RELATED APPLICATIONS
BACKGROUND
[0002] Antisense technology provides a means for modulating the expression of one or more specific gene products, including alternative splice products, and is uniquely useful in a number of therapeutic, diagnostic, and research applications. The principle behind antisense technology is that an antisense compound, e.g., an oligonucleotide, which hybridizes to a target nucleic acid, modulates gene expression activities such as transcription, splicing or translation through any one of a number of antisense mechanisms. The sequence specificity of antisense compounds makes them attractive as tools for target validation and gene functionalization, as well as therapeutics to selectively modulate the expression of genes involved in disease.
[0003] Duchenne muscular dystrophy (DMD) is caused by a defect in the expression of the protein dystrophin. The gene encoding the protein contains 79 exons spread out over more than 2 million nucleotides of DNA. Any exonic mutation that changes the reading frame of the exon, or introduces a stop codon, or is characterized by removal of an entire out of frame exon or exons, or duplications of one or more exons, has the potential to disrupt production of functional dystrophin, resulting in DMD.
[0004] Recent clinical trials testing the safety and efficacy of splice switching oligonucleotides (SSOs) for the treatment of DMD are based on SSO technology to induce alternative splicing of pre-mRNAs by steric blockade of the spliceosome (Cirak
et al., 2011; Goemans
et al., 2011; Kinali
et al., 2009; van Deutekom
et al., 2007). However, despite these successes, the pharmacological options available for treating DMD are limited.
[0005] Eteplirsen is a phosphorodiamidate morpholino oligomer (PMO) designed to skip exon 51 of the human dystrophin gene in patients with DMD who are amendable to exon 51 skipping to restore the read frame and produce a functional shorter form of the dystrophin protein. Eteplirsen has received approval from the United States Food and Drug Administration (FDA) for treatment of DMD.
[0006] WO2017/062835 an antisense oligomer capable of inducing exon skipping during processing of dystrophin pre-mRNA, wherein the oligomer is a phosphorodiamidate morpholino oligomer (PMO).
[0007] Although significant progress has been made in the field of antisense technology, there remains a need in the art for methods of preparing phosphorodiamidate morpholino oligomers with improved antisense or antigene performance.
SUMMARY
[0008] Provided herein are processes for preparing phosphorodiamidate morpholino oligomers (PMOs). The synthetic processes described herein allow for an efficient PMO synthesis using a Lewis acid catalyst while maintaining overall yield and purity of a synthesized PMO. Further provided herein is a flow-through PMO synthesis procedure.
[0009] Accordingly, in one aspect, provided herein is a process for preparing an oligomeric compound of Formula (I):

using a Lewis acid catalyst.
[0010] In another aspect, provided herein is a continuous process for preparing an oligomeric compound of Formula (A11):

[0011] In an embodiment, the continuous process for preparing an oligomeric compound of Formula (A11) is performed in a flow-through reactor.
BRIEF DESCRIPTION OF THE FIGURES
[0012]
Fig. 1 shows the stability of Adenosine monomer, with or without LiBr, at 90°C, 100°C, 110°C, and 150°C.
Fig. 2 shows the stability of the resin-bound PMO.
Fig. 3 shows detritylation at 90°C using: A) Collidine TFA; B) Lutidine TFA; C) Pyridine TFA; and D) 4-Cyanopyridine TFA.
Fig. 4 shows a complete schematic of a flow PMO synthesizer.
Fig. 5A, Fig. 5B, Fig. SC, Fig. 5D, and Fig. 5E show the total ion chromatogram for the synthesis of model tetramer 5'-Tail-ACGT-3'-Trt.
Fig. 6A, Fig. 6B, Fig. 6C, Fig. 6D, and Fig. 6E show the total ion chromatogram for the synthesis of eteplirsen (1-10). MALDI-TOF mass spectra are also shown.
Fig. 7 shows the rendering of sectioned reagent reservoir top having three ports.
DETAILED DESCRIPTION
[0013] Provided herein are processes for preparing a morpholino oligomer useful for applications toward antisense therapy. Antisense therapy is an attractive route for treating serious genetic diseases and viral infections. Antisense therapeutics are synthetic nucleobase polymers that bind to mRNA via complementary Watson-Crick base-pairing and cause alternative splicing or inhibition of translation, yielding altered proteins or reduced levels of proteins (
S. Cirak, V. Arechavala-Gomeza, M. Guglieri, L. Feng, S. Torelli, K. Anthony, S. Abbs, M. E. Garralda, J. Bourke, D. J. Wells, et al., Lancet 2011, 378, 595-605) (
J. H. Chan, S. Lim, W. F. Wong, Clin. Exp. Pharmacol. Physiol. 2006, 33, 533-540). In this way, critical viral proteins can be deactivated, exons with lethal frame shift mutations can be excised to yield a functional truncated protein, or oncogenic gene expression can be suppressed. Phosphorodiamidate morpholino oligomers (PMOs) are a class of antisense therapeutics in which the 5-membered ribosyl ring of RNA has been replaced with a 6-membered morpholino ring, and phosphate linkages have been replaced with uncharged phosphorodiamidates (
J. Summerton, D. Weller, Antisense Nucleic Acid Drug Dev. 1997, 7, 187-195). These modifications make PMOs resistant to nucleases (
R. M. Hudziak, E. Barofsky, D. F. Barofsky, D. L. Weller, S.-B. Huang, D. D. Weller, Antisense Nucleic Acid Drug Dev. 1996, 6, 267-272) and possibly more cell permeable than naked RNA (
V. Arora, D. C. Knapp, M. T. Reddy, D. D. Weller, P. L. Iversen, J. Pharm. Sci. 2002, 91, 1009-1018). Several PMOs, including second-generation structural analogs known as PMO-X
™ and peptide-PMO conjugates known as PPMOs, are currently under investigation. A first-in-class Duchenne muscular dystrophy drug, Exondys 51
™ (eteplirsen), was recently approved (
C. A. Stein, Mol. Ther. 2016, 24, 1884-1885) by the FDA, and trials are underway for the treatment of Dengue (
K. L. Holden, D. A. Stein, T. C. Pierson, A. A. Ahmed, K. Clyde, P. L. Iversen, E. Harris, Virology 2006, 344, 439-452), Marburg (
P. L. Iversen, T. K. Warren, J. B. Wells, N. L. Garza, D. V Mourich, L. S. Welch, R. G. Panchal, S. Bavari, Viruses 2012, 4, 2806-30), Ebola (
P. L. Iversen, T. K. Warren, J. B. Wells, N. L. Garza, D. V Mourich, L. S. Welch, R. G. Panchal, S. Bavari, Viruses 2012, 4, 2806-30), and influenza viral infections (
Q. Ge, M. Pastey, D. Kobasa, P. Puthavathana, C. Lupfer, R. K. Bestwick, P. L. Iversen, J. Chen, D. A. Stein, Antimicroh. Agents Chemother. 2006, 50, 3724-33).
[0014] Despite the breadth of potential disease targets, lengthy preparation of PMOs limits their exploration and application. To alleviate this problem, and enable efficient identification and production of these compositions, provided herein is an efficient PMO synthesis using a Lewis acid, as well as a flow-through PMO synthesis procedure.
Definitions
[0015] Listed below are definitions of various terms used to describe this disclosure. These definitions apply to the terms as they are used throughout this specification and claims, unless otherwise limited in specific instances, either individually or as part of a larger group.
[0016] "Base-protected" or "base protection" refers to protection of the base-pairing groups, e.g., purine or pyrimidine bases, on the morpholino subunits with protecting groups suitable to prevent reaction or interference of the base-pairing groups during stepWise oligomer synthesis. (An example of a base-protected morpholino subunit is the activated C subunit Compound (C) having a CBZ protecting group on the cytosine amino group depicted below.)
[0017] An "activated phosphoramidate group" is typically a chlorophosphoramidate group, having substitution at nitrogen which is desired in the eventual phosphorodiamidate linkage in the oligomer. An example is (dimethylamino)chlorophosphoramidate, i.e., -O-Y(=O)(NMe2)Cl.
[0018] The term "support-bound" refers to a chemical entity that is covalently linked to a support-medium.
[0019] The term "support-medium" refers to any material including, for example, any particle, bead, or surface, upon which an oligomer can be attached or synthesized upon, or can be modified for attachment or synthesis of an oligomer. Representative substrates include, but are not limited to, inorganic supports and organic supports such as glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TEFLON, etc.), polysaccharides, nylon or nitrocellulose, ceramics, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, optical fiber bundles, and a variety of other polymers. Particularly useful support-medium and solid surfaces for some embodiments are located within a flow-through reactor. In some embodiments of the processes described herein, the support-medium comprises polystyrene with 1% crosslinked divinylbenzene.
[0020] In some embodiments, representative support-mediums comprise at least one reactive site for attachment or synthesis of an oligomer. For example, in some embodiments, a support-medium of the disclosure comprises one or more terminal amino or hydroxyl groups capable of forming a chemical bond with an incoming subunit or other activated group for attaching or synthesizing an oligomer.
[0021] Some representative support-mediums that are amenable to the processes described herein include, but are not limited to, the following: controlled pore glass (CPG): oxalyl-controlled pore glass (see, e.g.,
Alul, et al., Nucleic Acids Research 1991, 19, 1527); silica.. containing particles, such as porous glass beads and silica gel such as that formed by the reaction of trichloro-[3-(4-chloromethyl)phenyl]propylsilane and porous glass beads (see
Parr and Grolimann, Angew. Chem. Internal. Ed. 1972, 11, 314, sold under the trademark "PORASIL E" by Waters Associates, Framingham, Mass., USA); a mono ester of 1,4-dihydroxymethylbenzene and silica (see
Bayer and Jung, Tetrahedron Lett., 1970, 4503, sold under the trademark "BIOPAK" by Waters Associates); TENTAGEL (see, e.g.,
Wright, et al., Tetrahedron Letters 1993, 34, 3373); cross-linked styrene/divinylbenzene copolymer beaded matrix, or POROS, a copolymer of polystyrene/divinylbenzene (available from Perceptive Biosystems); soluble support-medium such as polyethylene glycol PEG's (see
Bonora et al., Organic Process Research & Development, 2000, 4, 225-231); PEPS support, which is a polyethylene (PE) film with pendant long-chain polystyrene (PS) grafts (see
Berg, et al., J. Am. Chem. Soc.,1989, 111, 8024 and
International Patent Application WO 1990/02749); copolymers of dimethylacrylamide cross-linked with N,N'-bisacryloylethylenediamine, including a known amount of N-tertbutoxycarbonyl-beta-alanyl-N'-acryloylhexamethylenediamine (see
Atherton, et al., J. Am. Chem. Soc., 1975, 97, 6584,
Bioorg. Chem. 1979, 8, 351, and
J. C. S. Perkin I 538 (1981)); glass particles coated with a hydrophobic cross-linked styrene polymer (see
Scott, et al., J. Chrom. Sci., 1971, 9, 577); fluorinated ethylene polymer onto which has been grafted polystyrene (see
Kent and Merrifield, Israel J. Chem. 1978, 17, 243 and van
Rietschoten in Peptides 1974, Y. Wolman, Ed., Wiley and Sons, New York, 1975, pp. 113-116); hydroxypropylacrylate-coated polypropylene membranes (
Daniels, et al., Tetrahedron lett.1989, 4345); acrylic acid-grafted polyethylene-rods (
Geysen, et al., Proc. Natl. Acad. Sci. USA, 1984, 81, 3998); a "tea bag" containing traditionally-used polymer beads (
Houghten, Proc. Natl. Acad. Sci. USA, 1985, 82, 5131); and combinations thereof.
[0022] The term "flow-through reactor" refers to a chamber comprising a surface (e.g., solid surface) across which one or more fluid reagents (e.g., liquid or gas) can be flowed. In an embodiment, the chamber can be, but is not limited to, a junction mixer, a mixing vessel, a coil reactor, a tube reactor, a spinning disk reactor, a spinning tube reactor, a multi-cell flow reactor, an oscillatory flow reactor, or a microreactor. In a further embodiment, the chamber contains a solid-supported chemical reactant. In a particular embodiment, the solid-supported chemical reactant is confined within the chamber by a filter.
[0023] The term "deblocking agent" refers to a composition (e.g., a solution) comprising a chemical acid or combination of chemical acids for removing protecting groups. Exemplary chemical acids used in deblocking agents include halogenated acids, e.g., chloroacetic acid, dichloroacetic acid, trichloroacetic acid, fluoro acetic acid, difluoroacetic acid, and trifluoroacetic acid. In some embodiments, a deblocking agent removes one or more trityl groups from, for example, an oligomer, a support-bound oligomer, a support-bound subunit, or other protected nitrogen or oxygen moiety.
[0024] The terms "halogen" and "halo" refer to an atom selected from the group consisting of fluorine, chlorine, bromine, and iodine.
[0025] The term "capping agent" refers to a composition (e.g., a solution) comprising an acid anhydride (e.g., benzoic anhydride, acetic anhydride, phenoxyacetic anhydride, and the like) useful for blocking a reactive cite of, for example, a support-medium forming a chemical bond with an incoming subunit or other activated group.
[0026] The term "cleavage agent" refers to a composition (e.g., a liquid solution or gaseous mixture) comprising a chemical base (e.g., ammonia or 1,8-diazabicycloundec-7-ene) or a combination of chemical bases useful for cleaving, for example, a support-bound oligomer from a support-medium.
[0027] The term "deprotecting agent" refers to a composition (e.g., a liquid solution or gaseous mixture) comprising a chemical base (e.g., ammonia, 1,8-diazabicycloundec-7-ene or potassium carbonate) or a combination of chemical bases useful for removing protecting groups. For example, a deprotecting agent, in some embodiments, can remove the base protection from, for example, a morpholino subunit, morpholino subunits of a morpholino oligomer, or support-bound versions thereof.
[0028] The term "solvent" refers to a component of a solution or mixture in which a solute is dissolved. Solvents may be inorganic or organic (e.g., acetic acid, acetone, acetonitrile, acetyl acetone, 2-aminoethanol, aniline, anisole, benzene, benzonitrile, benzyl alcohol, 1-butanol, 2-butanol, i-butanol, 2-butanone, t-butyl alcohol, carbon disulfide, carbon tetrachloride, chlorobenzene, chloroform, cyclohexane, cyclohexanol, cyclohexanone, di-n-butylphthalate, 1,1-dichloroethane, 1,2-dichloroethane, diethylamine, diethylene glycol, diglyme, dimethoxyethane (glyme), N,N-dimethylaniline, dimethylformamide, dimethylphthalate, dimethylsulfoxide, dioxane, ethanol, ether, ethyl acetate, ethyl acetoacetate, ethyl benzoate, ethylene glycol, glycerin, heptane, 1-heptanol, hexane, 1-hexanol, methanol, methyl acetate, methyl t-butyl ether, methylene chloride, 1-octanol. pentane, 1-pentanol, 2-pentanol, 3-pentanol, 2-pentanone, 3-pentanone, 1-propanol, 2-propanol, pyridine, tetrahydrofuran, toluene, water, p-xylene).
[0029] The phrases "morpholino oligomer" and "phosphorodiamidate morpholino oligomer" or "PMO" refers to an oligomer having morpholino subunits linked together by phosphorodiamidate linkages, joining the morpholino nitrogen of one subunit to the 5'-exocyclic carbon of an adjacent subunit. Each morpholino subunit comprises a nucleobasepairing moiety effective to bind, by nucleobase-specific hydrogen bonding, to a nucleobase in a target.
[0030] The term "EG3 tail" refers to triethylene glycol moieties conjugated to the oligomer, e.g., at its 3'- or 5'-end. For example, in some embodiments, "EG3 tail" conjugated to the 3' end of an oligomer can be of the structure:

