(19)
(11)EP 3 669 231 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
31.08.2022 Bulletin 2022/35

(21)Application number: 18749733.4

(22)Date of filing:  19.07.2018
(51)International Patent Classification (IPC): 
G02F 1/135(2006.01)
(52)Cooperative Patent Classification (CPC):
G02F 1/135; G02F 1/1354; Y02E 10/549; G02F 1/1355
(86)International application number:
PCT/EP2018/069597
(87)International publication number:
WO 2019/034359 (21.02.2019 Gazette  2019/08)

(54)

LIQUID CRYSTAL SPATIAL LIGHT MODULATOR

RÄUMLICHER FLÜSSIGKRISTALL-LICHTMODULATOR

MODULATEUR SPATIAL DE LUMIÈRE À CRISTAUX LIQUIDES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 17.08.2017 EP 17186647

(43)Date of publication of application:
24.06.2020 Bulletin 2020/26

(73)Proprietors:
  • Université de Strasbourg
    67000 Strasbourg (FR)
  • Centre National de la Recherche Scientifique
    75016 Paris (FR)
  • University Of Southampton
    Southampton, Hampshire SO17 1BJ (GB)

(72)Inventors:
  • HEISER, M. Thomas
    67270 Hochfelden (FR)
  • REGRETTIER, M. Thomas
    67200 Strasbourg (FR)
  • KACZMAREK, Malgosia
    Southampton Hampshire SO15 7NX (GB)

(74)Representative: IPAZ 
Bâtiment Platon Parc Les Algorithmes
91190 Saint-Aubin
91190 Saint-Aubin (FR)


(56)References cited: : 
US-A- 5 841 489
US-B1- 6 233 027
US-A1- 2016 260 919
  
  • L. LUCCHETTI; K. KUSHNIR; A. ZALTRON; F. SIMONI: "Liquid crystal cells based on photovoltaic substrates", EUR. OPT. SOC.-RAPID, vol. 11, 2016, page 16007, XP055442876, cited in the application
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Technical field



[0001] The present invention relates to a liquid crystal spatial light modulator.

State of the Art



[0002] US 6 233 027 B1 discloses an liquid crystal spatial light modulator having a photoelectric conversion layer and a liquid crystal layer arranged between a pair of transparent electrodes. The photoelectric conversion layer includes a charge generation layer and a charge transportation layer. A writing light impinges on the charge generation layer and represents image data light having a planar light quantity distribution, so that a charge distribution is developed in the photo-charge generation layer. Among the generated charge carriers, holes are transported through the charge transportation layer to the liquid crystal-contacting surface of the photoelectric conversion layer. Electrons flow to one of the transparent electrodes having a relatively high potential. Accordingly, the resistivity of the photoelectric conversion layer is locally lowered depending on the received light quantity, so that a higher effective voltage is applied to the liquid crystal at a portion of a larger received light quantity, and a lower effective voltage is applied to the liquid crystal at a portion of a smaller received light quantity. A similar device is disclosed in US 5 841 489 A.

[0003] US 2016/260919 A1 discloses photovoltaic systems and processes for producing photovoltaic systems, comprising e.g. the following layers stacked in this order on a substrate: a dielectric layer, a first electrode layer, a PEIE layer, a bulk heterojunction active layer, a PEDOT:PSS hole transport layer, and a second electrode layer. The bulk heterojunction active layer comprises a blend of an organic, semiconducting, low band gap polymer as an electron donor and an electron acceptor compound (e.g. P3HT:PCBM).

[0004] Article "Liquid crystal cells based on photovoltaic substrates" by L. Lucchetti, K. Kushnir, A. Zaltron and F. Simoni (Eur. Opt. Soc.-rapid 11, 16007 (2016)) describes a liquid crystal cell with LiNbO3:Fe crystals as substrates. Without application of an external electric field, the photovoltaic LiNbO3:Fe crystal substrates is able to change the orientation of the liquid crystal director thus giving rise to a phase shift on the light propagating through the cell. The problems of this device according to prior art are that:
  • the device is thick due to the thickness of the LiNbO3:Fe crystal substrates,
  • the device is difficult to implement on a large surface due to the manufacturing process of the LiNbO3:Fe crystal substrates and due to the brittleness of the LiNbO3:Fe crystal substrates, and
  • the device is breakable due to the fragility of the LiNbO3:Fe crystal substrates.
  • the device has a low sensitivity to the incident light (birefringence Δnmax = 0.1 at a light intensity of 10 W/cm2)


[0005] The goal of the invention is to present a liquid crystal spatial light modulator solving at least one of the above problems.

Summary of the Invention



[0006] An aspect of the invention concerns a liquid crystal spatial light modulator according to appended claim 1.

[0007] By "blended", it is meant that electron-donating molecules and electron accepting molecules are in a blended state.

[0008] The electron-donating molecules are preferably organic electron-donating molecules.

[0009] The electron accepting molecules are preferably organic electron accepting molecules.

[0010] The at least one photovoltaic cell can comprise, on at least one side of the liquid crystal layer, a superposition of a plurality of photovoltaic cells.

[0011] The spatial light modulator according to the invention can comprise, on each side of the liquid crystal layer, at least one photovoltaic cell.

[0012] That the or each or at least one photovoltaic cell can further comprise an inside interface layer, this inside interface layer:
  • being in contact with the photosensitive layer of this photovoltaic cell, this inside interface layer being located between the liquid crystal layer and this photosensitive layer, or
  • being the liquid crystal layer.


[0013] The inside interface layer can be an electron hole conducting layer arranged for a transfer of electron holes from its contacting photosensitive layer easier than a transfer of electrons from its contacting photosensitive layer.

[0014] The inside interface layer of the or one of the photovoltaic cell(s):
  • can be in contact with the liquid crystal layer, the inside interface layer being arranged for aligning the liquid crystal of the liquid crystal layer at the interface between this inside interface layer and the liquid crystal layer, or
  • can be the liquid crystal layer, the photosensitive layer of this photovoltaic cell being arranged for aligning the liquid crystal of the liquid crystal layer at the interface between this photosensitive layer and the liquid crystal layer.


[0015] The inside interface layer:
  • can be in contact with the liquid crystal layer, and can be hydrophobic, or
  • can be the liquid crystal layer, and the photosensitive layer of this photovoltaic cell can be hydrophobic.


[0016] A layer is considered as "hydrophobic" preferably if the contact angle of a water droplet deposited on this layer is higher than 90° (for a temperature of 20°C and a pressure of air surrounding the droplet equal to 1 bar).

[0017] The or each or at least one photovoltaic cell can further comprise an outside interface layer in contact with the photosensitive layer of this photovoltaic cell, this photosensitive layer being located between the liquid crystal layer and this outside interface layer.

[0018] The outside interface layer can be an electron conducting layer arranged for a transfer of electron from its contacting photosensitive layer easier than a transfer of electron holes from its contacting photosensitive layer.

[0019] The or each or at least one photovoltaic cell can comprise both of:
  • the inside interface layer as previously described,
  • the outside interface layer as previously described,
the inside interface layer in contact with a given photosensitive layer and the outside interface layer in contact with the same given photosensitive layer being preferably made of different materials.

[0020] Preferably:
  • one among the inside interface layer and the outside interface layer can be an electron hole conducting layer arranged for a transfer of an electron hole from its contacting photosensitive layer easier than a transfer of an electron from its contacting photosensitive layer, and
  • the other one among the inside interface layer and the outside interface layer can be an electron conducting layer arranged for a transfer of an electron from its contacting photosensitive layer easier than a transfer of an electron hole from its contacting photosensitive layer.


[0021] The absolute value of the energy difference between the work function of the electron conducting layer and the electron affinity of each electron accepting molecule of the photosensitive layer contacting this outside interface layer is preferably less than or equal to 0.2 eV.

[0022] The absolute value of the energy difference between the work function of the electron hole conducting layer and the ionization potential of each electron-donating molecule of the photosensitive layer contacting this inside interface layer is preferably less than or equal to 0.2 eV.

[0023] The liquid crystal layer preferably has an electrical resistance higher than each part of the photovoltaic cell(s).

[0024] The energy difference between the electron affinity and the ionization potential of each electron-donating molecule is preferably higher than or equal to 3 eV.

[0025] The energy difference between the electron affinity and the ionization potential of each electron accepting molecule is preferably higher than or equal to 3 eV.

[0026] The energy difference between the electron affinity of the electron-donating molecules and the electron affinity of the electron accepting molecules is preferably higher than or equal to 0.1 eV, preferably higher than or equal to 0.3 eV, per couple of electron-donating molecule and electron accepting molecule.

[0027] The energy difference between the ionization potential of the electron-donating molecules and the ionization potential of the electron accepting molecules is preferably higher than or equal to 0.1 eV, preferably higher than or equal to 0.3 eV, per couple of electron-donating molecule and electron accepting molecule.

