCHF2) Ph(2-F,3-t-Bu,4-OCF2CF2H) Ph(2-F,3-CF3,4-i-Pr)
Ph(2-F,3-Et,4-OCF2CF2H) Ph(2-F,3-t-Bu,4-OC2F5) Ph(2-F,3,4-di-CF3)
Ph(2-F,3-Et,4-OC2F5) Ph(2-F,3-i-Pr,4-Cl) Ph(2-F,3-CF3,4-C2F5)
Ph(2-F,3-Et,4-SO2Me) Ph(2-F,3-i-Pr,4-F) Ph(2-F,3-CF3,4-CF2CF2H)
Ph(2-F,3-Et,4-TMS) Ph(2-F,3-i-Pr,4-Br) Ph(2-F,3-CF3,4-CF2H)
Ph(2-F,3-Et,4-CN) Ph(2-F,3-i-Pr,4-I) Ph(2-F,3-CF3,4-OMe)
Ph(2-F,3-n-Pr,4-Cl) Ph(2-F,3-i-Pr,4-Me) Ph(2-F,3-CF3,4-OCF3)
Ph(2-F,3-n-Pr,4-F) Ph(2-F,3-i-Pr,4-Et) Ph(2-F,3-CF3,4-OCHF2)
Ph(2-F,3-CF3,4-OCF2CF2H) Ph(2-F,3-CF2CF2H,4-C2F5) Ph(2-F,3-OMe,4-I)
Ph(2-F,3-CF3,4-OC2F5) Ph(2-F,3,4-di-CF2CF2H) Ph(2-F,3-OMe,4-Me)
Ph(2-F,3-CF3,4-TMS) Ph(2-F,3-CF2CF2H,4-CF2H) Ph(2-F,3-OMe,4-Et)
Ph(2-F,3-CF3,4-CN) Ph(2-F,3-CF2CF2H,4-OMe) Ph(2-F,3-OMe,4-n-Pr)
Ph(2-F,3-C2F5,4-Cl) Ph(2-F,3-CF2CF2H,4-OCF3) Ph(2-F,3-OMe,4-t-Bu)
Ph(2-F,3-C2F5,4-F) Ph(2-F,3-CF2CF2H,4-OCHF2) Ph(2-F,3-OMe,4-i-Pr)
Ph(2-F,3-C2F5,4-Br) Ph(2-F,3-CF2CF2H,4-OCF2CF2H) Ph(2-F,3-OMe,4-c-Pr)
Ph(2-F,3-C2F5,4-I)   Ph(2-F,3-OMe,4-CF3)
Ph(2-F,3-C2F5,4-Me) Ph(2-F,3-CF2CF2H,4-OC2F5) Ph(2-F,3-OMe,4-C2F5)
Ph(2-F,3-C2F5,4-Et) Ph(2-F,3-CF2CF2H,4-SO2Me) Ph(2-F,3-OMe,4-CF2CF2H)
Ph(2-F,3-C2F5,4-n-Pr) Ph(2-F,3-CF2CF2H,4-TMS) Ph(2-F,3-OMe,4-CF2H)
Ph(2-F,3-C2F5,4-t-Bu) Ph(2-F,3-CF2CF2H,4-CN) Ph(2-F,3,4-di-OMe)
Ph(2-F,3-C2F5,4-i-Pr) Ph(2-F,3-CF2H,4-Cl) Ph(2-F,3-OMe,4-OCF3)
Ph(2-F,3-C2F5,4-c-Pr) Ph(2-F,3-CF2H,4-F) Ph(2-F,3-OMe,4-OCHF2)
Ph(2-F,3-C2F5CF3,4-CF3) Ph(2-F,3-CF2H,4-Br) Ph(2-F,3-OMe,4-OCF2CF2H)
Ph(2-F,3,4-di-C2F5) Ph(2-F,3-CF2H,4-I) Ph(2-F,3-OMe,4-OC2F5)
Ph(2-F,3-C2F5,4-CF2CF2H) Ph(2-F,3-CF2H,4-Me) Ph(2-F,3-OMe,4-SO2Me)
Ph(2-F,3-C2F5,4-CF2H) Ph(2-F,3-CF2H,4-Et) Ph(2-F,3-OMe,4-TMS)
Ph(2-F,3-C2F5,4-OMe) Ph(2-F,3-CF2H,4-n-Pr) Ph(2-F,3-OMe,4-CN)
Ph(2-F,3-C2F5,4-OCF3) Ph(2-F,3-CF2H,4-t-Bu) Ph(2-F,3-OCF3,4-Cl)
Ph(2-F,3-C2F5,4-OCHF2) Ph(2-F,3-CF2H,4-i-Pr) Ph(2-F,3-OCF3,4-F)
Ph(2-F,3-C2F5,4-OCF2CF2H) Ph(2-F,3-CF2H,4-c-Pr) Ph(2-F,3-OCF3,4-Br)
Ph(2-F,3-C2F5,4-OC2F5) Ph(2-F,3-CF2H,4-CF3) Ph(2-F,3-OCF3,4-I)
Ph(2-F,3-C2F5,4-SO2Me) Ph(2-F,3-CF2H,4-C2F5) Ph(2-F,3-OCF3,4-Me)
Ph(2-F,3-C2F5,4-TMS) Ph(2-F,3-CF2H,4-CF2CF2H) Ph(2-F,3-OCF3,4-Et)
Ph(2-F,3-C2F5,4-CN) Ph(2-F,3,4-di-CF2H) Ph(2-F,3-OCF3,4-n-Pr)
Ph(2-F,3-CF2CF2H,4-Cl) Ph(2-F,3-CF2H,4-OMe) Ph(2-F,3-OCF3,4-t-Bu)
Ph(2-F,3-CF2CF2H,4-F) Ph(2-F,3-CF2H,4-OCF3) Ph(2-F,3-OCF3,4-i-Pr)
Ph(2-F,3-CF2CF2H,4-Br) Ph(2-F,3-CF2H,4-OCHF2) Ph(2-F,3-OCF3,4-CF3)
Ph(2-F,3-CF2CF2H,4-I) Ph(2-F,3-CF2H,4-OCF2CF2H) Ph(2-F,3-OCF3,4-C2F5)
Ph(2-F,3-CF2CF2H,4-Me) Ph(2-F,3-CF2H,4-OC2F5) Ph(2-F,3-OCF3,4-CF2CF2H)
Ph(2-F,3-CF2CF2H,4-Et) Ph(2-F,3-CF2H,4-SO2Me) Ph(2-F,3-OCF3,4-CF2H)
Ph(2-F,3-CF2CF2H,4-n-Pr) Ph(2-F,3-CF2H,4-TMS) Ph(2-F,3-OCF3,4-OMe)
Ph(2-F,3-CF2CF2H,4-t-Bu) Ph(2-F,3-CF2H,4-CN) Ph(2-F,3,4-di-OCF3)
Ph(2-F,3-CF2CF2H,4-i-Pr) Ph(2-F,3-OMe,4-Cl) Ph(2-F,3-OCF3,4-OCF2CF2H)
Ph(2-F,3-CF2CF2H,4-c-Pr) Ph(2-F,3-OMe,4-F) Ph(2-F,3-OCF3,4-OC2F5)
Ph(2-F,3-CF2CF2H,4-CF3) Ph(2-F,3-OMe,4-Br) Ph(2-F,3-OCHF2,4-Cl)
Ph(2-F,3-OCHF2,4-F) Ph(2-F,3-OCF2CF2H,4-OCF3) Ph(2-F,3-SO2Me,4-C2F5)
Ph(2-F,3-OCHF2,4-Br) Ph(2-F,3-OCF2CF2H,4-OCHF2) Ph(2-F,3-SO2Me,4-CF2CF2H)
Ph(2-F,3-OCHF2,4-I) Ph(2-F,3,4-di-OCF2CF2H) Ph(2-F,3-SO2Me,4-CF2H)
Ph(2-F,3-OCHF2,4-Me) Ph(2-F,3-OCF2CF2H,4-OC2F5) Ph(2-F,3-SO2Me,4-OMe)
Ph(2-F,3-OCHF2,4-Et) Ph(2-F,3-OCF2CF2H,4-SO2Me) Ph(2-F,3-SO2Me,4-OCHF2)
Ph(2-F,3-OCHF2,4-n-Pr) Ph(2-F,3-OCF2CF2H,4-TMS) Ph(2-F,3-SO2Me,4-OCF2CF2H)
Ph(2-F,3-OCHF2,4-t-Bu) Ph(2-F,3-OCF2CF2H,4-CN) Ph(2-F,3-SO2Me,4-OC2F5)
Ph(2-F,3-OCHF2,4-i-Pr) Ph(2-F,3-OC2F5,4-Cl) Ph(2-F,3-TMS,4-Cl)
Ph(2-F,3-OCHF2,4-c-Pr) Ph(2-F,3-OC2F5,4-F) Ph(2-F,3-TMS,4-F)
Ph(2-F,3-OCHF2CF3,4-CF3) Ph(2-F,3-OC2F5,4-Br) Ph(2-F,3-TMS,4-Br)
Ph(2-F,3-OC2F5,4-C2F5) Ph(2-F,3-OC2F5,4-I) Ph(2-F,3-TMS,4-I)
Ph(2-F,3-OCHF2,4-CF2CF2H) Ph(2-F,3-OC2F5,4-Me) Ph(2-F,3-TMS,4-Me)
Ph(2-F,3-OCHF2,4-CF2H) Ph(2-F,3-OC2F5,4-Et) Ph(2-F,3-TMS,4-Et)
Ph(2-F,3-OCHF2,4-OMe) Ph(2-F,3-OC2F5,4-n-Pr) Ph(2-F,3-TMS,4-n-Pr)
Ph(2-F,3-OCHF2,4-OCF3) Ph(2-F,3-OC2F5,4-t-Bu) Ph(2-F,3-TMS,4-t-Bu)
Ph(2-F,3,4-di-OCHF2) Ph(2-F,3-OC2F5,4-i-Pr) Ph(2-F,3-TMS,4-i-Pr)
Ph(2-F,3-OCHF2,4-OCF2CF2H) Ph(2-F,3-OC2F5,4-c-Pr) Ph(2-F,3-TMS,4-c-Pr)
Ph(2-F,3-OCHF2,4-OC2F5) Ph(2-F,3-OC2F5CF3,4-CF3) Ph(2-F,3-TMS,4-CF3)
Ph(2-F,3-0CHF2,4-SO2Me) Ph(2-F,3-OC2F5,4-CF2CF2H) Ph(2-F,3-TMS,4-C2F5)
Ph(2-F,3-OCHF2,4-TMS) Ph(2-F,3-OC2F5,4-CF2H) Ph(2-F,3-TMS,4-CF2CF2H)
Ph(2-F,3-OCHF2,4-CN) Ph(2-F,3-OC2F5,4-OMe) Ph(2-F,3-TMS,4-CF2H)
Ph(2-F,3-OCF2CF2H,4-Cl) Ph(2-F,3-OC2F5,4-OCF3) Ph(2-F,3-TMS,4-OMe)
Ph(2-F,3-OCF2CF2H,4-F) Ph(2-F,3-OC2F5,4-OCHF2) Ph(2-F,3-TMS,4-OCF3)
Ph(2-F,3-OCF2CF2H,4-Br) Ph(2-F,3-OC2F5,4-OCF2CF2H) Ph(2-F,3-TMS,4-OCHF2)
Ph(2-F,3-OCF2CF2H,4-I) Ph(2-F,3,4-di-OC2F5) Ph(2-F,3-TMS,4-OCF2CF2H)
Ph(2-F,3-OCF2CF2H,4-Me) Ph(2-F,3-OC2F5,4-SO2Me) Ph(2-F,3-TMS,4-OC2F5)
Ph(2-F,3-OCF2CF2H,4-Et) Ph(2-F,3-OC2F5,4-TMS) Ph(2-F,3-TMS,4-SO2Me)
Ph(2-F,3-OCF2CF2H,4-n-Pr) Ph(2-F,3-OC2F5,4-CN) Ph(2-F,3,4-di-TMS)
Ph(2-F,3-OCF2CF2H,4-t-Bu) Ph(2-F,3-SO2Me,4-Cl) Ph(2-F,3-TMS,4-CN)
Ph(2-F,3-OCF2CF2H,4-i-Pr) Ph(2-F,3-SO2Me,4-Br) Ph(2-F,3-CN,4-F)
Ph(2-F,3-OCF2CF2H,4-c-Pr) Ph(2-F,3-SO2Me,4-I) Ph(2-F,3-CN,4-Br)
Ph(2-F,3-OCF2CF2H,4-CF3) Ph(2-F,3-SO2Me,4-Me) Ph(2-F,3-CN,4-I)
Ph(2-F,3-OCF2CF2H,4-C2F5) Ph(2-F,3-SO2Me,4-Et) Ph(2-F,3-CN,4-Me)
Ph(2-F,3-OCF2CF2H,4-CF2CF2H) Ph(2-F,3-SO2Me,4-n-Pr) Ph(2-F,3-CN,4-Et)
  Ph(2-F,3-SO2Me,4-t-Bu) Ph(2-F,3-CN,4-n-Pr)
Ph(2-F,3-OCF2CF2H,4-CF2H) Ph(2-F,3-SO2Me,4-i-Pr) Ph(2-F,3-CN,4-t-Bu)
Ph(2-F,3-OCF2CF2H,4-OMe) Ph(2-F,3-SO2MeCF3,4-CF3) Ph(2-F,3-CN,4-i-Pr)
Ph(2-F,3-CN,4-c-Pr) Ph(2-F,3-F,5-I) Ph(2-F,3-Br,5-OC2F5)
Ph(2-F,3-CN,4-CF3) Ph(2-F,3-F,5-Me) Ph(2-F,3-Br,5-SO2Me)
Ph(2-F,3-CN,4-C2F5) Ph(2-F,3-F,5-Et) Ph(2-F,3-Br,5-TMS)
Ph(2-F,3-CN,4-CF2CF2H) Ph(2-F,3-F,5-n-Pr) Ph(2-F,3-Br,5-CN)
Ph(2-F,3-CN,4-CF2H) Ph(2-F,3-F,5-t-Bu) Ph(2-F,3-I,5-Cl)
Ph(2-F,3-CN,4-OMe) Ph(2-F,3-F,5-i-Pr) Ph(2-F,3-I,5-F)
Ph(2-F,3-CN,4-OCF3) Ph(2-F,3-F,5-c-Pr) Ph(2-F,3-I,5-Br)
Ph(2-F,3-CN,4-OCHF2) Ph(2-F,3-F,5-CF3) Ph(2-F,3,5-di-I)
Ph(2-F,3-CN,4-OCF2CF2H) Ph(2-F,3-F,5-C2F5) Ph(2-F,3-I,5-Me)
Ph(2-F,3-CN,4-OC2F5) Ph(2-F,3-F,5-CF2CF2H) Ph(2-F,3-I,5-Et)
Ph(2-F,3-CN,4-TMS) Ph(2-F,3-F,5-CF2H) Ph(2-F,3-I,5-n-Pr)
Ph(2-F,3,4-di-CN) Ph(2-F,3-F,5-OMe) Ph(2-F,3-I,5-t-Bu)
Ph(2-F,3,5-di-Cl) Ph(2-F,3-F,5-OCF3) Ph(2-F,3-I,5-i-Pr)
Ph(2-F,3-Cl,5-F) Ph(2-F,3-F,5-OCHF2) Ph(2-F,3-I,5-c-Pr)
Ph(2-F,3-Cl,5-Br) Ph(2-F,3-F,5-OCF2CF2H) Ph(2-F,3-I,5-CF3)
Ph(2-F,3-Cl,5-I) Ph(2-F,3-F,5-OC2F5) Ph(2-F,3-I,5-C2F5)
Ph(2-F,3-Cl,5-Me) Ph(2-F,3-F,5-SO2Me) Ph(2-F,3-I,5-CF2CF2H)
Ph(2-F,3-Cl,5-Et) Ph(2-F,3-F,5-TMS) Ph(2-F,3-I,5-CF2H)
Ph(2-F,3-Cl,5-n-Pr) Ph(2-F,3-F,5-CN) Ph(2-F,3-I,5-OMe)
Ph(2-F,3-Cl,5-t-Bu) Ph(2-F,3-Br,5-Cl) Ph(2-F,3-I,5-OCF3)
Ph(2-F,3-Cl,5-i-Pr) Ph(2-F,3-Br,5-F) Ph(2-F,3-I,5-OCHF2)
Ph(2-F,3-Cl,5-c-Pr) Ph(2-F,3,5-di-Br) Ph(2-F,3-I,5-OCF2CF2H)
Ph(2-F,3-Cl,5-CF3) Ph(2-F,3-Br,5-I) Ph(2-F,3-I,5-OC2F5)
Ph(2-F,3-Cl,5-C2F5) Ph(2-F,3-Br,5-Me) Ph(2-F,3-I,5-SO2Me)
Ph(2-F,3-Cl,5-CF2CF2H) Ph(2-F,3-Br,5-Et) Ph(2-F,3-I,5-TMS)
Ph(2-F,3-Cl,5-CF2H) Ph(2-F,3-Br,5-n-Pr) Ph(2-F,3-I,5-CN)
Ph(2-F,3-Cl,5-OMe) Ph(2-F,3-Br,S-t-Bu) Ph(2-F,3-Me,5-Cl)
Ph(2-F,3-Cl,5-OCF3) Ph(2-F,3-Br,S-i-Pr) Ph(2-F,3-Me,5-F)
Ph(2-F,3-Cl,5-OCHF2) Ph(2-F,3-Br,5-c-Pr) Ph(2-F,3-Me,5-Br)
Ph(2-F,3-Cl,5-OCF2CF2H) Ph(2-F,3-Br,5-CF3) Ph(2-F,3-Me,5-I)
Ph(2-F,3-Cl,S-OC2F5) Ph(2-F,3-Br,5-C2F5) Ph(2-F,3,5-di-Me)
Ph(2-F,3-Cl,5-SO2Me) Ph(2-F,3-Br,5-CF2CF2H) Ph(2-F,3-Me,5-Et)
Ph(2-F,3-Cl,5-TMS) Ph(2-F,3-Br,S-CF2H) Ph(2-F,3-Me,S-n-Pr)
Ph(2-F,3-Cl,5-CN) Ph(2-F,3-Br,5-OMe) Ph(2-F,3-Me,5-t-Bu)
Ph(2-F,3-F,5-Cl) Ph(2-F,3-Br,5-OCF3) Ph(2-F,3-Me,5-i-Pr)
Ph(2,3,5-tri-F) Ph(2-F,3-Br,5-OCHF2) Ph(2-F,3-Me,5-c-Pr)
Ph(2-F,3-F,5-Br) Ph(2-F,3-Br,5-OCF2CF2H) Ph(2-F,3-Me,5-CF3)
Ph(2-F,3-Me,5-C2F5) Ph(2-F,3-n-Pr,5-Me) Ph(2-F,3-t-Bu,5-SO2Me)
Ph(2-F,3-Me,5-CF2CF2H) Ph(2-F,3-n-Pr,S-Et) Ph(2-F,3-t-Bu,5-TMS)
Ph(2-F,3-Me,5-CF2H) Ph(2-F,3,S-di-n-Pr) Ph(2-F,3-t-Bu,5-CN)
Ph(2-F,3-Me,5-OMe) Ph(2-F,3-n-Pr,5-t-Bu) Ph(2-F,3-i-Pr,5-Cl)
Ph(2-F,3-Me,5-OCF3) Ph(2-F,3-n-Pr,5-i-Pr) Ph(2-F,3-i-Pr,5-F)
Ph(2-F,3-Me,5-OCHF2) Ph(2-F,3-n-Pr,S-c-Pr) Ph(2-F,3-i-Pr,5-Br)
Ph(2-F,3-Me,5-OCF2CF2H) Ph(2-F,3-n-Pr,S-CF3) Ph(2-F,3-i-Pr,5-I)
Ph(2-F,3-Me,5-OC2F5) Ph(2-F,3-n-Pr,5-C2F5) Ph(2-F,3-i-Pr,5-Me)
Ph(2-F,3-Me,5-SO2Me) Ph(2-F,3-n-Pr,5-CF2CF2H) Ph(2-F,3-i-Pr,5-Et)
Ph(2-F,3-Me,5-TMS) Ph(2-F,3-n-Pr,5-CF2H) Ph(2-F,3-i-Pr,5-n-Pr)
Ph(2-F,3-Me,5-CN) Ph(2-F,3-n-Pr,5-OMe) Ph(2-F,3-i-Pr,5-t-Bu)
Ph(2-F,3-Et,5-Cl) Ph(2-,3-n-Pr,5-OCF3) Ph(2-F,3,5-di-i-Pr)
Ph(2-F,3-Et,5-F) Ph(2-F,3-n-Pr,5-OCHF2) Ph(2-F,3-i-Pr,5-c-Pr)
Ph(2-F,3-Et,5-Br) Ph(2-F,3-n-Pr,5-OCF2CF2H) Ph(2-F,3-i-Pr,5-CF3)
Ph(2-F,3-Et,5-I) Ph(2-F,3-n-Pr,5-OC2F5) Ph(2-F,3-i-Pr,5-C2F5)
Ph(2-F,3-Et,5-Me) Ph(2-F,3-n-Pr,5-SO2Me) Ph(2-F,3-i-Pr,5-CF2CF2H)
Ph(2-F,3,5-di-Et) Ph(2-F,3-n-Pr,5-TMS) Ph(2-F,3-i-Pr,5-CF2H)
Ph(2-F,3-Et,5-n-Pr) Ph(2-F,3-n-Pr,5-CN) Ph(2-F,3-i-Pr,5-OMe)
Ph(2-F,3-Et,5-t-Bu) Ph(2-F,3-t-Bu,5-Cl) Ph(2-F,3-i-Pr,5-OCF3)
Ph(2-F,3-Et,5-i-Pr) Ph(2-F,3-t-Bu,5-F) Ph(2-F,3-i-Pr,5-OCHF2)
Ph(2-F,3-Et,5-c-Pr) Ph(2-F,3-t-Bu,5-Br) Ph(2-F,3-i-Pr,5-OCF2CF2H)
Ph(2-F,3-Et,5-CF3) Ph(2-F,3-t-Bu,5-I) Ph(2-F,3-i-Pr,5-OC2F5)
Ph(2-F,3-Et,5-C2F5) Ph(2-F,3-t-Bu,5-Me) Ph(2-F,3-i-Pr,5-SO2Me)
Ph(2-F,3-Et,5-CF2CF2H) Ph(2-F,3-t-Bu,5-Et) Ph(2-F,3-i-Pr,5-TMS)
Ph(2-F,3-Et,5-CF2H) Ph(2-F,3-t-Bu,5-n-Pr) Ph(2-F,3-i-Pr,5-CN)
Ph(2-F,3-Et,5-OMe) Ph(2-F,3,5-di-t-Bu) Ph(2-F,3-c-Pr,5-Cl)