[0031] The terms "about" or "approximately" are generally understood by persons knowledgeable in the relevant subject area, but in certain circumstances can mean within ±10%, or within ±5%, of a given value or range.
Processes for Preparing Morpholino Oligomers in a Batch-wise or Fast-flow Procedure
[0032] Provided herein is an efficient PMO synthesis using a Lewis acid. Also provided herein is a flow-through PMO synthesis procedure (also referred to herein as a "continuous synthesis" or "fast-flow synthesis").
[0033] Synthesis is generally conducted, as described herein, on a support-medium. In an embodiment, provided herein is a first synthon (e.g. a monomer, such as a morpholino subunit) that is first attached to a support-medium, and the oligomer is then synthesized by sequentially coupling subunits to the support-bound synthon in the presence of a Lewis acid catalyst. This iterative elongation eventually results in a final oligomeric compound. This process can be done via a fast-flow synthesis, which is described herein. The advantages of fast-flow are faster reactions, quick optimization, cleaner products, easy scale-up, safer reactions, and the integration of typically separate processes.
[0034] Suitable support-media can be soluble or insoluble, or may possess variable solubility in different solvents to allow the growing support-bound polymer to be either in or out of solution as desired. Traditional support-media are for the most part insoluble and are routinely placed in reaction vessels while reagents and solvents react with and/or wash the growing chain until the oligomer has reached the target length, after which it is cleaved from the support, and, if necessary, further worked up to produce the final polymeric compound. More recent approaches have introduced soluble supports including soluble polymer supports to allow precipitating and dissolving the iteratively synthesized product at desired points in the synthesis (
Gravert et al., Chem. Rev., 1997, 97,489-510).
[0035] Also provided herein are processes for preparing morpholino oligomers.
[0036] Accordingly, in one aspect, provided herein is a process for preparing an oligomeric compound of Formula (I):

wherein
n is an integer from 9 to 39;
T is OH or

and
each R2 is, independently for each occurrence, selected from the group consisting of:


wherein the process comprises the sequential steps of:
- (a) contacting a compound of Formula (A1):

wherein
B is

R1 is a support-medium; and
R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimcthoxytrityl;
with a deblocking agent to form the compound of Formula (II):

wherein B is

and
R1 is a support-medium;
- (b) contacting the compound of Formula (II) with a compound of Formula (A2):

wherein R5 is

R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxytrityl; and
R4 is selected from the group consisting of:



to form a compound of Formula (A3):

wherein
B is

R1 is a support-medium;
R5 is

R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxytrityl; and
R4 is selected from the group consisting of:



- (c) contacting the compound of Formula (A3) with a deblocking agent to form a compound of Formula (IV):

wherein B is

R1 is a support-medium;
R6 is

and
R4 is selected from the group consisting of:



- (d) contacting the compound of Formula (IV) with a compound of Formula (A4):

in the presence of a Lewis acid catalyst;
wherein
R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxytrityl; and
R4 is selected from the group consisting of:



to form a compound of Formula (A5):

wherein R7 is of Formula (A5a) or Formula (A5b):

or

B is

R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxytrityl; and
R4 is selected from:



- (e) performing Y iterations of the sequential steps of:
(e1) contacting the product formed by the immediately prior step with a deblocking agent; and
(e2) contacting the compound formed by the immediately prior step with a compound of Formula (A8):

in the presence of a Lewis acid catalyst;
wherein
Y is n-1 if R7 is of the Formula (A5a) or Y is n-2 if R7 is of the Formula (ASb);
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is, independently for each compound of Formula (A8), selected from the group consisting of:



to form a compound of Formula (A9):

wherein R8 is


B is

n is an integer from 9 to 39;
R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is, independently for each occurrence, selected from the group consisting of:



and
(f) contacting the compound of Formula (A9) with a deblocking agent to form a compound of Formula (A10):

wherein R9 is


B is

n is an integer from 9 to 39;
R1 is a support-medium; and
R4 is, independently for each occurrence, selected from the group consisting of:



(g) contacting the compound of Formula (A10) with a cleaving agent to form a compound of Formula (A11): wherein

R9 is


or H;
n is an integer from 9 to 39; and
R4 is, independently for each occurrence, selected from the group consisting of:



and
(b) contacting the compound of Formula (A11) with a deprotecting agent to form the oligomeric compound of Formula (I).
[0037] In an embodiment, one of steps (d) or (e2) further comprises contacting the compound formed by the immediately prior step with a capping agent.
[0038] In another embodiment, at least one of steps (a), (c), (e1), or (f) further comprises contacting the deblocked compound with a neutralization agent.
[0039] In yet another embodiment, steps (a), (c), (e1), and (f) further comprise contacting the deblocked compound of each step with a neutralization agent.
[0040] In another embodiment, the deblocking step is run between room temperature and 110°C.
[0041] In yet another embodiment, the deblocking step is run between 50°C and 100°C.
[0042] In a particular embodiment, the deblocking step is run between 70°C and 90°C.
[0043] In an embodiment, the capping agent is in a solution comprising N-ethylmorpholine and methylpyrrolidinone.
[0044] In another embodiment, the capping agent is an acid anhydride.
[0045] In a particular embodiment, the capping agent is benzoic anhydride.
[0046] In an embodiment, the compounds of Formula (A4) and Formula (A8) are each, independently, in a solution comprising N-ethylmorpholine and dimethylimidazolidinone.
[0047] In another embodiment, the cleavage agent comprises dithiothreitol and 1,8-diazabicyclo[5.4.0]undec-7 -ene.
[0048] In yet another embodiment, the cleavage agent is in a solution comprising N-methyl-2-pyrrolidone.
[0049] In another embodiment, the deprotecting agent comprises NH
3.
[0050] In a further embodiment, the deprotecting agent is in an aqueous solution.
[0051] In an embodiment, the support-medium comprises polystyrene with 1% crosslinked divinylbenzene.
[0052] In an embodiment, in steps (a)-(g), B is

and step (h), C is

[0053] In another embodiment, the process is carried out in a batchwise synthesis or in a continuous synthesis.
[0054] In yet another embodiment, any of steps (a), (b), (c), (d), (e1), (e2), (f), (g), or (h) are carried out in a batchwise synthesis or in a continuous synthesis.
[0055] In a particular embodiment, steps (a), (b), (g), and (h) are carried out in a batchwise synthesis and steps (c), (d), (e1), (e2), and (f) are carried out in a continuous synthesis.
[0056] In an embodiment, the deblocking agent used in each step is a solution comprising a halogenated acid.
[0057] In another embodiment, the deblocking agent is selected from the group consisting of chloroacetic acid, dichloroacetic acid, trichloroacetic acid, fluoroacetic acid, difluoroacetic acid, and trifluoroacetic acid.
[0058] In a particular embodiment, the deblocking agent is trifluoroacetic acid.
[0059] In an embodiment, the Lewis acid is soluble in the coupling solvent.
[0060] In another embodiment, the Lewis acid is selected from a group consisting of LiCl. LiBr, LiI, and LiOTf.
[0061] In a particular embodiment, the Lewis acid is LiBr.
[0062] In an embodiment, the neutralization agent is in a solution comprising a halogenated solvent and isopropyl alcohol.
[0063] In another embodiment, the halogenated solvent is dichloromethane or dichloroethane.
[0064] In yet another embodiment, the neutralization agent is a monoalkyl, dialkyl, or trialkyl amine.
[0065] In another embodiment, the neutralization agent is N,N-diisopropylethylamine. In another embodiment, the neutralization agent is N-ethylmorpholine.
[0066] In an embodiment, the deblocking agent used in each step is a solution comprising 4-cyanopyridine, dichloromethane, trifluoroacetic acid, trifluoroethanol, and water.
[0067] In an embodiment, the deblocking agent used in each step is a solution comprising 4-cyanopyridine, dichloroethane, trifluoroacetic acid, trifluoroethanol, and water.
[0068] In an embodiment, the deblocking agent used in each step is a solution comprising 3,5-dimethylpyridine , dichloromethane, trifluoroacetic acid, trifluoroethanol, and water.
[0069] In an embodiment, the deblocking agent used in each step is a solution comprising 3,5-dimethylpyridine , dichloroethane, trifluoroacetic acid, trifluoroethanol, and water.
A Continuous Processes for Preparing Morpholino Oligomers
[0070] Provided herein is a continuous (flow-through) process for preparing morpholino oligomers.
[0071] Accordingly, in an aspect, provided herein is a continuous process for preparing an oligomeric compound of Formula (A11):

wherein R
9 is
C is

or H;
n is an integer from 9 to 39; and
R4 is, independently for each occurrence, selected from the group consisting of:



wherein the process comprises the sequential steps of:
- (a) contacting a deblocking agent with a compound of Formula (A3):

wherein B is

R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl;
R5 is

R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxytrityl; and
R4 is selected from the group consisting of:



in a reactor vessel to form a compound of Formula (IV):

wherein B is

R1 is a support-medium;
R6 is

and
R4 is selected from the group consisting of:



- (b) washing the compound of Formula (IV) with a washing solvent and a neutralizing agent, wherein the washing comprises passing a washing solvent and a neutralizing agent through the reactor vessel;
- (c) washing the compound of Formula (IV) with a washing solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
- (d) washing the compound of Formula (IV) with a coupling solvent, wherein the washing comprises passing a coupling solvent through the reactor vessel;
- (e) introducing to the reactor vessel a lewis acid and a compound of Formula (A4):

wherein
R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxytrityl; and
R4 is selected from the group consisting of:



such that the compound of formula (A4) contacts the compound of Formula (IV) to form a compound of Formula (A5):

wherein R7 is of the Formula (A5a) or Formula (A5b):

or

B is

R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxytrityl; and
R4 is selected from:



- (f) washing the compound of Formula (A5) with a coupling solvent, wherein the washing comprises passing a coupling solvent through the reactor vessel;
- (g) performing Y iterations of the sequential steps of:
(g1) washing the product formed by the immediately prior step with a washing solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
(g2) introducing a deblocking agent into the reactor vessel such that it contacts the product formed by the immediately prior step;
(g3) washing the product formed by the immediately prior step with a washing solvent and a neutralizing agent, wherein the washing comprises passing a washing solvent and a neutralizing agent through the reactor vessel;
(g4) washing the product formed by the immediately prior step with a washing solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
(g5) washing the product formed by the immediately prior step with a coupling solvent, wherein the washing comprises passing a coupling solvent through the reactor vessel;
(g6) introducing to the reactor vessel containing the product formed by the immediately prior step a Lewis acid and a compound of Formula (A8):

wherein
Y is n-1 if R7 is of the Formula (A5a) or Y is n-2 if R7 is of the Formula (A5b);
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is, independently for each compound of Formula (A8), selected from the group consisting of:



such that the compound of Formula (A8) contacts the compound formed by the immediately prior step to form a compound of Formula (A9):

wherein R8 is


B is

n is an integer from 9 to 39;
R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is, independently for each occurrence, selected from the group consisting of:



- (h) washing the compound of Formula (A9) with a coupling solvent to remove the compound of Formula (A8), wherein the washing comprises passing a coupling solvent through the reactor vessel;
- (i) washing the compound of Formula (A9) with a washing solvent to remove the coupling solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
- (j) contacting a deblocking agent with a compound of Formula (A9) in a reactor vessel to form a compound of Formula (A10):

wherein R9 is


B is

n is an integer from 10 to 40;
R1 is a support-medium; and
R4 is, independently for each occurrence, selected from the group consisting of:



and
- (k) contacting a cleaving agent with a compound of Formula (10) in a reactor vessel to form a compound of Formula (A11).
[0072] In an embodiment, provided herein is a continuous process for preparing an oligomeric compound of Formula (A11):

wherein R
9 is
n is an integer from 9 to 39; and
R4 is, independently for each occurrence, selected from the group consisting of:



wherein the process comprises the sequential steps of:
- (a) contacting a deblocking agent with a compound of Formula (A3):

wherein B is

R1 is a support-medium;
R5 is

and
R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxytrityl;
in a reactor vessel to form a compound of Formula (IV):

wherein B is

R1 is a support-medium;
R6 is

- (b) washing the compound of Formula (IV) with a washing solvent and a neutralizing agent, wherein the washing comprises passing a washing solvent and a neutralizing agent through the reactor vessel;
- (c) washing the compound of Formula (IV) with a washing solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
- (d) washing the compound of Formula (IV) with a coupling solvent, wherein the washing comprises passing a coupling solvent through the reactor vessel;
- (e) introducing to the reactor vessel a Lewis acid and a compound of Formula (A4):

wherein
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is selected from the group consisting of:



such that the compound of formula (A4) contacts the compound of Formula (IV) to form a compound of Formula (A5):

wherein R7 is of the Formula (A5a) or Formula (A5b):