[0028] The energy difference between the electron affinity of the electron accepting molecules and the ionization potential of the electron-donating molecules, per couple of electron-donating molecule and electron accepting molecule, can respect the following equation :

where:

EA(A) is the electron affinity of each electron accepting molecule expressed in eV

IE(D) is the ionization potential of each electron-donating molecule expressed in eV V(Fredericks) is the Fredericks threshold voltage, expressed in V, of the crystal liquid of the crystal liquid layer

e is the elementary charge of an electron expressed in C.



[0029] The ionization potential of each electron-donating molecule is preferably higher than or equal to 5eV.

[0030] The electronic affinity of each electron accepting molecule is preferably higher than or equal to 3.5 eV.

[0031] The liquid crystal layer and the at least one photovoltaic cell can be comprised between two polarizers.

[0032] The thickness of each photovoltaic cell is preferably less than 1 µm.

[0033] Electron-donating molecules and electron accepting molecules preferably differ in their chemical structure.

Detailed description of the figures and of realization modes of the invention



[0034] Other advantages and characteristics of the invention will appear upon examination of the detailed description of embodiments which are in no way limitative, and of the appended drawings in which:
  • Figure 1 is a side view of a part of a first embodiment 101 of a spatial light modulator according to the invention,
  • Figure 2 is a perspective view of a part of the first embodiment of a spatial light modulator according to the invention,
  • Figure 3 is a side view of a part of a photosensitive layer 5 of the first embodiment of a spatial light modulator according to the invention,
  • Figure 4 illustrates the birefringence variation of two OASLMs (Optically-addressed Spatial Light Modulator) with an organic photosensitive layer 5. The curves represent the variation of birefringence (difference between the birefringence measured at a light intensity of 89 mW / cm2 and a light intensity of 0.017 mW / cm2 at a wavelength of 532 nm as a function of the applied voltage between electrodes 3, 9, wherein:
    • curve 16 corresponds to the first embodiment of Figure 1, and
    • curve 17 corresponds to a variant (without layer 6, 12) of the first embodiment of Figure 1
  • Figure 5 is a schematic view of the electron affinity and/or ionization potential and/or work function of different layers 4, 6 or molecules 14, 15,
  • Figure 6 is a side view of a part of a second embodiment 102 of a spatial light modulator according to the invention, and
  • Figure 7 is a side view of a part of a third embodiment 103 of a spatial light modulator according to the invention.


[0035] These embodiments being in no way limitative, we can consider variants of the invention including only a selection of characteristics subsequently described or illustrated, isolated from other described or illustrated characteristics (even if this selection is taken from a sentence containing these other characteristics), if this selection of characteristics is sufficient to give a technical advantage or to distinguish the invention over the state of the art. This selection includes at least one characteristic, preferably a functional characteristic without structural details, or with only a part of the structural details if that part is sufficient to give a technical advantage or to distinguish the invention over the state of the art.

[0036] We are now going to describe, in reference to figures 1 to 5, a first embodiment 101 of a spatial light modulator according to the invention.

[0037] This first embodiment 101 is an Optically-Addressed Spatial Light Modulator (OASLM), more particularly an optically addressed liquid crystal spatial light modulator 101.

[0038] Modulator 101 is a new generation of a liquid-crystal optically addressed spatial light modulator (OASLM) that harvests incident light as a source of energy for operating without an external power supply.

[0039] The modulator 101 comprises:
  • a layer 7 of liquid crystal (also called LC),
  • on at least one side of the liquid crystal layer 7, at least one photovoltaic cell 456.


[0040] The liquid crystal of layer 7 is a nematic liquid crystal.

[0041] The liquid crystal of layer 7 is a liquid crystal mixture consisting of several cyanobiphenyls with long aliphatic tails, known as "E7". The E7 liquid crystal used here is the classical E7 comprising the following percentages of the following molecules:









[0042] The thickness of layer 7 is more than 1 µm, typically more than 2 µm and/or less than 100 µm, preferably from 3 to 25 microns, typically around 8 µm.

[0043] Figures 1 and 2 illustrate the particular case comprising only one cell 456.

[0044] Each photovoltaic cell 456 is a photovoltaic diode.

[0045] Each photovoltaic cell 456 comprises a photosensitive layer 5 comprising electron-donating molecules D and electron accepting molecules A.

[0046] The thickness of layer 5 is less than 500 nm, typically around 100 nm.

[0047] The electron-donating molecules D (also reference number 15 on the figures) and electron accepting molecules A (also reference number 14 on the figures) are conjugated.

[0048] Electron-donating molecules D and electron accepting molecules A differ in their chemical structure.

[0049] In layer 5, the mass ratio is 1 mg of electron-donating molecules D, 15 for between 0.8 to 1.2 mg of electron accepting molecules A, 14, preferably 1 mg of electron-donating molecules D, 15 for between 0.9 to 1.1 mg of electron accepting molecules A, 14, more preferably 1 mg of electron-donating molecules D, 15 for between 0.99 to 1.01 mg of electron accepting molecules A.

[0050] The photosensitive layer 5 does not comprise any solvent for molecules A and D.

[0051] The photosensitive layer 5 is composed only of the electron-donating molecules D and the electron accepting molecules A.

[0052] The photosensitive layer 5 consist only of the electron-donating molecules D and the electron accepting molecules A and comprises nothing else.

[0053] The electron-donating molecules D are organic semiconductor molecules.

[0054] The electron-donating molecules D comprise several copies of only one type of electron-donating molecule (here P3HT).

[0055] The electron-donating molecules D, 15 are molecules of poly(3-hexylthiophene-2,5-diyl) electron-donating polymer also called P3HT (>93% regioregular, Solaris Chem).

[0056] The electron accepting molecules A are organic semiconductor molecules.

[0057] The electron accepting molecules A comprise several copies of only one type of electron accepting molecule (here PCBM).

[0058] The electron accepting molecules A, 14 are molecules of fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester also called PCBM (Solenne BV).

[0059] Each photovoltaic cell 456 is arranged for spontaneous photovoltage under illumination. As used herein, the term "illumination" refers to any electromagnetic emission. In some embodiments, an illumination may be within the range of infrared, visible and/or ultraviolet spectrum . In some embodiments, it may be advantageous to use an illumination in the range of infrared (IR) or near-infrared (NIR). In some embodiments, it may be advantageous to use an illumination in the range of ultraviolet (UV). In some embodiments, it may be advantageous to use an illumination in the range of visible spectrum. For purposes of this disclosure, visible range wavelengths are considered to be from 350 nm to 800 nm, near-infrared and infraredwavelengths are considered to be longer than 800 nm (preferably up to 1.4 µm ) and ultraviolet wavelengths are considered to be shorter than 350 nm (preferably from 10 nm). Each photovoltaic cell 456 is preferably arranged for spontaneous photovoltage of an electrical potential of at least 0.6 Volt (or even at least 0.7 Volt) under an illumination of 100 mW/cm2 for at least one wavelength comprised between 350 nm and 600 nm (or more generally between 10 nm and 1.4 µm).

[0060] By spontaneous, it is meant in the present description that each photovoltaic cell 456 is arranged for photovoltage under illumination of this photovoltaic cell 456, even at a zero bias voltage between the electrodes 3, 9 and/or even without the existence of electrode 3 and/or 9 and/or even at an initial zero bias voltage through this photovoltaic cell 456.

[0061] Typically, each photovoltaic cell 456 is arranged for photovoltage of an electrical potential of at least 0.6 Volt (or even at least 0.7 Volt) under illumination of this photovoltaic cell 456 of 100 mW/cm2 for at least one wavelength comprised between 350 nm and 600 nm (or more generally between 10 nm and 1.4 µm), even at a zero bias voltage between the electrodes 3, 9 and/or even without the existence of electrode 3 and/or 9 and/or even at an initial zero bias voltage through this photovoltaic cell 456.

[0062] As illustrated in Figure 3, electron-donating molecules D, 15 and electron accepting molecules A, 14 are blended (i.e. in a blended state) and form a bulk D/A heterojunction layer.

[0063] The electron-donating molecules D are organic electron-donating molecules.

[0064] The electron accepting molecules A are organic electron accepting molecules.

[0065] In this description, organic matter, organic material, or organic molecule refer to carbon-based compounds preferably obtained by chemical synthesis. In particular, an organic molecule refers to a carbon-based molecule comprising carbon atoms linked together in rings and/or chains; these carbon atoms are preferably attached to other atoms of such elements as hydrogen, oxygen, and nitrogen.

[0066] The utilization of organic semiconductors 14, 15 allows more freedom in the design of the device 101 (flexibility, colour tuning, large area) and allows to use solution processing techniques to make the device according to the invention.