Ph(2-F,3-Et,5-OCF3) Ph(2-F,3-t-Bu,5-i-Pr) Ph(2-F,3-c-Pr,5-F)
Ph(2-F,3-Et,5-OCHF2) Ph(2-F,3-t-Bu,5-c-Pr) Ph(2-F,3-c-Pr,5-Br)
Ph(2-F,3-Et,5-OCF2CF2H) Ph(2-F,3-t-Bu,5-CF3) Ph(2-F,3-c-Pr,5-I)
Ph(2-F,3-Et,5-OC2F5) Ph(2-F,3-t-Bu,5-C2F5) Ph(2-F,3-c-Pr,5-Me)
Ph(2-F,3-Et,5-SO2Me) Ph(2-F,3-t-Bu,5-CF2CF2H) Ph(2-F,3-c-Pr,5-Et)
Ph(2-F,3-Et,5-TMS) Ph(2-F,3-t-Bu,5-CF2H) Ph(2-F,3-c-Pr,5-n-Pr)
Ph(2-F,3-Et,5-CN) Ph(2-F,3-t-Bu,5-OMe) Ph(2-F,3-c-Pr,5-t-Bu)
Ph(2-F,3-n-Pr,5-Cl) Ph(2-F,3-t-Bu,5-OCF3) Ph(2-F,3-c-Pr,5-i-Pr)
Ph(2-F,3-n-Pr,S-F) Ph(2-F,3-t-Bu,5-OCHF2) Ph(2-F,3,5-di-c-Pr)
Ph(2-F,3-n-Pr,5-Br) Ph(2-F,3-t-Bu,5-OCF2CF2H) Ph(2-F,3-c-Pr,5-CF3)
Ph(2-F,3-n-Pr,5-I) Ph(2-F,3-t-Bu,5-OC2F5) Ph(2-F,3-c-Pr,5-C2F5)
Ph(2-F,3-c-Pr,5-CF2CF2H) Ph(2-F,3-C2F5,5-Et) Ph(2-F,3-CF2CF2H,5-SO2Me)
Ph(2-F,3-c-Pr,5-CF2H) Ph(2-F,3-C2F5,5-n-Pr) Ph(2-F,3-CF2CF2H,5-TMS)
Ph(2-F,3-c-Pr,5-OMe) Ph(2-F,3-C2F5,5-t-Bu) Ph(2-F,3-CF2CF2H,5-CN)
Ph(2-F,3-c-Pr,5-OCF3) Ph(2-F,3-C2F5,5-i-Pr) Ph(2-F,3-CF2H,5-Cl)
Ph(2-F,3-c-Pr,5-OCHF2) Ph(2-F,3-C2F5,5-c-Pr) Ph(2-F,3-CF2H,5-F)
Ph(2-F,3-c-Pr,5-OCF2CF2H) Ph(2-F,3-C2F5CF3,5-CF3) Ph(2-F,3-CF2H,5-Br)
Ph(2-F,3-c-Pr,5-OC2F5) Ph(2-F,3,5-di-C2F5) Ph(2-F,3-CF2H,5-I)
Ph(2-F,3-c-Pr,5-SO2Me) Ph(2-F,3-C2F5,5-CF2CF2H) Ph(2-F,3-CF2H,5-Me)
Ph(2-F,3-c-Pr,5-TMS) Ph(2-F,3-C2F5,5-CF2H) Ph(2-F,3-CF2H,5-Et)
Ph(2-F,3-c-Pr,5-CN) Ph(2-F,3-C2F5,5-OMe) Ph(2-F,3-CF2H,5-n-Pr)
Ph(2-F,3-CF3,5-Cl) Ph(2-F,3-C2F5,5-OCF3) Ph(2-F,3-CF2H,5-t-Bu)
Ph(2-F,3-CF3,5-F) Ph(2-F,3-C2F5,5-OCHF2) Ph(2-F,3-CF2H,5-i-Pr)
Ph(2-F,3-CF3,5-Br) Ph(2-F,3-C2F5,5-OCF2CF2H) Ph(2-F,3-CF2H,5-c-Pr)
Ph(2-F,3-CF3,5-I) Ph(2-F,3-C2F5,5-OC2F5) Ph(2-F,3-CF2H,5-CF3)
Ph(2-F,3-CF3,5-Me) Ph(2-F,3-C2F5,5-SO2Me) Ph(2-F,3-CF2H,5-C2F5)
Ph(2-F,3-CF3,5-Et) Ph(2-F,3-C2F5,5-TMS) Ph(2-F,3-CF2H,5-CF2CF2H)
Ph(2-F,3-CF3,5-n-Pr) Ph(2-F,3-C2F5,5-CN) Ph(2-F,3,5-di-CF2H)
Ph(2-F,3-CF3,5-t-Bu) Ph(2-F,3-CF2CF2H,5-Cl) Ph(2-F,3-CF2H,5-OMe)
Ph(2-F,3-CF3,5-i-Pr) Ph(2-F,3-CF2CF2H,5-F) Ph(2-F,3-CF2H,5-OCF3)
Ph(2-F,3-CF3,5-c-Pr) Ph(2-F,3-CF2CF2H,5-Br) Ph(2-F,3-CF2H,5-OCHF2)
Ph(2-F,3,5-di-CF3) Ph(2-F,3-CF2CF2H,5-I) Ph(2-F,3-CF2H,5-OCF2CF2H)
Ph(2-F,3-CF3,5-C2F5) Ph(2-F,3-CF2CF2H,5-Me) Ph(2-F,3-CF2H,5-OC2F5)
Ph(2-F,3-CF3,5-CF2CF2H) Ph(2-F,3-CF2CF2H,5-Et) Ph(2-F,3-CF2H,5-SO2Me)
Ph(2-F,3-CF3,5-CF2H) Ph(2-F,3-CF2CF2H,5-n-Pr) Ph(2-F,3-CF2H,5-TMS)
Ph(2-F,3-CF3,5-OMe) Ph(2-F,3-CF2CF2H,5-t-Bu) Ph(2-F,3-CF2H,5-CN)
Ph(2-F,3-CF3,5-OCF3) Ph(2-F,3-CF2CF2H,5-i-Pr) Ph(2-F,3-OMe,5-Cl)
Ph(2-F,3-CF3,5-OCHF2) Ph(2-F,3-CF2CF2H,5-c-Pr) Ph(2-F,3-OMe,5-F)
Ph(2-F,3-CF3,5-OCF2CF2H) Ph(2-F,3-CF2CF2H,5-CF3) Ph(2-F,3-OMe,5-Br)
Ph(2-F,3-CF3,5-OC2F5) Ph(2-F,3-CF2CF2H,5-C2F5) Ph(2-F,3-OMe,5-I)
Ph(2-F,3-CF3,5-SO2Me) Ph(2-F,3,5-di-CF2CF2H) Ph(2-F,3-OMe,5-Me)
Ph(2-F,3-CF3,5-TMS) Ph(2-F,3-CF2CF2H,5-CF2H) Ph(2-F,3-OMe,5-Et)
Ph(2-F,3-CF3,5-CN) Ph(2-F,3-CF2CF2H,5-OMe) Ph(2-F,3-OMe,5-n-Pr)
Ph(2-F,3-C2F5,5-Cl) Ph(2-F,3-CF2CF2H,5-OCF3) Ph(2-F,3-OMe,5-t-Bu)
Ph(2-F,3-C2F5,5-F) Ph(2-F,3-CF2CF2H,5-OCHF2) Ph(2-F,3-OMe,5-i-Pr)
Ph(2-F,3-C2F5,5-Br) Ph(2-F,3-CF2CF2H,5-OCF2CF2H) Ph(2-F,3-OMe,5-c-Pr)
Ph(2-F,3-C2F5,5-I)   Ph(2-F,3-OMe,5-CF3)
Ph(2-F,3-C2F5,5-Me) Ph(2-F,3-CF2CF2H,5-OC2F5) Ph(2-F,3-OMe,5-C2F5)
Ph(2-F,3-OMe,5-CF2CF2H) Ph(2-F,3-OCHF2,5-Et) Ph(2-F,3-OCF2CF2H,5-SO2Me)
Ph(2-F,3-OMe,5-CF2H) Ph(2-F,3-OCHF2,5-n-Pr) Ph(2-F,3-OCF2CF2H,5-TMS)
Ph(2-F,3,5-di-OMe) Ph(2-F,3-OCHF2,5-t-Bu) Ph(2-F,3-OCF2CF2H,5-CN)
Ph(2-F,3-OMe,5-OCF3) Ph(2-F,3-OCHF2,5-i-Pr) Ph(2-F,3-OC2F5,5-Cl)
Ph(2-F,3-OMe,5-OCHF2) Ph(2-F,3-OCHF2,5-c-Pr) Ph(2-F,3-OC2F5,5-F)
Ph(2-F,3-OMe,5-OCF2CF2H) Ph(2-F,3-OCHF2CF3,5-CF3) Ph(2-F,3-OC2F5,5-Br)
Ph(2-F,3-OMe,5-OC2F5) Ph(2-F,3-OC2F5,5-C2F5) Ph(2-F,3-OC2F5,5-I)
Ph(2-F,3-OMe,5-SO2Me) Ph(2-F,3-OCHF2,5-CF2CF2H) Ph(2-F,3-OC2F5,5-Me)
Ph(2-F,3-OMe,5-TMS) Ph(2-F,3-OCHF2,5-CF2H) Ph(2-F,3-OC2F5,5-Et)
Ph(2-F,3-OMe,5-CN) Ph(2-F,3-OCHF2,5-OMe) Ph(2-F,3-OC2F5,5-n-Pr)
Ph(2-F,3-OCF3,5-Cl) Ph(2-F,3-OCHF2,5-OCF3) Ph(2-F,3-OC2F5,5-t-Bu)
Ph(2-F,3-OCF3,5-F) Ph(2-F,3,5-di-OCHF2) Ph(2-F,3-OC2F5,5-i-Pr)
Ph(2-F,3-OCF3,5-Br) Ph(2-F,3-OCHF2,5-OCF2CF2H) Ph(2-F,3-OC2F5,5-c-Pr)
Ph(2-F,3-OCF3,5-I) Ph(2-F,3-OCHF2,5-OC2F5) Ph(2-F,3-OC2F5CF3,5-CF3)
Ph(2-F,3-OCF3,5-Me) Ph(2-F,3-OCHF2,5-SO2Me) Ph(2-F,3-OC2F5,5-CF2CF2H)
Ph(2-F,3-OCF3,5-Et) Ph(2-F,3-OCHF2,5-TMS) Ph(2-F,3-OC2F5,5-CF2H)
Ph(2-F,3-OCF3,5-n-Pr) Ph(2-F,3-OCHF2,5-CN) Ph(2-F,3-OC2F5,5-OMe)
Ph(2-F,3-OCF3,5-t-Bu) Ph(2-F,3-OCF2CF2H,5-Cl) Ph(2-F,3-OC2F5,5-OCF3)
Ph(2-F,3-OCF3,5-i-Pr) Ph(2-F,3-OCF2CF2H,5-F) Ph(2-F,3-OC2F5,5-OCHF2)
Ph(2-F,3-OCF3,5-c-Pr) Ph(2-F,3-OCF2CF2H,5-Br) Ph(2-F,3-OC2F5,5-OCF2CF2H)
Ph(2-F,3-OCF3,5-CF3) Ph(2-F,3-OCF2CF2H,5-I) Ph(2-F,3,5-di-OC2F5)
Ph(2-F,3-OCF3,5-C2F5) Ph(2-F,3-OCF2CF2H,5-Me) Ph(2-F,3-OC2F5,5-SO2Me)
Ph(2-F,3-OCF3,5-CF2CF2H) Ph(2-F,3-OCF2CF2H,5-Et) Ph(2-F,3-OC2F5,5-TMS)
Ph(2-F,3-OCF3,5-CF2H) Ph(2-F,3-OCF2CF2H,5-n-Pr) Ph(2-F,3-OC2F5,5-CN)
Ph(2-F,3-OCF3,5-OMe) Ph(2-F,3-OCF2CF2H,5-t-Bu) Ph(2-F,3-SO2Me,5-Cl)
Ph(2-F,3,5-di-OCF3) Ph(2-F,3-OCF2CF2H,5-i-Pr) Ph(2-F,3-SO2Me,5-F)
Ph(2-F,3-OCF3,5-OCHF2) Ph(2-F,3-OCF2CF2H,5-c-Pr) Ph(2-F,3-SO2Me,5-Br)
Ph(2-F,3-OCF3,5-OCF2CF2H) Ph(2-F,3-OCF2CF2H,5-CF3) Ph(2-F,3-SO2Me,5-I)
Ph(2-F,3-OCF3,5-OC2F5) Ph(2-F,3-OCF2CF2H,5-C2F5) Ph(2-F,3-SO2Me,5-Me)
Ph(2-F,3-OCF3,5-SO2Me) Ph(2-F,3-OCF2CF2H,5-CF2CF2H) Ph(2-F,3-SO2Me,5-Et)
Ph(2-F,3-OCF3,5-TMS)   Ph(2-F,3-SO2Me,5-n-Pr)
Ph(2-F,3-OCF3,5-CN) Ph(2-F,3-OCF2CF2H,5-CF2H) Ph(2-F,3-SO2Me,5-t-Bu)
Ph(2-F,3-OCHF2,5-Cl) Ph(2-F,3-OCF2CF2H,5-OMe) Ph(2-F,3-SO2Me,5-i-Pr)
Ph(2-F,3-OCHF2,5-F) Ph(2-F,3-OCF2CF2H,5-OCF3) Ph(2-F,3-SO2Me,5-c-Pr)
Ph(2-F,3-OCHF2,5-Br) Ph(2-F,3-OCF2CF2H,5-OCHF2) Ph(2-F,3-SO2MeCF3,5-CF3)
Ph(2-F,3-OCHF2,5-I) Ph(2-F,3,5-di-OCF2CF2H) Ph(2-F,3-SO2Me,5-C2F5)
Ph(2-F,3-OCHF2,5-Me) Ph(2-F,3-OCF2CF2H,5-OC2F5) Ph(2-F,3-SO2Me,5-CF2CF2H)
Ph(2-F,3-SO2Me,5-CF2H) Ph(2-F,3-CN,5-n-Pr) Ph(2-F,4-Cl,5-CN)
Ph(2-F,3-SO2Me,5-OMe) Ph(2-F,3-CN,5-t-Bu) Ph(2-F,4-F,5-Cl)
Ph(2-F,3-SO2Me,5-OCF3) Ph(2-F,3-CN,5-i-Pr) Ph(2,4,5-tri-F)
Ph(2-F,3-SO2Me,5-OCHF2) Ph(2-F,3-CN,5-c-Pr) Ph(2-F,4-F,5-Br)
Ph(2-F,3-SO2Me,5-OCF2CF2H) Ph(2-F,3-CN,5-CF3) Ph(2-F,4-F,5-I)
Ph(2-F,3-SO2Me,5-OC2F5) Ph(2-F,3-CN,5-C2F5) Ph(2-F,4-F,5-Me)
Ph(2-F,3,5-di-SO2Me) Ph(2-F,3-CN,5-CF2CF2H) Ph(2-F,4-F,5-Et)
Ph(2-F,3-SO2Me,5-TMS) Ph(2-F,3-CN,5-CF2H) Ph(2-F,4-F,5-n-Pr)
Ph(2-F,3-SO2Me,5-CN) Ph(2-F,3-CN,5-OMe) Ph(2-F,4-F,5-t-Bu)
Ph(2-F,3-TMS,5-Cl) Ph(2-F,3-CN,5-OCF3) Ph(2-F,4-F,5-i-Pr)
Ph(2-F,3-TMS,5-F) Ph(2-F,3-CN,5-OCHF2) Ph(2-F,4-F,5-c-Pr)
Ph(2-F,3-TMS,5-Br) Ph(2-F,3-CN,5-OCF2CF2H) Ph(2-F,4-F,5-CF3)
Ph(2-F,3-TMS,5-I) Ph(2-F,3-CN,5-OC2F5) Ph(2-F,4-F,5-C2F5)
Ph(2-F,3-TMS,5-Me) Ph(2-F,3-CN,5-SO2Me) Ph(2-F,4-F,5-CF2CF2H)
Ph(2-F,3-TMS,5-Et) Ph(2-F,3-CN,5-TMS) Ph(2-F,4-F,5-CF2H)
Ph(2-F,3-TMS,5-n-Pr) Ph(2-F,3,5-di-CN) Ph(2-F,4-F,5-OMe)
Ph(2-F,3-TMS,5-t-Bu) Ph(2-F,4,5-di-Cl) Ph(2-F,4-F,5-OCF3)
Ph(2-F,3-TMS,5-i-Pr) Ph(2-F,4-Cl,5-F) Ph(2-F,4-F,5-OCHF2)
Ph(2-F,3-TMS,5-c-Pr) Ph(2-F,4-Cl,5-Br) Ph(2-F,4-F,5-OCF2CF2H)
Ph(2-F,3-TMS,5-CF3) Ph(2-F,4-Cl,5-I) Ph(2-F,4-F,5-OC2F5)
Ph(2-F,3-TMS,5-C2F5) Ph(2-F,4-Cl,5-Me) Ph(2-F,4-F,5-SO2Me)
Ph(2-F,3-TMS,5-CF2CF2H) Ph(2-F,4-Cl,5-Et) Ph(2-F,4-F,5-TMS)
Ph(2-F,3-TMS,5-CF2H) Ph(2-F,4-Cl,5-n-Pr) Ph(2-F,4-F,5-CN)
Ph(2-F,3-TMS,5-OMe) Ph(2-F,4-Cl,5-t-Bu) Ph(2-F,4-Br,5-Cl)
Ph(2-F,3-TMS,5-OCF3) Ph(2-F,4-Cl,5-i-Pr) Ph(2-F,4-Br,5-F)
Ph(2-F,3-TMS,5-OCHF2) Ph(2-F,4-Cl,5-c-Pr) Ph(2-F,4,5-di-Br)
Ph(2-F,3-TMS,5-OCF2CF2H) Ph(2-F,4-Cl,5-CF3) Ph(2-F,4-Br,5-I)
Ph(2-F,3-TMS,5-OC2F5) Ph(2-F,4-Cl,5-C2F5) Ph(2-F,4-Br,5-Me)
Ph(2-F,3-TMS,5-SO2Me) Ph(2-F,4-Cl,5-CF2CF2H) Ph(2-F,4-Br,5-Et)
Ph(2-F,3,5-di-TMS) Ph(2-F,4-Cl,5-CF2H) Ph(2-F,4-Br,5-n-Pr)
Ph(2-F,3-TMS,5-CN) Ph(2-F,4-Cl,5-OMe) Ph(2-F,4-Br,5-t-Bu)
Ph(2-F,3-CN,5-Cl) Ph(2-F,4-Cl,5-OCF3) Ph(2-F,4-Br,5-i-Pr)
Ph(2-F,3-CN,5-F) Ph(2-F,4-Cl,5-OCHF2) Ph(2-F,4-Br,5-c-Pr)
Ph(2-F,3-CN,5-Br) Ph(2-F,4-Cl,5-OCF2CF2H) Ph(2-F,4-Br,5-CF3)
Ph(2-F,3-CN,5-I) Ph(2-F,4-Cl,5-OC2F5) Ph(2-F,4-Br,5-C2F5)
Ph(2-F,3-CN,5-Me) Ph(2-F,4-Cl,5-SO2Me) Ph(2-F,4-Br,5-CF2CF2H)
Ph(2-F,3-CN,5-Et) Ph(2-F,4-Cl,5-TMS) Ph(2-F,4-Br,5-CF2H)
Ph(2-F,4-Br,5-OMe) Ph(2-F,4-Me,5-t-Bu) Ph(2-F,4-n-Pr,5-Cl)
Ph(2-F,4-Br,5-OCF3) Ph(2-F,4-Me,5-i-Pr) Ph(2-F,4-n-Pr,5-F)
Ph(2-F,4-Br,5-OCHF2) Ph(2-F,4-Me,5-c-Pr) Ph(2-F,4-n-Pr,5-Br)
Ph(2-F,4-Br,5-OCF2CF2H) Ph(2-F,4-Me,5-CF3) Ph(2-F,4-n-Pr,5-I)
Ph(2-F,4-Br,5-OC2F5) Ph(2-F,4-Me,5-C2F5) Ph(2-F,4-n-Pr,5-Me)
Ph(2-F,4-Br,5-SO2Me) Ph(2-F,4-Me,5-CF2CF2H) Ph(2-F,4-n-Pr,5-Et)
Ph(2-F,4-Br,5-TMS) Ph(2-F,4-Me,5-CF2H) Ph(2-F,4,5-di-n-Pr)
Ph(2-F,4-Br,5-CN) Ph(2-F,4-Me,5-OMe) Ph(2-F,4-n-Pr,5-t-Bu)
Ph(2-F,4-I,5-Cl) Ph(2-F,4-Me,5-OCF3) Ph(2-F,4-n-Pr,5-i-Pr)
Ph(2-F,4-I,5-F) Ph(2-F,4-Me,5-OCHF2) Ph(2-F,4-n-Pr,5-c-Pr)
Ph(2-F,4-I,5-Br) Ph(2-F,4-Me,5-OCF2CF2H) Ph(2-F,4-n-Pr,5-CF3)
Ph(2-F,4,5-di-I) Ph(2-F,4-Me,5-OC2F5) Ph(2-F,4-n-Pr,5-C2F5)
Ph(2-F,4-I,5-Me) Ph(2-F,4-Me,5-SO2Me) Ph(2-F,4-n-Pr,5-CF2CF2H)
Ph(2-F,4-I,5-Et) Ph(2-F,4-Me,5-TMS) Ph(2-F,4-n-Pr,5-CF2H)
Ph(2-F,4-I,5-n-Pr) Ph(2-F,4-Me,5-CN) Ph(2-F,4-n-Pr,5-OMe)
Ph(2-F,4-I,5-t-Bu) Ph(2-F,4-Et,5-Cl) Ph(2-F,4-n-Pr,5-OCF3)
Ph(2-F,4-I,5-i-Pr) Ph(2-F,4-Et,5-F) Ph(2-F,4-n-Pr,5-OCHF2)
Ph(2-F,4-I,5-c-Pr) Ph(2-F,4-Et,5-Br) Ph(2-F,4-n-Pr,5-OCF2CF2H)
Ph(2-F,4-I,5-CF3) Ph(2-F,4-Et,5-I) Ph(2-F,4-n-Pr,5-OC2F5)
Ph(2-F,4-I,5-C2F5) Ph(2-F,4-Et,5-Me) Ph(2-F,4-n-Pr,5-SO2Me)
Ph(2-F,4-I,5-CF2CF2H) Ph(2-F,4,5-di-Et) Ph(2-F,4-n-Pr,5-TMS)