B is

R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is selected from:



- (f) washing the compound of Formula (A5) with a coupling solvent, wherein the washing comprises passing a coupling solvent through the reactor vessel;
- (g) performing Y iterations of the sequential steps of:
(g1) washing the product formed by the immediately prior step with a washing solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
(g2) introducing a deblocking agent into the reactor vessel such that it contacts the product formed by the immediately prior step;
(g3) washing the product formed by the immediately prior step with a washing solvent and a neutralizing agent, wherein the washing comprises passing a washing solvent and a neutralizing agent through the reactor vessel;
(g4) washing the product formed by the immediately prior step with a washing solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
(g5) washing the product formed by the immediately prior step with a coupling solvent, wherein the washing comprises passing a coupling solvent through the reactor vessel;
(g6) introducing to the reactor vessel containing the product formed by the immediately prior step a Lewis acid and a compound of Formula (A8):

wherein
Y is n-1;
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is, independently for each compound of Formula (A8), selected from the group consisting of:



such that the compound of Formula (A8) contacts the compound formed by the immediately prior step to form a compound of Formula (A9):

wherein R8 is

B is

n is an integer from 9 to 39;
R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is, independently for each occurrence, selected from the group consisting of:



- (h) washing the compound of Formula (A9) with a coupling solvent to remove the compound of Formula (A8), wherein the washing comprises passing a coupling solvent through the reactor vessel;
- (i) washing the compound of Formula (A9) with a washing solvent to remove the coupling solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
- (j) contacting a deblocking agent with a compound of Formula (A9) in a reactor vessel to form a compound of Formula (A10):

wherein R9 is

B is

n is an integer from 9 to 39;
R1 is a support-medium; and
R4 is, independently for each occurrence, selected from the group consisting of:



and
(k) contacting a cleaving agent with a compound of Formula (10) in a reactor vessel to form a compound of Formula (A11).
[0073] In an embodiment, at least one of steps (a), (g2), and (j) further comprises contacting the deblocked compound of the respective step with a neutralization agent.
[0074] In another embodiment, steps (a), (g2), and (j) further comprise contacting the deblocked compound of each respective step with a neutralization agent.
[0075] In an embodiment, the washing solvent is a halogenated solvent.
[0076] In another embodiment, the washing solvent is dichlormethane or dichloroethane.
[0077] In an embodiment, the coupling solvent is 1,3-dimethyl-2-imidazolidinone or N-methyl-2-pyrrolidone.
[0078] In an embodiment, the cleaving agent comprises NH
3.
[0079] In another embodiment, the cleaving agent is in an aqueous solution.
[0080] In yet another embodiment, the support-medium comprises polystyrene with 1% crosslinked divinylbenzene.
[0081] In an embodiment, any one of steps (a), (b), (c), (d), (e), (f), (g1), (g2), (g3), (g4), (g5), (g6), (h), (i), (j), and (k) is run between 70°C and 90°C.
[0082] In another embodiment, each of steps (a), (b), (c), (d), (e), (f), (g1), (g2), (g3), (g4), (g5), (g6), (h), (i), (j), and (k) is run between 70°C and 90°C.
[0083] In a particular embodiment, each of steps (e) and (g6) is run between 70°C and 90°C.
[0084] In an embodiment, each of steps (a), (g2), and (j) is run between 70°C and 90°C; and the deblocking agent used in each step is a solution comprising 3,5-dimethylpyridine, dichloroethane, trifluoroacetic acid, and trifluoroethanol.
[0085] In an embodiment, each of steps (a), (g2), and (j) is run between 70°C and 90°C; and the deblocking agent used in each step is a solution comprising 3,5-dimethylpyridine , dichloromethane, trifluoroacetic acid, and trifluoroethanol.
[0086] In another embodiment, each of steps (a), (g2), and (j) is run between room temperature and 70°C; and the deblocking agent used in each step is a solution comprising 4-cyanopyridine, dichloroethane, trifluoroacetic acid, and trifluoroethanol.
[0087] In yet another embodiment, each of steps (a), (g2), and (j) is run between room temperature and 70°C; and the deblocking agent used in each step is a solution comprising 4-cyanopyridine, dichloromethane, trifluoroacetic acid, and trifluoroethanol. In an embodiment, steps (a)-(j), B is

and step (k), C is

[0088] In an embodiment, any of steps (a), (b), (c), (d), (e), (f), (g1), (g2), (g3), (g4), (g5), (g6), (h), (i), (j), and (k) are optionally carried out in a batchwise process.
[0089] In an embodiment, the deblocking agent used in each step is a solution comprising a halogenated acid.
[0090] In another embodiment, the deblocking agent is selected from the group consisting of chloroacetic acid, dichloroacetic acid, trichloroacetic acid, fluoroacetic acid, difluoroacetic acid, and trifluoroacetic acid.
[0091] In a particular embodiment, the deblocking agent is trifluoroacetic acid.
[0092] In an embodiment, the Lewis acid is soluble in the coupling solvent.
[0093] In another embodiment, the Lewis acid is selected from a group consisting of LiCl, LiBr, Lil, and LiOTf.
[0094] In a particular embodiment, the Lewis acid is LiBr.
[0095] In an embodiment, the neutralization agent is in a solution comprising a halogenated solvent and isopropyl alcohol.
[0096] In another embodiment, the halogenated solvent is dichloromethane or dichloroethane.
[0097] In yet another embodiment, the neutralization agent is a monoalkyl, dialkyl, or trialkyl amine.
[0098] In another embodiment, the neutralization agent is N,N-diisopropylethylamine.
[0099] In another embodiment, the neutralization agent is N-ethylmorpholine.
[0100] In an embodiment, the deblocking agent used in each step is a solution comprising 4-cyanopyridine, dichloromethane, trifluoroacetic acid, trifluoroethanol, and water.
[0101] In an embodiment, the deblocking agent used in each step is a solution comprising 4-cyanopyridine, dichloroethane, trifluoroacetic acid, trifluoroethanol, and water.
[0102] In an embodiment, the deblocking agent used in each step is a solution comprising 3,5-dimethylpyridine , dichloromethane, trifluoroacetic acid, trifluoroethanol, and water.
[0103] In an embodiment, the deblocking agent used in each step is a solution comprising 3,5-dimethylpyridine , dichloroethane, trifluoroacetic acid, trifluoroethanol, and water.
[0104] In an embodiment of the oligomeric compound of Formula (A11), n is 30, and R
4 is at each position from 1 to 30 and 5' to 3' :
Position No. 5' to 3' | R4 | Position No. 5' to 3' | R4 | Position No. 5' to 3' | R4 |
1 |
PC |
11 |
PA |
21 |
DPG |
2 |
T |
12 |
PA |
22 |
PC |
3 |
PC |
13 |
DPG |
23 |
PA |
4 |
PC |
14 |
DPG |
24 |
T |
5 |
PA |
15 |
PA |
25 |
T |
6 |
PA |
16 |
PA |
26 |
T |
7 |
PC |
17 |
DPG |
27 |
PC |
8 |
PA |
18 |
PA |
28 |
T |
9 |
T |
19 |
T |
29 |
PA |
10 |
PC |
20 |
DPG |
30 |
DPG |
[0105] In an embodiment of the oligomeric compound of Formula (A11), n is 10, and R
4 is at each position from 1 to 10 and 5' to 3' :
Position No. 5' to 3' | R4 |
1 |
PC |
2 |
T |
3 |
PC |
4 |
PC |
5 |
PA |
6 |
PA |
7 |
PC |
8 |
PA |
9 |
T |
10 |
PC |
A Continuous Processes for Preparing Morpholino Oligomers in a Flow-Through Reactor
[0106] Provided herein is a continuous (flow-through) process for preparing morpholino oligomers in a flow-through reactor.
[0107] Accordingly, in an aspect, provided herein is a continuous process for preparing an oligomeric compound of Formula (A11):

wherein R
9 is
C is

or H;
n is an integer from 9 to 39; and
R4 is, independently for each occurrence, selected from the group consisting of:



wherein the process comprises the sequential steps of:
- (a) contacting a deblocking agent with a compound of Formula (A3):

wherein B is

R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl;
R5 is

R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is selected from the group consisting of:



in a reactor vessel to form a compound of Formula (IV):

wherein B is

R1 is a support-medium;
R6 is

and
R4 is selected from the group consisting of:



- (b) washing the compound of Formula (IV) with a washing solvent and a neutralizing agent, wherein the washing comprises passing a washing solvent and a neutralizing agent through the reactor vessel;
- (c) washing the compound of Formula (IV) with a washing solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
- (d) washing the compound of Formula (IV) with a coupling solvent, wherein the washing comprises passing a coupling solvent through the reactor vessel;
- (e) introducing to the reactor vessel a Lewis acid and a compound of Formula (A4):

wherein
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is selected from the group consisting of:



such that the compound of formula (A4) contacts the compound of Formula (IV) to form a compound of Formula (A5):

wherein R7 is of the Formula (A5a) or Formula (A5b):

or

B is

R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is selected from:



- (f) washing the compound of Formula (A5) with a coupling solvent, wherein the washing comprises passing a coupling solvent through the reactor vessel;
- (g) performing Y iterations of the sequential steps of:
(g1) washing the product formed by the immediately prior step with a washing solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
(g2) introducing a deblocking agent into the reactor vessel such that it contacts the product formed by the immediately prior step;
(g3) washing the product formed by the immediately prior step with a washing solvent and a neutralizing agent, wherein the washing comprises passing a washing solvent and a neutralizing agent through the reactor vessel;
(g4) washing the product formed by the immediately prior step with a washing solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
(g5) washing the product formed by the immediately prior step with a coupling solvent, wherein the washing comprises passing a coupling solvent through the reactor vessel;
(g6) introducing to the reactor vessel containing the product formed by the immediately prior step a Lewis acid and a compound of Formula (A8):

wherein
Y is n-1 if R7 is of the Formula (A5a) or Y is n-2 if R7 is of the Formula (A5b);
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is, independently for each compound of Formula (A8), selected from the group consisting of:



such that the compound of Formula (A8) contacts the compound formed by the immediately prior step to form a compound of Formula (A9):

wherein R8 is

or

B is

n is an integer from 9 to 39;
R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is, independently for each occurrence, selected from the group consisting of:



- (h) washing the compound of Formula (A9) with a coupling solvent to remove the compound of Formula (A8), wherein the washing comprises passing a coupling solvent through the reactor vessel;
- (i) washing the compound of Formula (A9) with a washing solvent to remove the coupling solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
- (j) contacting a deblocking agent with a compound of Formula (A9) in a reactor vessel to form a compound of Formula (A10):

wherein R9 is

or

B is

n is an integer from 10 to 40;
R1 is a support-medium; and
R4 is, independently for each occurrence, selected from the group consisting of:



and
- (k) contacting a cleaving agent with a compound of Formula (10) in a reactor vessel to form a compound of Formula (A11); wherein the process is performed in a flow-through reactor, the flow-through reactor comprising at least:
- (a) a feeding zone, wherein the feeding zone comprises one or more feed lines each equipped with a pump, and wherein the inlet zones of the feed lines are independently connected to vessels comprising a neutralizing agent, coupling solvent, a deblocking agent, washing solvent, and a compound of Formula (A8):

wherein
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxytrityl; and
R4 is, independently for each compound of Formula (A8), selected from the group consisting of:



wherein the compound of Formula (A8) is dissolved in a coupling solvent;
- (b) a reaction zone that is connected to the outlet zone of the one or more feed lines and which contains a PMO synthesis resin;
- (c) an outlet zone, whereby waste stream or product can be independently collected;
- (d) a pressure control device; and
- (e) a means of independently controlling the temperature of the feeding zone and the reaction zone.
[0108] In an embodiment, the neutralizing reagent is a monoalkyl, dialkyl, or trialkyl amine in a solution comprising a halogenated solvent and isopropyl alcohol.
[0109] In another embodiment, the monoalkyl, dialkyl, or trialkyl amine is N,N-diisopropylethylamine or N-ethylmorpholine.
[0110] In yet another embodiment, the halogenated solvent is dichlormethane or dichloroethane.
[0111] In an embodiment, the coupling solvent is lithium bromide dissolved in 3-dimethyl-2-imidazolidinone or N-methyl-2-pynolidone.
[0112] In another embodiment, the deblocking agent is a solution comprising 4-cyanopyridine, dichloromethane, trifluoroacetic acid, and trifluoroethanol.
[0113] In yet another embodiment, the deblocking agent is a solution comprising 4-cyanopyridine, dichloroethane, trifluoroacetic acid, and trifluoroethanol.
[0114] In a further embodiment, the deblocking agent is a solution comprising 3,5-dimethylpyridine, dichloromethane, trifluoroacetic acid, and trifluoroethanol.
[0115] In an embodiment, the deblocking agent is a solution comprising 3,5-dimethylpyridine, dichloroethane, trifluoroacetic acid, and trifluoroethanol.
[0116] In an embodiment, the washing solvent is dichloroethane or dichloromethane.
[0117] In another embodiment, the compound of Formula (A8) is in a solution of 3-dimethyl-2-imidazolidinone or N-methyl-2-pyrrolidone.
[0118] In yet another embodiment, the pump is an HPLC or syringe pump.
[0119] In a further embodiment, the feeding zone and the reaction zone are connected by a luer lock connector.
[0120] In an embodiment, the reaction zone comprises a reactor vessel and a temperature control bath.
[0121] In an embodiment, the reactor vessel is equipped with a frit such that the PMO synthesis resin is not removed during the process.
[0122] In yet another embodiment, the reactor vessel is equipped with a 2 µm frit.
[0123] In a further embodiment, the pressure control device is a back pressure regulator.
[0124] In a particular embodiment, the flow-through reactor is used for the preparation of Eteplirsen.
Oligomers
[0125] Important properties of morpholino-based subunits include: 1) the ability to be linked in an oligomeric form by stable, uncharged or positively charged backbone linkages; 2) the ability to support a nucleotide base (e.g. adenine, cytosine, guanine, thymidine, uracil, 5-methyl-cytosine and hypoxanthine) such that the polymer formed can hybridize with a complementary-base target nucleic acid, including target RNA; 3) the ability of the oligomer to be actively or passively transported into mammalian cells; and 4) the ability of the oligomer and oligomer:RNA heteroduplex to resist RNAse and RNase H degradation, respectively.
[0126] In some embodiments, the antisense oligomers contain base modifications or substitutions. For example, certain nucleo-bases may be selected to increase the binding affinity of the antisense oligomers described herein. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C, and may be incorporated into the antisense oligomers described herein. In one embodiment, at least one pyrimidine base of the oligomer comprises a 5-substituted pyrimidine base, wherein the pyrimidine base is selected from the group consisting of cytosine, thymine and uracil. In one embodiment, the 5-substituted pyrimidine base is 5-methylcytosine. In another embodiment, at least one purine base of the oligomer comprises hypoxanthine.
[0127] Morpholino-based oligomers (including antisense oligomers) are detailed, for example, in
U.S. Patent Nos. 5,698,685,
5,217,866,
5,142,047,
5,034,506,
5,166,315,
5,185,444,
5,521,063,
5,506,337,
8,299,206, and
8, 076,476, International Patent Application Publication Nos.
WO/2009/064471 and
WO/2012/043730, and
Summerton et al. (1997, Antisense and Nucleic Acid Drug Development, 7,187-195).
[0128] Oligomeric compounds of the disclosure may have asymmetric centers, chiral axes, and chiral planes (as described, for example, in:
E. L. Eliel and S. H. Wilen, Stereo-chemistry of Carbon Compounds, John Wiley & Sons, New York, 1994, pages 1119-1190, and
March, J. , Advanced Organic Chemistry, 3d. Ed., Chap. 4, John Wiley & Sons, New York (1985)), and may occur as racemates, racemic mixtures, and as individual diastereomers, with all possible isomers and mixtures thereof, including optical isomers. Oligomeric compounds of the disclosure herein specifically mentioned, without any indication of its stereo-chemistry, are intended to represent all possible isomers and mixtures thereof.
[0129] Specifically, without wishing to be bound by any particular theory, oligomeric compounds of the disclosure are prepared, as discussed herein, from activated morpholino subunits including such non-limiting examples such as a compound of Formula (VIII):

wherein R
2 is, independently for each compound of Formula (VIII), selected from the group consisting of:

[0130] Each of the above-mentioned compounds of Formula (VIII), may be prepared, for example, from the corresponding beta-D-ribofuranosyl as depicted below:

See
Summerton et al., Antisense & Nucleic Acid Drug Dev. 7:187-195 (1997). Without being bound by any particular theory, the stereo chemistry of the two chiral carbons is retained under the synthetic conditions such that a number of possible stereo isomers of each morpholino subunit may be produced based on selection of, for example, an alpha-L-ribofuranosyl, alph-D- ribofuranosyl, beta-L-ribofuranosyl, or beta-D-ribofuranosyl starting material.
[0131] For example, in some embodiments, a compound of Formula (VIII) of the disclosure may be of Formula (VIIIa):

wherein R
2 is, independently for each compound of Formula (VIIIa), selected from the group consisting of:

[0132] Without being bound by any particular theory, incorporation of 10 to 40 compounds of Formula (VIII), for example, into an oligomeric compound of the disclosure may result in numerous possible stereo isomers.
[0133] Without wishing to be bound by any particular theory, oligomeric compounds of the disclosure comprise one or more phosphorous-containing intersubunits, which create a chiral center at each phosphorus, each of which is designated as either an "Sp" or "Rp" configuration as understood in the art. Without wishing to be bound by any particular theory, this chirality creates stereoisomers, which have identical chemical composition but different three-dimensional arrangement of their atoms.
[0134] Without wishing to be bound by any particular theory, the configuration of each phosphorous intersubunit linkage occurs randomly during synthesis of, for example, oligomeric compounds of the disclosure. Without wishing to be bound by any particular theory, the synthesis process generates an exponentially large number of stereoisomers of an oligomeric compound of the disclosure because oligomeric compounds of the disclosure are comprised of numerous phosphorous intersubunit linkages - with each phosphorous intersubunit linkage having a random chiral configuration. Specifically, without wishing to be bound by any particular theory, each intersubunit linkage of an additional morpholino subunit doubles the number of stereoisomers of the product, so that a conventional preparation of an oligomeric compound of the disclosure is in fact a highly heterogeneous mixtures of 2
N stereoisomers, where N represents the number of phosphorous intersubunit linkages.
[0135] Thus, unless otherwise indicated, all such isomers, including diastereomeric and enantiomeric mixtures, and pure enantiomers and diastereomers are included such as, for example, when one or more bonds from one or more stereo center is indicated by "-" or "∼∼" or an equivalent as would be understood in the art.
[0136] Table 1 depicts various embodiments of morpholino subunits provided in the processes described herein.
EXAMPLES
[0137] Examples have been set forth below for the purpose of illustration and to describe certain specific embodiments of the disclosure. However, the scope of the claims is not to be in any way limited by the examples set forth herein. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and such changes and modifications including, without limitation, those relating to the chemical structures, substituents, derivatives, formulations or methods of the disclosure may be made without departing from the scope of the appended claims. Definitions of the variables in the structures in the schemes herein are commensurate with those of corresponding positions in the formulae presented herein.
Example 1: NCP2 Anchor Synthesis
1. Preparation of Methyl 4-Fluoro-3-Nitrobenzoate (1)
[0138]

[0139] To a 100L flask was charged 12.7kg of 4-fluoro-3-nitrobenzoic acid was added 40kg of methanol and 2.82kg concentrated sulfuric acid. The mixture was stirred at reflux (65° C) for 36 hours. The reaction mixture was cooled to 0° C. Crystals formed at 38° C. The mixture was held at 0° C for 4 hrs then filtered under nitrogen. The 100L flask was washed and filter cake was washed with 10kg of methanol that had been cooled to 0° C. The solid filter cake was dried on the funnel for 1 hour, transferred to trays, and dried in a vacuum oven at room temperature to a constant weight of 13.695kg methyl 4-fluoro-3-nitrobenzoate (100% yield; HPLC 99%).
2. Preparation of 3-Nitro-4-(2-oxopropyl)benzoic Acid
A. (Z)-Methyl 4-(3-Hydroxy-1-Methoxy-1-Oxobut-2-en-2-yl)-3-Nitrobenzoate (2)
[0140]

[0141] To a 100L flask was charged 3.98kg of methyl 4-fluoro-3-nitrobenzoate (1) from the previous step 9.8kg DMF, 2.81kg methyl acetoacetate. The mixture was stirred and cooled to 0° C. To this was added 3.66kg DBU over about 4 hours while the temperature was maintained at or below 5° C. The mixture was stirred an additional 1 hour. To the reaction flask was added a solution of 8.15kg of citric acid in 37.5kg of purified water while the reaction temperature was maintained at or below 15° C. After the addition, the reaction mixture was stirred an addition 30 minutes then filtered under nitrogen. The wet filter cake was returned to the 100L flask along with 14.8kg of purified water. The slurry was stirred for 10 minutes then filtered. The wet cake was again returned to the 1001, flask, slurried with 1 4.8kg of purified water for 10 minutes, and filtered to crude (Z)-methyl 4-(3-hydroxy-1-methoxy-1-oxobut-2-en-2-yl)-3-nitrobenzoate.
B. 3-Nitro-4-(2-oxopropyl)benzoic Acid
[0142]

[0143] The crude (Z)-methyl 4-(3-hydroxy-1-methoxy-1-oxobut-2-en-2-yl)-3-nitrobenzoate was charged to a 100L reaction flask under nitrogen. To this was added 14.2kg 1,4-dioxane and the stirred. To the mixture was added a solution of 16.655kg concentrated HCl and 13.33kg purified water (6M HCl) over 2 hours while the temperature of the reaction mixture was maintained below 15° C. When the addition was complete, the reaction mixture was heated at reflux (80° C) for 24 hours, cooled to room temperature, and filtered under nitrogen. The solid filter cake was triturated with 14.8kg of purified water, filtered, triturated again with 14.8kg of purified water, and filtered. The solid was returned to the 100L flask with 39.9kg of DCM and refluxed with stirring for 1 hour. 1.5kg of purified water was added to dissolve the remaining solids. The bottom organic layer was split to a pre-warmed 72L flask, then returned to a clean dry 100L flask. The solution was cooled to 0° C, held for 1 hour, then filtered. The solid filter cake was washed twice each with a solution of 9.8kg DCM and 5kg heptane, then dried on the funnel. The solid was transferred to trays and dried to a constant weight of 1.855kg 3-Nitro-4-(2-oxopropyl)benzoic Acid. Overall yield 42% from compound
1. HPLC 99.45%.
3. Preparation of N-Tritylpiperazine Succinate (NTP)
[0144]

[0145] To a 72L jacketed flask was charged under nitrogen 1.805kg triphenylmethyl chloride and 8.3kg of toluene (TPC solution). The mixture was stirred until the solids dissolved. To a 100L jacketed reaction flask was added under nitrogen 5.61kg piperazine, 19.9kg toluene, and 3.72kg methanol. The mixture was stirred and cooled to 0° C. To this was slowly added in portions the TPC solution over 4 hours while the reaction temperature was maintained at or below 10° C. The mixture was stirred for 1.5 hours at 10° C, then allowed to warm to 14° C. 32.6kg of purified water was charged to the 72L flask, then transferred to the 100L flask while the internal batch temperature was maintained at 20+/-5° C. The layers were allowed to split and the bottom aqueous layer was separated and stored. The organic layer was extracted three times with 32kg of purified water each, and the aqueous layers were separated and combined with the stored aqueous solution.
[0146] The remaining organic layer was cooled to 18° C and a solution of 847g of succinic acid in 10.87kg of purified water was added slowly in portions to the organic layer. The mixture was stirred for 1.75 hours at 20+/-5° C. The mixture was filtered, and the solids were washed with 2kg TBME and 2kg of acetone then dried on the funnel. The filter cake was triturated twice with 5.7kg each of acetone and filtered and washed with 1kg of acetone between triturations. The solid was dried on the funnel, then transferred to trays and dried in a vacuum oven at room temperature to a constant weight of 2.32kg of NTP. Yield 80%.
4. Preparation of (4-(2-Hydroxypropyl)-3-NitrophenyI)(4-Tritylpiperazin-1-yl)Methanone
A. Preparation of 1-(2-Nitro-4(4-Tritylpiperazine-1-Carbonyl)Phenyl)Propan-2-one
[0147]

[0148] To a 100L jacketed flask was charged under nitrogen 2kg of 3-Nitro-4-(2-oxopropyl)benzoic Acid (3), 18.3 kg DCM, 1.845kg N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC.HCl). The solution was stirred until a homogenous mixture was formed. 3.048kg of NTP was added over 30 minutes at room temperature and stirred for 8 hours. 5.44kg of purified water was added to the reaction mixture and stirred for 30 minutes. The layers were allowed to separate and the bottom organic layer containing the product was drained and stored. The aqueous layer was extracted twice with 5.65kg of DCM. The combined organic layers were washed with a solution of 1.08kg sodium chloride in 4.08kg purified water. The organic layers were dried over 1.068kg of sodium sulfate and filtered. The sodium sulfate was washed with 1.3kg of DCM. The combined organic layers were slurried with 252g of silica gel and filtered through a filter funnel containing a bed of 252g of silica gel. The silica gel bed was washed with 2kg of DCM. The combined organic layers were evaporated on a rotovap. 4.8kg of THF was added to the residue and then evaporated on the rotovap until 2.5 volumes of the crude 1-(2-nitro-4(4-tritylpiperazine-1-carbonyl)phenyl)propan-2-one in THF was reached.
B. Preparation of (4-(2-Hydroxypropyl)-3-NitrophenyI)(4-Tritylpiperazin-1-yl)Methanone (5)
[0149]

[0150] To a 100L jacketed flask was charged under nitrogen 3600g of
4 from the previous step and 9800g THF. The stirred solution was cooled to ≤5°C. The solution was diluted with 11525g ethanol and 194g of sodium borohydride was added over about 2 hours at ≤5°C. The reaction mixture was stirred an additional 2 hours at ≤5°C. The reaction was quenched with a solution of about 1.1kg ammonium chloride in about 3kg of water by slow addition to maintain the temperature at ≤10°C. The reaction mixture was stirred an additional 30 minutes, filtered to remove inorganics, and recharged to a 100L jacketed flask and extracted with 23kg of DCM. The organic layer was separated and the aqueous was twice more extracted with 4.7kg of DCM each. The combined organic layers were washed with a solution of about 800g of sodium chloride in about 3kg of water, then dried over 2.7kg of sodium sulfate. The suspension was filtered and the filter cake was washed with 2kg of DCM. The combined filtrates were concentrated to 2.0 volumes, diluted with about 360g of ethyl acetate, and evaporated. The crude product was loaded onto a silica gel column of 4kg of silica packed with DCM under nitrogen and eluted with 2.3kg ethyl acetate in 7.2kg of DCM. The combined fractions were evaporated and the residue was taken up in 11.7kg of toluene. The toluene solution was filtered and the filter cake was washed twice with 2kg of toluene each. The filter cake was dried to a constant weight of 2.275kf of compound 5 (46% yield from compound
3) HPLC 96.99%.
5. Preparation of 2,5-Dioxopyrrolidin-1-yl(1-(2-Nitro-4-(4-triphenylmethylpiperazine-1 Carbonyl)Phenyl)Propan-2-yl) Carbonate (NCP2 Anchor)
[0151]