[0067] Contrary to inorganic semiconductors, the absorption of a photon by an organic semiconductor does not spontaneously generate free charges but gives rise to the formation of an exciton. These excitons have a very short lifetime, of the order of few ns and end up by recombining and by emitting a photon: the material is fluorescent. A D/A interface allows to dissociate the exciton into a pair of free charges, with opposing signs, before they recombine.

[0068] The photovoltaic cell 456 further comprises an inside interface layer 12 in contact with the photosensitive layer 5 of this photovoltaic cell 456, this inside interface layer 12 being located between the liquid crystal layer 7 and this photosensitive layer 5.

[0069] The inside interface layer 12 of the photovoltaic cell 456 is in contact with the liquid crystal layer 7 and is arranged for aligning the liquid crystal of the liquid crystal layer 7 at the interface between this inside interface layer 12 and the liquid crystal layer 7. Layer 12 has been brushed mechanically (at its face contacting layer 7) in order to be an alignment layer of the liquid crystal of layer 7.

[0070] The photovoltaic cell 456 further comprises an outside interface layer 13 in contact with the photosensitive layer 5 of this photovoltaic cell 456, this photosensitive layer 5 being located between the liquid crystal layer 7 and this outside interface layer 13.

[0071] The inside interface layer 12 in contact with a given photosensitive layer 5 of the same photovoltaic cell 456 and the outside interface layer 13 in contact with the same given photosensitive layer 5 of the same photovoltaic cell 456 are made of different materials.

[0072] The modulator 101 comprises two polarizers 1, 11.

[0073] Each polarizer 1, 11 is a WP25M-UB Ultra Broadband Wire Grid Polarizers (250 nm - 4 µm) from Thorlabs.

[0074] Polarizers 1, 11 are crossed polarizers.

[0075] The modulator 101 comprises two substrates 2, 10.

[0076] Each substrate 2, 10 is a glass substrate.

[0077] The thickness of each substrate 2, 10 is more than 500 µm, typically around 1 mm.

[0078] The modulator 101 comprises two conductive layers or electrodes 3, 9.

[0079] Each electrode 3, 9 is a transparent conductive film.

[0080] Each electrode 3, 9 is made of Indium tin oxide (also called ITO).

[0081] There is not other electrode between the electrodes 3, 9.

[0082] The thickness of each electrode 3, 9 is less than 200 nm, typically around 140 nm.

[0083] The modulator 101 comprises an alignment layer 8.

[0084] Layer 8 has been brushed mechanically (at its face contacting layer 7) in order to be an alignment layer of the liquid crystal of layer 7.

[0085] The alignment layer 8 is a layer of Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (also called PEDOT:PSS).

[0086] The alignment layer 8 has a thickness less than 100 nm, typically around 30 nm.

[0087] The liquid crystal layer 7 and the at least one photovoltaic cell 456 are comprised between the two polarizers 1, 11.

[0088] The liquid crystal layer 7 and the at least one photovoltaic cell 456 are comprised between the two substrates 2, 10.

[0089] The liquid crystal layer 7 and the at least one photovoltaic cell 456 are comprised between the two conductive layers or electrodes 3, 9.

[0090] The liquid crystal layer 7 is comprised between the two alignment layers 12, 8.

[0091] The two conductive layers or electrodes 3, 9 are comprised between the two substrates 2, 10.

[0092] The two conductive layers or electrodes 3, 9 are comprised between the two polarizers 1, 11.

[0093] The two substrates 2, 10 are comprised between the two polarizers 1, 11.

[0094] At least one photovoltaic cell 456 is in contact with one of the two conductive layers or electrodes 3, 9.

[0095] To maintain the two substrates 2, 10 (with layers 1, 3, 4, 5, 6, 8, 9, 11) at a certain distance, UV-curable glue mixed with calibrated microsphere (not illustrated) is used. The two substrates 2, 10 are glued together and a micrometric gap is formed, then the gap is filled by capillarity with liquid crystal 7. After that the gap is closed with UV-curable glue to seal the device 101.

[0096] One among the inside interface layer 12 and the outside interface layer 13 is an electron hole conducting layer 6 arranged for a transfer of an electron hole from its contacting photosensitive layer 5 easier than a transfer of an electron from its contacting photosensitive layer 5. The other one among the inside interface layer 12 and the outside interface layer 13 is an electron conducting layer 4 arranged for a transfer of an electron from its contacting photosensitive layer 5 easier than a transfer of an electron hole from its contacting photosensitive layer 5.

[0097] In the particular case of figure 1, the inside interface layer 12 is an electron hole conducting layer 6 arranged for a transfer of electron holes from its contacting photosensitive layer 5 easier than a transfer of electrons from its contacting photosensitive layer 5.

[0098] The electron hole conducting layer 6 is a layer of Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (also called PEDOT:PSS).

[0099] The electron hole conducting layer 6 has a thickness less than 100 nm, typically around 30 nm.

[0100] In the particular case of figure 1, the outside interface layer 13 is an electron conducting layer 4 arranged for a transfer of electron from its contacting photosensitive layer 5 easier than a transfer of electron holes from its contacting photosensitive layer 5.

[0101] The electron conducting layer 4 is a layer of Polyethylenimine (also called PEI-E).

[0102] The electron conducting layer 4 has a thickness less than 100 nm or even less than 10 nm, typically around 7 nm.

[0103] The electron conducting layer 4 is a very thin layer (less than 10 nm thick, typically 7 nm thick) of an electrically insulating material (PEIE) but with intrinsic electrical dipoles. These dipoles make access to layer 3 difficult for electron holes, for good selectivity.

[0104] The interfaces between the photosensitive layer 5 and the adjacent materials 4, 6 have a considerable impact on the evolution of photo-generated charges. The layer 5 is comprised between two materials 4, 6, whose electronic work functions are different. Thus, the negative and positive charges generated in the layer 5 separate (the negative charges will accumulate preferentially at the interface with the material 4 with low work function and vice versa for the positive charges). This results in a difference in electrical potential ΔV between the two adjacent materials 4 and 5 or respectively 5 and 6 whose amplitude increases (a priori logarithmically) with the intensity of light. The "photo-voltage" ΔV is equivalent to the "open circuit voltage" of a photovoltaic cell.

[0105] In a general manner, the photosensitive layer 5 (preferably combined with layer 4 and/or 6) is arranged (even at a zero bias voltage between the electrodes 3, 9 or even without the existence of layer 3 and/or 9, i.e. spontaneously or even at an initial zero bias voltage through layer 7 and/or through layer 5) for, under illumination of this photosensitive layer 5, being at the origin of a voltage drop across the liquid crystal layer 7 changing the orientation of the liquid-crystal molecules (and modifying the birefringence of layer 7).

[0106] Typically, the photosensitive layer 5 (preferably combined with layer 4 and/or 6) is arranged (even at a zero bias voltage between the electrodes 3, 9 or even without the existence of layer 3 and/or 9, i.e. spontaneously or even at an initial zero bias voltage through layer 7 and/or through layer 5) for, under illumination of this photosensitive layer 5 of 100 mW/cm2 for at least one wavelength comprised between 350 nm and 600 nm (or more generally between 10 nm and 1.4 µm), being at the origin of a voltage drop of at least the Fredericks threshold voltage of the crystal liquid of the crystal liquid layer 7 (which can be as low as 0.6V) across the liquid crystal layer 7 changing the orientation of the liquid-crystal molecules (and modifying the birefringence of layer 7), i.e typically of at least 0.6 V (or even at least 0.7V) across the liquid crystal layer 7.

[0107] Under illumination, and provided that the layers 3 and 9 are electrically connected, the organic layer 5 is at the origin of a voltage drop across the liquid crystal layer 7, thereby changing the orientation of the liquid-crystal molecules, and modifying the birefringence of layer 7. As a consequence, when the device 101 is placed between two crossed polarizers 1, 11, the birefringence change translates into a variation of the transmittance of the device 1. The response of liquid crystal layer 7 to light exposure depends on the relative orientations of the alignment layers 12, 8: liquid crystal layer 7 can be either twistednematic or a planar cell. It varies with the light intensity and therefore follows the spatial distribution of the incident light intensity. The liquid crystal of layer 7 is:
  • a twisted nematic liquid crystal (if the alignment layers 12, 8 are orthogonal): this configuration is used to turn "on" or off" each area of the modulator 101 depending on the light intensity and wavelength received by each area, or
  • a planar nematic liquid crystal (if the alignment layers 12, 8 are parallel): this configuration is used to modify the polarization of light crossing each area of the modulator 101 depending on the light intensity and wavelength received by each area.


[0108] All the absolute or relative numerical values of this description are given by default for a temperature of 20 ° C and a pressure of 1 bar.

[0109] In this description:
  • HOMO of a molecule refers to the energy level of the highest occupied molecular orbital of this molecule.
  • LUMO of a molecule refers to the energy level of the lowest unoccupied molecular orbital.
  • ionization potential (or ionization energy (IE)) is the amount of energy required to remove the most loosely bound electron, (from the HOMO orbital) of an isolated molecule to form a cation.
  • electron Affinity (EA) is the amount of energy released or spent when an electron is added to a neutral molecule to form a negative ion.
  • work function (Wf) is the minimum thermodynamic work needed to remove an electron from a solid to a point in the vacuum immediately outside the solid surface.