Ph(2-F,4-I,5-CF2H) Ph(2-F,4-Et,5-n-Pr) Ph(2-F,4-n-Pr,5-CN)
Ph(2-F,4-I,5-OMe) Ph(2-F,4-Et,5-t-Bu) Ph(2-F,4-t-Bu,5-Cl)
Ph(2-F,4-I,5-OCF3) Ph(2-F,4-Et,5-i-Pr) Ph(2-F,4-t-Bu,5-F)
Ph(2-F,4-I,5-OCHF2) Ph(2-F,4-Et,5-c-Pr) Ph(2-F,4-t-Bu,5-Br)
Ph(2-F,4-I,5-OCF2CF2H) Ph(2-F,4-Et,5-CF3) Ph(2-F,4-t-Bu,5-I)
Ph(2-F,4-I,5-OC2F5) Ph(2-F,4-Et,5-C2F5) Ph(2-F,4-t-Bu,5-Me)
Ph(2-F,4-I,5-SO2Me) Ph(2-F,4-Et,5-CF2CF2H) Ph(2-F,4-t-Bu,5-Et)
Ph(2-F,4-I,5-TMS) Ph(2-F,4-Et,5-CF2H) Ph(2-F,4-t-Bu,5-n-Pr)
Ph(2-F,4-I,5-CN) Ph(2-F,4-Et,5-OMe) Ph(2-F,4,5-di-t-Bu)
Ph(2-F,4-Me,5-Cl) Ph(2-F,4-Et,5-OCF3) Ph(2-F,4-t-Bu,5-i-Pr)
Ph(2-F,4-Me,5-F) Ph(2-F,4-Et,5-OCHF2) Ph(2-F,4-t-Bu,5-c-Pr)
Ph(2-F,4-Me,5-Br) Ph(2-F,4-Et,5-OCF2CF2H) Ph(2-F,4-t-Bu,5-CF3)
Ph(2-F,4-Me,5-I) Ph(2-F,4-Et,5-OC2F5) Ph(2-F,4-t-Bu,5-C2F5)
Ph(2-F,4,5-di-Me) Ph(2-F,4-Et,5-SO2Me) Ph(2-F,4-t-Bu,5-CF2CF2H)
Ph(2-F,4-Me,5-Et) Ph(2-F,4-Et,5-TMS) Ph(2-F,4-t-Bu,5-CF2H)
Ph(2-F,4-Me,5-n-Pr) Ph(2-F,4-Et,5-CN) Ph(2-F,4-t-Bu,5-OMe)
Ph(2-F,4-t-Bu,5-OCF3) Ph(2-F,4-c-Pr,5-i-Pr) Ph(2-F,4-CF2CF3,5-F)
Ph(2-F,4-t-Bu,5-OCHF2) Ph(2-F,4,5-di-c-Pr) Ph(2-F,4-CF2CF3,5-Br)
Ph(2-F,4-t-Bu,5-OCF2CF2H) Ph(2-F,4-c-Pr,5-CF3) Ph(2-F,4-CF2CF3,5-I)
Ph(2-F,4-t-Bu,5-OC2F5) Ph(2-F,4-c-Pr,5-C2F5) Ph(2-F,4-CF2CF3,5-Me)
Ph(2-F,4-t-Bu,5-SO2Me) Ph(2-F,4-c-Pr,5-CF2CF2H) Ph(2-F,4-CF2CF3,5-Et)
Ph(2-F,4-t-Bu,5-TMS) Ph(2-F,4-c-Pr,5-CF2H) Ph(2-F,4-CF2CF3,5-n-Pr)
Ph(2-F,4-t-Bu,5-CN) Ph(2-F,4-c-Pr,5-OMe) Ph(2-F,4-CF2CF3,5-t-Bu)
Ph(2-F,4-i-Pr,5-Cl) Ph(2-F,4-c-Pr,5-OCF3) Ph(2-F,4-CF2CF3,5-i-Pr)
Ph(2-F,4-i-Pr,5-F) Ph(2-F,4-c-Pr,5-OCHF2) Ph(2-F,4-CF2CF3,5-c-Pr)
Ph(2-F,4-i-Pr,5-Br) Ph(2-F,4-c-Pr,5-OCF2CF2H) Ph(2-F,4-C2F5CF3,5-CF3)
Ph(2-F,4-i-Pr,5-I) Ph(2-F,4-c-Pr,5-OC2F5) Ph(2-F,4,5-di-C2F5)
Ph(2-F,4-i-Pr,5-Me) Ph(2-F,4-c-Pr,5-SO2Me) Ph(2-F,4-CF2CF3,5-CF2CF2H)
Ph(2-F,4-i-Pr,5-Et) Ph(2-F,4-c-Pr,5-TMS) Ph(2-F,4-CF2CF3,5-CF2H)
Ph(2-F,4-i-Pr,5-n-Pr) Ph(2-F,4-c-Pr,5-CN) Ph(2-F,4-CF2CF3,5-OMe)
Ph(2-F,4-i-Pr,5-t-Bu) Ph(2-F,4-CF3,5-Cl) Ph(2-F,4-CF2CF3,5-OCF3)
Ph(2-F,4,5-di-i-Pr) Ph(2-F,4-CF3,5-F) Ph(2-F,4-CF2CF3,5-OCHF2)
Ph(2-F,4-i-Pr,5-c-Pr) Ph(2-F,4-CF3,5-Br) Ph(2-F,4-CF2CF3,5-OCF2CF2H)
Ph(2-F,4-i-Pr,5-CF3) Ph(2-F,4-CF3,5-I) Ph(2-F,4-CF2CF3,5-OC2F5)
Ph(2-F,4-i-Pr,5-C2F5) Ph(2-F,4-CF3,5-Me) Ph(2-F,4-CF2CF3,5-SO2Me)
Ph(2-F,4-i-Pr,5-CF2CF2H) Ph(2-F,4-CF3,5-Et) Ph(2-F,4-CF2CF3,5-TMS)
Ph(2-F,4-i-Pr,5-CF2H) Ph(2-F,4-CF3,5-n-Pr) Ph(2-F,4-CF2CF3,5-CN)
Ph(2-F,4-i-Pr,5-OMe) Ph(2-F,4-CF3,5-t-Bu) Ph(2-F,4-CF2CF2H,5-Cl)
Ph(2-F,4-i-Pr,5-OCF3) Ph(2-F,4-CF3,5-i-Pr) Ph(2-F,4-CF2CF2H,5-F)
Ph(2-F,4-i-Pr,5-OCHF2) Ph(2-F,4-CF3,5-c-Pr) Ph(2-F,4-CF2CF2H,5-Br)
Ph(2-F,4-i-Pr,5-OCF2CF2H) Ph(2-F,4,5-di-CF3) Ph(2-F,4-CF2CF2H,5-I)
Ph(2-F,4-i-Pr,5-OC2F5) Ph(2-F,4-CF3,5-C2F5) Ph(2-F,4-CF2CF2H,5-Me)
Ph(2-F,4-i-Pr,5-SO2Me) Ph(2-F,4-CF3,5-CF2CF2H) Ph(2-F,4-CF2CF2H,5-Et)
Ph(2-F,4-i-Pr,5-TMS) Ph(2-F,4-CF3,5-CF2H) Ph(2-F,4-CF2CF2H,5-n-Pr)
Ph(2-F,4-i-Pr,5-CN) Ph(2-F,4-CF3,5-OMe) Ph(2-F,4-CF2CF2H,5-t-Bu)
Ph(2-F,4-c-Pr,5-Cl) Ph(2-F,4-CF3,5-OCF3) Ph(2-F,4-CF2CF2H,5-i-Pr)
Ph(2-F,4-c-Pr,5-F) Ph(2-F,4-CF3,5-OCHF2) Ph(2-F,4-CF2CF2H,5-c-Pr)
Ph(2-F,4-c-Pr,5-Br) Ph(2-F,4-CF3,5-OCF2CF2H) Ph(2-F,4-CF2CF2CF3H,5-CF3)
Ph(2-F,4-c-Pr,5-I) Ph(2-F,4-CF3,5-OC2F5) Ph(2-F,4-CF2CF2H,5-C2F5)
Ph(2-F,4-c-Pr,5-Me) Ph(2-F,4-CF3,5-SO2Me) Ph(2-F,4,5-di-CF2CF2H)
Ph(2-F,4-c-Pr,5-Et) Ph(2-F,4-CF3,5-TMS) Ph(2-F,4-CF2CF2H,5-CF2H)
Ph(2-F,4-c-Pr,5-n-Pr) Ph(2-F,4-CF3,5-CN) Ph(2-F,4-CF2CF2H,5-OMe)
Ph(2-F,4-c-Pr,5-t-Bu) Ph(2-F,4-CF2CF3,5-Cl) Ph(2-F,4-CF2CF2H,5-OCF3)
Ph(2-F,4-CF2CF2H,5-OCHF2) Ph(2-F,4-OMe,5-i-Pr) Ph(2-F,4-OCHF2,5-F)
Ph(2-F,4-CF2CF2H,5-OCF2CF2H) Ph(2-F,4-OMe,5-c-Pr) Ph(2-F,4-OCHF2,5-Br)
  Ph(2-F,4-OMe,5-CF3) Ph(2-F,4-OCHF2,5-I)
Ph(2-F,4-CF2CF2H,5-OC2F5) Ph(2-F,4-OMe,5-C2F5) Ph(2-F,4-OCHF2,5-Me)
Ph(2-F,4-CF2CF2H,5-SO2Me) Ph(2-F,4-OMe,5-CF2CF2H) Ph(2-F,4-OCHF2,5-Et)
Ph(2-F,4-CF2CF2H,5-TMS) Ph(2-F,4-OMe,5-CF2H) Ph(2-F,4-OCHF2,5-n-Pr)
Ph(2-F,4-CF2CF2H,5-CN) Ph(2-F,4,5-di-OMe) Ph(2-F,4-OCHF2,5-t-Bu)
Ph(2-F,4-CF2H,5-Cl) Ph(2-F,4-OMe,5-OCF3) Ph(2-F,4-OCHF2,5-i-Pr)
Ph(2-F,4-CF2H,5-F) Ph(2-F,4-OMe,5-OCHF2) Ph(2-F,4-OCHF2,5-c-Pr)
Ph(2-F,4-CF2H,5-Br) Ph(2-F,4-OMe,5-OCF2CF2H) Ph(2-F,4-OCHF2CF3,5-CF3)
Ph(2-F,4-CF2H,5-I) Ph(2-F,4-OMe,5-OC2F5) Ph(2-F,4-OCF2CF3,5-C2F5)
Ph(2-F,4-CF2H,5-Me) Ph(2-F,4-OMe,5-SO2Me) Ph(2-F,4-OCHF2,5-CF2CF2H)
Ph(2-F,4-CF2H,5-Et) Ph(2-F,4-OMe,5-TMS) Ph(2-F,4-OCHF2,5-CF2H)
Ph(2-F,4-CF2H,5-n-Pr) Ph(2-F,4-OMe,5-CN) Ph(2-F,4-OCHF2,5-OMe)
Ph(2-F,4-CF2H,5-t-Bu) Ph(2-F,4-OCF3,5-Cl) Ph(2-F,4-OCHF2,5-OCF3)
Ph(2-F,4-CF2H,5-i-Pr) Ph(2-F,4-OCF3,5-F) Ph(2-F,4,5-di-OCHF2)
Ph(2-F,4-CF2H,5-c-Pr) Ph(2-F,4-OCF3,5-Br) Ph(2-F,4-OCHF2,5-OCF2CF2H)
Ph(2-F,4-CF2H,5-CF3) Ph(2-F,4-OCF3,5-I) Ph(2-F,4-OCHF2,5-OC2F5)
Ph(2-F,4-CF2H,5-C2F5) Ph(2-F,4-OCF3,5-Me) Ph(2-F,4-OCHF2,5-SO2Me)
Ph(2-F,4-CF2H,5-CF2CF2H) Ph(2-F,4-OCF3,5-Et) Ph(2-F,4-OCHF2,5-TMS)
Ph(2-F,4,5-di-CF2H) Ph(2-F,4-OCF3,5-n-Pr) Ph(2-F,4-OCHF2,5-CN)
Ph(2-F,4-CF2H,5-OMe) Ph(2-F,4-OCF3,5-t-Bu) Ph(2-F,4-OCF2CF2H,5-Cl)
Ph(2-F,4-CF2H,5-OCF3) Ph(2-F,4-OCF3,5-i-Pr) Ph(2-F,4-OCF2CF2H,5-F)
Ph(2-F,4-CF2H,5-OCHF2) Ph(2-F,4-OCF3,5-c-Pr) Ph(2-F,4-OCF2CF2H,5-Br)
Ph(2-F,4-CF2H,5-OCF2CF2H) Ph(2-F,4-OCF3,5-CF3) Ph(2-F,4-OCF2CF2H,5-I)
Ph(2-F,4-CF2H,5-OC2F5) Ph(2-F,4-OCF3,5-C2F5) Ph(2-F,4-OCF2CF2H,5-Me)
Ph(2-F,4-CF2H,5-SO2Me) Ph(2-F,4-OCF3,5-CF2CF2H) Ph(2-F,4-OCF2CF2H,5-Et)
Ph(2-F,4-CF2H,5-TMS) Ph(2-F,4-OCF3,5-CF2H) Ph(2-F,4-OCF2CF2H,5-n-Pr)
Ph(2-F,4-CF2H,5-CN) Ph(2-F,4-OCF3,5-OMe) Ph(2-F,4-OCF2CF2H,5-t-Bu)
Ph(2-F,4-OMe,5-Cl) Ph(2-F,4,5-di-OCF3) Ph(2-F,4-OCF2CF2H,5-i-Pr)
Ph(2-F,4-OMe,5-F) Ph(2-F,4-OCF3,5-OCHF2) Ph(2-F,4-OCF2CF2H,5-c-Pr)
Ph(2-F,4-OMe,5-Br) Ph(2-F,4-OCF3,5-OCF2CF2H) Ph(2-F,4-OCF2CF2CF3H,5-CF3)
Ph(2-F,4-OMe,5-I) Ph(2-F,4-OCF3,5-OC2F5) Ph(2-F,4-OCF2CF2H,5-C2F5)
Ph(2-F,4-OMe,5-Me) Ph(2-F,4-OCF3,5-SO2Me) Ph(2-F,4-OCF2CF2H,5-CF2CF2H)
Ph(2-F,4-OMe,5-Et) Ph(2-F,4-OCF3,5-TMS)  
Ph(2-F,4-OMe,5-n-Pr) Ph(2-F,4-OCF3,5-CN) Ph(2-F,4-OCF2CF2H,5-CF2H)
Ph(2-F,4-OMe,5-t-Bu) Ph(2-F,4-OCHF2,5-Cl) Ph(2-F,4-OCF2CF2H,5-OMe)
Ph(2-F,4-OCF2CF2H,5-OCF3) Ph(2-F,4-SO2Me,5-i-Pr) Ph(2-F,4-CN,5-F)
Ph(2-F,4-OCF2CF2H,5-OCHF2) Ph(2-F,4-SO2Me,5-c-Pr) Ph(2-F,4-CN,5-Br)
Ph(2-F,4,5-di-OCF2CF2H) Ph(2-F,4-SO2MeCF3,5-CF3) Ph(2-F,4-CN,5-I)
Ph(2-F,4-OCF2CF2H,5-OC2F5) Ph(2-F,4-SO2Me,5-C2F5) Ph(2-F,4-CN,5-Me)
Ph(2-F,4-OCF2CF2H,5-SO2Me) Ph(2-F,4-SO2Me,5-CF2CF2H) Ph(2-F,4-CN,5-Et)
Ph(2-F,4-OCF2CF2H,5-TMS) Ph(2-F,4-SO2Me,5-CF2H) Ph(2-F,4-CN,5-n-Pr)
Ph(2-F,4-OCF2CF2H,5-CN) Ph(2-F,4-SO2Me,5-OMe) Ph(2-F,4-CN,5-t-Bu)
Ph(2-F,4-OCF2CF3,5-Cl) Ph(2-F,4-SO2Me,5-OCF3) Ph(2-F,4-CN,5-i-Pr)
Ph(2-F,4-OCF2CF3,5-F) Ph(2-F,4-SO2Me,5-OCHF2) Ph(2-F,4-CN,5-c-Pr)
Ph(2-F,4-OCF2CF3,5-Br) Ph(2-F,4-SO2Me,5-OCF2CF2H) Ph(2-F,4-CN,5-CF3)
Ph(2-F,4-OCF2CF3,5-I) Ph(2-F,4-SO2Me,5-OC2F5) Ph(2-F,4-CN,5-C2F5)
Ph(2-F,4-OCF2CF3,5-Me) Ph(2-F,4,5-di-SO2Me) Ph(2-F,4-CN,5-CF2CF2H)
Ph(2-F,4-OCF2CF3,5-Et) Ph(2-F,4-SO2Me,5-TMS) Ph(2-F,4-CN,5-CF2H)
Ph(2-F,4-OCF2CF3,5-n-Pr) Ph(2-F,4-SO2Me,5-CN) Ph(2-F,4-CN,5-OMe)
Ph(2-F,4-OCF2CF3,5-t-Bu) Ph(2-F,4-TMS,5-Cl) Ph(2-F,4-CN,5-OCF3)
Ph(2-F,4-OCF2CF3,5-i-Pr) Ph(2-F,4-TMS,5-F) Ph(2-F,4-CN,5-OCHF2)
Ph(2-F,4-OCF2CF3,5-c-Pr) Ph(2-F,4-TMS,5-Br) Ph(2-F,4-CN,5-OCF2CF2H)
Ph(2-F,4-OC2F5CF3,5-CF3) Ph(2-F,4-TMS,5-I) Ph(2-F,4-CN,5-OC2F5)
Ph(2-F,4-OCF2CF3,5-CF2CF2H) Ph(2-F,4-TMS,5-Me) Ph(2-F,4-CN,5-SO2Me)
Ph(2-F,4-OCF2CF3,5-CF2H) Ph(2-F,4-TMS,5-Et) Ph(2-F,4-CN,5-TMS)
Ph(2-F,4-OCF2CF3,5-OMe) Ph(2-F,4-TMS,5-n-Pr) Ph(2-F,4,5-di-CN)
Ph(2-F,4-OCF2CF3,5-OCF3) Ph(2-F,4-TMS,5-t-Bu) Ph(3,4,5-tri-Cl)
Ph(2-F,4-OCF2CF3,5-OCHF2) Ph(2-F,4-TMS,5-i-Pr) Ph(3-Cl,4-F,5-Cl)
Ph(2-F,4-OCF2CF3,5-OCF2CF2H) Ph(2-F,4-TMS,5-c-Pr) Ph(3-Cl,4-Br,5-Cl)
  Ph(2-F,4-TMS,5-CF3) Ph(3-Cl,4-I,5-Cl)
Ph(2-F,4,5-di-OC2F5) Ph(2-F,4-TMS,5-C2F5) Ph(3-Cl,4-Me,5-Cl)
Ph(2-F,4-OCF2CF3,5-SO2Me) Ph(2-F,4-TMS,5-CF2CF2H) Ph(3-Cl,4-Et,5-Cl)
Ph(2-F,4-OCF2CF3,5-TMS) Ph(2-F,4-TMS,5-CF2H) Ph(3-Cl,4-n-Pr,5-Cl)
Ph(2-F,4-OCF2CF3,5-CN) Ph(2-F,4-TMS,5-OMe) Ph(3-Cl,4-t-Bu,5-Cl)
Ph(2-F,4-SO2Me,5-Cl) Ph(2-F,4-TMS,5-OCF3) Ph(3-Cl,4-i-Pr,5-Cl)
Ph(2-F,4-SO2Me,5-F) Ph(2-F,4-TMS,5-OCHF2) Ph(3-Cl,4-c-Pr,5-Cl)
Ph(2-F,4-SO2Me,5-Br) Ph(2-F,4-TMS,5-OCF2CF2H) Ph(3-Cl,4-CF3,5-Cl)
Ph(2-F,4-SO2Me,5-I) Ph(2-F,4-TMS,5-OC2F5) Ph(3-Cl,4-C2F5,5-Cl)
Ph(2-F,4-SO2Me,5-Me) Ph(2-F,4-TMS,5-SO2Me) Ph(3-Cl,4-CF2CF2H,5-Cl)
Ph(2-F,4-SO2Me,5-Et) Ph(2-F,4,5-di-TMS) Ph(3-Cl,4-CF2H,5-Cl)
Ph(2-F,4-SO2Me,5-n-Pr) Ph(2-F,4-TMS,5-CN) Ph(3-Cl,4-OMe,5-Cl)
Ph(2-F,4-SO2Me,5-t-Bu) Ph(2-F,4-CN,5-Cl) Ph(3-Cl,4-OCF3,5-Cl)
Ph(3-Cl,4-OCHF2,5-Cl) Ph(3-Br,4-c-Pr,5-Br) Ph(3-CF3,4-Br,5-CF3)
Ph(3-Cl,4-OCF2CF2H,5-Cl) Ph(3-Br,4-CF3,5-Br) Ph(3-CF3,4-I,5-CF3)
Ph(3-Cl,4-OC2F5,5-Cl) Ph(3-Br,4-C2F5,5-Br) Ph(3-CF3,4-Me,5-CF3)
Ph(3-Cl,4-SO2Me,5-Cl) Ph(3-Br,4-CF2CF2H,5-Br) Ph(3-CF3,4-Et,5-CF3)
Ph(3-Cl,4-TMS,5-Cl) Ph(3-Br,4-CF2H,5-Br) Ph(3-CF3,4-n-Pr,5-CF3)
Ph(3-Cl,4-CN,5-Cl) Ph(3-Br,4-OMe,5-Br) Ph(3-CF3,4-t-Bu,5-CF3)
Ph(3-F,4-Cl,5-F) Ph(3-Br,4-OCF3,5-Br) Ph(3-CF3,4-i-Pr,5-CF3)
Ph(3,4,5-tri-F) Ph(3-Br,4-OCHF2,5-Br) Ph(3-CF3,4-c-Pr,5-CF3)
Ph(3-F,4-Br,5-F) Ph(3-Br,4-OCF2CF2H,5-Br) Ph(3,4,5-tri-CF3)
Ph(3-F,4-I,5-F) Ph(3-Br,4-OC2F5,5-Br) Ph(3-CF3,4-C2F5,5-CF3)
Ph(3-F,4-Me,5-F) Ph(3-Br,4-SO2Me,5-Br) Ph(3-CF3,4-CF2CF2H,5-CF3)
Ph(3-F,4-Et,5-F) Ph(3-Br,4-TMS,5-Br) Ph(3-CF3,4-CF2H,5-CF3)
Ph(3-F,4-n-Pr,5-F) Ph(3-Br,4-CN,5-Br) Ph(3-CF3,4-OMe,5-CF3)
Ph(3-F,4-t-Bu,5-F) Ph(3-Me,4-Cl,5-Me) Ph(3-CF3,4-OCF3,5-CF3)