[0152] To a 100L jacketed flask was charged under nitrogen 4.3kg of compound
5 (weight adjusted based on residual toluene by H
1 NMR; all reagents here after were sealed accordingly) and 12.7kg pyridine. To this was charged 3.160 kg of DSC (78.91 weight % by H
1 NMR) while the internal temperature was maintained at ≤35°C. The reaction mixture was aged for about 22 hours at ambience then filtered. The filter cake was washed with 200g of pyridine. In two batches each comprising ½ the filtrate volume, filtrate wash charged slowly to a 100L jacketed flask containing a solution of about 11kg of citric acid in about 50 kg of water and stirred for 30 minutes to allow for solid precipitation. The solid was collected with a filter funnel, washed twice with 4.3kg of water per wash, and dried on the filter funnel under vacuum.
[0153] The combined solids were charged to a 100L jacketed flask and dissolved in 28kg of DCM and washed with a solution of 900g of potassium carbonate in 4.3kg of water. After 1 hour, the layers were allowed to separate and the aqueous layer was removed. The organic layer was washed with 10kg of water, separated, and dried over 3.5kg of sodium sulfate. The DCM was filtered, evaporated, and dried under vacuum to 6.16kg of
NCP2 Anchor (114% yield).
Example 2: Anchor Loaded Resin Synthesis
[0154] To a 75L solid phase synthesis reactor with a Teflon stop cock was charged about 52L of NMP and 2300g of aminomethyl polystyrene resin. The resin was stirred in the NMP to swell for about 2 hours then drained. The resin was washed twice with about 4L DCM per wash, then twice with 39L Neutralization Solution per wash, then twice with 39L of DCM per wash. The NCP2 Anchor Solution was slowly added to the stirring resin solution, stirred for 24 hours at room temperature, and drained. The resin was washed four times with 39L of NMP per wash, and six times with 39L of DCM per wash. The resin was treated and stirred with ½ the DEDC Capping Solution for 30 minutes, drained, and was treated and stirred with the 2
nd ½ of the DEDC Capping Solution for 30 minutes and drained. The resin was washed six times with 39L of DCM per wash then dried in an oven to constant weight of 3573.71g of Anchor Loaded Resin.
Example 3: Preparation of Activated EG3 Tail
1. Preparation of Trityl Piperazine Phenyl Carbamate 35
[0155]

[0156] To a cooled suspension of NTP in dichloromethane (6 mL/g NTP) was added a solution of potassium carbonate (3.2 eq) in water (4 mL/g potassium carbonate). To this twophase mixture was slowly added a solution of phenyl chloroformate (1.03 eq) in dichloromethane (2 g/g phenyl chloroformate). The reaction mixture was warmed to 20° C. Upon reaction completion (1-2 hr), the layers were separated. The organic layer was washed with water, and dried over anhydrous potassium carbonate. The product 35 was isolated by crystallization from acetonitrile. Yield=80%
2. Preparation of Carbamate Alcohol 36
[0157]

[0158] Sodium hydride (1.2 eq) was suspended in 1-methyl-2-pyrrolidinone (32 mL/g sodium hydride). To this suspension were added triethylene glycol (10.0 eq) and compound 35 (1.0 eq). The resulting slurry was heated to 95° C. Upon reaction completion (1-2 hr), the mixture was cooled to 20° C. To this mixture was added 30% dichloromethane/methyl tert-butyl ether (v:v) and water. The product-containing organic layer was washed successively with aqueous NaOH, aqueous succinic acid, and saturated aqueous sodium chloride. The product 36 was isolated by crystallization from dichloromethane/methyl tert-butyl ether/heptane. Yield=90%.
3. Preparation of EG3 Tail Acid 37
[0159]

[0160] To a solution of compound 36 in tetrahydrofuran(7 mL/g 36) was added succinic anhydride (2.0 eq) and DMAP (0.5 eq). The mixture was heated to 50°C. Upon reaction completion (5 hr), the mixture was cooled to 20° C and adjusted to pH 8.5 with aqueous NaHCO3. Methyl tert-butyl ether was added, and the product was extracted into the aqueous layer. Dichloromethane was added, and the mixture was adjusted to pH 3 with aqueous citric acid. The product-containing organic layer was washed with a mixture of pH=3 citrate buffer and saturated aqueous sodium chloride. This dichloromethane solution of 37 was used without isolation in the preparation of compound 38.
4. Preparation of Activated EG3 Tail 38
[0161]

[0162] To the solution of compound 37 was added N-hydroxy-5-norbornene-2,3-dicarhoxylic acid imide (HONB) (1.02 eq), 4-dimethylaminopyridine (DMAP) (0.34 eq), and then 1-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) (1.1 eq). The mixture was heated to 55° C. Upon reaction completion (4-5 hr), the mixture was cooled to 20°C and washed successively with 1:1 0.2 M citric acid/brine and brine. The dichloromethane solution underwent solvent exchange to acetone and then to N,N-dimethylformamide, and the product was isolated by precipitation from acetone/N,N-dimethylformamide into saturated aqueous sodium chloride. The crude product was reslurried several times in water to remove residual N,N-dimethylformamide and salts. Yield=70% of Activated EG3 Tail 38 from compound 36.
Example 4: Disulfide Anchor Synthesis
[0163]

[0164] To aminornethylpolystyrene resin (100-200 mesh: -1.0 mmol/g N2 substitution; 75 g, 1 eq, Polymer Labs, UK, part #1464-X799) in a silanized, jacketed peptide vessel was added 1-methyl-2-pyrrolidinone (NMP; 20 ml/g resin) and the resin was allowed to swell with mixing for 1-2 hr. Following evacuation of the swell solvent, the resin was washed with dichloromethane (2 × 1-2 min), 5% diisopropylethylamine in 25% isopropanol/dichloromethane (2 × 3-4 min) and dichloromethane (2 × 1-2 min). After evacuation of the final wash, the resin was fluidized with a solution of disulfide anchor 34 in 1-methyl-2-pyrrolidinone (0.17 M; 15 mL/g resin, -2.5 eq) and the resin/reagent mixture was heated at 45 °C for 60 hr. On reaction completion, heating was discontinued and the anchor solution was evacuated and the resin washed with 1-methyl-2-pyrrolidinone (4 × 3-4 min) and dichloromethane (6 × 1-2 min). The resin was treated with a solution of 10% (v/v) diethyl dicarbonate in dichloromethane (16 mL/g; 2 × 5-6 min) and then washed with dichloromethane (6 × 1-2 min). The resin 40 was dried under a N2 stream for 1-3 hr and then under vacuum to constant weight (± 2%). Yield: 110-150% of the original resin weight.
Example 5: 250mg Solid-phase Synthesis of
Eteplirsen Crude Drug Substance
1. Materials
[0165]
Table 2: Starting Materials
Material Name | Chemical Name | CAS Number | Chemical Formula | Molecular Weight |
Activated A Subunit |
Phosphoramidochloridic acid, N,N-dimethyl-,[6-[6-(benzoylamino)-9H-purin-9-yl]-4-(triphenylmethyl)-2-morpholinyl]methyl ester |
1155373-30-0 |
C38H37ClN7O4P |
722.2 |
Activated C Subunit |
Phosphoramidochloridic acid, N,N-dimethyl-,[6-[4-(benzoylamino)-2-oxo-1(2H)-pyrimidinyl]-4-(triphenylmethyl)-2-morpholinyl]methyl ester |
1155373-31-1 |
C37H37ClN5O5P |
698.2 |
Activated DPG Subunit |
Propanoic Acid, 2,2-dimethyl-,4-[[[9-[6-[[[chloro(dimethylamino)phosp hinyl]oxy]methyl]-4-(triphenylmethyl)-2-morpholinyl]-2-[(2-phenylacetyl)amino]-9H-purin-6-yl]oxy]methyl]phenyl ester |
1155309-89-9 |
C51H53ClN7O7P |
942.2 |
Activated T Subunit |
Phosphoramidochloridic acid, N,N-dimethyl-,[6-(3,4-dihydro-5-methyl-2,4-dioxo-1(2H)-pyrimidinyl)]-4-(triphenylmethyl)-2-morpholinyl]methyl ester |
1155373-34-4 |
C31H34ClN4O5P |
609.1 |
Activated EG3 Tail |
Butanedioic acid, 1-[3aR,4S,7R,7aS)-1,3,3a,4,7,7a-hexahydro-1,3-dioxo-4,7-methano-2H-isoindol-2-yl] 4-[2-[2-[2-[[[4-(triphenylmethyl)-1-piperazinyl]carbonyl]oxy]ethox y]ethoxy]ethyl]ester |
1380600-06-5 |
C43H47N3O10 |
765.9 |
Chemical Structures of Starting Materials:
A. Activated EG3 Tail
[0166]

B. Activated C Subunit (For preparation, see U.S. Patent No. 8,067,571)
[0167]

C. Activated A Subunit (For preparation, see U.S. Patent No. 8,067,571)
[0168]

D. Activated DPG Subunit (For preparation, see WO 2009/064471)
[0169]

E. Activated T Subunit (For preparation, see WO 2013/082551)
[0170]

F. Anchor Loaded Resin: NCP2
[0171]

wherein R
1 is a support-medium.
G. Anchor Loaded Resin: Disulfide
[0172]