[0110] As illustrated in figure 5, the absolute value of the energy difference between the work function of the electron conducting layer 4 and the electron affinity of each electron accepting molecule of the photosensitive layer 5 contacting this outside interface layer 13 is less than or equal to 0.2 eV. This enhances the capacity of layer 4 to attract electrons from layer 5 and to conduct electrons compared to its capacity to attract electron holes form layer 5 and to conduct electron holes.

[0111] As illustrated in figure 5, the absolute value of the energy difference between the work function of the electron hole conducting layer 6 and the ionization potential of each electron-donating molecule of the photosensitive layer 5 contacting this inside interface layer 12 is less than or equal to 0.2 eV. This enhances the capacity of layer 6 to attract electron holes from layer 5 and to conduct electron holes compared to its capacity to attract electrons from layer 5 and to conduct electrons.

[0112] The liquid crystal layer 7 has an electrical resistance higher than each part or layer of the photovoltaic cell 456, and even higher than each part or layer comprised between the electrodes 3, 9. The liquid crystal layer 7 has an electrical resistance at least two times higher than each part or layer 4, 5, 6 of the photovoltaic cell 456, and even at least two times higher than each part or layer comprised between the electrodes. The electrical resistance of each layer respectively 7, 4, 5, 6, 8 is measured perpendicularly to this layer respectively 7, 4, 5, 6, 8 that is parallel to the thickness of each layer respectively 7, 4, 5, 6, 8, the thickness being the smaller spatial dimension of each layer respectively 7, 4, 5, 6, 8.

EA(A) is the electron affinity of each electron accepting molecule expressed in eV

EA(D) is the electron affinity of each electron donating molecule expressed in eV

IE(A) is the ionization potential of each electron accepting molecule expressed in eV

IE(D) is the ionization potential of each electron-donating molecule expressed in eV



[0113] The energy difference between the electron affinity and the ionization potential of each electron-donating molecule (that is for only one molecule D) is preferably higher than or equal to 3 eV: EA(D) - IE(D) ≳ 3 eV . This allows modulator 101 to be transparent in the visible range (in its « off state »), for instance for smart windows applications. This is not the case in the particular case of the embodiment of Figure 5.

[0114] The energy difference between the electron affinity and the ionization potential of each electron accepting molecule (that is for only one molecule A) is preferably higher than or equal to 3 eV: EA(A) - IE(A) ≳ 3 eV. This allows modulator 101 to be transparent in the visible range (in its « off state »), for instance for smart windows applications. This is not the case in the particular case of the embodiment of Figure 5.

[0115] Nevertheless, some molecules such as C60 derivatives (such as PCBM) absorb almost no visible light even though the bandgap value is less than 3 eV (due to the spherical symmetry of these molecules). For example, only the material D (polymer or small molecule) can respect the limit of 3 eV, for example for D/A mixtures where the acceptor molecules A are a derivative of C60.

[0116] As illustrated in figure 5, the energy difference between the electron affinity of the electron-donating molecules and the electron affinity of the electron accepting molecules is higher than or equal to 0.1 eV (EA(D) - EA(A) ≳ 0.1 eV), preferably higher than or equal to 0.3 eV (EA(D) - EA(A) ≳ 0.3 eV), per couple of electron-donating molecule and electron accepting molecule. The combination of such molecules 14, 15 allows the generation of free electrical charges in layer 5 following the absorption of UV photons in layer 5.

[0117] As illustrated in figure 5, the energy difference between the ionization potential of the electron-donating molecules and the ionization potential of the electron accepting molecules is higher than or equal to 0.1 eV (IE(D) - IE(A) ≳ 0.1 eV), preferably higher than or equal to 0.3 eV (IE(D) - IE(A) ≳ 0.3 eV), per couple of electron-donating molecule and electron accepting molecule. The combination of such molecules 14, 15 allows the generation of free electrical charges in layer 5 following the absorption of UV photons in layer 5.

[0118] As illustrated in figure 5, the energy difference between the electron affinity of the electron accepting molecules and the ionization potential of the electron-donating molecules, per couple of electron-donating molecule and electron accepting molecule, respects the following equation:

where:

EA(A) is the electron affinity of each electron accepting molecule expressed in eV IE(D) is the ionization potential of each electron-donating molecule expressed in eV V(Fredericks) is the Fredericks threshold voltage, expressed in V, of the crystal liquid of the crystal liquid layer 7(i.e. the threshold voltage from which the liquid crystal change their orientation)

e is the charge of an electron expressed in C.



[0119] Then the generation of charges in layer 5 results in a phototension of the same order of magnitude as the Fredericks voltage of the liquid crystal

[0120] As illustrated in figure 5, the ionization potential of each electron-donating molecule is higher than or equal to 5eV. This allows enhancing the stability of the modulator 101 in the presence of oxygen or water vapor.

[0121] As illustrated in figure 5, the electronic affinity of each electron accepting molecule is higher than or equal to 3.5 eV. This allows enhancing the stability of the modulator 101 in the presence of oxygen or water vapor.

[0122] The liquid crystal layer 7 and the at least one photovoltaic cell 456 are comprised between the two polarizers 1, 11.

[0123] The thickness of each photovoltaic cell 456 is less than 1 µm.

[0124] Modulator 101 has thus a glass/ITO/PEIE/ P3HT: PCBM/ PEDOT: PSS/E7/PEDOT: PSS/ITO/glass structure. Its manufacturing process is the following. Indium tin oxide (ITO) coated glass slides were used as transparent conducting electrode. The ITO coated glass slides were cleaned by successive sonication for 15 minutes each in acetone, isopropanol, deionized water. The ITO slides were then UV ozone treated prior to the organic layer deposition. PEDOT:PSS (Clevios PH, Heraeus), a conductive polymer, was filtered through a 0.22 µm filter to remove aggregates, spin-coated onto the ITO coated glass slides in ambient conditions, transferred to a glovebox with an inert nitrogen atmosphere(<1 ppm 02 and H20), and dried for 30 min at 140°C. For the photoactive layer, a solution of P3HT (>93% regioregular, Solaris Chem) and PCBM (Solenne BV) in chlorobenzene with a (1:1) weight ratio was prepared and stirred overnight at 60°C. Prior to P3HT:PCBM layer deposition, the ITO was modified by spin-coating a PEIE solution (polyethylenimine, 80% ethoxylated solution, 35-40 wt. % in H2O, average Mw = 70000) purchased from Sigma-Aldrich that has been further diluted with 2-methoxyethanol (with a weight ratio of 0.6%) also purchased from Sigma-Aldrich. The PEIE solution was spin-coated onto the ITO coated glass slide in ambient conditions, transferred to a glovebox with an inert nitrogen atmosphere (<1 ppm 02 and H20), and dried for 10 min at 100°C. The photoactive layer was then spin-coated on the ITO modified substrate and dried for 10 min at 140°C. Finally, a thin layer of PEDOT:PSS (Clevios CPP 105 D or HTL Solar, Heraeus) was spin-coated on top of the photoactive layer in ambient atmosphere, transferred to a glovebox with an inert nitrogen atmosphere (<1 ppm 02 and H20), and dried for 5 min at 120°C.

[0125] The coated layers were then rubbed by use of a velvet cloth attached to a rotating drum in order to induce the alignment of the liquid crystal molecules along the rubbing direction in the final device. A mixture of adhesives (UV curable glue, Loctite AA350) and spacer (7.75 µm Si02 Microspheres) were used to create a cell gap between the PEDOT:PSS coated and P3HT:PCBM/PEDOT:PSS coated glass slides. The adhesive was cured by exposing the substrates to UV light for 5 minutes. Then the empty cell was filled with a liquid crystal mixture known as E7 by capillarity on a hot plate at 65°C. Finally, the edges of the cell were sealed with an epoxy resin (Araldite) to avoid contamination. A summary diagram of the final cell is shown below.

[0126] Modulator 101 behaves like a photovoltaic OASLM, with a change in birefringence Δn (variation of the refractive index under illumination with 89 mW/cm2 optical power) of ~ 0.04 at 1.3 VRMS (frequency f = 100 Hz), as illustrated by curve 16 of FIG. 4. For modulator 101 there is no variation in birefringence in the absence of external polarization, because the photovoltage is too small to reorient the liquid crystal of layer 7 without the contribution of an external polarization between electrodes 3,9. Modulator 101 makes it possible to obtain an optical response at a much higher frequency (AC) than the PVK: C60 mixture according to prior art, thus avoiding the problem of flicker according to prior art.

[0127] In a second variant (not illustrated) of modulator 101, the inside interface layer 12 is directly the liquid crystal layer 7.