Ph(3-F,4-i-Pr,5-F) Ph(3-Me,4-F,5-Me) Ph(3-CF3,4-OCHF2,5-CF3)
Ph(3-F,4-c-Pr,5-F) Ph(3-Me,4-Br,5-Me) Ph(3-CF3,4-OCF2CF2H,5-CF3)
Ph(3-F,4-CF3,5-F) Ph(3-Me,4-I,5-Me) Ph(3,5-di-CF3,4-OC2F5)
Ph(3-F,4-C2F5,5-F) Ph(3,4-tri-Me) Ph(3-CF3,4-SO2Me,5-CF3)
Ph(3-F,4-CF2CF2H,5-F) Ph(3-Me,4-Et,5-Me) Ph(3-CF3,4-TMS,5-CF3)
Ph(3-F,4-CF2H,5-F) Ph(3-Me,4-n-Pr,5-Me) Ph(3-CF3,4-CN,5-CF3)
Ph(3-F,4-OMe,5-F) Ph(3-Me,4-t-Bu,5-Me) Ph(3-OCHF2,4-Cl,5-OCHF2)
Ph(3-F,4-OCF3,5-F) Ph(3-Me,4-i-Pr,5-Me) Ph(3-OCHF2,4-F,5-OCHF2)
Ph(3-F,4-OCHF2,5-F) Ph(3-Me,4-c-Pr,5-Me) Ph(3-OCHF2,4-Br,5-OCHF2)
Ph(3-F,4-OCF2CF2H,5-F) Ph(3-Me,4-CF3,5-Me) Ph(3-OCHF2,4-I,5-OCHF2)
Ph(3-F,4-OC2F5,5-F) Ph(3-Me,4-C2F5,5-Me) Ph(3-OCHF2,4-Me,5-OCHF2)
Ph(3-F,4-SO2Me,5-F) Ph(3-Me,4-CF2CF2H,5-Me) Ph(3-OCHF2,4-Et,5-OCHF2)
Ph(3-F,4-TMS,5-F) Ph(3-Me,4-CF2H,5-Me) Ph(3-OCHF2,4-n-Pr,5-OCHF2)
Ph(3-F,4-CN,5-F) Ph(3-Me,4-OMe,5-Me) Ph(3-OCHF2,4-t-Bu,5-OCHF2)
Ph(3-Br,4-Cl,5-Br) Ph(3-Me,4-OCF3,5-Me) Ph(3-OCHF2,4-i-Pr,5-OCHF2)
Ph(3-Br,4-F,5-Br) Ph(3-Me,4-OCHF2,5-Me) Ph(3-OCHF2,4-c-Pr,5-OCHF2)
Ph(3,4,5-tri-Br) Ph(3-Me,4-OCF2CF2H,5-Me) Ph(3,5-di-OCHF2CF3,4-CF3,)
Ph(3-Br,4-I,5-Br) Ph(3-Me,4-OC2F5,5-Me) Ph(3-OC2F5,4-C2F5,5-OCHF2)
Ph(3-Br,4-Me,5-Br) Ph(3-Me,4-SO2Me,5-Me) Ph(3,5-di-OCHF2,4-CF2CF2H)
Ph(3-Br,4-Et,5-Br) Ph(3-Me,4-TMS,5-Me) Ph(3-OCHF2,4-CF2H,5-OCHF2)
Ph(3-Br,4-n-Pr,5-Br) Ph(3-Me,4-CN,5-Me) Ph(3-OCHF2,4-OMe,5-OCHF2)
Ph(3-Br,4-t-Bu,5-Br) Ph(3-CF3,4-Cl,5-CF3) Ph(3-OCHF2,4-OCF3,5-OCHF2)
Ph(3-Br,4-i-Pr,5-Br) Ph(3-CF3,4-F,5-CF3) Ph(3,4,5-tri-OCHF2)
Ph(3,5-di-OCHF2,4-OCF2CF2H) Ph(2-Cl,3-F,4-CF3,5-F) Ph(2-Cl,3-Me,4-I,5-Me)
Ph(3,5-di-OCHF2,4-OC2F5) Ph(2-Cl,3-F,4-C2F5,5-F) Ph(2-Cl,3,4-tri-Me)
Ph(3,5-di-OCHF2,4-SO2Me) Ph(2-Cl,3-F,4-CF2CF2H,5-F) Ph(2-Cl,3-Me,4-Et,5-Me)
Ph(3-OCHF2,4-TMS,5-OCHF2) Ph(2-Cl,3-F,4-CF2H,5-F) Ph(2-Cl,3-Me,4-n-Pr,5-Me)
Ph(3-OCHF2,4-CN,5-OCHF2) Ph(2-Cl,3-F,4-OMe,5-F) Ph(2-Cl,3-Me,4-t-Bu,5-Me)
Ph(2,3,4,5-tetra-Cl) Ph(2-Cl,3-F,4-OCF3,5-F) Ph(2-Cl,3-Me,4-i-Pr,5-Me)
Ph(2-Cl,3-Cl,4-F,5-Cl) Ph(2-Cl,3-F,4-OCHF2,5-F) Ph(2-Cl,3-Me,4-c-Pr,5-Me)
Ph(2-Cl,3-Cl,4-Br,5-Cl) Ph(2-Cl,3-F,4-OCF2CF2H,5-F) Ph(2-Cl,3-Me,4-CF3,5-Me)
Ph(2-Cl,3-Cl,4-I,5-Cl) Ph(2-Cl,3,5-di-F,4-OC2F5,) Ph(2-Cl,3,5-di-Me,4-C2F5)
Ph(2-Cl,3-Cl,4-Me,5-Cl) Ph(2-Cl,3-F,4-SO2Me,5-F) Ph(2-Cl,3-Me,4-CF2CF2H,5-Me)
Ph(2-Cl,3-Cl,4-Et,5-Cl) Ph(2-Cl,3-F,4-TMS,5-F) Ph(2-Cl,3-Me,4-CF2H,5-Me)
Ph(2-Cl,3-Cl,4-n-Pr,5-Cl) Ph(2-Cl,3-F,4-CN,5-F) Ph(2-Cl,3-Me,4-OMe,5-Me)
Ph(2-Cl,3-Cl,4-t-Bu,5-Cl) Ph(2-Cl,3-Br,4-Cl,5-Br) Ph(2-Cl,3-Me,4-OCF3,5-Me)
Ph(2-Cl,3-Cl,4-i-Pr,5-Cl) Ph(2-Cl,3-Br,4-F,5-Br) Ph(2-Cl,3-Me,4-OCHF2,5-Me)
Ph(2-Cl,3-Cl,4-c-Pr,5-Cl) Ph(2-Cl,3,4,5-tri-Br) Ph(2-Cl,3,5-di-Me,4-OCF2CF2H)
Ph(2-Cl,3-Cl,4-CF3,5-Cl) Ph(2-Cl,3-Br,4-I,5-Br) Ph(2-Cl,3-Me,4-OC2F5,5-Me)
Ph(2-Cl,3,5-di-Cl,4-C2F5) Ph(2-Cl,3-Br,4-Me,5-Br) Ph(2-Cl,3,5-di-Me,4-SO2Me)
Ph(2-Cl,3-Cl,4-CF2CF2H,5-Cl) Ph(2-Cl,3-Br,4-Et,5-Br) Ph(2-Cl,3-Me,4-TMS,5-Me)
Ph(2-Cl,3-Cl,4-CF2H,5-Cl) Ph(2-Cl,3-Br,4-n-Pr,5-Br) Ph(2-Cl,3-Me,4-CN,5-Me)
Ph(2-Cl,3-Cl,4-OMe,5-Cl) Ph(2-Cl,3-Br,4-t-Bu,5-Br) Ph(2-Cl,3-CF3,4-Cl,5-CF3)
Ph(2-Cl,3-Cl,4-OCF3,5-Cl) Ph(2-Cl,3-Br,4-i-Pr,5-Br) Ph(2-Cl,3-CF3,4-F,5-CF3)
Ph(2-Cl,3-Cl,4-OCHF2,5-Cl) Ph(2-Cl,3-Br,4-c-Pr,5-Br) Ph(2-Cl,3-CF3,4-Br,5-CF3)
Ph(2-Cl,3-Cl,4-OCF2CF2H,5-Cl) Ph(2-Cl,3-Br,4-CF3,5-Br) Ph(2-Cl,3-CF3,4-I,5-CF3)
Ph(2-Cl,3,5-di-Cl,4-OC2F5) Ph(2-Cl,3,5-di-Br,4-C2F5) Ph(2-Cl,3-CF3,4-Me,5-CF3)
Ph(2-Cl,3-Cl,4-SO2Me,5-Cl) Ph(2-Cl,3-Br,4-CF2CF2H,5-Br) Ph(2-Cl,3-CF3,4-Et,5-CF3)
Ph(2-Cl,3-Cl,4-TMS,5-Cl) Ph(2-Cl,3-Br,4-CF2H,5-Br) Ph(2-Cl,3-CF3,4-n-Pr,5-CF3)
Ph(2-Cl,3-Cl,4-CN,5-Cl) Ph(2-Cl,3-Br,4-OMe,5-Br) Ph(2-Cl,3-CF3,4-t-Bu,5-CF3)
Ph(2-Cl,3-F,4-Cl,5-F) Ph(2-Cl,3-Br,4-OCF3,5-Br) Ph(2-Cl,3-CF3,4-i-Pr,5-CF3)
Ph(2-Cl,3,4,5-tri-F) Ph(2-Cl,3-Br,4-OCHF2,5-Br) Ph(2-Cl,3-CF3,4-c-Pr,5-CF3)
Ph(2-Cl,3-F,4-Br,5-F) Ph(2-Cl,3-Br,4-OCF2CF2H,5-Br) Ph(2-Cl,3,4,5-tri-CF3)
Ph(2-Cl,3-F,4-I,5-F) Ph(2-Cl,3,5-di-Br,4-OC2F5) Ph(2-Cl,3,5-di-CF3,4-C2F5)
Ph(2-Cl,3-F,4-Me,5-F) Ph(2-Cl,3-Br,4-SO2Me,5-Br) Ph(2-Cl,3,5-di-CF3,4-CF2CF2H)
Ph(2-Cl,3-F,4-Et,5-F) Ph(2-Cl,3-Br,4-TMS,5-Br) Ph(2-Cl,3-CF3,4-CF2H,5-CF3)
Ph(2-Cl,3-F,4-n-Pr,5-F) Ph(2-Cl,3-Br,4-CN,5-Br) Ph(2-Cl,3-CF3,4-OMe,5-CF3)
Ph(2-Cl,3-F,4-t-Bu,5-F) Ph(2-Cl,3-Me,4-Cl,5-Me) Ph(2-Cl,3-CF3,4-OCF3,5-CF3)
Ph(2-Cl,3-F,4-i-Pr,5-F) Ph(2-Cl,3-Me,4-F,5-Me) Ph(2-Cl,3-CF3,4-OCHF2,5-CF3)
Ph(2-Cl,3-F,4-c-Pr,5-F) Ph(2-Cl,3-Me,4-Br,5-Me) Ph(2-Cl,3,5-di-CF3,4-
OCF2CF2H-) Ph(2-F,3-Cl,4-Me,5-Cl) Ph(2-F,3-F,4-SO2Me,5-F)
Ph(2-Cl,3,5-di-CF3,4-OC2F5) Ph(2-F,3-Cl,4-Et,S-Cl) Ph(2-F,3-F,4-TMS,5-F)
Ph(2-Cl,3,5-di-CF3,4-SO2Me) Ph(2-F,3-Cl,4-n-Pr,5-Cl) Ph(2-F,3-F,4-CN,5-F)
Ph(2-Cl,3,5-di-CF3,4-TMS) Ph(2-F,3-Cl,4-t-Bu,5-Cl) Ph(2-F,3-Br,4-Cl,5-Br)
Ph(2-Cl,3-CF3,4-CN,5-CF3) Ph(2-F,3-Cl,4-i-Pr,5-Cl) Ph(2-F,3-Br,4-F,5-Br)
Ph(2-Cl,3,5-di-OCHF2,4-Cl) Ph(2-F,3-Cl,4-c-Pr,5-Cl) Ph(2-F,3,4,5-tri-Br)
Ph(2-Cl,3-OCHF2,4-F,5-OCHF2) Ph(2-F,3-Cl,4-CF3,5-Cl) Ph(2-F,3-Br,4-I,5-Br)
Ph(2-Cl,3,5-di-OCHF2,4-Br) Ph(2-F,3-Cl,4-C2F5,5-Cl) Ph(2-F,3-Br,4-Me,5-Br)
Ph(2-Cl,3-OCHF2,4-I,5-OCHF2) Ph(2-F,3-Cl,4-CF2CF2H,5-Cl) Ph(2-F,3-Br,4-Et,5-Br)
Ph(2-Cl,3,5-di-OCHF2,4-Me) Ph(2-F,3-Cl,4-CF2H,5-Cl) Ph(2-F,3-Br,4-n-Pr,5-Br)
Ph(2-Cl,3,5-di-OCHF2,4-Et) Ph(2-F,3-Cl,4-OMe,5-Cl) Ph(2-F,3-Br,4-t-Bu,5-Br)
Ph(2-Cl,3,5-di-OCHF2,4-n-Pr) Ph(2-F,3-Cl,4-OCF3,5-Cl) Ph(2-F,3-Br,4-i-Pr,5-Br)
Ph(2-Cl,3,5-di-OCHF2,4-t-Bu) Ph(2-F,3-Cl,4-OCHF2,5-Cl) Ph(2-F,3-Br,4-c-Pr,5-Br)
Ph(2-Cl,3,5-di-OCHF2,4-i-Pr) Ph(2-F,3-Cl,4-OCF2CF2H,5-Cl) Ph(2-F,3-Br,4-CF3,5-Br)
Ph(2-Cl,3,5-di-OCHF2,4-c-Pr) Ph(2-F,3,5-di-Cl,4-OC2F5) Ph(2-F,3,5-di-Br,4-C2F5)
Ph(2-Cl,3,5-di-OCHF2CF3,4-CF3) Ph(2-F,3-Cl,4-S2Me,5-Cl) Ph(2-F,3-Br,4-CF2CF2H,5-Br)
  Ph(2-F,3-Cl,4-TMS,5-Cl) Ph(2-F,3-Br,4-CF2H,5-Br)
Ph(2-Cl,3-OC2F5,4-C2F5,5-OCHF2) Ph(2-F,3-Cl,4-CN,5-Cl) Ph(2-F,3-Br,4-OMe,5-Br)
  Ph(2-F,3-F,4-Cl,5-F) Ph(2-F,3-Br,4-OCF3,5-Br)
Ph(2-Cl,3,5-di-OCHF2,4-CF2CF2H) Ph(2,3,4,5-tetra-F) Ph(2-F,3-Br,4-OCHF2,5-Br)
  Ph(2-F,3-F,4-Br,5-F) Ph(2-F,3-Br,4-OCF2CF2H,5-Br)
Ph(2-Cl,3-OCHF2,4-CF2H,5-OCHF2) Ph(2-F,3-F,4-I,5-F) Ph(2-F,3-Br,4-OC2F5,5-Br)
  Ph(2-F,3-F,4-Me,5-F) Ph(2-F,3-Br,4-SO2Me,5-Br)
Ph(2-Cl,3,5-di OCHF2,4-OMe) Ph(2-F,3-F,4-Et,5-F) Ph(2-F,3-Br,4-TMS,5-Br)
Ph(2-Cl,3,5-di-OCHF2,4-OCF3) Ph(2-F,3-F,4-n-Pr,5-F) Ph(2-F,3-Br,4-CN,5-Br)
Ph(2-Cl,3,4,5-tri-OCHF2) Ph(2-F,3-F,4-t-Bu,5-F) Ph(2-F,3-Me,4-Cl,5-Me)
Ph(2-Cl,3-OCHF2,4-OCF2CF2H,5-OCHF2) Ph(2-F,3-F,4-i-Pr,5-F) Ph(2-F,3-Me,4-F,5-Me)
  Ph(2-F,3-F,4-c-Pr,5-F) Ph(2-F,3-Me,4-Br,5-Me)
Ph(2-Cl,3-OCHF2,4-OC2F5,5-OCHF2) Ph(2-F,3-F,4-CF3,5-F) Ph(2-F,3-Me,4-I,5-Me)
  Ph(2-F,3-F,4-C2F5,5-F) Ph(2-F,3,4-tri-Me)
Ph(2-Cl,3,5-di-OCHF2,4-SO2Me) Ph(2-F,3-F,4-CF2CF2H,5-F) Ph(2-F,3-Me,4-Et,5-Me)
Ph(2-Cl,3,5-di-OCHF2,4-TMS) Ph(2-F,3-F,4-CF2H,5-F) Ph(2-F,3-Me,4-n-Pr,5-Me)
Ph(2-Cl,3,5-di-OCHF2,4-CN) Ph(2-F,3-F,4-OMe,5-F) Ph(2-F,3-Me,4-t-Bu,5-Me)
Ph(2-F,3,4,5-tri-Cl) Ph(2-F,3-F,4-OCF3,5-F) Ph(2-F,3-Me,4-i-Pr,5-Me)
Ph(2-F,3-Cl,4-F,5-Cl) Ph(2-F,3-F,4-OCHF2,5-F) Ph(2-F,3-Me,4-c-Pr,5-Me)
Ph(2-F,3-Cl,4-Br,5-Cl) Ph(2-F,3-F,4-OCF2CF2H,5-F) Ph(2-F,3-Me,4-CF3,5-Me)
Ph(2-F,3-Cl,4-I,5-Cl) Ph(2-F,3-F,4-OC2F5,5-F) Ph(2-F,3-Me,4-C2F5,5-Me)
Ph(2-F,3-Me,4-CF2CF2H,5-Me) Ph(2-F,3-OCHF2,4-Cl,5-OCHF2) Ph(2-F,3-OCHF2,4-TMS,5-OCHF2)
Ph(2-F,3-Me,4-CF2H,5-Me) Ph(2-F,3-OCHF2,4-F,5-OCHF2)  
Ph(2-F,3-Me,4-OMe,5-Me) Ph(2-F,3-OCHF2,4-Br,5-OCHF2) Ph(2-F,3-OCHF2,4-CN,5-OCHF2)
Ph(2-F,3-Me,4-OCF3,5-Me) Ph(2-F,3-OCHF2,4-I,5-OCHF2)  
Ph(2-F,3-Me,4-OCHF2,5-Me) Ph(2-F,3-OCHF2,4-Me,5-OCHF2) 1H-Imidazol-2-yl(1-CF2CF2H,5-Cl)
Ph(2-F,3-Me,4-OCF2CF2H,5-Me)    
Ph(2-F,3-Me,4-OC2F5,5-Me) Ph(2-F,3-OCHF2,4-Et,5-OCHF2) 1H-Imidazol-2-yl(1-CF2CF2H,5-F)
Ph(2-F,3-Me,4-SO2Me,5-Me) Ph(2-F,3-OCHF2,4-n-Pr,5-OCHF2)  
Ph(2-F,3-Me,4-TMS,5-Me)   1H-Imidazol-2-yl(1-CH2CF3,5-Cl)
Ph(2-F,3-Me,4-CN,5-Me) Pb(2-F,3-OCHF2,4-t-Bu,5-OCHF2)  
Ph(2-F,3-CF3,4-Cl,5-CF3)   1H-Imidazol-2-yl(1-CH2CF3,5-F)
Ph(2-F,3-CF3,4-F,5-CF3) Ph(2-F,3-OCHF2,4-i-Pr,5-OCHF2) 1H-Imidazol-2-yl(1-Me,5-CF2H)
Ph(2-F,3-CF3,4-Br,5-CF3)   1H-Imidazol-2-yl(1-CF2CF2H,5-CF2H)
Ph(2-F,3-CF3,4-I,5-CF3) Ph(2-F,3,5-di-OCHF2,4-c-Pr)  
Ph(2-F,3-CF3,4-Me,5-CF3) Ph(2-F,3-OCHF2CF3,4-CF3,5-OCHF2) 1H-Imidazol-2-yl(1-CH2CF3,5-CF2H)
Ph(2-F,3-CF3,4-Et,5-CF3)    
Ph(2-F,3-CF3,4-n-Pr,5-CF3) Ph(2-F,3-OC2F5,4-C2F5,5-OCHF2) 1H-Imidazol-2-yl(1-Me,5-CF3)
Ph(2-F,3-CF3,4-t-Bu,5-CF3)   1H-Imidazol-2-yl(1-CF2CF2H,5-CF3)
Ph(2-F,3-CF3,4-i-Pr,5-CF3) Ph(2-F,3,5-di-OCHF2,4-CF2CF2H)  
Ph(2-F,3-CF3,4-c-Pr,5-CF3)   1H-Imidazol-2-yl(1-CH2CF3,5-CF3)
Ph(2-F,3,4,5-tri-CF3) Ph(2-F,3-OCHF2,4-CF2H,5-OCHF2)  
Ph(2-F,3-CF3,4-C2F5,5-CF3)   1,3-Benzodioxol-4-yl
Ph(2-F,3-CF3,4-CF2CF2H,5-CF3) Ph(2-F,3-OCHF2,4-OMe,5-OCHF2) 1,3-Benzodioxol-4-yl(2,2-di-Me)
Ph(2-F,3-CF3,4-CF2H,5-CF3)   1,4-Benzodioxol-4-yl(2,3-dihydro)
Ph(2-F,3-CF3,4-OMe,5-CF3) Ph(2-F,3-OCHF2,4-OCF3,5-OCHF2)  
Ph(2-F,3-CF3,4-OCF3,5-CF3)   1,4-Benzodioxol-4-yl(2,2,3,3-tetrafluoro)
Ph(2-F,3-CF3,4-OCHF2,5-CF3) Ph(2-F,3,4,5-tri-OCHF2)  
Ph(2-F,3-CF3,4-OCF2CF2H,5-CF3) Ph(2-F,3-OCHF2,4-OCF2CF2H,5-OCHF2) 1H-Pyrazol-3-yl(1-CH2CF3,4-F)
    1H-Pyrazol-3-yl(1-CH2CF3,4-Cl)
Ph(2-F,3-CF3,4-OC2F5,5-CF3) Ph(2-F,3-OCHF2,4-OC2F5,5-OCHF2) 1H-Pyrazol-3-yl(1-CF2CF2H,4-F)
Ph(2-F,3-CF3,4-SO2Me,5-CF3)   1H-Pyrazol-3-yl(1-CF2CF2H,4-Cl)
Ph(2-F,3-CF3,4-TMS,5-CF3) Ph(2-F,3-OCHF2,4-SO2Me,5-OCHF2)  
Ph(2-F,3-CF3,4-CN,5-CF3)   1,3-Benzodioxol-4-yl(2,2-di-F)