wherein R
1 is a support-medium.
Table 3: Description of Solutions for Solid Phase Oligomer Synthesis of Eteplirsen Crude Drug Substance
Solution Name | Solution Composition |
NCP2 Anchor Solution |
12.5mL NMP and 430ing NCP2 Anchor |
DEDC Capping Solution |
1.4 mL Diethyl Dicarbonate (DEDC), 1.2 mL NEM, and 11.2 mL DCM |
CYTFA Solution |
667 mg 4-cyanopyridine, 52.6 mL DCM, 1.2 mL TFA, 13 mL TFE, and 0.7 mL purified water |
Neutralization Solution |
11.7 mL IPA, 2.4 mL DIPEA, and 35.4 mL DCM |
Cleavage Solution |
509 mg DTT, 2.3 mL NMP, and 1.0 mL DBU |
2. Synthesis of residues 1-10 of Eteplirsen Crude Drug Substance
A. Resin swelling
[0173] 250 mg of Anchor Loaded Resin and NMP were charged to a silanized reactor and stirred for 3 hours. The NMP was drained and the Anchor Loaded Resin was washed twice with DCM and five times with 30% TFE/DCM.
B. Cycle 0: EG3 Tail Coupling
[0174] The Anchor Loaded Resin was washed three times with 30% TFE/DCM and drained, washed with CYTFA solution for 15 minutes and drained, and again washed with CYTFA Solution for 15 minutes without draining to which a 1:1 NEM/DCM was charged and the suspension stirred for 2 minutes and drained. The resin was washed twice with Neutralization Solution for 5 minutes and drained, then twice with each of DCM and drained. A solution of activated EG3 Tail and NEM in DMI was charged to the resin and stirred for 3 hours at RT and drained. The resin was washed twice with Neutralization Solution for 5 minutes per each wash, and once with DCM and drained. A solution of benzoic anhydride and NEM in NMP was charged and stirred for 15 minutes and drained. The resin was stirred with Neutralization Solution for 5 minutes, then washed once with DCM and twice with 30% TFE/DCM. The resin was suspended in 30% TFE/DCM and held for 14 hours.
C. Subunit Coupling Cycles 1-10
i. Pre-coupling treatments
[0175] Prior to each coupling cycle as described in Table 4, the resin was: 1) washed with 30% TFE/DCM; 2) a) treated with CYTFA Solution 15 minutes and drained, and b) treated with CYTFA solution for 15 minutes to which was added 1:1 NEM /DCM, stirred, and drained; 3) stirred three times with Neutralization Solution; and 4) washed twice with DCM. See Table 4.
ii. Post Coupling Treatments
[0176] After each subunit solution was drained as described in Table 4, the resin was: 1) washed with DCM; and 2) washed two times with 30% TFE/DCM. If the resin was held for a time period prior to the next coupling cycle, the second TFE/DCM wash was not drained and the resin was retained in said TFE/DCM wash solution. See Table 4.
iii. Activated Subunit Coupling Cycles
[0177] The coupling cycles were performed as described in Table 4.
iv. Final IPA Washing
[0178] After the final coupling step was performed as described in Table 4, the resin was washed 8 times with IPA, and dried under vacuum at room temperature for about 63.5 hours to a dried weight of 1.86 g.
D. Cleavage
[0179] The above resin bound Eteplisen Crude Drug Substance was divided into two lots, each lot was treated as follows. A 929 mg lot of resin was: 1) stirred with NMP for 2hrs, then the NMP was drained; 2) washed tree times with of 30% TFE/DCM; 3) treated with CYTFA Solution for 15 minutes; and 4) CYTFA Solution for 15 minutes to which a 1:1 solution of NEM/DCM was then added and stirred for 2 minutes and drained. The resin was treated three times with Neutralization Solution, washed six times with DCM, and eight times with NMP. The resin was treated with a Cleaving Solution of 510 mg DTT and 992 mg DBU in 2.3 mL NMP for 2 hours to detach the Eteplisen Crude Drug Substance from the resin. The Cleaving solution was drained and retained in a separate vessel. The reactor and resin were washed with 1.6 mL of NMP which was combined with the Cleaving Solution.
Table 4:
Cycle No.: Subuni t (SU) | Pre-coupling Treatment | Coupling Cycle | Post-Coupling Treatment |
1 | 2 | 3 | 4 | | | 1 | 2 |
30% TFE/DC M Wash | CYTFA Sln. | Neutralizatio n Solution | DCM Wash | Quantity SU NEM DMI LiBr | RT Couplin g Time (Hrs.) | DC M Was h | 30% TFE/DC M Wash |
1:C |
1.8 mL |
a) 1.8 mL |
3x1.8 mL |
1.8 mL |
179 mg; 0.065 ml NEM; 1.0 mL DMI; 111 mg LiBr |
5 |
1.8 mL |
2x1.8 mL |
b) 1.8 mL, 0.041 ml |
2:T |
2.3 mL |
a) 2.3 mL |
3x2.3 mL |
2x2.3 mL |
156 mg and 0.065 ml NEM 1.0 mL DMI; 111 mg LiBr |
4.25 |
2.3 mL |
2x2.3 mL |
b) 2.3 mL, 0.053ml |
3:C |
2.7mL. |
a) 2.7mL |
3 x2.7 mL, |
2x2.7 mL |
179 mg; 0.065 ml NEM; 1.0 mL DMI; 111 mg LiBr |
4.25 |
2.7m L |
2×2.7mL: |
b) 2.7mL, 0.061ml |
4:C |
3.0mL |
a) 3.0mL |
3x3.0mL |
2x3.0 mL |
179 mg; 0.065 ml NEM; 1.0 mL DMI; 111 mg LiBr |
4.25 |
3.0m L |
2x3.0mL |
b) 3.0mL, 0.069ml |
5:A |
3.2mL |
a) 3.2mL |
3x3.2mL |
2x9.5 L |
185mg; 0.064ml NEM; 1.1 mL DMI; 111 mg LiBr |
4.25 |
3.2m L |
2×3.2mL |
b) 3.2mL, 0.073ml |
6:A |
3.3mL |
a) 3.3mL |
3x3.3mL |
2×3.3 mL |
185mg; 0.064ml NEM; 1.1 mL DMI; 111 mg LiBr |
4.25 |
3.3 mL |
2×3.3mL |
b) 3.3mL, 0.078ml |
30% TFE/DC M Wash | CYTF A Sln. | Neutralizatio n Solution | DCM Wash | Quantit y SU (g) NEM (L) DMI (L) | RT Couplin g Time (Hrs.) | DCM Wash | 30% TFE/DC M Wash | |
7:C |
3.6mL |
a) 3.6mL |
3x3.6mL |
2x3.6m L |
179 mg; 0.065 ml NEM; 1.0 mL DMI; 111 mg LiBr |
4.25 |
3.6m L |
2x3.6mL |
b) 3.6mL, 0.085m l |
8:A |
3.6mL |
a) 3.6mL |
3x3.6mL |
2x3.6m L |
185mg; 0.064ml NEM; 1.1 mL DMI; 111 mg LiBr |
4.25 |
3.6m L |
2x3.6mL |
b) 3.6mL, 0.085m 1 |
9:T |
3.8mL |
a) 3.8mL |
3x3.8mL |
2x 3.8mL |
156 mg and 0.065 ml NEM 1.0 mL DMI; 111 mg LiBr |
4.25 |
3.8m L |
2x3.8mL |
b) 3.8mL 0.089m 1 |
10:C |
4.0mL |
a) 4.0mL |
3x4.0mL |
2x4.0m L |
179 mg; 0.065 ml NEM; 1.0 mL DMI; 111 mg LiBr |
4.25 |
4.0m L |
2x4.0mL |
b) 4.0mL, 280ml |
1ml indicates the amount of 1: 1 NEM/DCM |
E. Deprotection
[0180] The combined Cleaving Solution and NMP wash were transferred to a pressure vessel to which was added 13.3mL of NH
4OH (NH
3•H
2O) that had been chilled to a temperature of -10° to -25
0C in a freezer. The pressure vessel was sealed and heated to 45°C for 16hrs then allowed to cool to 25°C. This deprotection solution containing the Eteplirsen crude drug substance was diluted 3:1 with purified water and pH adjusted to 3.0 with 2M phosphoric acid, then to pH 8.03 with NH
4OH.
3. Synthesis of Eteplirsen Crude Drug Substance
[0181] Eteplirsen can be synthetized using steps A-E as described in Example 5, part 2, and using the information given in Table 5 below.
Table 5:
Cycle No.: Subuni t (SU) | Pre-coupling Treatment | Coupling Cycle | Post-Coupling Treatment |
1 | 2 | 3 | 4 | | | 1 | 2 |
30% TFE/DC M Wash | CYTFA Sln.2 | Neutralizatio n Solution | DCM Wash | Quantity SU NEM DMI LiBr | RT Couplin g Time (Hrs.) | DC M Was h | 30% TFE/DC M Wash |
1:C |
1.8 mL |
a) 1.8 mL |
3x1.8 mL |
1.8 mL |
179 mg; 0.065 ml NEM; 1.0 mL DMI; 111 mg LiBr |
5 |
1.8 mL |
2x1.8 mL |
b) 1.8 mL, 0.041 ml |
2:T |
2.3 mL |
a) 2.3 mL |
3x2.3 mL |
2x2.3 mL |
156 mg and 0.065 ml NEM 1.0 mL DMI; III mg LiBr |
4.25 |
2.3 mL |
2x2.3 mL |
b) 2.3 mL, 0.053ml |
3:C |
2.7mL |
a) 2.7mL |
3x2.7 mL, |
2x2.7 mL |
179 mg; 0.065 ml NEM; 1.0 mL DMI; 111 mg LiBr |
4.25 |
2.7m L |
2x2.7mL |
b) 2.7mL, 0.061ml |
4:C |
3.0mL |
a) 3.0mL |
3x3.0mL |
2x3.0 mL |
179 mg; 0.065 ml NEM; 1.0 mL DMI; 111 mg LiBr |
4.25 |
3.0m L |
2x3.0mL |
b) 3.0mL, 0.069m1 |
5:A |
3.2mL |
a) 3.2mL |
3x3.2mL |
2x9.5 L |
185mg; 0.064ml NEM; 1.1 mL DMI; 111 mg LiBr |
4.25 |
3.2m L |
2x3,2mL |
b) 3.2mL, 0.073ml |
6:A |
3.3mL |
a) 3.3mL |
3x3.3mL |
2x3.3 mL |
185mg; 0.064ml NEM; 1.1 mL DMI; 111 mg LiBr |
4.25 |
3.3 mL |
2x3.3mL |
b) 3.3mL, 0.078ml |
|
Cycle No.: Subuni t (SU) | Pre-coupling Treatment | Coupling Cycle | Post-Coupling Treatment |
1 | 2 | 3 | 4 | | | 1 | 2 |
30% TFE/DC M Wash | CYTF A Solutio n | Neutralizatio n Solution | DCM Wash | Quantit y SU (g) NEM (L) DMI (L) | RT Couplin g Time (Hrs.) | DCM Wash | 30% TFE/DC M Wash |
7:C |
3.6mL |
a) 3.6mL: |
3x3.6mL |
2x3.6m L |
179 mg; 0.065 ml NEM; 1.0 mL DMI; 111 mg LiBr |
4.25 |
3.6m L |
2x3.6mL |
b) 3.6mL, 0.085m 1 |
8:A |
3.6mL |
a) 3.6mL |
3x3.6mL |
2x3.6m L |
185mg; 0.064ml NEM; 1.1 mL DMI; 111 mg LiBr |
4.25 |
3.6m L |
2x3.6mL |
b) 3.6mL, 0.085m l |
9:T |
3.8mL |
a) 3.8mL |
3x3.8mL |
2x 3.8mL |
156 mg and 0.065 ml NEM 1.0 mL DMI; 111 mg LiBr |
4.25 |
3.8m L |
2x3.8mL |
b) 3.8mL 0.089m 1 |
10:C |
4.0mL |
a) 4.0mL |
3x4.0mL |
2x4.0m L |
179 mg; 0.065 ml NEM; 1.0 mL DMI; 111 mg LiBr |
4.25 |
4.0m L |
2x4.0mL |
b) 4.0mL, 280ml |
11:A |
4.5mL |
a) 4.5mL |
3x4.5mL |
2x 4.5mL |
185mg; 0.064ml NEM; 1.1 mL DMI; 111 mg LiBr |
4.25 |
4.5m L |
2x4.5mL |
b) 4.5mL, 0.068m l |
12:A |
4.5mL |
a) 4.5mL |
3x4.5mL |
2x 4.5mL |
185mg; 0.064ml NEM; 1.1 mL DMI; 111 mg LiBr |
4.25 |
4.5m L |
2x4.5mL |
b) 4.5mL, 0.068m 1 |
|
Cycle No.: Subunit (SU) | Pre-coupling Treatment | Coupling Cycle | Post-Coupling Treatment |
1 | 2 | 3 | 4 | | | 1 | 2 |
30% TFE/DC M Wash | CYTF A Solutio n | Neutralizatio n Solution | DCM Wash | Quantit y S U (g) NEM (L) DMI (L) | RT Couplin g Time (Hrs.) | DCM Wash | 30% TFE/DC M Wash |
13:DP G |
4.6mL |
a) 4.6mL |
3x4.6mL. |
2x4.6m L |
313mg; 0.084ml NEM; 1.3mL DMI; III mg LiBr |
4.25 |
4.6m L |
2x4.6mL |
b) 4.6mL, 0.072m 1 |
14:DP G |
4.8mL |
a) 4.8mL |
3x4.8mL |
2x 4.8mL |
313mg; 0.084ml NEM; |
4.25 |
4.8m L |
2x4.8mL |
b) |
30% TFE/DC M Wash | CYTF A Solutio n | Neutralizatio n Solution | DCM Wash | Quantit y SU (g) NEM (L) DMI (L) | RT Couplin g Time (Hrs.) | DCM Wash | 30% TFE/DC M Wash | |
|
|
4.8mL, 0.76ml |
|
|
1.3mL DMI; 111 mg LiBr |
|
|
|
15:A |
5.2mL |
a) 5.2mL |
3x5.2mL |
2x 5.2mL |
185mg; 0.064ml NEM; 1.1 mL DMI; 111 mg LiBr |
4.25 |
5.2m L |
2x5.2mL |
b) 5.2mL, 0.085 ml |
16: A |
5.2mL |
a) 5.2mL |
3x5.2mL |
2x 5.2mL |
185 mg; 0.064ml NEM; 1.1 mL DMI; 111 mg LiBr |
4.25 |
5.2m L |
2x5.2mL |
b) 5.2mL, 0.085m 1 |
17:DP G |
5.3mL |
a) 5.3mL |
3x5.3mL |
2x5.3m L |
313mg; 0.084ml NEM; 1.3mL DMI; 111 mg LiBr |
4.75 |
5.3m L |
2x5.3mL |
b) 5.3mL, 0.121m l |
18:A |
5.5mL |
a) 5.5mL |
3x5.5mL |
2x 5.5mL |
185mg; 0.064ml NEM; 1.1 mL DMI; 111 mg LiBr |
4.25 |
5.5m L |
2x5.5mL |
b) 5.5mL, 0.126m 1 |
|
Cycle No.: Subunit (SU) | Pre-coupling Treatment | Coupling Cycle | Post-Coupling Treatment |
1 | 2 | 3 | 4 | | | 1 | 2 |
30% TFE/DC M Wash | CYTF A Solutio n | Neutralizatio n Solution | DCM Wash | Quantit y S U (g) NEM (L) DMI (L) | RT Couplin g Time (Hrs.) | DCM Wash | 30% TFE/D CM Wash |
19:T |
5.5mL |
a) |
5.5mL |
2x |
156 mg |
4.25 |
5.5mL |
2x5.5 m |
30% TFE/DC M Wash | CYTF A Solutio n | Neutralizatio n Solution | DCM Wash | Quantit y SU (g) NEM (L) DMI (L) | RT Couplin g Time (Hrs.) | DCM Wash | 30% TFE/D CM Wash | |
|
|
5.5mL |
|
5.5mL |
and 0.065 ml NEM 1.0 mL DM1; 111 mg LiBr |
|
|
L |
b) 5.5mL, 0.126m 1 |
20:DPG |
5.7mL |
a) 5.7mL |
3×5.7mL |
2x5.7mL |
313mg; 0.084m l NEM; 1.3mL DM1; 111 mg LiBr |
4.75 |
5.7mL |
2x5.7m L |
b) 5.7mL, 0.130m l |
21:DPG |
5.7mL |
a) 5.7mL |
3x5.7mL |
2x5.7 m L |
313mg; 0.084m 1 NLM; 1.3mL DM1; 111 mg LiBr |
4.25 |
5.7mL |
2x5.7 mL |
b) 5.7mL, 0.130m l |
22:C |
5.8mL |
a) 5.8mL |
3×5.8mL |
2x 5.8mL |
179 mg; 0.065 ml NEM; 1.0 mL DM1; 111 mg LiBr |
4.75 |
5.8mL |
2x5.8 mL |
b) 5.8mL, 0.134m 1 |
23:A |
5.8mL |
a) 5.8mL |
3×5.8mL |
2x 5.8mL |
185mg; 0.064m 1 NEM; 1.1 mL DM1; 111 mg LiBr |
4.25 |
5.8mL |
2x5.8 mL |
b) 5.8mL, 0.134m 1 |
24:T |
6.0mL |
a) 6.0mL |
3×6.0mL |
2x6.0m L |
156 mg and 0.065 ml NEM 1.0 mL |
4.25 |
6.0mL |
2x6.0 mL |
b) 6.0mL, 0.138m 1 |
1 | 2 | 3 | 4 | | | 1 ' | 2 | |
30% TFE/DC M Wash | CYTF A Solutio n | Neutralizatio n Solution | DCM Wash | Quantit y SC (g) NEM (L) DMI (L) | RT Couplin g Time (Hrs.) | DCM Wash | 30% TFE/D CM Wash | |
|
|
|
|
|
DM1; 111 mg LiBr |
|
|
|
|
Cycle No.: Subuni t (SU) | Pre-coupling Treatment | Coupling Cycle Post-Coupling Treatment |
1 | 2 | 3 | 4 | | | 1 | 2 |
30% TFE/DC M Wash | CYTF A Solutio n | Neutralizatio n Solution | DCM Wash | Quantit y SU (g) NEM (L) DMI (L) | RT Couplin g Time (Hrs.) | DCM Wash | 30% TFE/DC M Wash |
25:T |
6.0mL |
a) 6.0mL |
3x6.0mL |
2x6.0m L |
156 mg and 0.065 ml NEM 1.0 mL DMI; 111 mg LiBr |
4.25 |
6.0m L |
2x6.0mL |
|
b) 6.0mL, 0.138m 1 |
26:T |
6.2mL |
a) 6.2mL |
3x6.2mL |
2x 6.2mL |
156 mg and 0.065 ml NEM 1.0 mL DMI; 111 mg LiBr |
4.25 |
6.2m L |
2x6.2mL |
b) 6.2mL, 0.141m 1 |
27:C |
6.2mL |
a) 6.2mL |
6.2mL |
2x 6.2mL |
179 mg; 0.065 ml NEM; 1.0 mL DM1; 111 mg LiBr |
4.25 |
6.2m L |
2x6.2mL |
b) 6.2mL, 0.141m 1 |
28:T |
6.3mL |
a) 6.3mL |
3x6.3mL |
2x6.3m L |
156 mg and 0.065 |
4.25 |
6.3m L |
2x6.3 mL |
b) |
Cycle No.: Subuni t (SU) | Pre-coupling Treatment | Coupling Cycle | Post-Coupling Treatment |
1 | 2 | 3 | 4 | | | 1 | 2 |
30% TFE/DC M Wash | CYTF A Solutio n | Neutralizatio n Solution | DCM Wash | Quantit y SU (g) NEM (L) DMI (L) | RT Couplin g Time (Hrs.) | DCM Wash | 30% TFE/DC M Wash |
|
|
6.3mL, 0.146m 1 |
|
|
ml NEM 1.0 mL DMI; 111 mg LiBr |
|
|
|
29:A |
6.3mL |
a) 6.3mL |
3x6.3mL |
2x6.3m L |
185mg; 0.064ml NEM; 1.1 mL DMI; 111 mg LiBr |
4.25 |
6.3m L |
2x6.3mL |
b) 6.3mL, 0.146m 1 |
30:DP G |
6.5mL |
a) 6.5mL |
3x6.5mL |
2x 6.5mL |
313mg; 0.084ml NEM; 1.3mL DMI; 111 mg LiBr |
4.75 |
6.5m L |
2x6.5mL |
b) 6.5mL, 0.15ml |
2ml indicates the amount of 1:1 NEM/DCM |
Example 6: Design of Flow Synthesizer
[0182] The flow PMO synthesizer is shown in (
Fig. 4). Reagent reservoirs were GL45 threaded media bottles equipped with a top to maintain a positive pressure of dry nitrogen and allow anhydrous transfer of solvents. Each reagent reservoir was connected to one of four selectable ports on a four positon Swagelok SS-43ZFS2. manual selector valve. The common port was connected to the HPLC pump via a Swagelok (SS-QM2-B-200KR and SS-QM2-S-200) shutoff quick connect which could be disconnected when not in use to prevent siphoning of the pressurized solvents. The HPLC pump was a Varian 210 with a 25ml/min stainless steel pump head. Low pressure (inlet side) tubing was 1/8" OD, 1/16" ID PFA. The HPLC pump outlet was connected to a 40psi back pressure regulator (P-785) and male leur lock quick connect (Idex P-655) using 1/16" OD, 0.030" ID PFA tubing. When the HPLC pump was in use, this quick connect was mated to the female leur lock quick connect on the reactor inlet line. When the HPLC pump was not in use, the reactor inlet line was attached to a syringe of coupling reagent on the syringe pump (Harvard Apparatus PhD 3000).
[0183] The reactor inlet line consisted of a female luer lock quick connect (Idex P-658) and check valve (Idex CV-3316) joined with about 18 inches of 1/16" OD PFA tubing to a 5 foot stainless steel preheat loop (1/16" OD, 0.030" ID, Idex U-107) via a Swagelok union (SS-100-6). This preheat loop was connect to a reactor identical to the one described previously for peptide synthesis. The reactor outlet was connected to a 250psi back pressure regulator (Idex P-788), which could be bypassed by opening a bypass valve (Idex P-733). The bypass fluid path rejoined the outlet of the back pressure regulator in a T (P-632), passed through a check valve (Idex P-788), and six inches of tubing before arriving at the methane sulfonic acid T (Swagelok SS-100-3). At this point, 20% MeIISO4 in DCM was optionally infused with a Knauer smartline HPLC pump with a 50mL/min titanium head to regenerate the Trityl cation for UV monitoring of deprotection. The mixed fluid was then passed through a UV detector (Agilent G1315D), a 20psi back pressure regulator (Idex P-791), and to waste.
[0184] Where not described, tubing downstream of the HPLC pump and syringe was 1/16" OD, 0.030" ID PFA. All ¼-28 flat bottom fittings were Idex super flangeless (XP-131 and XP-141).
Reagent reservoirs
[0185] Reagent reservoirs were provisioned with machined adaptors for use with GL-45 caps with holes (Chemglass). These adaptors had three ¼-28 threaded ports (Fig. 7). Two ports had 1/8" thru holes; the third had a 1/16" thru hole. The first hole was used for a reagent withdraw line. The second was used as a fill port, and the third was used for the nitrogen gas supply (4psi). The reagent withdraw line was a 1/8" line inserted into the bottom of the reagent reservoir and sealed in place with a super flangeless fitting (Idex XP-131). Nitrogen gas was supplied by a 1/8" line seated against the 1/16" thru hole and sealed in with a super flangeless fitting. The fill port consisted of a thin wall 1/8" OD, 0.1" ID, stainless steel tube inserted to just below the bottom of the machined adaptor and sealed in place with a super flangeless fitting. The free side was fitted with a shut off quick connect (Swagelok SS-QM2-B-200KR) that was sealed when not in use but could be used to fill the reservoir from a second reservoir of anhydrous solvent under slightly higher pressure. The second reservoirs were of a similar design and 10psi argon was used to transfer dry solvent. During filling, the nitrogen system was allowed to vent through a 5psi back pressure regulator and oil bubbler.
Example 7: General procedure for flow synthesis
[0186] The following procedure was used for flow synthesis. Resin was loaded into the reactor, the reactor was connected to the HPLC pump, and halogenated wash solvent was delivered at 10 mL/min to remove air. The flow was stopped and the resin was allowed to swell for 10 minutes. The flow protocol was initiated with an initial halogenated solvent wash at 10 mL/min for 60 seconds. Detritylation was performed with 100 mM of a pyridine trifluoroacetate for 120 seconds at the same flow rate. The detritylation step can also be performed using Collidone, Lutidine, or 4-Cyanopyridine (Fig. 3A, Fig. 3B, Fig3C, and Fig. 3D). After a 30 second halogenated solvent wash, neutralization was performed with 5% DIEA or NEM for 60 seconds. The resin was then washed with the halogenated solvent and DMI for 60 seconds each at 10 mL/min. The HPLC pump was then halted for the coupling step. Coupling solution (0.2 M subunit, 0.4 M DIEA or NEM, and 0.21 M LiBr in dry DMI) was placed in a 10 mL syringe and delivered via syringe pump at 3 mL/min over 1 minute (0.5mmol monomer) or 2 minutes (1mmol monomer). It was determined that the monomers were stable at temperatures between 90 °C and 110 °C in the presence of Lithium Bromide (Fig. 1). When all of the solution was delivered, the HPLC pump delivered DMI at 3 mL/min for three minutes. This protocol was repeated for each residue until synthesis was complete. The finished resin was removed from the reactor, washed 5 times with DCM in a fritted syringe (Torviq), and dried under vacuum. Cleavage was performed as above.
[0187] For steps at elevated temperature, the reactor and preheat loop were placed in a thermostated water bath.
[0188] For HPLC purification, resin was cleaved under mild conditions (4:1 ethanol/ammonium hydroxide) and then isolated by solid-phase extraction (SPE). Prior to the cleavage using said mild conditions, the resin-bound PMO was stable to a variety of reaction conditions (Fig. 2). Initially, the cleaved resin was filtered and washed 4 times with methanol. The cleavage solution and wishes were collected and concentrated to dryness using a rotary evaporator. The residue was dissolved in 10 mL of Milli-Q water prior to SPE. Separately, SPE columns were prepared and conditioned using the following procedure. 20 mL Econo-Pac columns from Bio-Rad were charged with 3-4 mL of Amberchrome CG-300M resin and sealed with a frit. Then 8 mL of the following solutions were added to the column, in order, and drained before adding the next solution: 80% ACN in 1 % NH
4OH, 0.5 M N
aOH in 20% EtOH, Milli-Q water, 50mM H
3PO
4 in 80% ACN, Milli-Q water, 0.5 M NaOH in 20% EtOH, Milli-Q water, 1% NH
4OH. When conditioning was complete, the column was stored in 8 mL of 1% NH
4OH at room temperature until used. The column was rinsed two times with 12 mL of Milli-Q water before loading the PMO onto the column. Then, the column was rinsed once with 3 mL of 1 M NaCl, followed by three rinses with 12 mL of Milli-Q water, and once with 3mL of 10% acetonitrile in water. The PMO was then eluted with two 3mL rinses of 50% acetonitrile in water. The eluent from the 50% acetonitrile wash was collected into a pre-weighed 50 mL conical centrifuge tube and lyophilized to afford the crude PMO as a white powder suitable for LC/MS analysis and/or preparative HPLC purification.
[0189] Several PMOs were purified on a mass-directed purification system consisting of an Agilent 1260 Infinity Quaternary HPLC coupled to an Agilent 6130 single quadrupole mass spectrometer (Fig. 5A, Fig. 5B, Fig. 5C, Fig. 5D, Fig. 5E, Fig. 6A, Fig. 6B, Fig. 6C, Fig. 6D, and Fig. 6E). The solvent mixtures used for purification were as follows: A = 5 mM NH
4OAc (pH =8), B = 90% acetonitrile + 10% 5 mM NH
4OAc (pH =8). Purification was performed using the following conditions: Column: Zorbax 300-SB C3 (5 µm, 21.2 × 100 mm); Flow Rate: 20 mL/min; Gradient: 0-2 min 2% B, 2-60 min 2-60% B, 60-70 min 75% B.
Table 6. Acronyms
Acronym | Name |
DBU |
1,8-Diazabicycloundec-7-ene |
DCM |
Dichloromethane |
DIPEA |
N,N-Diisopropylethylamine |
DMI |
1,3-Dimethyl-2-imidazolidinone |
DTT |
Dithiothreitol |
IPA |
Isopropyl alcohol |
MW |
Molecular weight |
NEM |
N-Ethylmorpholine |
NMP |
N-Methyl-2-pyrrolidone |
RT |
Room temperature |
TFA |
2,2,2-Trifluoroacetic acid |
TFE |
2,2,2-Trifluoroethanol |
1. A process for preparing an oligomeric compound of Formula (I):