[0128] Layer 5 has been brushed mechanically (at its face contacting layer 7) in order to be an alignment layer of the liquid crystal of layer 7. The photosensitive layer 5 is thus arranged for aligning the liquid crystal of the liquid crystal layer 7 at the interface between this photosensitive layer 5 and the liquid crystal layer 7.

[0129] The photosensitive layer 5 is hydrophobic. This cause a larger "pretilt" angle of the liquid crystal of layer 7, and thus allows a change in birefringence Δn at zero bias voltage.

[0130] This second variant of modulator 101 has thus a glass/ITO/PEIE/P3HT:PCBM/E7/PEDOT: PSS/ITO/glass structure.

[0131] The upper (brushed) region of layer 5 plays the role of the electron hole conducting layer 6 (but in another variant layer 13 can be the electron hole conducting layer 6 and layer 5 plays the role of the electron conducting layer 4).

[0132] This second variant of modulator 101 behaves like a photovoltaic OASLM, with a change in birefringence Δn (variation of the refractive index under illumination) of Δn ~ 0.014 et 0 V and Δn ~ 0.019 to 0.7 V VRMS (frequency f = 1 kHz), as illustrated by curve 17 of FIG. 4. The non-zero response to 0V is an indisputable signature of the photovoltaic mode.

[0133] In a third variant (not illustrated) of modulator 101, the inside interface layer 12 in contact with the liquid crystal layer 7 is hydrophobic. This also allows a non-zero response to OV.

[0134] Curves 16, and 17 of Figure 4 clearly show that the sensitivity to the incident light is greatly improved according to the invention compared to prior art. The effect is multiplied by the superposition or multiplication of photovoltaic cells 456.

[0135] We are now going to describe, in reference to figure 6, a second embodiment 102 of a spatial light modulator according to the invention, but only for its differences compared to the first embodiment 101 of figures 1 to 5.

[0136] The at least one photovoltaic cell 456 comprises, on at least one side of the liquid crystal layer 7, a superposition of a plurality of contacting photovoltaic cells 456.

[0137] All the cell 456 are similar and comprises layer 4,13 plus layer 5 plus layer 6,12 as previously described in reference to figures 1 to 5.

[0138] With two photovoltaic cells 456, the obtained phototension is equal or higher than 1.2 V and is sufficient to reorient the liquid crystal E7 of layer 7 that have a threshold voltage of 1V without the contribution of an external polarization, and there is a variation in birefringence in the absence of external polarization.

[0139] We are now going to describe, in reference to figure 7, a third embodiment 103 of a spatial light modulator according to the invention, but only for its differences compared to the first embodiment 101 of figures 1 to 5.

[0140] The spatial light modulator 103 comprises, on each side of the liquid crystal layer 7, at least one photovoltaic cell 456.

[0141] All the cell 456 are not similar:
  • on one side of the liquid crystal 7, each cell 456 comprises layer 4,13 plus layer 5 plus layer 6,12 as previously described in reference to figures 1 to 5: on this side, each outside interface layer 13 is an electron conducting layer 4 and each inside interface layer 12 is an electron hole conducting layer 6; one of the inside interface layer 12 (contacting the layer 7) is arranged for aligning the liquid crystal of the liquid crystal layer 7 at the interface between this inside interface layer 12 and the liquid crystal layer 7;
  • on the other side of the liquid crystal 7, each cell 456 comprises layer 4,12 plus layer 5 plus layer 6,13 : on this other side, each inside interface layer 12 is an electron conducting layer 4 and each outside interface layer 13 is an electron hole conducting layer 6; one of the inside interface layer 12 (contacting the layer 7) is arranged for aligning the liquid crystal of the liquid crystal layer 7 at the interface between this inside interface layer 12 and the liquid crystal layer 7.


[0142] With a high enough number of photovoltaic cells 456, the obtained phototension is sufficient to reorient the liquid crystal of layer 7 without the contribution of an external polarization, and there is a variation in birefringence in the absence of external polarization.

[0143] According to the invention, the utilization of an organic D/A blend (layer 5) which, when associated with appropriate interfaces 4, 6, yields a spontaneous photovoltage under illumination. This differs from the response of the commonly used inorganic semiconductor thin films (e.g. amorphous Si) or previously investigated organic photosensitive layers (PVK:C60) according to prior art, for which light exposure results only in a change in electrical conductance. Unlike the latter case according to prior art, for which a voltage needs to be applied across the device according to prior art in order to induce an electric field strength in the liquid crystal and reorient the liquid crystal molecules, the new device according to the invention works also at zero voltage bias. Moreover, since the organic photosensitive layer is deposited from solution at room temperature, large area flexible devices may in principle be developed at low cost. According to the invention, avoiding high temperature processing should reduce the processing costs and give rise to new opportunities to apply OASLMs. The possibility according to the invention to operate at zero bias reduces the power consumption of the device and gives rise to new application opportunities.

[0144] The potential applications are for example:
  • window (glass) with self-adaptive transparency;
  • beam deflection devices (through refractive index grating);
  • sensitive device protection (reduced transparency in case of high intensity incident light);
  • protective googles (similar to photochromic glasses but with quasiinstantaneous and fully reversible response);
  • light intensity controlled protection of sensitive equipment;
  • adaptive optical components (lenses, waveplates - through refractive index gratings);
  • wavelength selective light switches.


[0145] Of course, the invention is not limited to the examples which have just been described and numerous amendments can be made to these examples within the scope of the invention defined by the appended claims.

[0146] In variants of all the previously described embodiments:
  • the spatial light modulator according to the invention comprises, on each side of the liquid crystal layer 7, a superposition of a plurality of photovoltaic cells 456. That is for example the case of the combination of embodiments 102 and 103; and/or
  • the energy difference between the electron affinity and the ionization potential of each electron-donating molecule is smaller or higher than 3 eV and /or the energy difference between the electron affinity and the ionization potential of each electron accepting molecule is smaller or higher than or equal to 3 eV. This allows modulator according to the invention to operate in the infra- red range, or to be semi-transparent in the visible range; and/or
  • the photosensitive layer 5 is a bi-layer instead of a bulk heterojunction. Generally, a first layer of P3HT (or PCBM) is deposited, then a second layer of PCBM (or respectively P3HT) is deposited; and/or
  • a supplementary alignment layer can be added between a layer 12 and the liquid crystal layer 7; and/or
  • the electron conducting layer 4 can also be a high-gap semiconductor (> 3 eV), whose conduction band is close to the LUMO of the electron accepting molecule A: for example a thin layer of ZnO, obtained from chemical precursors, or TiO2; and/or
  • molecules 14 and/or 15 may be changed, in particular in order to enhance the photovoltage (and thereby the response of the device 101, 102, 103 at zero bias; this way it is possible to obtain, with only one cell 456, a phototension sufficient to reorient the liquid crystal of layer 7 without the contribution of an external polarization, and thus a variation in birefringence in the absence of external polarization) and/or to modify its spectral response (typically from near infra-red to ultra violet light, i.e for a wavelength comprised between 10 nm to 1.4 µm); the electron donating molecules D can for example be poly[N- 9'-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2',1',3'-benzothiadiazole] (also called PCDTBT) and/or the electron accepting molecules A can for example be 1',1",4',4"-Tetrahydrodi[1,4]methanonaphthaleno[1,2:2',3',56,60:2",3"][5,6]fullerene-C60 (also called ICBA); and/or
  • polarizers 1, 11 are optional in particular if layer 7 comprises an "intelligent" liquid crystal such like liquid crystal having a guest dichroic dye dispersed there through (patent ref : WO1999067681 A1); and/or
  • substrate 2 and/or 10 can be made with another material, for example from a film of polyethylene terephthalate (also called PET); and/or
  • conductive layer 3 and/or 9 can be made with another material, for example with a PEDOT:PSS film; and/or
  • conductive layer 3 and/or 9 is optional, in particular if device 101, 102, 103 is designed for working at 0 bias voltage and/or if one or more layer among layers 2, 8, 10 is connected to an electrical ground and/or plays the role of an electrode; the modulator according to the invention may comprise electrode 3 (preferably without any other electrode) or electrode 9 (preferably without any other electrode) or electrodes 3 and 9 (preferably without any other electrode) and/or
  • layer 4 can be made with another material, for example with ZnO or other polyelectrolytes; and/or
  • layer 6 can be made with another material, for example with MoO3; and/or
  • liquid crystal of layer 7 can be made with another material, in particular any type of nematic liquid crystal showing a birefringence, preferably with a liquid crystal having a low control voltage; Liquid crystal of layer 7 can for example be made with TL205 liquid crystal (which is a mixture of cyclohexane-fluorinated biphenyls and fluorinated terphenyls) ; and/or
  • layer 8 can be made with another material, for example with polyimide; and/or
  • the photosensitive layer (5) comprising electron-donating (D) molecules and electron accepting (A) molecules can be a ternary mixture ; and/or
  • layer 13 can be merged with another layer 3, 2, 1 or other; and/or
  • in layer 5, the mass ratio between electron-donating molecules D, 15 and electron accepting molecules A can vary from 1:3 to 3:1 or any other values.