[0115] Table 2 is constructed in the same manner except that the Row Heading "Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F); and Q1 is" is replaced with the Row Heading listed for Table 2 below (i.e. "Y1 is O; Y1 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-F); and Q1 is"). Therefore the first entry in Table 2 is a compound of Formula 1 wherein Y1 is O, R2 is H, R4 is H, R5 is H, Q2 is Ph(2,3-F); and Q1 is Ph(3-Cl) (i.e. 3-chlorophenyl). Tables 3 through 1699 are constructed similarly.
TableRow Heading
2 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-F); and Q1 is
3 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,4-di-F); and Q1 is
4 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,5-di-F); and Q1 is
5 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,4-tri-F); and Q1 is
6 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,5-tri-F); and Q1 is
7 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,4,5-tetra-F); and Q1 is
8 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl,4-Br); and Q1 is
9 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl,4-F); and Q1 is
10 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Br,4-F); and Q1 is
11 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me); and Q1 is
12 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me,4-F); and Q1 is
13 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me,4-Cl); and Q1 is
14 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl); and Q1 is
15 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,4-Cl); and Q1 is
16 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3,4-di-Cl); and Q1 is
17 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,4-Br); and Q1 is
18 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe); and Q1 is
19 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe,4-F); and Q1 is
20 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe,4-Cl); and Q1 is
21 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF2H); and Q1 is
22 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF3); and Q1 is
23 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF3,4-F); and Q1 is
24 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-NO2); and Q1 is
25 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-NO2,4-F); and Q1 is
26 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-SO2Me); and Q1 is
27 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-SO2Me,4-F); and Q1 is
28 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3); and Q1 is
29 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-F); and Q1 is
30 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-Me); and Q1 is
31 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,4-F); and Q1 is
32 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-Cl); and Q1 is
33 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,4-Cl); and Q1 is
34 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3,4-di-F); and Q1 is
35 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H); and Q1 is
36 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-F); and Q1 is
37 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-Me); and Q1 is
38 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,4-F); and Q1 is
39 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-Cl); and Q1 is
40 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,4-Cl); and Q1 is
41 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3,4-di-F); and Q1 is
42 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me); and Q1 is
43 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-Me); and Q1 is
44 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-F); and Q1 is
45 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-Cl); and Q1 is
46 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-CF3); and Q1 is
47 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,4-di-Cl); and Q1 is
48 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-Cl,4-F); and Q1 is
49 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,4-Cl); and Q1 is
50 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,4-F); and Q1 is
51 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,5-F); and Q1 is
52 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,4-di-F); and Q1 is
53 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,5-di-F); and Q1 is
54 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et); and Q1 is
55 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3-F); and Q1 is
56 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3-Cl); and Q1 is
57 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,4-F); and Q1 is
58 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3,4-di-F); and Q1 is
59 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr); and Q1 is
60 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3-F); and Q1 is
61 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3-Cl); and Q1 is
62 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,4-F); and Q1 is
63 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3,4-di-F); and Q1 is
64 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr); and Q1 is
65 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3-F); and Q1 is
66 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3-Cl); and Q1 is
67 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,4-F); and Q1 is
68 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3,4-di-F); and Q1 is
69 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2); and Q1 is
70 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3-F); and Q1 is
71 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3-Cl); and Q1 is
72 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,4-F); and Q1 is
73 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3,4-di-F); and Q1 is
74 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3); and Q1 is
75 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3,3-F); and Q1 is
76 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3,4-F); and Q1 is
77 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl); and Q1 is
78 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-Me); and Q1 is
79 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-Me,4-F); and Q1 is
80 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-Cl); and Q1 is
81 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,4-di-Cl); and Q1 is
82 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-F); and Q1 is
83 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,4-F); and Q1 is
84 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,5-F); and Q1 is
85 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3,4-di-F); and Q1 is
86 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3,5-di-F); and Q1 is
87 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H); and Q1 is
88 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-Me); and Q1 is
89 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-Cl); and Q1 is
90 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-F); and Q1 is
91 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,4-F); and Q1 is
92 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H); and Q1 is
93 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H,3-F); and Q1 is
94 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H,4-F); and Q1 is
95 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br); and Q1 is
96 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,3-F); and Q1 is
97 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,4-F); and Q1 is
98 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,3,4-di-F); and Q1 is
99 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I); and Q1 is
100 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,3-F); and Q1 is
101 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,4-F); and Q1 is
102 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,3,4-di-F); and Q1 is
103 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN); and Q1 is
104 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-Me); and Q1 is
105 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-F); and Q1 is
106 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,4-F); and Q1 is
107 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-Cl); and Q1 is
108 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,4-Cl); and Q1 is
109 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3,4-di-F); and Q1 is
110 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl; and Q1 is
111 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-F; and Q1 is
112 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,4-F; and Q1 is
113 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3,4-di-F; and Q1 is
114 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-Cl; and Q1 is
115 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,4-Cl; and Q1 is
116 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-Cl,4-F; and Q1 is
117 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me); and Q1 is
118 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-F); and Q1 is
119 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-Me); and Q1 is
120 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 4-F); and Q1 is
121 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 5-F); and Q1 is
122 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me,3,4-di-F); and Q1 is
123 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-Cl); and Q1 is
124 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 4-Cl); and Q1 is
125 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me,3-Cl,4-F); and Q1 is
126 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2); and Q1 is
127 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 3-F); and Q1 is
128 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 3-Cl); and Q1 is
129 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 4-F); and Q1 is
130 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 5-F); and Q1 is
131 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2,3,4-di-F); and Q1 is
132 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-F); and Q1 is
133 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4-di-F); and Q1 is
134 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,5-di-F); and Q1 is
135 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4,5-tri-F); and Q1 is
136 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-F,4-Cl); and Q1 is
137 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3); and Q1 is
138 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4-F); and Q1 is
139 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4-Cl); and Q1 is
140 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,5-F); and Q1 is
141 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4,5-di-F); and Q1 is
142 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me); and Q1 is
143 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4-Cl); and Q1 is
144 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4-F); and Q1 is
145 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4,5-di-F); and Q1 is
146 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,5-F); and Q1 is
147 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2); and Q1 is
148 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4-F); and Q1 is
149 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4,5-di-F); and Q1 is
150 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4-Cl); and Q1 is
151 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,5-F) and Q1 is
152 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me); and Q1 is
153 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4-F); and Q1 is
154 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4-Cl); and Q1 is
155 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,5-F); and Q1 is
156 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4,5-di-F); and Q1 is
157 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl); and Q1 is
158 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,4-F); and Q1 is
159 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4-di-Cl); and Q1 is
160 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,5-F); and Q1 is
161 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,4,5-di-F); and Q1 is
162 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,5-di-Cl); and Q1 is
163 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(4-F); and Q1 is
164 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(4-Cl); and Q1 is
165 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-4-yl; and Q1 is
166 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-5-yl; and Q1 is
167 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-4-yl; and Q1 is
168 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-5-yl; and Q1 is
169 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 1,3-benzodioxol-4-yl; and Q1 is
170 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 1,3-benzodioxol-5-yl; and Q1 is
171 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F); and Q1 is
172 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-F); and Q1 is
173 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,4-di-F); and Q1 is
174 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,5-di-F); and Q1 is
175 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,4-tri-F); and Q1 is
176 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,5-tri-F); and Q1 is
177 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,4,5-tetra-F); and Q1 is
178 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl,4-Br); and Q1 is
179 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl,4-F); and Q1 is
180 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Br,4-F); and Q1 is
181 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me); and Q1 is
182 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me,4-F); and Q1 is
183 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me,4-Cl); and Q1 is
184 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl); and Q1 is
185 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,4-Cl); and Q1 is
186 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3,4-di-Cl); and Q1 is
187 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,4-Br); and Q1 is
188 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe); and Q1 is
189 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe,4-F); and Q1 is
190 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe,4-Cl); and Q1 is
191 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF2H); and Q1 is
192 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF3); and Q1 is
193 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF3,4-F); and Q1 is
194 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-NO2); and Q1 is
195 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-NO2,4-F); and Q1 is
196 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-SO2Me); and Q1 is
197 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-SO2Me,4-F); and Q1 is
198 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3); and Q1 is
199 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-F); and Q1 is
200 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-Me); and Q1 is
201 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,4-F); and Q1 is
202 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-Cl); and Q1 is
203 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,4-Cl); and Q1 is
204 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3,4-di-F); and Q1 is
205 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H); and Q1 is
206 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-F); and Q1 is
207 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-Me); and Q1 is
208 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,4-F); and Q1 is
209 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-Cl); and Q1 is
210 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,4-Cl); and Q1 is
211 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3,4-di-F); and Q1 is
212 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me); and Q1 is
213 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-Me); and Q1 is
214 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-F); and Q1 is
215 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-Cl); and Q1 is
216 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-CF3); and Q1 is
217 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,4-di-Cl); and Q1 is
218 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-Cl,4-F); and Q1 is
219 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,4-Cl); and Q1 is
220 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,4-F); and Q1 is
221 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,5-F); and Q1 is
222 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,4-di-F); and Q1 is
223 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,5-di-F); and Q1 is
224 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et); and Q1 is
225 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3-F); and Q1 is
226 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3-Cl); and Q1 is
227 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,4-F); and Q1 is
228 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3,4-di-F); and Q1 is
229 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr); and Q1 is
230 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3-F); and Q1 is
231 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3-Cl); and Q1 is
232 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,4-F); and Q1 is
233 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3,4-di-F); and Q1 is
234 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr); and Q1 is
235 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3-F); and Q1 is
236 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3-Cl); and Q1 is
237 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,4-F); and Q1 is
238 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3,4-di-F); and Q1 is
239 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2); and Q1 is
240 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3-F); and Q1 is
241 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3-Cl); and Q1 is
242 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,4-F); and Q1 is
243 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3,4-di-F); and Q1 is
244 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3); and Q1 is
245 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3,3-F); and Q1 is
246 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3,4-F); and Q1 is
247 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl); and Q1 is
248 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-Me); and Q1 is
249 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-Me,4-F); and Q1 is
250 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-Cl); and Q1 is
251 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,4-di-Cl); and Q1 is
252 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-F); and Q1 is
253 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,4-F); and Q1 is
254 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,5-F); and Q1 is
255 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3,4-di-F); and Q1 is
256 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3,5-di-F); and Q1 is
257 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H); and Q1 is
258 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-Me); and Q1 is
259 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-Cl); and Q1 is
260 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-F); and Q1 is
261 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,4-F); and Q1 is
262 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H); and Q1 is
263 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H,3-F); and Q1 is
264 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H,4-F); and Q1 is
265 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br); and Q1 is
266 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,3-F); and Q1 is
267 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,4-F); and Q1 is
268 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,3,4-di-F); and Q1 is
269 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I); and Q1 is
270 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,3-F); and Q1 is
271 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,4-F); and Q1 is
272 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-1,3,4-di-F); and Q1 is
273 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN); and Q1 is
274 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-Me); and Q1 is
275 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-F); and Q1 is
276 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,4-F); and Q1 is
277 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-Cl); and Q1 is
278 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,4-Cl); and Q1 is
279 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3,4-di-F); and Q1 is
280 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl; and Q1 is
281 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-F; and Q1 is
282 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,4-F; and Q1 is
283 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3,4-di-F; and Q1 is
284 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-Cl; and Q1 is
285 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,4-Cl; and Q1 is
286 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-Cl,4-F; and Q1 is
287 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me); and Q1 is
288 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-F); and Q1 is
289 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-Me); and Q1 is
290 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 4-F); and Q1 is
291 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 5-F); and Q1 is
292 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me,3,4-di-F); and Q1 is
293 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-Cl); and Q1 is
294 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 4-Cl); and Q1 is
295 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me,3-Cl,4-F); and Q1 is
296 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2); and Q1 is
297 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 3-F); and Q1 is
298 Y1 is S; Y2 is O; R2 is H; R4 is H ; R5 is H; Q2 is Ph(2-SO2NH2, 3-Cl); and Q1 is
299 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 4-F); and Q1 is
300 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 5-F); and Q1 is
301 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2,3,4-di-F); and Q1 is
302 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-F); and Q1 is
303 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4-di-F); and Q1 is
304 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,5-di-F); and Q1 is
305 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4,5-tri-F); and Q1 is
306 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-F,4-Cl); and Q1 is
307 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3); and Q1 is
308 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4-F); and Q1 is
309 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4-Cl); and Q1 is
310 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,5-F); and Q1 is
311 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4,5-di-F); and Q1 is
312 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me); and Q1 is
313 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4-Cl); and Q1 is
314 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4-F); and Q1 is
315 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4,5-di-F); and Q1 is
316 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,5-F); and Q1 is
317 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2); and Q1 is
318 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4-F); and Q1 is
319 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4,5-di-F); and Q1 is
320 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4-Cl); and Q1 is
321 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,5-F); and Q1 is
322 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me); and Q1 is
323 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4-F); and Q1 is
324 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4-Cl); and Q1 is
325 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,5-F); and Q1 is
326 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4,5-di-F); and Q1 is
327 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl); and Q1 is
328 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,4-F); and Q1 is
329 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4-di-Cl); and Q1 is
330 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,5-F); and Q1 is
331 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,4,5-di-F); and Q1 is
332 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,5-di-Cl); and Q1 is
333 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(4-F); and Q1 is
334 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(4-Cl); and Q1 is
335 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-4-yl; and Q1 is
336 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-5-yl; and Q1 is
337 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-4-yl; and Q1 is
338 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-5-yl; and Q1 is
339 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 1,3-benzodioxol-4-yl; and Q1 is
340 Y1 is S; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 1,3-benzodioxol-5-yl; and Q1 is
341 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F); and Q1 is
342 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-F); and Q1 is
343 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,4-di-F); and Q1 is
344 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,5-di-F); and Q1 is
345 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,4-tri-F); and Q1 is
346 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,5-tri-F); and Q1 is
347 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,4,5-tetra-F); and Q1 is
348 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl,4-Br); and Q1 is
349 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl,4-F); and Q1 is
350 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Br,4-F); and Q1 is
351 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me); and Q1 is
352 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me,4-F); and Q1 is
353 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me,4-Cl); and Q1 is
354 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl); and Q1 is
355 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,4-Cl); and Q1 is
356 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3,4-di-Cl); and Q1 is
357 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,4-Br); and Q1 is
358 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe); and Q1 is
359 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe,4-F); and Q1 is
360 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe,4-Cl); and Q1 is
361 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF2H); and Q1 is
362 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF3); and Q1 is
363 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF3,4-F); and Q1 is
364 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-NO2); and Q1 is
365 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-NO2,4-F); and Q1 is
366 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-SO2Me); and Q1 is
367 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-SO2Me,4-F); and Q1 is
368 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3); and Q1 is
369 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-F); and Q1 is
370 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-Me); and Q1 is
371 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,4-F); and Q1 is
372 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-Cl); and Q1 is
373 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,4-Cl); and Q1 is
374 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3,4-di-F); and Q1 is
375 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H); and Q1 is
376 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-F); and Q1 is
377 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-Me); and Q1 is
378 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,4-F); and Q1 is
379 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-Cl); and Q1 is
380 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,4-Cl); and Q1 is
381 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3,4-di-F); and Q1 is
382 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me); and Q1 is
383 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-Me); and Q1 is
384 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-F); and Q1 is
385 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-Cl); and Q1 is
386 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-CF3); and Q1 is
387 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,4-di-Cl); and Q1 is
388 Y1 is Y2 is S; R2 is R4 is R5 Q2 is Ph(2-Me,3-Cl,4-F); and Q1 is
389 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,4-Cl); and Q1 is
390 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,4-F); and Q1 is
391 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,5-F); and Q1 is
392 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,4-di-F); and Q1 is
393 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,5-di-F); and Q1 is
394 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et); and Q1 is
395 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3-F); and Q1 is
396 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3-Cl); and Q1 is
397 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,4-F); and Q1 is
398 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3,4-di-F); and Q1 is
399 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr); and Q1 is
400 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3-F); and Q1 is
401 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3-Cl); and Q1 is
402 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,4-F); and Q1 is
403 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3,4-di-F); and Q1 is
404 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr); and Q1 is
405 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3-F); and Q1 is
406 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3-Cl); and Q1 is
407 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,4-F); and Q1 is
408 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3,4-di-F); and Q1 is
409 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2); and Q1 is
410 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3-F); and Q1 is
411 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3-Cl); and Q1 is
412 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,4-F); and Q1 is
413 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3,4-di-F); and Q1 is
414 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3); and Q1 is
415 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3,3-F); and Q1 is
416 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3,4-F); and Q1 is
417 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl); and Q1 is
418 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-Me); and Q1 is
419 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-Me,4-F); and Q1 is
420 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-Cl); and Q1 is
421 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,4-di-Cl); and Q1 is
422 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-F); and Q1 is
423 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,4-F); and Q1 is
424 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,5-F); and Q1 is
425 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3,4-di-F); and Q1 is
426 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3,5-di-F); and Q1 is
427 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H); and Q1 is
428 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-Me); and Q1 is
429 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-Cl); and Q1 is
430 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-F); and Q1 is
431 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,4-F); and Q1 is
432 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H); and Q1 is
433 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H,3-F); and Q1 is
434 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H,4-F); and Q1 is
435 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br); and Q1 is
436 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,3-F); and Q1 is
437 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,4-F); and Q1 is
438 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,3,4-di-F); and Q1 is
439 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I); and Q1 is
440 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,3-F); and Q1 is
441 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,4-F); and Q1 is
442 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,3,4-di-F); and Q1 is
443 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN); and Q1 is
444 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-Me); and Q1 is
445 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-F); and Q1 is
446 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,4-F); and Q1 is
447 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-Cl); and Q1 is
448 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,4-Cl); and Q1 is
449 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3,4-di-F); and Q1 is
450 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl; and Q1 is
451 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-F; and Q1 is
452 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,4-F; and Q1 is
453 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3,4-di-F; and Q1 is
454 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-Cl; and Q1 is
455 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,4-Cl; and Q1 is
456 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-Cl,4-F; and Q1 is
457 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me); and Q1 is
458 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-F); and Q1 is
459 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-Me); and Q1 is
460 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 4-F); and Q1 is
461 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 5-F); and Q1 is
462 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me,3,4-di-F); and Q1 is
463 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-Cl); and Q1 is
464 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 4-Cl); and Q1 is
465 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me,3-Cl,4-F); and Q1 is
466 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2); and Q1 is
467 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 3-F); and Q1 is
468 Y1 is O; Y2 is S; R2 is H; R4 is H; ; R5 is H; Q2 is Ph(2-SO2NH2, 3-Cl); and Q1 is
469 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 4-F); and Q1 is
470 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 5-F); and Q1 is
471 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2,3,4-di-F); and Q1 is
472 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-F); and Q1 is
473 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4-di-F); and Q1 is
474 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,5-di-F); and Q1 is
475 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4,5-tri-F); and Q1 is
476 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-F,4-Cl); and Q1 is
477 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3); and Q1 is
478 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4-F); and Q1 is
479 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4-Cl); and Q1 is
480 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,5-F); and Q1 is
481 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4,5-di-F); and Q1 is
482 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me); and Q1 is
483 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4-Cl); and Q1 is
484 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4-F); and Q1 is
485 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4,5-di-F); and Q1 is
486 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,5-F); and Q1 is
487 Y1 is Y2 is S; R2 is H; R4 is H; R5 is Q2 is Ph(3-SO2NH2); and Q1 is
488 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4-F); and Q1 is
489 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4,5-di-F); and Q1 is
490 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4-Cl); and Q1 is
491 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,5-F); and Q1 is
492 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me); and Q1 is
493 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4-F); and Q1 is
494 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4-Cl); and Q1 is
495 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,5-F); and Q1 is
496 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4,5-di-F); and Q1 is
497 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl); and Q1 is
498 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,4-F); and Q1 is
499 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4-di-Cl); and Q1 is
500 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,5-F); and Q1 is
501 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,4,5-di-F); and Q1 is
502 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,5-di-Cl); and Q1 is
503 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(4-F); and Q1 is
504 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(4-Cl); and Q1 is
505 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-4-yl; and Q1 is
506 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-5-yl; and Q1 is
507 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-4-yl; and Q1 is
508 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-5-yl; and Q1 is
509 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 1,3-benzodioxol-4-yl; and Q1 is
510 Y1 is O; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 1,3-benzodioxol-5-yl; and Q1 is
511 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F); and Q1 is
512 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-F); and Q1 is
513 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,4-di-F); and Q1 is
514 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,5-di-F); and Q1 is
515 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,4-tri-F); and Q1 is
516 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,5-tri-F); and Q1 is
517 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,4,5-tetra-F); and Q1 is
518 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl,4-Br); and Q1 is
519 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl,4-F); and Q1 is
520 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Br,4-F); and Q1 is
521 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me); and Q1 is
522 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me,4-F); and Q1 is
523 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me,4-Cl); and Q1 is
524 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl); and Q1 is
525 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,4-Cl); and Q1 is
526 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3,4-di-Cl); and Q1 is
527 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,4-Br); and Q1 is
528 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe); and Q1 is
529 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe,4-F); and Q1 is
530 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe,4-Cl); and Q1 is
531 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF2H); and Q1 is
532 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF3); and Q1 is
533 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF3,4-F); and Q1 is
534 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-NO2); and Q1 is
535 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-NO2,4-F); and Q1 is
536 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-SO2Me); and Q1 is
537 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-SO2Me,4-F); and Q1 is
538 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3); and Q1 is
539 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-F), and Q1 is
540 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-Me); and Q1 is
541 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,4-F); and Q1 is
542 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-Cl); and Q1 is
543 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,4-Cl); and Q1 is
544 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3,4-di-F); and Q1 is
545 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H); and Q1 is
546 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-F); and Q1 is
547 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-Me); and Q1 is
548 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,4-F); and Q1 is
549 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-Cl); and Q1 is
550 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,4-Cl); and Q1 is
551 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3,4-di-F); and Q1 is
552 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me); and Q1 is
553 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-Me); and Q1 is
554 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-F); and Q1 is
555 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-Cl); and Q1 is
556 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-CF3); and Q1 is
557 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,4-di-Cl); and Q1 is
558 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-Cl,4-F); and Q1 is
559 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,4-Cl); and Q1 is
560 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,4-F); and Q1 is
561 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,5-F); and Q1 is
562 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,4-di-F); and Q1 is
563 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,5-di-F); and Q1 is
564 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et); and Q1 is
565 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3-F); and Q1 is
566 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3-Cl); and Q1 is
567 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,4-F); and Q1 is
568 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3,4-di-F); and Q1 is
569 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr); and Q1 is
570 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3-F); and Q1 is
571 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3-Cl); and Q1 is
572 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,4-F); and Q1 is
573 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3,4-di-F); and Q1 is
574 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr); and Q1 is
575 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3-F); and Q1 is
576 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3-Cl); and Q1 is
577 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,4-F); and Q1 is
578 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3,4-di-F); and Q1 is
579 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2); and Q1 is
580 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3-F); and Q1 is
581 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3-Cl); and Q1 is
582 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,4-F); and Q1 is