wherein
n is an integer from 9 to 39;
T is OH or

and
each R2 is, independently for each occurrence, selected from the group consisting of:


wherein the process comprises the sequential steps of:
(a) contacting a compound of Formula (A1):

wherein
B is

R1 is a support-medium; and
R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxy trityl;
with a deblocking agent to form the compound of Formula (II):

wherein B is

and
R1 is a support-medium;
(b) contacting the compound of Formula (II) with a compound of Formula (A2):

wherein R5 is

R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxy trityl; and
R4 is selected from the group consisting of:



to form a compound of Formula (A3):

wherein

R1 is a support-medium;

R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxy trityl; and
R4 is selected from the group consisting of:



(c) contacting the compound of Formula (A3) with a deblocking agent to form a compound of Formula (IV):

wherein B is

R1 is a support-medium;
R6 is

and
R4 is selected from the group consisting of:



(d) contacting the compound of Formula (IV) with a compound of Formula (A4):

in the presence of a lewis acid catalyst;
wherein
R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxy trityl; and
R4 is selected from the group consisting of:



to form a compound of Formula (A5):

wherein R7 is of Formula (A5a) or Formula (A5b):

or

B is

R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxy trityl; and
R4 is selected from:



(e) performing Y iterations of the sequential steps of:
(e1) contacting the product formed by the immediately prior step with a deblocking agent; and
(e2) contacting the compound formed by the immediately prior step with a compound of Formula (A8):


in the presence of a lewis acid catalyst; wherein
Y is n-1 if R7 is of the Formula (A5a) or Y is n-2 if R7 is of the Formula (A5b);
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxy trityl; and
R4 is, independently for each compound of Formula (A8), selected from the group consisting of:



to form a compound of Formula (A9):

wherein R8 is

or

B is

n is an integer from 9 to 39;
R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxy trityl; and
R4 is, independently for each occurrence, selected from the group consisting of:



and
(f) contacting the compound of Formula (A9) with a deblocking agent to form a compound of Formula (A 10):

wherein R9 is

B is

n is an integer from 9 to 39;
R1 is a support-medium; and
R4 is, independently for each occurrence, selected from the group consisting of:



(g) contacting the compound of Formula (A10) with a cleaving agent to form a compound of Formula (A11):

wherein
R9 is

C is

or H;
n is an integer from 9 to 39; and
R4 is, independently for each occurrence, selected from the group consisting of:



and
(h) contacting the compound of Formula (A11) with a deprotecting agent to form the oligomeric compound of Formula (I).
2. The process of claim 1, wherein one of steps (d) or (e2) further comprises contacting the compound formed by the immediately prior step with a capping agent, and preferably wherein steps (a), (c), (e1), and (f) further comprise contacting the deblocked compound of each step with a neutralization agent.
3. The process of any one of claims 1-2, wherein the compounds of Formula (A4) and Formula (A8) are each, independently, in a solution comprising N-ethylmorpholine and dimethylimidazolidinone.
4. The process of any one of claims 1-3, wherein the cleavage agent comprises dithiothreitol and 1,8-diazabicyclo[5.4.0]undec-7-ene.
5. The process of any one of claims 1-4, wherein for steps (a)-(g), B is

and for step (h), C is
6. The process according to claim 1, wherein any of steps (a), (b), (c), (d), (e1), (e2), (f), (g), or (h) are carried out in a batchwise synthesis or in a continuous synthesis.
7. A continuous process for preparing an oligomeric compound of Formula (Al 1):

wherein R
9 is
C is

n is an integer from 9 to 39; and
R4 is, independently for each occurrence, selected from the group consisting of:



wherein the process comprises the sequential steps of:
(a) contacting a deblocking agent with a compound of Formula (A3):

wherein B is

R1 is a support-medium;
R5 is

and
R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxy trityl;
in a reactor vessel to form a compound of Formula (IV):

wherein B is

R1 is a support-medium;
R6 is

(b) washing the compound of Formula (IV) with a washing solvent and a neutralizing agent, wherein the washing comprises passing a washing solvent and a neutralizing agent through the reactor vessel;
(c) washing the compound of Formula (IV) with a washing solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
(d) washing the compound of Formula (IV) with a coupling solvent, wherein the washing comprises passing a coupling solvent through the reactor vessel;
(e) introducing to the reactor vessel a lewis acid and a compound of Formula (A4):

wherein
R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxy trityl; and
R4 is selected from the group consisting of:



such that the compound of formula (A4) contacts the compound of Formula (IV) to form a compound of Formula (A5):

wherein R7 is of the Formula (A5a) or Formula (A5b):