Claims

1. A liquid crystal spatial light modulator comprising:

- a liquid crystal layer (7) comprising liquid-crystal molecules,

- on at least one side of the liquid crystal layer (7), at least one photovoltaic cell (456), each photovoltaic cell (456) comprising a photosensitive layer (5), each photovoltaic cell (456) being arranged to generate a spontaneous photovoltage under illumination at zero voltage bias, the photosensitive layer (5) being arranged such that the illumination of this photosensitive layer (5) causes a voltage drop across the liquid crystal layer (7) changing the orientation of the liquid-crystal molecules and modifying the birefringence of the liquid crystal layer (7), characterized in that the photosensitive layer (5) comprises electron-donating molecules and electron accepting molecules in a blended state that form a bulk heterojunction layeror in a bi-layer state.


 
2. A spatial light modulator according to claim 1 wherein the electron-donating molecules are organic electron-donating molecules.
 
3. A spatial light modulator according to any one of the previous claims, wherein the electron accepting molecules are organic electron accepting molecules.
 
4. A spatial light modulator according to any one of the previous claims, wherein the at least one photovoltaic cell (456) comprises, on at least one side of the liquid crystal layer (7), a superposition of a plurality of photovoltaic cells (456).
 
5. A spatial light modulator according to any one of the previous claims, that comprises, on each side of the liquid crystal layer (7), at least one photovoltaic cell (456).
 
6. A spatial light modulator according to any one of the previous claims, wherein the or each or at least one photovoltaic cell (456) further comprises an inside interface layer (12), this inside interface layer (12):

- being in contact with the photosensitive layer (5) of this photovoltaic cell (456), this inside interface layer (12) being located between the liquid crystal layer (7) and this photosensitive layer (5), or

- being the liquid crystal layer (7).


 
7. A spatial light modulator according to claim 6, wherein the inside interface layer (12) is an electron hole conducting layer (6) arranged for a transfer of electron holes from its contacting photosensitive layer (5) easier than a transfer of electrons from its contacting photosensitive layer (5).
 
8. A spatial light modulator according to any one claims 6 to 7, wherein the inside interface layer (12) of the or one of the photovoltaic cell(s) (456):

- is in contact with the liquid crystal layer (7), the inside interface layer (12) being arranged for aligning the liquid crystal of the liquid crystal layer (7) at the interface between this inside interface layer (12) and the liquid crystal layer (7), or

- is the liquid crystal layer (7), the photosensitive layer (5) of this photovoltaic cell (456) being arranged for aligning the liquid crystal of the liquid crystal layer (7) at the interface between this photosensitive layer (5) and the liquid crystal layer (7).


 
9. A spatial light modulator according to claim 8, wherein the inside interface layer (12):

- is in contact with the liquid crystal layer (7), and is hydrophobic, or

- is the liquid crystal layer (7), the photosensitive layer (5) of this photovoltaic cell (456) being hydrophobic.


 
10. A spatial light modulator according to any one of the previous claims, wherein the or each or at least one photovoltaic cell (456) further comprises an outside interface layer (13) in contact with the photosensitive layer (5) of this photovoltaic cell (456), this photosensitive layer (5) being located between the liquid crystal layer (7) and this outside interface layer (13).
 
11. A spatial light modulator according to claim 10, wherein the outside interface layer (13) is an electron conducting layer (4) arranged for a transfer of electrons from its contacting photosensitive layer (5) easier than a transfer of electron holes from its contacting photosensitive layer (5).
 
12. A spatial light modulator according to any one of the previous claims, wherein the or each or at least one photovoltaic cell (456) comprises both of:

- the inside interface layer (12) according to any one of claims 6 to 9,

- the outside interface layer (13) according to any one of claims 10 to 11, the inside interface layer (12) in contact with a given photosensitive layer (5) and the outside interface layer (13) in contact with the same given photosensitive layer (5) being made of different materials.


 
13. A spatial light modulator according to claim 12, wherein:

- one among the inside interface layer (12) and the outside interface layer (13) is an electron hole conducting layer (6) arranged for a transfer of an electron hole from its contacting photosensitive layer (5) easier than a transfer of an electron from its contacting photosensitive layer (5)

- the other one among the inside interface layer (12) and the outside interface layer (13) is an electron conducting layer (4) arranged for a transfer of an electron from its contacting photosensitive layer (5) easier than a transfer of an electron hole from its contacting photosensitive layer (5).


 
14. A spatial light modulator according to claim 13, wherein the absolute value of the energy difference between the work function of the electron conducting layer (4) and the electron affinity of each electron accepting molecule of the photosensitive layer (5) contacting this outside interface layer (13) is less than or equal to 0.2 eV.
 
15. A spatial light modulator according to claim 13 or 14, wherein the absolute value of the energy difference between the work function of the electron hole conducting layer (6) and the ionization potential of each electron-donating molecule of the photosensitive layer (5) contacting this inside interface layer (12) is less than or equal to 0.2 eV.
 
16. A spatial light modulator according to any one of the previous claims, wherein the liquid crystal layer (7) has an electrical resistance higher than each part of the photovoltaic cell(s) (456).
 
17. A spatial light modulator according to any one of the previous claims, wherein the energy difference between the electron affinity and the ionization potential of each electron-donating molecule is higher than or equal to 3 eV.
 
18. A spatial light modulator according to any one of the previous claims, wherein the energy difference between the electron affinity and the ionization potential of each electron accepting molecule is higher than or equal to 3 eV.
 
19. A spatial light modulator according to any one of the previous claims, wherein the energy difference between the electron affinity of the electron-donating molecules and the electron affinity of the electron accepting molecules is higher than or equal to 0.1 eV, preferably higher than or equal to 0.3 eV, per couple of electron-donating molecule and electron accepting molecule.
 
20. A spatial light modulator according to any one of the previous claims, wherein the energy difference between the ionization potential of the electron-donating molecules and the ionization potential of the electron accepting molecules is higher than or equal to 0.1 eV, preferably higher than or equal to 0.3 eV, per couple of electron-donating molecule and electron accepting molecule.
 
21. A spatial light modulator according to any one of the previous claims, wherein the energy difference between the electron affinity of the electron accepting molecules and the ionization potential of the electron-donating molecules, per couple of electron-donating molecule and electron accepting molecule, respects the following equation:

where: EA(A) is the electron affinity of each electron accepting molecule expressed in eV IE(D) is the ionization potential of each electron-donating molecule expressed in eV V(Fredericks) is the Fredericks threshold voltage, expressed in V, of the crystal liquid of the crystal liquid layer (7) e is the elementary charge of an electron expressed in C.
 
22. A spatial light modulator according to any one of the previous claims, wherein the ionization potential of each electron-donating molecule is higher than or equal to 5eV.
 
23. A spatial light modulator according to any one of the previous claims, wherein the electronic affinity of each electron accepting molecule is higher than or equal to 3.5 eV.
 
24. A spatial light modulator according to any one of the previous claims, wherein the liquid crystal layer (7) and the at least one photovoltaic cell (456) are comprised between two polarizers (1, 11).
 
25. A spatial light modulator according to any one of the previous claims, wherein the thickness of each photovoltaic cell (456) is less than 1 µm.
 
26. A spatial light modulator according to any one of the previous claims, wherein the electron-donating molecules and electron accepting molecules differ in their chemical structure.
 


Ansprüche

1. Räumlicher Flüssigkristall-Lichtmodulator, umfassend:

- eine Flüssigkristallschicht (7), die Flüssigkristallmoleküle umfasst,

- auf wenigstens einer Seite der Flüssigkristallschicht (7) wenigstens eine photovoltaische Zelle (456), wobei jede photovoltaische Zelle (456) eine photoempfindliche Schicht (5) umfasst, wobei jede photovoltaische Zelle (456) dazu eingerichtet ist, unter Beleuchtung mit null Vorspannung eine spontane Photospannung zu erzeugen,

wobei die photoempfindliche Schicht (5) derart eingerichtet ist, dass die Beleuchtung dieser photoempfindlichen Schicht (5) einen Spannungsabfall über die Flüssigkristallschicht (7) hinweg bewirkt und dadurch die Ausrichtung der Flüssigkristallmoleküle ändert und die Doppelbrechung der Flüssigkristallschicht (7) modifiziert, dadurch gekennzeichnet, dass die photoempfindliche Schicht (5) Elektronen abgebende Moleküle und Elektronen aufnehmende Moleküle in einem vermischten Zustand, die eine Bulk-Heteroübergangsschicht ausbilden, oder in einem Doppelschichtzustand umfasst.
 