583 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3,4-di-F); and Q1 is
584 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3); and Q1 is
585 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3,3-F); and Q1 is
586 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3,4-F); and Q1 is
587 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl); and Q1 is
588 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-Me); and Q1 is
589 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-Me,4-F); and Q1 is
590 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-Cl); and Q1 is
591 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,4-di-Cl); and Q1 is
592 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-F); and Q1 is
593 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,4-F); and Q1 is
594 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,5-F); and Q1 is
595 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3,4-di-F); and Q1 is
596 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3,5-di-F); and Q1 is
597 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H); and Q1 is
598 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-Me); and Q1 is
599 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-Cl); and Q1 is
600 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-F); and Q1 is
601 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,4-F); and Q1 is
602 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H); and Q1 is
603 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H,3-F); and Q1 is
604 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H,4-F); and Q1 is
605 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br); and Q1 is
606 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,3-F); and Q1 is
607 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,4-F); and Q1 is
608 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,3,4-di-F); and Q1 is
609 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I); and Q1 is
610 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,3-F); and Q1 is
611 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,4-F); and Q1 is
612 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,3,4-di-F); and Q1 is
613 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN); and Q1 is
614 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-Me); and Q1 is
615 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-F); and Q1 is
616 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,4-F); and Q1 is
617 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-Cl); and Q1 is
618 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,4-Cl); and Q1 is
619 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3,4-di-F); and Q1 is
620 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl; and Q1 is
621 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-F; and Q1 is
622 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,4-F; and Q1 is
623 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridiny1,3,4-di-F; and Q1 is
624 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-Cl; and Q1 is
625 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,4-Cl; and Q1 is
626 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-Cl,4-F; and Q1 is
627 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me); and Q1 is
628 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-F); and Q1 is
629 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-Me); and Q1 is
630 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 4-F); and Q1 is
631 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 5-F); and Q1 is
632 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me,3,4-di-F); and Q1 is
633 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-Cl); and Q1 is
634 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 4-Cl); and Q1 is
635 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me,3-Cl,4-F); and Q1 is
636 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2) and Q1 is
637 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 3-F); and Q1 is
638 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 3-C1); and Q1 is
639 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 4-F); and Q1 is
640 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 5-F); and Q1 is
641 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2,3,4-di-F); and Q1 is
642 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-F); and Q1 is
643 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4-di-F); and Q1 is
644 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,5-di-F); and Q1 is
645 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4,5-tri-F); and Q1 is
646 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-F,4-Cl); and Q1 is
647 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3); and Q1 is
648 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4-F); and Q1 is
649 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4-Cl); and Q1 is
650 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,5-F); and Q1 is
651 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4,5-di-F), and Q1 is
652 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me); and Q1 is
653 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4-Cl); and Q1 is
654 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4-F); and Q1 is
655 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4,5-di-F); and Q1 is
656 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,5-F); and Q1 is
657 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2); and Q1 is
658 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4-F); and Q1 is
659 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4,5-di-F); and Q1 is
660 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4-Cl); and Q1 is
661 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,5-F); and Q1 is
662 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me); and Q1 is
663 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4-F); and Q1 is
664 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4-Cl); and Q1 is
665 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,5-F); and Q1 is
666 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4,5-di-F); and Q1 is
667 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl); and Q1 is
668 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,4-F); and Q1 is
669 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4-di-Cl); and Q1 is
670 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,5-F); and Q1 is
671 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,4,5-di-F); and Q1 is
672 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,5-di-Cl); and Q1 is
673 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(4-F); and Q1 is
674 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is Ph(4-Cl); and Q1 is
675 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-4-yl; and Q1 is
676 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-5-yl; and Q1 is
677 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-4-yl; and Q1 is
678 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-5-yl; and Q1 is
679 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 1,3-benzodioxol-4-yl; and Q1 is
680 Y1 is S; Y2 is S; R2 is H; R4 is H; R5 is H; Q2 is 1,3-benzodioxol-5-yl; and Q1 is
681 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F); and Q1 is
682 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-F); and Q1 is
683 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,4-di-F); and Q1 is
684 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,5-di-F); and Q1 is
685 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,4-tri-F); and Q1 is
686 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,5-tri-F); and Q1 is
687 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3,4,5-tetra-F); and Q1 is
688 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl,4-Br); and Q1 is
689 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl,4-F); and Q1 is
690 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Br,4-F); and Q1 is
691 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me); and Q1 is
692 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me,4-F); and Q1 is
693 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me,4-Cl); and Q1 is
694 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl); and Q1 is
695 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,4-Cl); and Q1 is
696 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3,4-di-Cl); and Q1 is
697 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,4-Br); and Q1 is
698 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe); and Q1 is
699 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe,4-F); and Q1 is
700 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe,4-Cl); and Q1 is
701 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF2H); and Q1 is
702 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF3); and Q1 is
703 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF3,4-F); and Q1 is
704 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-NO2); and Q1 is
705 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-NO2,4-F); and Q1 is
706 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-SO2Me); and Q1 is
707 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-F,3-SO2Me,4-F); and Q1 is
708 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3); and Q1 is
709 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-F); and Q1 is
710 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-Me); and Q1 is
711 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,4-F); and Q1 is
712 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-Cl); and Q1 is
713 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,4-Cl); and Q1 is
714 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF3,3,4-di-F), and Q1 is
715 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H); and Q1 is
716 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-F); and Q1 is
717 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-Me); and Q1 is
718 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,4-F); and Q1 is
719 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-Cl); and Q1 is
720 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,4-Cl); and Q1 is
721 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3,4-di-F); and Q1 is
722 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me); and Q1 is
723 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-Me); and Q1 is
724 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-F); and Q1 is
725 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-Cl); and Q1 is
726 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-CF3); and Q1 is
727 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,4-di-Cl); and Q1 is
728 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3-Cl,4-F); and Q1 is
729 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,4-Cl); and Q1 is
730 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,4-F); and Q1 is
731 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,5-F); and Q1 is
732 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,4-di-F); and Q1 is
733 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Me,3,5-di-F); and Q1 is
734 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et); and Q1 is
735 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3-F); and Q1 is
736 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3-Cl); and Q1 is
737 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,4-F); and Q1 is
738 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Et,3,4-di-F); and Q1 is
739 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr); and Q1 is
740 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3-F); and Q1 is
741 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3-Cl); and Q1 is
742 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,4-F); and Q1 is
743 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3,4-di-F); and Q1 is
744 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr); and Q1 is
745 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3-F); and Q1 is
746 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3-Cl); and Q1 is
747 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,4-F); and Q1 is
748 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3,4-di-F); and Q1 is
749 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2); and Q1 is
750 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3-F); and Q1 is
751 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3-Cl); and Q1 is
752 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,4-F); and Q1 is
753 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-NO2,3,4-di-F); and Q1 is
754 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3); and Q1 is
755 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3,3-F); and Q1 is
756 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF3,4-F); and Q1 is
757 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl); and Q1 is
758 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-Me); and Q1 is
759 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-Me,4-F); and Q1 is
760 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,3-di-Cl); and Q1 is
761 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2,4-di-Cl); and Q1 is
762 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-F); and Q1 is
763 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,4-F); and Q1 is
764 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,5-F); and Q1 is
765 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3,4-di-F); and Q1 is
766 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Cl,3,5-di-F); and Q1 is
767 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H); and Q1 is
768 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-Me); and Q1 is
769 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-Cl); and Q1 is
770 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-F); and Q1 is
771 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,4-F); and Q1 is
772 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H); and Q1 is
773 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H,3-F); and Q1 is
774 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H,4-F); and Q1 is
775 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br); and Q1 is
776 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,3-F); and Q1 is
777 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,4-F); and Q1 is
778 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-Br,3,4-di-F); and Q1 is
779 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I); and Q1 is
780 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,3-F); and Q1 is
781 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,4-F); and Q1 is
782 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-I,3,4-di-F); and Q1 is
783 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN); and Q1 is
784 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-Me); and Q1 is
785 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-F); and Q1 is
786 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,4-F); and Q1 is
787 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3-Cl); and Q1 is
788 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,4-Cl); and Q1 is
789 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-CN,3,4-di-F); and Q1 is
790 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl; and Q1 is
791 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-F; and Q1 is
792 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,4-F; and Q1 is
793 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3,4-di-F; and Q1 is
794 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-Cl; and Q1 is
795 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,4-Cl; and Q1 is
796 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-Cl,4-F; and Q1 is
797 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me); and Q1 is
798 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-F); and Q1 is
799 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-Me); and Q1 is
800 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 4-F); and Q1 is
801 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 5-F); and Q1 is
802 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me,3,4-di-F); and Q1 is
803 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-Cl); and Q1 is
804 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 4-Cl); and Q1 is
805 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2Me,3-Cl,4-F); and Q1 is
806 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2); and Q1 is
807 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 3-F); and Q1 is
808 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 3-Cl); and Q1 is
809 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 4-F); and Q1 is
810 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 5-F); and Q1 is
811 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2,3,4-di-F); and Q1 is
812 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-F); and Q1 is
813 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4-di-F); and Q1 is
814 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,5-di-F); and Q1 is
815 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4,5-tri-F); and Q1 is
816 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-F,4-Cl); and Q1 is
817 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3); and Q1 is
818 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4-F); and Q1 is
819 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4-Cl); and Q1 is
820 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,5-F); and Q1 is
821 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-CF3,4,5-di-F); and Q1 is
822 Y1 is N H; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me); and Q1 is
823 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4-Cl); and Q1 is
824 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4-F); and Q1 is
825 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4,5-di-F); and Q1 is
826 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,5-F); and Q1 is
827 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2); and Q1 is
828 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4-F); and Q1 is
829 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4,5-di-F); and Q1 is
830 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4-Cl); and Q1 is
831 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,5-F); and Q1 is
832 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me); and Q1 is
833 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4-F); and Q1 is
834 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4-Cl); and Q1 is
835 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,5-F); and Q1 is
836 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Me,4,5-di-F); and Q1 is
837 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl); and Q1 is
838 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,4-F); and Q1 is
839 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,4-di-Cl); and Q1 is
840 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,5-F); and Q1 is
841 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3-Cl,4,5-di-F); and Q1 is
842 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(3,5-di-Cl); and Q1 is
843 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(4-F); and Q1 is
844 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is Ph(4-Cl); and Q1 is
845 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-4-yl; and Q1 is
846 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-5-yl; and Q1 is
847 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-4-yl; and Q1 is
848 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-5-yl; and Q1 is
849 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 1,3-benzodioxol-4-yl; and Q1 is
850 Y1 is NH; Y2 is O; R2 is H; R4 is H; R5 is H; Q2 is 1,3-benzodioxol-5-yl; and Q1 is
851 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F); and Q1 is
852 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2,3-di-F); and Q1 is
853 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2,4-di-F); and Q1 is
854 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2,5-di-F); and Q1 is
855 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2,3,4-tri-F); and Q1 is
856 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2,3,5-tri-F); and Q1 is
857 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2,3,4,5-tetra-F); and Q1 is
858 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl,4-Br); and Q1 is
859 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl,4-F); and Q1 is
860 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-Br,4-F); and Q1 is
861 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me); and Q1 is
862 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me,4-F); and Q1 is
863 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-Me,4-Cl); and Q1 is
864 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-Cl); and Q1 is
865 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,4-Cl); and Q1 is
866 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3,4-di-Cl); and Q1 is
867 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,4-Br); and Q1 is
868 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe); and Q1 is
869 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe,4-F); and Q1 is
870 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-OMe,4-Cl); and Q1 is
871 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF2H); and Q1 is
872 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF3); and Q1 is
873 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-CF3,4-F); and Q1 is
874 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-NO2); and Q1 is
875 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-NO2,4-F); and Q1 is
876 Y1 is Y2 is R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-SO2Me); and Q1 is
877 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-F,3-SO2Me,4-F); and Q1 is
878 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF3); and Q1 is
879 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-F); and Q1 is
880 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-Me); and Q1 is
881 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF3,4-F); and Q1 is
882 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF3,3-Cl); and Q1 is
883 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF3,4-Cl); and Q1 is
884 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF3,3,4-di-F); and Q1 is
885 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF2H); and Q1 is
886 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-F); and Q1 is
887 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-Me); and Q1 is
888 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF2H,4-F); and Q1 is
889 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3-Cl); and Q1 is
890 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF2H,4-Cl); and Q1 is
891 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CF2H,3,4-di-F); and Q1 is
892 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Me); and Q1 is
893 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2,3-di-Me); and Q1 is
894 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Me,3-F); and Q1 is
895 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Me,3-Cl); and Q1 is
896 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Me,3-CF3); and Q1 is
897 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Me,3,4-di-Cl); and Q1 is
898 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Me,3-Cl,4-F); and Q1 is
899 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Me,4-Cl); and Q1 is
900 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Me,4-F); and Q1 is
901 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Me,5-F); and Q1 is
902 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Me,3,4-di-F); and Q1 is
903 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Me,3,5-di-F); and Q1 is
904 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Et); and Q1 is
905 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Et,3-F); and Q1 is
906 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Et,3-Cl); and Q1 is
907 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Et,4-F); and Q1 is
908 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Et,3,4-di-F); and Q1 is
909 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-i-Pr); and Q1 is
910 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3-F); and Q1 is
911 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3-Cl); and Q1 is
912 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,4-F); and Q1 is
913 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-i-Pr,3,4-di-F); and Q1 is
914 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-c-Pr); and Q1 is
915 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3-F); and Q1 is
916 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3-Cl); and Q1 is
917 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,4-F); and Q1 is
918 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-c-Pr,3,4-di-F); and Q1 is
919 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-NO2); and Q1 is
920 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-NO2,3-F); and Q1 is
921 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-NO2,3-Cl); and Q1 is
922 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-NO2,4-F); and Q1 is
923 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-NO2,3,4-di-F); and Q1 is
924 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-OCF3); and Q1 is
925 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-OCF3,3-F); and Q1 is
926 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-OCF3,4-F); and Q1 is
927 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Cl); and Q1 is
928 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-Me); and Q1 is
929 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-Me,4-F); and Q1 is
930 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2,3-di-Cl); and Q1 is
931 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2,4-di-Cl); and Q1 is
932 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Cl,3-F); and Q1 is
933 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Cl,4-F); and Q1 is
934 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Cl,5-F); and Q1 is
935 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Cl,3,4-di-F); and Q1 is
936 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Cl,3,5-di-F); and Q1 is
937 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-OCF2H); and Q1 is
938 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-Me); and Q1 is
939 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-Cl); and Q1 is
940 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,3-F); and Q1 is
941 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-OCF2H,4-F); and Q1 is
942 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H); and Q1 is
943 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H,3-F); and Q1 is
944 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-OCF2CF2H,4-F); and Q1 is
945 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Br); and Q1 is
946 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Br,3-F); and Q1 is
947 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Br,4-F); and Q1 is
948 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-Br,3,4-di-F); and Q1 is
949 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-I); and Q1 is
950 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-I,3-F); and Q1 is
951 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-I,4-F); and Q1 is
952 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-I,3,4-di-F); and Q1 is
953 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CN); and Q1 is
954 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CN,3-Me); and Q1 is
955 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CN,3-F); and Q1 is
956 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CN,4-F); and Q1 is
957 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CN,3-Cl); and Q1 is
958 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CN,4-Cl); and Q1 is
959 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-CN,3,4-di-F); and Q1 is
960 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is 2-Pyridinyl; and Q1 is
961 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-F; and Q1 is
962 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is 2-Pyridinyl,4-F; and Q1 is
963 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3,4-di-F; and Q1 is
964 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-Cl; and Q1 is
965 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is 2-Pyridinyl,4-Cl; and Q1 is
966 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is 2-Pyridinyl,3-Cl,4-F; and Q1 is
967 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2Me); and Q1 is
968 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-F); and Q1 is
969 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-Me); and Q1 is
970 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 4-F); and Q1 is
971 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 5-F); and Q1 is
972 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2Me,3,4-di-F); and Q1 is
973 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 3-Cl); and Q1 is
974 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2Me, 4-Cl); and Q1 is
975 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2Me,3-Cl,4-F); and Q1 is
976 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2); and Q1 is
977 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 3-F); and Q1 is
978 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 3-Cl); and Q1 is
979 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 4-F); and Q1 is
980 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2, 5-F); and Q1 is
981 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(2-SO2NH2,3,4-di-F); and Q1 is
982 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-F); and Q1 is
983 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3,4-di-F); and Q1 is
984 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3,5-di-F); and Q1 is
985 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3,4,5-tri-F); and Q1 is
986 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-F,4-Cl); and Q1 is
987 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-CF3); and Q1 is
988 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-CF3,4-F); and Q1 is
989 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-CF3,4-Cl); and Q1 is
990 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-CF3,5-F); and Q1 is
991 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-CF3,4,5-di-F); and Q1 is
992 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-SO2Me); and Q1 is
993 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4-Cl); and Q1 is
994 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4-F); and Q1 is
995 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,4,5-di-F); and Q1 is
996 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-SO2Me,5-F); and Q1 is
997 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2); and Q1 is
998 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4-F); and Q1 is
999 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4,5-di-F); and Q1 is
1000 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,4-Cl); and Q1 is
1001 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-SO2NH2,5-F); and Q1 is
1002 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-Me); and Q1 is
1003 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-Me,4-F); and Q1 is
1004 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-Me,4-Cl); and Q1 is
1005 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-Me,5-F); and Q1 is
1006 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-Me,4,5-di-F); and Q1 is
1007 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-Cl); and Q1 is
1008 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-Cl,4-F); and Q1 is
1009 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3,4-di-Cl); and Q1 is
1010 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-Cl,5-F); and Q1 is
1011 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3-Cl,4,5-di-F); and Q1 is
1012 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(3,5-di-Cl); and Q1 is
1013 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(4-F); and Q1 is
1014 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is Ph(4-Cl); and Q1 is
1015 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-4-yl; and Q1 is
1016 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-5-yl; and Q1 is
1017 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-4-yl; and Q1 is
1018 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-5-yl; and Q1 is
1019 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is 1,3-benzodioxol-4-yl; and Q1 is
1020 Y1 is O; Y2 is O; R2 is Me; R4 is H; R5 is H; Q2 is 1,3-benzodioxol-5-yl; and Q1 is
1021 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F); and Q1 is
1022 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2,3-di-F); and Q1 is
1023 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2,4-di-F); and Q1 is
1024 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2,5-di-F); and Q1 is
1025 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2,3,4-tri-F); and Q1 is
1026 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2,3,5-tri-F); and Q1 is
1027 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2,3,4,5-tetra-F); and Q1 is
1028 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-Cl,4-Br); and Q1 is
1029 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-Cl,4-F); and Q1 is
1030 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-Br,4-F); and Q1 is
1031 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-Me); and Q1 is
1032 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-Me,4-F); and Q1 is
1033 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-Me,4-Cl); and Q1 is
1034 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-Cl); and Q1 is
1035 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,4-Cl); and Q1 is
1036 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3,4-di-Cl); and Q1 is
1037 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,4-Br); and Q1 is
1038 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-OMe); and Q1 is
1039 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-OMe,4-F); and Q1 is
1040 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-OMe,4-Cl); and Q1 is
1041 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-CF2H); and Q1 is
1042 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-CF3); and Q1 is
1043 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-CF3,4-F); and Q1 is
1044 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-NO2); and Q1 is
1045 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-NO2,4-F); and Q1 is
1046 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-SO2Me); and Q1 is
1047 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-F,3-SO2Me,4-F); and Q1 is
1048 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF3); and Q1 is
1049 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF3,3-F); and Q1 is
1050 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF3,3-Me); and Q1 is
1051 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF3,4-F); and Q1 is
1052 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF3,3-Cl); and Q1 is
1053 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF3,4-Cl); and Q1 is
1054 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF3,3,4-di-F); and Q1 is
1055 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF2H); and Q1 is
1056 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF2H,3-F); and Q1 is
1057 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF2H,3-Me); and Q1 is
1058 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF2H,4-F); and Q1 is
1059 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF2H,3-Cl); and Q1 is
1060 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF2H,4-Cl); and Q1 is
1061 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CF2H,3,4-di-F); and Q1 is
1062 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Me); and Q1 is
1063 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2,3-di-Me); and Q1 is
1064 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Me,3-F); and Q1 is
1065 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Me,3-Cl); and Q1 is
1066 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Me,3-CF3); and Q1 is
1067 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Me,3,4-di-Cl); and Q1 is
1068 Y1 is Y2 is R2 is R4 is R5 is Q2 is Ph(2-Me,3-Cl,4-F); and Q1 is
1069 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Me,4-Cl); and Q1 is
1070 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Me,4-F); and Q1 is
1071 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Me,5-F); and Q1 is
1072 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Me,3,4-di-F); and Q1 is
1073 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Me,3,5-di-F); and Q1 is
1074 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Et); and Q1 is
1075 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Et,3-F); and Q1 is
1076 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Et,3-Cl); and Q1 is
1077 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Et,4-F); and Q1 is
1078 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Et,3,4-di-F); and Q1 is
1079 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-i-Pr); and Q1 is
1080 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-i-Pr,3-F); and Q1 is
1081 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-i-Pr,3-Cl); and Q1 is
1082 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-i-Pr,4-F); and Q1 is
1083 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-i-Pr,3,4-di-F); and Q1 is
1084 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-c-Pr); and Q1 is
1085 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-c-Pr,3-F); and Q1 is
1086 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-c-Pr,3-Cl); and Q1 is
1087 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-c-Pr,4-F); and Q1 is
1088 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-c-Pr,3,4-di-F); and Q1 is
1089 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-NO2); and Q1 is
1090 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-NO2,3-F); and Q1 is
1091 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-NO2,3-Cl); and Q1 is
1092 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-NO2,4-F); and Q1 is
1093 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-NO2,3,4-di-F); and Q1 is
1094 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-OCF3); and Q1 is
1095 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-OCF3,3-F); and Q1 is
1096 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-OCF3,4-F); and Q1 is
1097 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Cl); and Q1 is
1098 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Cl,3-Me); and Q1 is
1099 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Cl,3-Me,4-F); and Q1 is
1100 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2,3-di-Cl); and Q1 is
1101 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2,4-di-Cl); and Q1 is
1102 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Cl,3-F); and Q1 is
1103 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Cl,4-F); and Q1 is
1104 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Cl,5-F); and Q1 is
1105 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Cl,3,4-di-F); and Q1 is
1106 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Cl,3,5-di-F); and Q1 is
1107 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-OCF2H); and Q1 is
1108 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-OCF2H,3-Me); and Q1 is
1109 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-OCF2H,3-Cl); and Q1 is
1110 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-OCF2H,3-F); and Q1 is
1111 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-OCF2H,4-F); and Q1 is
1112 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-OCF2CF2H); and Q1 is
1113 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-OCF2CF2H,3-F); and Q1 is
1114 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-OCF2CF2H,4-F); and Q1 is
1115 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Br); and Q1 is
1116 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Br,3-F); and Q1 is
1117 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Br,4-F); and Q1 is
1118 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-Br,3,4-di-F); and Q1 is
1119 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-I); and Q1 is
1120 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-I,3-F); and Q1 is
1121 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-I,4-F); and Q1 is
1122 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-I,3,4-di-F); and Q1 is
1123 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CN); and Q1 is
1124 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CN,3-Me); and Q1 is
1125 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CN,3-F); and Q1 is
1126 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CN,4-F); and Q1 is
1127 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CN,3-Cl); and Q1 is
1128 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CN,4-Cl); and Q1 is
1129 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-CN,3,4-di-F); and Q1 is
1130 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is 2-Pyridinyl; and Q1 is
1131 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is 2-Pyridinyl,3-F; and Q1 is
1132 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is 2-Pyridinyl,4-F; and Q1 is
1133 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is 2-Pyridinyl,3,4-di-F; and Q1 is
1134 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is 2-Pyridinyl,3-Cl; and Q1 is
1135 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is 2-Pyridinyl,4-Cl; and Q1 is
1136 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is 2-Pyridinyl,3-Cl,4-F; and Q1 is
1137 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2Me); and Q1 is
1138 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2Me, 3-F); and Q1 is
1139 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2Me, 3-Me); and Q1 is
1140 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2Me, 4-F); and Q1 is
1141 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2Me, 5-F); and Q1 is
1142 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2Me,3,4-di-F); and Q1 is
1143 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2Me, 3-Cl); and Q1 is
1144 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2Me, 4-Cl); and Q1 is
1145 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2Me,3-Cl,4-F); and Q1 is
1146 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2NH2); and Q1 is
1147 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2NH2, 3-F); and Q1 is
1148 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2NH2, 3-Cl); and Q1 is
1149 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2NH2, 4-F); and Q1 is
1150 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2NH2, 5-F); and Q1 is
1151 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(2-SO2NH2,3,4-di-F); and Q1 is
1152 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-F); and Q1 is
1153 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3,4-di-F); and Q1 is
1154 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3,5-di-F); and Q1 is