2. Räumlicher Lichtmodulator nach Anspruch 1, wobei die Elektronen abgebenden Moleküle organische Elektronen abgebende Moleküle sind.
 
3. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die Elektronen aufnehmenden Moleküle organische Elektronen aufnehmende Moleküle sind.
 
4. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die wenigstens eine photovoltaische Zelle (456) auf wenigstens einer Seite der Flüssigkristallschicht (7) eine Aufeinanderschichtung mehrerer photovoltaischer Zellen (456) umfasst.
 
5. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei dieser auf jeder Seite der Flüssigkristallschicht (7) wenigstens eine photovoltaische Zelle (456) umfasst.
 
6. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die oder jede oder wenigstens eine photovoltaische Zelle (456) ferner eine innenliegende Grenzflächenschicht (12) umfasst, wobei diese innenliegende Grenzflächenschicht (12):

- mit der photoempfindlichen Schicht (5) dieser photovoltaischen Zelle (456) in Kontakt steht, wobei diese innenliegende Grenzflächenschicht (12) sich zwischen der Flüssigkristallschicht (7) und dieser photoempfindlichen Schicht (5) befindet, oder

- die Flüssigkristallschicht (7) ist.


 
7. Räumlicher Lichtmodulator nach Anspruch 6, wobei die innenliegende Grenzflächenschicht (12) eine Elektronenfehlstellen leitende Schicht (6) ist, die für einen Transfer von Elektronenfehlstellen aus der mit ihr in Kontakt stehenden photoempfindlichen Schicht (5) - leichter als ein Transfer von Elektronen aus der mit ihr in Kontakt stehenden photoempfindlichen Schicht (5) - eingerichtet ist.
 
8. Räumlicher Lichtmodulator nach einem der Ansprüche 6 bis 7, wobei die innenliegende Grenzflächenschicht (12) der oder einer der photovoltaischen Zelle(n) (456):

- mit der Flüssigkristallschicht (7) in Kontakt steht, wobei die innenliegende Grenzflächenschicht (12) zum Ausrichten des Flüssigkristalls der Flüssigkristallschicht (7) an der Grenzfläche zwischen dieser innenliegenden Grenzflächenschicht (12) und der Flüssigkristallschicht (7) eingerichtet ist, oder

- die Flüssigkristallschicht (7) ist, wobei die photoempfindliche Schicht (5) dieser photovoltaischen Zelle (456) zum Ausrichten des Flüssigkristalls der Flüssigkristallschicht (7) an der Grenzfläche zwischen dieser photoempfindlichen Schicht (5) und der Flüssigkristallschicht (7) eingerichtet ist.


 
9. Räumlicher Lichtmodulator nach Anspruch 8, wobei die innenliegende Grenzflächenschicht (12):

- mit der Flüssigkristallschicht (7) in Kontakt steht und hydrophob ist oder

- die Flüssigkristallschicht (7) ist, wobei die photoempfindliche Schicht (5) dieser photovoltaischen Zelle (456) hydrophob ist.


 
10. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die oder jede oder wenigstens eine photovoltaische Zelle (456) ferner eine außenliegende Grenzflächenschicht (13) umfasst, die mit der photoempfindlichen Schicht (5) dieser photovoltaischen Zelle (456) in Kontakt steht, wobei diese photoempfindliche Schicht (5) sich zwischen der Flüssigkristallschicht (7) und dieser außenliegenden Grenzflächenschicht (13) befindet.
 
11. Räumlicher Lichtmodulator nach Anspruch 10, wobei die außenliegende Grenzflächenschicht (13) eine Elektronen leitende Schicht (4) ist, die für einen Transfer von Elektronen aus der mit ihr in Kontakt stehenden photoempfindlichen Schicht (5) - leichter als ein Transfer von Elektronenfehlstellen aus der mit ihr in Kontakt stehenden photoempfindlichen Schicht (5) - eingerichtet ist.
 
12. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die oder jede oder wenigstens eine photovoltaische Zelle (456) beide der Folgenden umfasst:

- die innenliegende Grenzflächenschicht (12) nach einem der Ansprüche 6 bis 9,

- die außenliegende Grenzflächenschicht (13) nach einem der Ansprüche 10 bis 11, wobei die innenliegende Grenzflächenschicht (12), die mit einer gegebenen photoempfindlichen Schicht (5) in Kontakt steht, und die außenliegende Grenzflächenschicht (13), die mit der gleichen gegebenen photoempfindlichen Schicht (5) in Kontakt steht, aus unterschiedlichen Materialien hergestellt sind.


 
13. Räumlicher Lichtmodulator nach Anspruch 12, wobei

- eine aus der innenliegenden Grenzflächenschicht (12) und der außenliegenden Grenzflächenschicht (13) eine Elektronenfehlstellen leitende Schicht (6) ist, die für einen Transfer einer Elektronenfehlstelle aus der mit ihr in Kontakt stehenden photoempfindlichen Schicht (5) - leichter als ein Transfer eines Elektrons aus der mit ihr in Kontakt stehenden photoempfindlichen Schicht (5) - eingerichtet ist,

- die andere aus der innenliegenden Grenzflächenschicht (12) und der außenliegenden Grenzflächenschicht (13) eine Elektronen leitende Schicht (4) ist, die für einen Transfer eines Elektrons aus der mit ihr in Kontakt stehenden photoempfindlichen Schicht (5) - leichter als ein Transfer einer Elektronenfehlstelle aus der mit ihr in Kontakt stehenden photoempfindlichen Schicht (5) - eingerichtet ist.


 
14. Räumlicher Lichtmodulator nach Anspruch 13, wobei der Absolutwert der Energiedifferenz zwischen der Austrittsarbeit der Elektronen leitenden Schicht (4) und der Elektronenaffinität jedes Elektronen aufnehmenden Moleküls der photoempfindlichen Schicht (5), die mit dieser außenliegenden Grenzflächenschicht (13) in Kontakt steht, kleiner als oder gleich 0,2 eV ist.
 
15. Räumlicher Lichtmodulator nach Anspruch 13 oder 14, wobei der Absolutwert der Energiedifferenz zwischen der Austrittsarbeit der Elektronenfehlstellen leitenden Schicht (6) und dem Ionisierungspotential jedes Elektronen abgebenden Moleküls der photoempfindlichen Schicht (5), die mit dieser innenliegenden Grenzflächenschicht (12) in Kontakt steht, kleiner als oder gleich 0,2 eV ist.
 
16. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die Flüssigkristallschicht (7) einen elektrischen Widerstand aufweist, der höher als jeder Teil der photovoltaische(n) Zelle(n) (456) ist.
 
17. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die Energiedifferenz zwischen der Elektronenaffinität und dem Ionisierungspotential jedes Elektronen abgebenden Moleküls höher als oder gleich 3 eV ist.
 
18. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die Energiedifferenz zwischen der Elektronenaffinität und dem Ionisierungspotential jedes Elektronen aufnehmenden Moleküls höher als oder gleich 3 eV ist.
 
19. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die Energiedifferenz zwischen der Elektronenaffinität der Elektronen abgebenden Moleküle und der Elektronenaffinität der Elektronen aufnehmenden Moleküle pro Paar aus Elektronen abgebendem Molekül und Elektronen aufnehmendem Molekül höher als oder gleich 0,1 eV, vorzugsweise höher als oder gleich 0,3 eV, ist.
 
20. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die Energiedifferenz zwischen dem Ionisierungspotential der Elektronen abgebenden Moleküle und dem Ionisierungspotential der Elektronen aufnehmenden Moleküle pro Paar aus Elektronen abgebendem Molekül und Elektronen aufnehmendem Molekül höher als oder gleich 0,1 eV, vorzugsweise höher als oder gleich 0,3 eV, ist.
 
21. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die Energiedifferenz zwischen der Elektronenaffinität der Elektronen aufnehmenden Moleküle und dem Ionisierungspotential der Elektronen abgebenden Moleküle pro Paar aus Elektronen abgebendem Molekül und Elektronen aufnehmendem Molekül der folgenden Gleichung genügt:

wobei:

EA(A) die Elektronenaffinität jedes Elektronen aufnehmenden Moleküls, angegeben in eV, ist,

IE(D) das Ionisierungspotential jedes Elektronen abgebenden Moleküls, angegeben in eV, ist,

V(Fredericks) die Fredericks-Schwellenspannung, angegeben in V, der Kristallflüssigkeit der Flüssigkristallschicht (7) ist,

e die Elementarladung eines Elektrons, angegeben in C, ist.


 
22. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei das Ionisierungspotential jedes Elektronen abgebenden Moleküls höher als oder gleich 5 eV ist.
 
23. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die Elektronenaffinität jedes Elektronen aufnehmenden Moleküls höher als oder gleich 3,5 eV ist.
 
24. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die Flüssigkristallschicht (7) und die wenigstens eine photovoltaische Zelle (456) zwischen zwei Polarisatoren (1, 11) enthalten sind.
 
25. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die Dicke jeder photovoltaischen Zelle (456) weniger als 1 µm beträgt.
 
26. Räumlicher Lichtmodulator nach einem der vorhergehenden Ansprüche, wobei die Elektronen abgebenden Moleküle und Elektronen aufnehmenden Moleküle sich in ihrer chemischen Struktur unterscheiden.
 


Revendications

1. Modulateur spatial de lumière à cristaux liquides comprenant :

- une couche de cristaux liquides (7) comprenant des molécules de cristaux liquides,

- sur au moins un côté de la couche de cristaux liquides (7), au moins une cellule photovoltaïque (456), chaque cellule photovoltaïque (456) comprenant une couche photosensible (5), chaque cellule photovoltaïque (456) étant agencée pour générer une phototension spontanée sous un éclairage à polarisation de tension nulle, la couche photosensible (5) étant agencée de telle sorte que l'éclairage de cette couche photosensible (5) provoque une chute de tension à travers la couche de cristaux liquides (7) modifiant l'orientation des molécules de cristaux liquides et modifiant la biréfringence de la couche de cristaux liquides (7), caractérisé en ce que la couche photosensible (5) comprend des molécules donneuses d'électrons et des molécules acceptrices d'électrons dans un état mélangé qui forme une couche d'hétérojonction de masse ou dans un état bicouche.


 
2. Modulateur spatial de lumière selon la revendication 1, dans lequel les molécules donneuses d'électrons sont des molécules organiques donneuses d'électrons.
 
3. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel les molécules acceptrices d'électrons sont des molécules organiques acceptrices d'électrons.
 
4. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel la au moins une cellule photovoltaïque (456) comprend, sur au moins un côté de la couche de cristaux liquides (7), une superposition d'une pluralité de cellules photovoltaïques (456).
 
5. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, lequel comprend, de chaque côté de la couche de cristaux liquides (7), au moins une cellule photovoltaïque (456).
 
6. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel la ou chaque ou au moins une cellule photovoltaïque (456) comprend en outre une couche d'interface intérieure (12), cette couche d'interface intérieure (12) :

- étant en contact avec la couche photosensible (5) de cette cellule photovoltaïque (456), cette couche d'interface intérieure (12) étant située entre la couche de cristaux liquides (7) et cette couche photosensible (5), ou

- étant la couche de cristaux liquides (7).


 
7. Modulateur spatial de lumière selon la revendication 6, dans lequel la couche d'interface intérieure (12) est une couche conductrice de trous d'électrons (6) agencée pour un transfert de trous d'électrons à partir de sa couche photosensible en contact (5) plus facilement qu'un transfert d'électrons à partir de sa couche photosensible en contact (5).
 
8. Modulateur spatial de lumière selon l'une quelconque des revendications 6 à 7, dans lequel la couche d'interface intérieure (12) de la ou d'une des cellules photovoltaïques (456) :

- est en contact avec la couche de cristaux liquides (7), la couche d'interface intérieure (12) étant agencée pour aligner les cristaux liquides de la couche de cristaux liquides (7) au niveau de l'interface entre cette couche d'interface intérieure (12) et la couche de cristaux liquides (7), ou

- est la couche de cristaux liquides (7), la couche photosensible (5) de cette cellule photovoltaïque (456) étant agencée pour aligner les cristaux liquides de la couche de cristaux liquides (7) au niveau de l'interface entre cette couche photosensible (5) et la couche de cristaux liquides (7).


 
9. Modulateur spatial de lumière selon la revendication 8, dans lequel la couche d'interface intérieure (12) :

- est en contact avec la couche de cristaux liquides (7) et est hydrophobe, ou

- est la couche de cristaux liquides (7), la couche photosensible (5) de cette cellule photovoltaïque (456) étant hydrophobe.


 
10. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel la ou chaque ou au moins une cellule photovoltaïque (456) comprend en outre une couche d'interface extérieure (13) en contact avec la couche photosensible (5) de cette cellule photovoltaïque (456), cette couche photosensible (5) étant située entre la couche de cristaux liquides (7) et cette couche d'interface extérieure (13).
 
11. Modulateur spatial de lumière selon la revendication 10, dans lequel la couche d'interface extérieure (13) est une couche conductrice d'électrons (4) agencée pour un transfert d'électrons à partir de sa couche photosensible en contact (5) plus facilement qu'un transfert de trous d'électrons à partir de sa couche photosensible en contact (5).
 
12. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel la ou chaque ou au moins une cellule photovoltaïque (456) comprend à la fois :

- la couche d'interface intérieure (12) selon l'une quelconque des revendications 6 à 9,

- la couche d'interface extérieure (13) selon l'une quelconque des revendications 10 à 11,

la couche d'interface intérieure (12) en contact avec une couche photosensible donnée (5) et la couche d'interface extérieure (13) en contact avec la même couche photosensible donnée (5) étant constituées de matériaux différents.
 
13. Modulateur spatial de lumière selon la revendication 12, dans lequel :

- l'une des couche d'interface intérieure (12) et couche d'interface extérieure (13) est une couche conductrice de trous d'électrons (6) agencée pour un transfert d'un trou d'électron à partir de sa couche photosensible en contact (5) plus facilement qu'un transfert d'électron à partir de sa couche photosensible en contact (5)

- l'autre des couche d'interface intérieure (12) et couche d'interface extérieure (13) est une couche conductrice d'électrons (4) agencée pour un transfert d'un électron à partir de sa couche photosensible en contact (5) plus facilement qu'un transfert de trou d'électron à partir de sa couche photosensible en contact (5).


 
14. Modulateur spatial de lumière selon la revendication 13, dans lequel la valeur absolue de la différence d'énergie entre la fonction de travail de la couche conductrice d'électrons (4) et l'affinité électronique de chaque molécule acceptrice d'électrons de la couche photosensible (5) en contact avec cette couche d'interface extérieure (13) est inférieure ou égale à 0,2 eV.
 
15. Modulateur spatial de lumière selon la revendication 13 ou 14, dans lequel la valeur absolue de la différence d'énergie entre la fonction de travail de la couche conductrice de trous d'électrons (6) et le potentiel d'ionisation de chaque molécule donneuse d'électrons de la couche photosensible (5) en contact avec cette couche d'interface intérieure (12) est inférieure ou égale à 0,2 eV.
 
16. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel la couche de cristaux liquides (7) a une résistance électrique supérieure à chaque partie de la ou des cellules photovoltaïques (456).
 
17. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel la différence d'énergie entre l'affinité électronique et le potentiel d'ionisation de chaque molécule donneuse d'électrons est supérieure ou égale à 3 eV.
 
18. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel la différence d'énergie entre l'affinité électronique et le potentiel d'ionisation de chaque molécule acceptrice d'électrons est supérieure ou égale à 3 eV.
 
19. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel la différence d'énergie entre l'affinité électronique des molécules donneuses d'électrons et l'affinité électronique des molécules acceptrices d'électrons est supérieure ou égale à 0,1 eV, de préférence supérieure ou égale à 0,3 eV, par couple de molécule donneuse d'électrons et de molécule acceptrice d'électrons.
 
20. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel la différence d'énergie entre le potentiel d'ionisation des molécules donneuses d'électrons et le potentiel d'ionisation des molécules acceptrices d'électrons est supérieure ou égale à 0,1 eV, de préférence supérieure ou égale à 0,3 eV, par couple de molécule donneuse d'électrons et de molécule acceptrice d'électrons.
 
21. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel la différence d'énergie entre l'affinité électronique des molécules acceptrices d'électrons et le potentiel d'ionisation des molécules donneuses d'électrons, par couple de molécule donneuse d'électrons et de molécule acceptrice d'électrons, respecte l'équation suivante :

où:

EA(A) est l'affinité électronique de chaque molécule acceptrice d'électrons exprimée en eV IE(D) est le potentiel d'ionisation de chaque molécule donneuse d'électrons exprimé en eV V(Fredericks) est la tension seuil de Fredericks, exprimée en V, du liquide cristallin de la couche liquide cristalline (7)

e est la charge élémentaire d'un électron exprimée en C.


 
22. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel le potentiel d'ionisation de chaque molécule donneuse d'électrons est supérieur ou égal à 5eV.
 
23. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel l'affinité électronique de chaque molécule acceptrice d'électrons est supérieure ou égale à 3,5 eV.
 
24. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel la couche de cristaux liquides (7) et la au moins une cellule photovoltaïque (456) sont comprises entre deux polariseurs (1, 11).
 
25. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel l'épaisseur de chaque cellule photovoltaïque (456) est inférieure à 1 µm.
 
26. Modulateur spatial de lumière selon l'une quelconque des revendications précédentes, dans lequel les molécules donneuses d'électrons et les molécules acceptrices d'électrons diffèrent par leur structure chimique.
 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description