1155 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3,4,5-tri-F); and Q1 is
1156 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-F,4-Cl); and Q1 is
1157 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-CF3); and Q1 is
1158 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-CF3,4-F); and Q1 is
1159 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-CF3,4-Cl); and Q1 is
1160 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-CF3,5-F); and Q1 is
1161 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-CF3,4,5-di-F); and Q1 is
1162 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-SO2Me); and Q1 is
1163 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-SO2Me,4-Cl); and Q1 is
1164 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-SO2Me,4-F); and Q1 is
1165 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-SO2Me,4,5-di-F); and Q1 is
1166 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-SO2Me,5-F); and Q1 is
1167 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-SO2NH2); and Q1 is
1168 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-SO2NH2,4-F); and Q1 is
1169 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-SO2NH2,4,5-di-F); and Q1 is
1170 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-SO2NH2,4-Cl); and Q1 is
1171 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-SO2NH2,5-F); and Q1 is
1172 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-Me); and Q1 is
1173 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-Me,4-F); and Q1 is
1174 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-Me,4-Cl); and Q1 is
1175 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-Me,5-F); and Q1 is
1176 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-Me,4,5-di-F); and Q1 is
1177 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-Cl); and Q1 is
1178 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-Cl,4-F); and Q1 is
1179 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3,4-di-Cl); and Q1 is
1180 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-Cl,5-F); and Q1 is
1181 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3-Cl,4,5-di-F); and Q1 is
1182 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(3,5-di-Cl); and Q1 is
1183 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(4-F); and Q1 is
1184 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is Ph(4-Cl); and Q1 is
1185 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-4-yl; and Q1 is
1186 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-5-yl; and Q1 is
1187 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-4-yl; and Q1 is
1188 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-5-yl; and Q1 is
1189 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is 1,3-benzodioxol-4-yl; and Q1 is
1190 Y1 is O; Y2 is O; R2 is H; R4 is Br; R5 is H; Q2 is 1,3-benzodioxol-5-yl; and Q1 is
1191 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F); and Q1 is
1192 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2,3-di-F); and Q1 is
1193 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2,4-di-F); and Q1 is
1194 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2,5-di-F); and Q1 is
1195 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2,3,4-tri-F); and Q1 is
1196 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2,3,5-tri-F); and Q1 is
1197 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2,3,4,5-tetra-F); and Q1 is
1198 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-Cl,4-Br); and Q1 is
1199 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-Cl,4-F); and Q1 is
1200 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-Br,4-F); and Q1 is
1201 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-Me); and Q1 is
1202 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-Me,4-F); and Q1 is
1203 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-Me,4-Cl); and Q1 is
1204 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-Cl); and Q1 is
1205 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,4-Cl); and Q1 is
1206 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3,4-di-Cl); and Q1 is
1207 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,4-Br); and Q1 is
1208 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-OMe); and Q1 is
1209 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-OMe,4-F); and Q1 is
1210 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-OMe,4-Cl); and Q1 is
1211 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-CF2H); and Q1 is
1212 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-CF3); and Q1 is
1213 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-CF3,4-F); and Q1 is
1214 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-NO2); and Q1 is
1215 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-NO2,4-F); and Q1 is
1216 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-SO2Me); and Q1 is
1217 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-F,3-SO2Me,4-F); and Q1 is
1218 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF3); and Q1 is
1219 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF3,3-F); and Q1 is
1220 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF3,3-Me), and Q1 is
1221 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF3,4-F); and Q1 is
1222 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF3,3-Cl); and Q1 is
1223 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF3,4-Cl); and Q1 is
1224 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF3,3,4-di-F); and Q1 is
1225 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF2H); and Q1 is
1226 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF2H,3-F); and Q1 is
1227 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF2H,3-Me); and Q1 is
1228 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF2H,4-F); and Q1 is
1229 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF2H,3-Cl); and Q1 is
1230 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF2H,4-Cl); and Q1 is
1231 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CF2H,3,4-di-F); and Q1 is
1232 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Me); and Q1 is
1233 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2,3-di-Me); and Q1 is
1234 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Me,3-F); and Q1 is
1235 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Me,3-Cl); and Q1 is
1236 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Me,3-CF3); and Q1 is
1237 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Me,3,4-di-Cl); and Q1 is
1238 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Me,3-Cl,4-F); and Q1 is
1239 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Me,4-Cl); and Q1 is
1240 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Me,4-F); and Q1 is
1241 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Me,5-F); and Q1 is
1242 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Me,3,4-di-F); and Q1 is
1243 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Me,3,5-di-F); and Q1 is
1244 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Et); and Q1 is
1245 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Et,3-F); and Q1 is
1246 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Et,3-Cl); and Q1 is
1247 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Et,4-F); and Q1 is
1248 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Et,3,4-di-F); and Q1 is
1249 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-i-Pr); and Q1 is
1250 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-i-Pr,3-F); and Q1 is
1251 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-i-Pr,3-Cl); and Q1 is
1252 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-i-Pr,4-F); and Q1 is
1253 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-i-Pr,3,4-di-F); and Q1 is
1254 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-c-Pr); and Q1 is
1255 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-c-Pr,3-F); and Q1 is
1256 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-c-Pr,3-Cl); and Q1 is
1257 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-c-Pr,4-F); and Q1 is
1258 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-c-Pr,3,4-di-F); and Q1 is
1259 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-NO2); and Q1 is
1260 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-NO2,3-F); and Q1 is
1261 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-NO2,3-Cl); and Q1 is
1262 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-NO2,4-F); and Q1 is
1263 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-NO2,3,4-di-F); and Q1 is
1264 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-OCF3); and Q1 is
1265 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-OCF3,3-F); and Q1 is
1266 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-OCF3,4-F); and Q1 is
1267 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Cl); and Q1 is
1268 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Cl,3-Me); and Q1 is
1269 Y1 is O; Y2 is O; R2 is H; R4 is, Cl; R5 is H; Q2 is Ph(2-Cl,3-Me,4-F); and Q1 is
1270 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2,3-di-Cl); and Q1 is
1271 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2,4-di-Cl); and Q1 is
1272 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Cl,3-F); and Q1 is
1273 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Cl,4-F); and Q1 is
1274 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Cl,5-F); and Q1 is
1275 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Cl,3,4-di-F); and Q1 is
1276 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Cl,3,5-di-F); and Q1 is
1277 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-OCF2H); and Q1 is
1278 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-OCF2H,3-Me); and Q1 is
1279 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-OCF2H,3-Cl); and Q1 is
1280 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-OCF2H,3-F); and Q1 is
1281 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-OCF2H,4-F); and Q1 is
1282 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-OCF2CF2H); and Q1 is
1283 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-OCF2CF2H,3-F); and Q1 is
1284 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-OCF2CF2H,4-F); and Q1 is
1285 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Br); and Q1 is
1286 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Br,3-F); and Q1 is
1287 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Br,4-F); and Q1 is
1288 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-Br,3,4-di-F); and Q1 is
1289 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-I); and Q1 is
1290 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-I,3-F); and Q1 is
1291 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-I,4-F); and Q1 is
1292 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-I,3,4-di-F); and Q1 is
1293 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CN); and Q1 is
1294 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CN,3-Me); and Q1 is
1295 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CN,3-F); and Q1 is
1296 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CN,4-F); and Q1 is
1297 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CN,3-Cl); and Q1 is
1298 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CN,4-Cl); and Q1 is
1299 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-CN,3,4-di-F); and Q1 is
1300 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is 2-Pyridinyl; and Q1 is
1301 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is 2-Pyridinyl,3-F; and Q1 is
1302 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is 2-Pyridinyl,4-F; and Q1 is
1303 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is 2-Pyridinyl,3,4-di-F; and Q1 is
1304 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is 2-Pyridinyl,3-Cl; and Q1 is
1305 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is 2-Pyridinyl,4-Cl; and Q1 is
1306 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is 2-Pyridinyl,3-Cl,4-F; and Q1 is
1307 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2Me); and Q1 is
1308 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2Me, 3-F); and Q1 is
1309 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2Me, 3-Me); and Q1 is
1310 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2Me, 4-F); and Q1 is
1311 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2Me, 5-F); and Q1 is
1312 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2Me,3,4-di-F); and Q1 is
1313 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2Me, 3-Cl); and Q1 is
1314 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2Me, 4-Cl); and Q1 is
1315 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2Me,3-Cl,4-F); and Q1 is
1316 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2NH2); and Q1 is
1317 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2NH2, 3-F); and Q1 is
1318 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2NH2, 3-Cl); and Q1 is
1319 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2NH2, 4-F); and Q1 is
1320 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2NH2, 5-F); and Q1 is
1321 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(2-SO2NH2,3,4-di-F); and Q1 is
1322 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-F); and Q1 is
1323 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3,4-di-F); and Q1 is
1324 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3,5-di-F); and Q1 is
1325 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3,4,5-tri-F); and Q1 is
1326 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-F,4-Cl); and Q1 is
1327 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-CF3); and Q1 is
1328 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-CF3,4-F); and Q1 is
1329 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-CF3,4-Cl); and Q1 is
1330 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-CF3,5-F); and Q1 is
1331 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-CF3,4,5-di-F); and Q1 is
1332 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-SO2Me); and Q1 is
1333 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-SO2Me,4-Cl); and Q1 is
1334 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-SO2Me,4-F); and Q1 is
1335 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-SO2Me,4,5-di-F); and Q1 is
1336 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-SO2Me,5-F); and Q1 is
1337 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-SO2NH2); and Q1 is
1338 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-SO2NH2,4-F); and Q1 is
1339 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-SO2NH2,4,5-di-F); and Q1 is
1340 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-SO2NH2,4-Cl); and Q1 is
1341 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-SO2NH2,5-F); and Q1 is
1342 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-Me); and Q1 is
1343 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-Me,4-F); and Q1 is
1344 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-Me,4-Cl); and Q1 is
1345 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-Me,5-F); and Q1 is
1346 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-Me,4,5-di-F); and Q1 is
1347 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-Cl); and Q1 is
1348 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-Cl,4-F); and Q1 is
1349 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3,4-di-Cl); and Q1 is
1350 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-Cl,5-F); and Q1 is
1351 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3-Cl,4,5-di-F); and Q1 is
1352 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(3,5-di-Cl); and Q1 is
1353 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(4-F); and Q1 is
1354 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is Ph(4-Cl); and Q1 is
1355 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-4-yl; and Q1 is
1356 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is 2,2-di-F-1,3-benzodioxol-5-yl; and Q1 is
1357 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-4-yl; and Q1 is
1358 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is 2,2-di-Me-1,3-benzodioxol-5-yl; and Q1 is
1359 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is 1,3-benzodioxol-4-yl; and Q1 is
1360 Y1 is O; Y2 is O; R2 is H; R4 is Cl; R5 is H; Q2 is 1,3-benzodioxol-5-yl; and Q1 is
1361 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F); and Q1 is
1362 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2,3-di-F); and Q1 is
1363 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2,4-di-F); and Q1 is
1364 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2,5-di-F); and Q1 is
1365 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2,3,4-tri-F); and Q1 is
1366 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2,3,5-tri-F); and Q1 is
1367 Y1 is O; Y2 is O; R2 is H; R4 is, H; R5 is Br; Q2 is Ph(2,3,4,5-tetra-F); and Q1 is
1368 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-Cl,4-Br); and Q1 is
1369 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-Cl,4-F); and Q1 is
1370 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-Br,4-F); and Q1 is
1371 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-Me); and Q1 is
1372 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-Me,4-F); and Q1 is
1373 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-Me,4-Cl); and Q1 is
1374 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-Cl); and Q1 is
1375 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,4-Cl); and Q1 is
1376 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3,4-di-Cl); and Q1 is
1377 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,4-Br); and Q1 is
1378 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-OMe); and Q1 is
1379 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-OMe,4-F); and Q1 is
1380 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-OMe,4-Cl); and Q1 is
1381 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-CF2H); and Q1 is
1382 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-CF3); and Q1 is
1383 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-CF3,4-F); and Q1 is
1384 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-NO2); and Q1 is
1385 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-NO2,4-F); and Q1 is
1386 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-SO2Me); and Q1 is
1387 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-F,3-SO2Me,4-F); and Q1 is
1388 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF3); and Q1 is
1389 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF3,3-F); and Q1 is
1390 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF3,3-Me); and Q1 is
1391 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF3,4-F); and Q1 is
1392 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF3,3-Cl); and Q1 is
1393 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF3,4-Cl); and Q1 is
1394 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF3,3,4-di-F); and Q1 is
1395 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF2H); and Q1 is
1396 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF2H,3-F); and Q1 is
1397 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF2H,3-Me); and Q1 is
1398 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF2H,4-F); and Q1 is
1399 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF2H,3-Cl); and Q1 is
1400 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF2H,4-Cl); and Q1 is
1401 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CF2H,3,4-di-F); and Q1 is
1402 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Me); and Q1 is
1403 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2,3-di-Me); and Q1 is
1404 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Me,3-F); and Q1 is
1405 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Me,3-Cl); and Q1 is
1406 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Me,3-CF3); and Q1 is
1407 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Me,3,4-di-Cl); and Q1 is
1408 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Me,3-Cl,4-F); and Q1 is
1409 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Me,4-Cl); and Q1 is
1410 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Me,4-F); and Q1 is
1411 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Me,5-F); and Q1 is
1412 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Me,3,4-di-F); and Q1 is
1413 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Me,3,5-di-F); and Q1 is
1414 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Et); and Q1 is
1415 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Et,3-F); and Q1 is
1416 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Et,3-Cl); and Q1 is
1417 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Et,4-F); and Q1 is
1418 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Et,3,4-di-F); and Q1 is
1419 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-i-Pr); and Q1 is
1420 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-i-Pr,3-F); and Q1 is
1421 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-i-Pr,3-Cl); and Q1 is
1422 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-i-Pr,4-F); and Q1 is
1423 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-i-Pr,3,4-d1-F); and Q1 is
1424 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-c-Pr); and Q1 is
1425 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-c-Pr,3-F); and Q1 is
1426 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-c-Pr,3-Cl); and Q1 is
1427 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-c-Pr,4-F); and Q1 is
1428 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-c-Pr,3,4-di-F); and Q1 is
1429 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-NO2); and Q1 is
1430 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-NO2,3-F); and Q1 is
1431 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-NO2,3-Cl); and Q1 is
1432 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-NO2,4-F); and Q1 is
1433 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-NO2,3,4-di-F); and Q1 is
1434 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-OCF3); and Q1 is
1435 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-OCF3,3-F); and Q1 is
1436 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-OCF3,4-F), and Q1 is
1437 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Cl); and Q1 is
1438 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Cl,3-Me); and Q1 is
1439 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Cl,3-Me,4-F); and Q1 is
1440 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2,3-di-Cl); and Q1 is
1441 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2,4-di-Cl); and Q1 is
1442 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Cl,3-F); and Q1 is
1443 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Cl,4-F); and Q1 is
1444 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Cl,5-F); and Q1 is
1445 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Cl,3,4-di-F); and Q1 is
1446 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Cl,3,5-di-F); and Q1 is
1447 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-OCF2H); and Q1 is
1448 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-OCF2H,3-Me); and Q1 is
1449 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-OCF2H,3-Cl); and Q1 is
1450 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-OCF2H,3-F); and Q1 is
1451 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-OCF2H,4-F); and Q1 is
1452 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-OCF2CF2H); and Q1 is
1453 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-OCF2CF2H,3-F); and Q1 is
1454 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-OCF2CF2H,4-F); and Q1 is
1455 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Br); and Q1 is
1456 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Br,3-F); and Q1 is
1457 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Br,4-F); and Q1 is
1458 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-Br,3,4-di-F); and Q1 is
1459 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-I); and Q1 is
1460 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-I,3-F); and Q1 is
1461 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-I,4-F); and Q1 is
1462 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-I,3,4-di-F); and Q1 is
1463 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CN); and Q1 is
1464 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CN,3-Me); and Q1 is
1465 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CN,3-F); and Q1 is
1466 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CN,4-F); and Q1 is
1467 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CN,3-Cl); and Q1 is
1468 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CN,4-Cl); and Q1 is
1469 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-CN,3,4-di-F); and Q1 is
1470 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is 2-Pyridinyl; and Q1 is
1471 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is 2-Pyridinyl,3-F; and Q1 is
1472 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is 2-Pyridinyl,4-F; and Q1 is
1473 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is 2-Pyridinyl,3,4-di-F; and Q1 is
1474 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is 2-Pyridinyl,3-Cl; and Q1 is
1475 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is 2-Pyridinyl,4-Cl; and Q1 is
1476 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is 2-Pyridinyl,3-Cl,4-F; and Q1 is
1477 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2Me); and Q1 is
1478 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2Me, 3-F); and Q1 is
1479 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2Me, 3-Me); and Q1 is
1480 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2Me, 4-F); and Q1 is
1481 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2Me, 5-F); and Q1 is
1482 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2Me,3,4-di-F); and Q1 is
1483 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2Me, 3-C1); and Q1 is
1484 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2Me, 4-Cl); and Q1 is
1485 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2Me,3-Cl,4-F); and Q1 is
1486 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2NH2); and Q1 is
1487 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2NH2, 3-F); and Q1 is
1488 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2NH2, 3-Cl); and Q1 is
1489 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2NH2, 4-F); and Q1 is
1490 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2NH2, 5-F); and Q1 is
1491 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(2-SO2NH2,3,4-di-F); and Q1 is
1492 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-F); and Q1 is
1493 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3,4-di-F); and Q1 is
1494 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3,5-di-F); and Q1 is
1495 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3,4,5-tri-F); and Q1 is
1496 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-F,4-Cl); and Q1 is
1497 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-CF3); and Q1 is
1498 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-CF3,4-F); and Q1 is
1499 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-CF3,4-Cl); and Q1 is
1500 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-CF3,5-F); and Q1 is
1501 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-CF3,4,5-di-F); and Q1 is
1502 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-SO2Me); and Q1 is
1503 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-SO2Me,4-Cl); and Q1 is
1504 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-SO2Me,4-F); and Q1 is
1505 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-SO2Me,4,5-di-F); and Q1 is
1506 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-SO2Me,5-F); and Q1 is
1507 Y1 is Y2 is R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-SO2NH2); and Q1 is
1508 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-SO2NH2,4-F); and Q1 is
1509 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-SO2NH2,4,5-di-F); and Q1 is
1510 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-SO2NH2,4-Cl); and Q1 is
1511 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-SO2NH2,5-F); and Q1 is
1512 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-Me); and Q1 is
1513 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-Me,4-F); and Q1 is
1514 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-Me,4-Cl); and Q1 is
1515 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-Me,5-F); and Q1 is
1516 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-Me,4,5-di-F); and Q1 is
1517 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-Cl); and Q1 is
1518 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-Cl,4-F); and Q1 is
1519 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3,4-di-Cl); and Q1 is
1520 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-Cl,5-F); and Q1 is
1521 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3-Cl,4,5-di-F); and Q1 is
1522 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(3,5-di-Cl); and Q1 is
1523 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(4-F); and Q1 is
1524 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is Ph(4-Cl); and Q1 is
1525 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is 2,2-di-F-1,3-benzodioxol-4-yl; and Q1 is
1526 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is 2,2-di-F-1,3-benzodioxol-5-yl; and Q1 is
1527 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is 2,2-di-Me-1,3-benzodioxol-4-yl; and Q1 is
1528 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is 2,2-di-Me-1,3-benzodioxol-5-yl; and Q1 is
1529 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is 1,3-benzodioxol-4-yl; and Q1 is
1530 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Br; Q2 is 1,3-benzodioxol-5-yl; and Q1 is
1531 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F); and Q1 is
1532 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2,3-di-F); and Q1 is
1533 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2,4-di-F); and Q1 is
1534 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2,5-di-F); and Q1 is
1535 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2,3,4-tri-F); and Q1 is
1536 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2,3,5-tri-F); and Q1 is
1537 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2,3,4,5-tetra-F); and Q1 is
1538 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-Cl,4-Br); and Q1 is
1539 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-Cl,4-F); and Q1 is
1540 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-Br,4-F); and Q1 is
1541 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-Me); and Q1 is
1542 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-Me,4-F); and Q1 is
1543 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-Me,4-Cl); and Q1 is
1544 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-Cl); and Q1 is
1545 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,4-Cl); and Q1 is
1546 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3,4-di-Cl); and Q1 is
1547 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,4-Br); and Q1 is
1548 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-OMe); and Q1 is
1549 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-OMe,4-F); and Q1 is
1550 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-OMe,4-Cl); and Q1 is
1551 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-CF2H); and Q1 is
1552 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-CF3); and Q1 is
1553 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-CF3,4-F); and Q1 is
1554 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-NO2); and Q1 is
1555 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-NO2,4-F); and Q1 is
1556 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-SO2Me); and Q1 is
1557 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-F,3-SO2Me,4-F); and Q1 is
1558 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF3); and Q1 is
1559 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF3,3-F); and Q1 is
1560 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF3,3-Me); and Q1 is
1561 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF3,4-F); and Q1 is
1562 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF3,3-Cl); and Q1 is
1563 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF3,4-Cl); and Q1 is
1564 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF3,3,4-di-F); and Q1 is
1565 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF2H); and Q1 is
1566 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF2H,3-F); and Q1 is
1567 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF2H,3-Me); and Q1 is
1568 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF2H,4-F); and Q1 is
1569 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF2H,3-Cl); and Q1 is
1570 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF2H,4-Cl); and Q1 is
1571 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CF2H,3,4-di-F); and Q1 is
1572 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Me); and Q1 is
1573 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2,3-di-Me); and Q1 is
1574 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Me,3-F); and Q1 is
1575 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Me,3-Cl); and Q1 is
1576 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Me,3-CF3); and Q1 is
1577 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Me,3,4-di-Cl); and Q1 is
1578 Y1 is O; Y2 is O; R2 is H; R4 is. H; R5 is Cl; Q2 is Ph(2-Me,3-Cl,4-F); and Q1 is
1579 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Me,4-Cl); and Q1 is
1580 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Me,4-F); and Q1 is
1581 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Me,5-F); and Q1 is
1582 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Me,3,4-di-F); and Q1 is
1583 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Me,3,5-di-F); and Q1 is
1584 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Et); and Q1 is
1585 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Et,3-F); and Q1 is
1586 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Et,3-Cl); and Q1 is
1587 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Et,4-F); and Q1 is
1588 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Et,3,4-di-F); and Q1 is
1589 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-i-Pr); and Q1 is
1590 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-i-Pr,3-F); and Q1 is
1591 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-i-Pr,3-Cl); and Q1 is
1592 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-i-Pr,4-F); and Q1 is
1593 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-i-Pr,3,4-di-F); and Q1 is
1594 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-c-Pr); and Q1 is
1595 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-c-Pr,3-F); and Q1 is
1596 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-c-Pr,3-Cl); and Q1 is
1597 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-c-Pr,4-F); and Q1 is
1598 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-c-Pr,3,4-di-F); and Q1 is
1599 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-NO2); and Q1 is
1600 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-NO2,3-F); and Q1 is
1601 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-NO2,3-Cl); and Q1 is
1602 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-NO2,4-F); and Q1 is
1603 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-NO2,3,4-di-F); and Q1 is
1604 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-OCF3); and Q1 is
1605 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-OCF3,3-F); and Q1 is
1606 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-OCF3,4-F); and Q1 is
1607 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Cl); and Q1 is
1608 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Cl,3-Me); and Q1 is
1609 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Cl,3-Me,4-F); and Q1 is
1610 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2,3-di-Cl); and Q1 is
1611 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2,4-di-Cl); and Q1 is
1612 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Cl,3-F); and Q1 is
1613 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Cl,4-F); and Q1 is
1614 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Cl,5-F); and Q1 is
1615 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Cl,3,4-di-F); and Q1 is
1616 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Cl,3,5-di-F); and Q1 is
1617 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-OCF2H); and Q1 is
1618 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-OCF2H,3-Me); and Q1 is
1619 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-OCF2H,3-Cl); and Q1 is
1620 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-OCF2H,3-F); and Q1 is
1621 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-OCF2H,4-F); and Q1 is
1622 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-OCF2CF2H); and Q1 is
1623 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-OCF2CF2H,3-F); and Q1 is
1624 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-OCF2CF2H,4-F); and Q1 is
1625 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Br); and Q1 is
1626 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Br,3-F); and Q1 is
1627 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Br,4-F); and Q1 is
1628 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-Br,3,4-di-F); and Q1 is
1629 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-I); and Q1 is
1630 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-I,3-F); and Q1 is
1631 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-I,4-F); and Q1 is
1632 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-1,3,4-di-F); and Q1 is
1633 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CN); and Q1 is
1634 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CN,3-Me); and Q1 is
1635 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CN,3-F); and Q1 is
1636 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CN,4-F); and Q1 is
1637 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CN,3-Cl); and Q1 is
1638 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CN,4-Cl); and Q1 is
1639 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-CN,3,4-di-F); and Q1 is
1640 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is 2-Pyridinyl; and Q1 is
1641 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is 2-Pyridinyl,3-F; and Q1 is
1642 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is 2-Pyridinyl,4-F; and Q1 is
1643 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is 2-Pyridinyl,3,4-di-F; and Q1 is
1644 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is 2-Pyridinyl,3-Cl; and Q1 is
1645 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is 2-Pyridinyl,4-Cl; and Q1 is
1646 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is 2-Pyridinyl,3-C1,4-F; and Q1 is
1647 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2Me); and Q1 is
1648 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2Me, 3-F); and Q1 is
1649 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2Me, 3-Me); and Q1 is
1650 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2Me, 4-F); and Q1 is
1651 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2Me, 5-F); and Q1 is
1652 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2Me,3,4-di-F); and Q1 is
1653 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2Me, 3-Cl); and Q1 is
1654 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2Me, 4-Cl); and Q1 is
1655 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2Me,3-Cl,4-F); and Q1 is
1656 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2NH2); and Q1 is
1657 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2NH2, 3-F); and Q1 is
1658 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2NH2, 3-Cl); and Q1 is
1659 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2NH2, 4-F); and Q1 is
1660 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2NH2, 5-F); and Q1 is
1661 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(2-SO2NH2,3,4-di-F); and Q1 is
1662 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-F); and Q1 is
1663 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3,4-di-F); and Q1 is
1664 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3,5-di-F); and Q1 is
1665 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3,4,5-tri-F); and Q1 is
1666 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-F,4-Cl); and Q1 is
1667 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-CF3); and Q1 is
1668 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-CF3,4-F); and Q1 is
1669 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-CF3,4-Cl); and Q1 is
1670 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-CF3,5-F); and Q1 is
1671 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-CF3,4,5-di-F); and Q1 is
1672 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-SO2Me); and Q1 is
1673 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-SO2Me,4-Cl); and Q1 is
1674 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-SO2Me,4-F); and Q1 is
1675 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-SO2Me,4,5-di-F); and Q1 is
1676 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-SO2Me,5-F); and Q1 is
1677 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-SO2NH2); and Q1 is
1678 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-SO2NH2,4-F); and Q1 is
1679 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-SO2NH2,4,5-di-F); and Q1 is
1680 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-SO2NH2,4-Cl); and Q1 is
1681 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-SO2NH2,5-F); and Q1 is
1682 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-Me); and Q1 is
1683 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-Me,4-F); and Q1 is
1684 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-Me,4-Cl); and Q1 is
1685 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-Me,5-F); and Q1 is
1686 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-Me,4,5-di-F); and Q1 is
1687 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-Cl); and Q1 is
1688 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-Cl,4-F); and Q1 is
1689 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3,4-di-Cl); and Q1 is
1690 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-Cl,5-F); and Q1 is
1691 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3-Cl,4,5-di-F); and Q1 is
1692 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(3,5-di-Cl); and Q1 is
1693 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(4-F); and Q1 is
1694 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is Ph(4-Cl); and Q1 is
1695 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is 2,2-di-F-1,3-benzodioxol-4-yl; and Q1 is
1696 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is 2,2-di-F-1,3-benzodioxol-5-yl; and Q1 is
1697 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is 2,2-di-Me-1,3-benzodioxol-4-yl; and Q1 is
1698 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is 2,2-di-Me-1,3-benzodioxol-5-yl; and Q1 is
1699 Y1 is O; Y2 is O; R2 is H; R4 is H; R5 is Cl; Q2 is 1,3-benzodioxol-4-yl; and Q1 is
Table 1700
Table 1700 is constructed the same way as Table 1 above, except the strucrure is replaced with the following:



Tables 1701 through 3399



[0116] This disclosure also includes Tables 1701 through 3399, each Table is constructed in the same fashion as Tables 2 through 1699 above, except that the structure is replaced with the structure in Table 1700 above.
Table 3400
Table 3400 is constructed the same way as Table 1 above, except the strucrure is replaced with the following:



Tables 3401 through 5099



[0117] This disclosure also includes Tables 3401 through 5099, each Table is constructed in the same fashion as Tables 2 through 1699 above, except that the structure is replaced with the structure in Table 3400 above.
Table 5100
Table 5100 is constructed the same way as Table 1 above, except the strucrure is replaced with the following:



Tables 5101 through 6799



[0118] This disclosure also includes Tables 5101 through 6799, each Table is constructed in the same fashion as Tables 2 through 1699 above, except that the structure is replaced with the structure in Table 5100 above.



[0119] The present disclosure also includes the intermediate compounds listed in Table I. Table 1 is constructed using the above Table I structure, combined with the individual values listed for Q1 from Table 1.



[0120] The present disclosure also includes the intermediate compounds listed in Table II. Table II is constructed using the above Table II structure, combined with the individual values listed for Q1 from Table 1.



[0121] The present disclosure also includes the intermediate compounds listed in Table III. Table III is constructed using the above Table III structure, combined with the individual values listed for Q1 from Table 1.



[0122] The present disclosure also includes the intermediate compounds listed in Table IV. Table IV is constructed using the above Table IV structure, combined with the individual values listed for Q1 from Table 1.

Formulation/Utility



[0123] A compound of this invention will generally be used as a herbicidal active ingredient in a composition, i.e. formulation, with at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, which serves as a carrier. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature.

[0124] Useful formulations include both liquid and solid compositions. Liquid compositions include solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions, oil-in-water emulsions, flowable concentrates and/or suspoemulsions) and the like, which optionally can be thickened into gels. The general types of aqueous liquid compositions are soluble concentrate, suspension concentrate, capsule suspension, concentrated emulsion, microemulsion, oil-in-water emulsion, flowable concentrate and suspo-emulsion. The general types of nonaqueous liquid compositions are emulsifiable concentrate, microemulsifiable concentrate, dispersible concentrate and oil dispersion.

[0125] The general types of solid compositions are dusts, powders, granules, pellets, prills, pastilles, tablets, filled films (including seed coatings) and the like, which can be water-dispersible ("wettable") or water-soluble. Films and coatings formed from film-forming solutions or flowable suspensions are particularly useful for seed treatment. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. An emulsifiable granule combines the advantages of both an emulsifiable concentrate formulation and a dry granular formulation. High-strength compositions are primarily used as intermediates for further formulation.

[0126] Sprayable formulations are typically extended in a suitable medium before spraying. Such liquid and solid formulations are formulated to be readily diluted in the spray medium, usually water, but occasionally another suitable medium like an aromatic or paraffinic hydrocarbon or vegetable oil. Spray volumes can range from about from about one to several thousand liters per hectare, but more typically are in the range from about ten to several hundred liters per hectare. Sprayable formulations can be tank mixed with water or another suitable medium for foliar treatment by aerial or ground application, or for application to the growing medium of the plant. Liquid and dry formulations can be metered directly into drip irrigation systems or metered into the furrow during planting.

[0127] The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.
 Weight Percent
Active IngredientDiluentSurfactant
Water-Dispersible and Water-soluble Granules, Tablets and Powders 0.001-90 0-99.999 0-15
Oil Dispersions, Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates) 1-50 40-99 0-50
Dusts 1-25 70-99 0-5
Granules and Pellets 0.001-99 5-99.999 0-15
High Strength Compositions 90-99 0-10 0-2


[0128] Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, gypsum, cellulose, titanium dioxide, zinc oxide, starch, dextrin, sugars (e.g., lactose, sucrose), silica, talc, mica, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Typical solid diluents are described in Watkins et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey.

[0129] Liquid diluents include, for example, water, N,N-dimethylalkanamides (e.g., N,N-dimethylformamide), limonene, dimethyl sulfoxide, N-alkylpyrrolidones (e.g., N-methylpyrrolidinone), alkyl phosphates (e.g., triethyl phosphate), ethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, propylene carbonate, butylene carbonate, paraffins (e.g., white mineral oils, normal paraffins, isoparaffins), alkylbenzenes, alkylnaphthalenes, glycerine, glycerol triacetate, sorbitol, aromatic hydrocarbons, dearomatized aliphatics, alkylbenzenes, alkylnaphthalenes, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, acetates such as isoamyl acetate, hexyl acetate, heptyl acetate, octyl acetate, nonyl acetate, tridecyl acetate and isobornyl acetate, other esters such as alkylated lactate esters, dibasic esters, alkyl and aryl benzoates and γ-butyrolactone, and alcohols, which can be linear, branched, saturated or unsaturated, such as methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, n-hexanol, 2-ethylhexanol, n-octanol, decanol, isodecyl alcohol, isooctadecanol, cetyl alcohol, lauryl alcohol, tridecyl alcohol, oleyl alcohol, cyclohexanol, tetrahydrofurfuryl alcohol, diacetone alcohol, cresol and benzyl alcohol. Liquid diluents also include glycerol esters of saturated and unsaturated fatty acids (typically C6-C22), such as plant seed and fruit oils (e.g., oils of olive, castor, linseed, sesame, corn (maize), peanut, sunflower, grapeseed, safflower, cottonseed, soybean, rapeseed, coconut and palm kernel), animal-sourced fats (e.g., beef tallow, pork tallow, lard, cod liver oil, fish oil), and mixtures thereof. Liquid diluents also include alkylated fatty acids (e.g., methylated, ethylated, butylated) wherein the fatty acids may be obtained by hydrolysis of glycerol esters from plant and animal sources, and can be purified by distillation. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950.

[0130] The solid and liquid compositions of the present invention often include one or more surfactants. When added to a liquid, surfactants (also known as "surface-active agents") generally modify, most often reduce, the surface tension of the liquid. Depending on the nature of the hydrophilic and lipophilic groups in a surfactant molecule, surfactants can be useful as wetting agents, dispersants, emulsifiers or defoaming agents.

[0131] Surfactants can be classified as nonionic, anionic or cationic. Nonionic surfactants useful for the present compositions include, but are not limited to: alcohol alkoxylates such as alcohol alkoxylates based on natural and synthetic alcohols (which may be branched or linear) and prepared from the alcohols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof; amine ethoxylates, alkanolamides and ethoxylated alkanolamides; alkoxylated triglycerides such as ethoxylated soybean, castor and rapeseed oils; alkylphenol alkoxylates such as octylphenol ethoxylates, nonylphenol ethoxylates, dinonyl phenol ethoxylates and dodecyl phenol ethoxylates (prepared from the phenols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); block polymers prepared from ethylene oxide or propylene oxide and reverse block polymers where the terminal blocks are prepared from propylene oxide; ethoxylated fatty acids; ethoxylated fatty esters and oils; ethoxylated methyl esters; ethoxylated tristyrylphenol (including those prepared from ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); fatty acid esters, glycerol esters, lanolin-based derivatives, polyethoxylate esters such as polyethoxylated sorbitan fatty acid esters, polyethoxylated sorbitol fatty acid esters and polyethoxylated glycerol fatty acid esters; other sorbitan derivatives such as sorbitan esters; polymeric surfactants such as random copolymers, block copolymers, alkyd peg (polyethylene glycol) resins, graft or comb polymers and star polymers; polyethylene glycols (pegs); polyethylene glycol fatty acid esters; silicone-based surfactants; and sugar-derivatives such as sucrose esters, alkyl polyglycosides and alkyl polysaccharides.

[0132] Useful anionic surfactants include, but are not limited to: alkylaryl sulfonic acids and their salts; carboxylated alcohol or alkylphenol ethoxylates; diphenyl sulfonate derivatives; lignin and lignin derivatives such as lignosulfonates; maleic or succinic acids or their anhydrides; olefin sulfonates; phosphate esters such as phosphate esters of alcohol alkoxylates, phosphate esters of alkylphenol alkoxylates and phosphate esters of styryl phenol ethoxylates; protein-based surfactants; sarcosine derivatives; styryl phenol ether sulfate; sulfates and sulfonates of oils and fatty acids; sulfates and sulfonates of ethoxylated alkylphenols; sulfates of alcohols; sulfates of ethoxylated alcohols; sulfonates of amines and amides such as N,N-alkyltaurates; sulfonates of benzene, cumene, toluene, xylene, and dodecyl and tridecylbenzenes; sulfonates of condensed naphthalenes; sulfonates of naphthalene and alkyl naphthalene; sulfonates of fractionated petroleum; sulfosuccinamates; and sulfosuccinates and their derivatives such as dialkyl sulfosuccinate salts.

[0133] Useful cationic surfactants include, but are not limited to: amides and ethoxylated amides; amines such as N-alkyl propanediamines, tripropylenetriamines and dipropylenetetramines, and ethoxylated amines, ethoxylated diamines and propoxylated amines (prepared from the amines and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); amine salts such as amine acetates and diamine salts; quaternary ammonium salts such as quaternary salts, ethoxylated quaternary salts and diquaternary salts; and amine oxides such as alkyldimethylamine oxides and bis-(2-hydroxyethyl)-alkylamine oxides.

[0134] Also useful for the present compositions are mixtures of nonionic and anionic surfactants or mixtures of nonionic and cationic surfactants. Nonionic, anionic and cationic surfactants and their recommended uses are disclosed in a variety of published references including McCutcheon's Emulsifiers and Detergents, annual American and International Editions published by McCutcheon's Division, The Manufacturing Confectioner Publishing Co.; Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964; and A. S. Davidson and B. Milwidsky, Synthetic Detergents, Seventh Edition, John Wiley and Sons, New York, 1987.

[0135] Compositions of this invention may also contain formulation auxiliaries and additives, known to those skilled in the art as formulation aids (some of which may be considered to also function as solid diluents, liquid diluents or surfactants). Such formulation auxiliaries and ad