B is

R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxy trityl; and
R4 is selected from:



(f) washing the compound of Formula (A5) with a coupling solvent, wherein the washing comprises passing a coupling solvent through the reactor vessel;
(g) performing Y iterations of the sequential steps of:
(g1) washing the product formed by the immediately prior step with a washing solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
(g2) introducing a deblocking agent into the reactor vessel such that it contacts the product formed by the immediately prior step;
(g3) washing the product formed by the immediately prior step with a washing solvent and a neutralizing agent, wherein the washing comprises passing a washing solvent and a neutralizing agent through the reactor vessel;
(g4) washing the product formed by the immediately prior step with a washing solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
(g5) washing the product formed by the immediately prior step with a coupling solvent, wherein the washing comprises passing a coupling solvent through the reactor vessel;
(g6) introducing to the reactor vessel containing the product formed by the immediately prior step a lewis acid and a compound of Formula (A8):

wherein
Y is n-1;
R3 is selected from the group consisting of trityl, monomethoxytrityl,
dimethoxytrityl and trimethoxytrityl; and
R4 is, independently for each compound of Formula (A8), selected from the group consisting of:



such that the compound of Formula (A8) contacts the compound formed by the immediately prior step to form a compound of Formula (A9):

wherein R8 is

B is

n is an integer from 9 to 39;
R1 is a support-medium;
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxy trityl; and
R4 is, independently for each occurrence, selected from the group consisting of:



(h) washing the compound of Formula (A9) with a coupling solvent to remove the compound of Formula (A8), wherein the washing comprises passing a coupling solvent through the reactor vessel;
(i) washing the compound of Formula (A9) with a washing solvent to remove the coupling solvent, wherein the washing comprises passing a washing solvent through the reactor vessel;
(j) contacting a deblocking agent with a compound of Formula (A9) in a reactor vessel to form a compound of Formula (A10):

wherein R9 is

B is

n is an integer from 9 to 39;
R1 is a support-medium; and
R4 is, independently for each occurrence, selected from the group consisting of:



and
(k) contacting a cleaving agent with a compound of Formula (10) in a reactor vessel to form a compound of Formula (A11).
8. The process of claim 7, wherein steps (a), (g2), and (j) further comprise contacting the deblocked compound of each respective step with a neutralization agent.
9. The process of any one of claims 7-8, wherein the washing solvent is a halogenated solvent, and preferably wherein the coupling solvent is 1,3-dimethyl-2-imidazolidinone or N-methyl-2-pyrrolidone.
10. The process of any of claims 7-9, wherein any of steps (a), (b), (c), (d), (e), (f), (g1), (g2), (g3), (g4), (g5), (g6), (h), (i), (j), and (k) are optionally carried out in a batchwise process.
11. The process of claim 7, wherein the process is performed in a flow-through reactor, the flow-through reactor comprising at least:
(a) a feeding zone, wherein the feeding zone comprises one or more feed lines each equipped with a pump, and wherein the inlet zones of the feed lines are independently connected to vessels comprising a neutralizing agent, coupling solvent, a deblocking agent, washing solvent, and a compound of Formula (A8):

wherein
R3 is selected from the group consisting of trityl, monomethoxytrityl, dimethoxytrityl and trimethoxy trityl; and
R4 is, independently for each compound of Formula (A8), selected from the group consisting of:



wherein the compound of Formula (A8) is dissolved in a coupling solvent;
(b) a reaction zone that is connected to the outlet zone of the one or more feed lines and which contains a PMO synthesis resin;
(c) an outlet zone, whereby waste stream or product can be independently collected;
(d) a pressure control device; and
(e) a means of independently controlling the temperature of the feeding zone and the reaction zone.
12. The process of claim 11, wherein the flow-through reactor is used for the preparation of Eteplirsen.
13. The process of any one of claims 1-12, wherein the deblocking agent used in each step is a solution comprising a halogenated acid, and preferably wherein the deblocking agent is selected from the group consisting of chloroacetic acid, dichloroacetic acid, trichloroacetic acid, fluoroacetic acid, difluoroacetic acid, and trifluoroacetic acid.
14. The process of any one of claims 1-13, wherein the Lewis acid is selected from a group consisting of LiCl, LiBr, LiI, and LiOTf.
15. The process of any one of claims 1-14, wherein the neutralization agent is in a solution comprising a halogenated solvent and isopropyl alcohol and preferably wherein the neutralization agent is a monoalkyl, dialkyl, or trialkyl amine.
1. Verfahren zur Herstellung einer oligomeren Verbindung der Formel (I):

wobei
n für eine ganze Zahl von 9 bis 39 steht,
T für OH oder

und
R2 jeweils unabhängig ausgewählt ist aus der Gruppe bestehend aus:


wobei das Verfahren die folgenden aufeinanderfolgenden Schritte umfasst:
(a) das Inkontaktbringen einer Verbindung der Formel (A1):

wobei
B für

steht;
R1 für ein Trägermedium steht; und
R3 aus der aus Trityl, Monomethoxytrityl, Dimethoxytrityl und Trimethoxytrityl bestehenden Gruppe ausgewählt ist;
mit einem Entblockungsmittel unter Bildung der Verbindung der Formel (II):

wobei B für

steht; und
R1 für ein Trägermedium steht;
(b) das Inkontaktbringen der Verbindung der Formel (II) mit einer Verbindung der Formel (A2):

wobei R5 für

steht;
R3 aus der aus Trityl, Monomethoxytrityl, Dimethoxytrityl und Trimethoxytrityl bestehenden Gruppe ausgewählt ist; und
R4 ausgewählt ist aus der Gruppe bestehend aus:



unter Bildung einer Verbindung der Formel (A3):

wobei
B für

steht;
R1 für ein Trägermedium steht;
R5 für

steht;
R3 aus der aus Trityl, Monomethoxytrityl, Dimethoxytrityl und Trimethoxytrityl bestehenden Gruppe ausgewählt ist; und
R4 ausgewählt ist aus der Gruppe bestehend aus:



(c) das Inkontaktbringen der Verbindung der Formel (A3) mit einem Entblockungsmittel unter Bildung einer Verbindung der Formel (IV):

B für

steht;
R1 für ein Trägermedium steht;
R6 für

steht; und
R4 ausgewählt ist aus der Gruppe bestehend aus:



(d) das Inkontaktbringen der Verbindung der Formel (IV) mit einer Verbindung der Formel (A4):

in Gegenwart eines Lewissäurekatalysators;
wobei
R3 aus der aus Trityl, Monomethoxytrityl, Dimethoxytrityl und Trimethoxytrityl bestehenden Gruppe ausgewählt ist; und
R4 ausgewählt ist aus der Gruppe bestehend aus:



unter Bildung einer Verbindung der Formel (A5):

wobei R7 die Formel (A5a) oder die Formel (A5b) hat:

oder

B für

steht;
R1 für ein Trägermedium steht;
R3 aus der aus Trityl, Monomethoxytrityl, Dimethoxytrityl und Trimethoxytrityl bestehenden Gruppe ausgewählt ist; und
R4 ausgewählt ist aus der Gruppe bestehend aus:



(e) das Durchführen von Y Iterationen der folgenden aufeinanderfolgenden Schritte:
(e1) das Inkontaktbringen des im unmittelbar vorherigen Schritt gebildeten Produkts mit einem Entblockungsmittel; und
(e2) das Inkontaktbringen der im unmittelbar vorherigen Schritt gebildeten Verbindung mit einer Verbindung der Formel (A8):

in Gegenwart eines Lewissäurekatalysators;
wobei
Y für n-1 steht, wenn R7 die Formel (A5a) hat, oder Y für n-2 steht, wenn R7 die Formel (A5b) hat;
R3 aus der aus Trityl, Monomethoxytrityl, Dimethoxytrityl und Trimethoxytrityl bestehenden Gruppe ausgewählt ist; und
R4 unabhängig für jede Verbindung der Formel (A8) ausgewählt ist aus der Gruppe bestehend aus:



unter Bildung einer Verbindung der Formel (A9):

wobei R8 für

oder

steht;
B für

steht;
n für eine ganze Zahl von 9 bis 39 steht;
R1 für ein Trägermedium steht;
R3 aus der aus Trityl, Monomethoxytrityl, Dimethoxytrityl und Trimethoxytrityl bestehenden Gruppe ausgewählt ist; und
R4 jeweils unabhängig ausgewählt ist aus der Gruppe bestehend aus:



und
(f) das Inkontaktbringen der Verbindung der Formel (A9) mit einem Entblockungsmittel unter Bildung einer Verbindung der Formel (A10):

wobei R9 für

oder

steht;
B für

steht;
n für eine ganze Zahl von 9 bis 39 steht;
R1 für ein Trägermedium steht; und
R4 jeweils unabhängig ausgewählt ist aus der Gruppe bestehend aus:



(g) das Inkontaktbringen der Verbindung der Formel (A10) mit einem Spaltmittel unter Bildung einer Verbindung der Formel (A11):

wobei R9 für

steht;
C für

oder H steht; und
n für eine ganze Zahl von 9 bis 39 steht; und
R4 jeweils unabhängig ausgewählt ist aus der Gruppe bestehend aus:



und
(h) das Inkontaktbringen der Verbindung der Formel (A11) mit einem Entschützungsmittel unter Bildung der oligomeren Verbindung der Formel (I).
2. Verfahren nach Anspruch 1, wobei einer der Schritte (d) oder (e2) weiterhin das Inkontaktbringen der im unmittelbar vorherigen Schritt gebildeten Verbindung mit einem Verkappungsmittel umfasst und wobei die Schritte (a), (c), (e1) und (f) vorzugsweise weiterhin das Inkontaktbringen der entblockten Verbindung des jeweiligen Schritts mit einem Neutralisierungsmittel umfassen.
3. Verfahren nach einem der Ansprüche 1-2, wobei sich die Verbindungen der Formel (A4) und der Formel (A8) jeweils unabhängig in einer N-Ethylmorpholin und Dimethylimidazolidinon umfassenden Lösung befinden.
4. Verfahren nach einem der Ansprüche 1-3, wobei das Spaltmittel Dithiothreitol und 1,8-Diazabicyclo[5.4.0]-undec-7-en umfasst.
5. Verfahren nach einem der Ansprüche 1-4, wobei in den Schritten (a)-(g), B für

steht und in Schritt (h) C für

steht.
6. Verfahren nach Anspruch 1, wobei die Schritte (a), (b), (c), (d), (e1), (e2), (f), (g) oder (h) jeweils in einer chargenweisen Synthese oder in einer kontinuierlichen Synthese durchgeführt werden.
7. Kontinuierliches Verfahren zur Herstellung einer oligomeren Verbindung der Formel (A11):
wobei R9 für

steht;
C für

steht;
n für eine ganze Zahl von 9 bis 39 steht; und
R4 jeweils unabhängig ausgewählt ist aus der Gruppe bestehend aus:



wobei das Verfahren die folgenden aufeinanderfolgenden Schritte umfasst:
(a) das Inkontaktbringen eines Entblockungsmittels mit einer Verbindung der Formel (A3):

wobei B für

steht;
R1 für ein Trägermedium steht;
R5 für

steht; und
R3 aus der aus Trityl, Monomethoxytrityl, Dimethoxytrityl und Trimethoxytrityl bestehenden Gruppe ausgewählt ist;
in einem Reaktionsgefäß unter Bildung einer Verbindung der Formel (IV):

wobei B für

steht;
R1 für ein Trägermedium steht;
R6 für

steht;
(b) das Waschen der Verbindung der Formel (IV) mit einem Waschlösungsmittel und einem Neutralisierungsmittel, wobei das Waschen das Durchleiten eines Waschlösungsmittels und eines Neutralisierungsmittels durch das Reaktorgefäß umfasst;
(c) das Waschen der Verbindung der Formel (IV) mit einem Waschlösungsmittel, wobei das Waschen das Durchleiten eines Waschlösungsmittels durch das Reaktorgefäß umfasst;
(d) das Waschen der Verbindung der Formel (IV) mit einem Kupplungslösungsmittel, wobei das Waschen das Durchleiten eines Kupplungslösungsmittels durch das Reaktorgefäß umfasst;
(e) das Einbringen einer Lewissäure und einer Verbindung der Formel (A4) in das Reaktionsgefäß:

wobei
R3 aus der aus Trityl, Monomethoxytrityl, Dimethoxytrityl und Trimethoxytrityl bestehenden Gruppe ausgewählt ist; und
R4 ausgewählt ist aus der Gruppe bestehend aus:



so dass die Verbindung der Formel (A4) mit der Verbindung der Formel (IV) in Kontakt kommt, unter Bildung einer Verbindung der Formel (A5):

wobei R7 die Formel (A5a) oder die Formel (A5b) hat:
B für

steht,

R1 für ein Trägermedium steht;
R3 aus der aus Trityl, Monomethoxytrityl, Dimethoxytrityl und Trimethoxytrityl bestehenden Gruppe ausgewählt ist; und
R4 ausgewählt ist aus:



(f) das Waschen der Verbindung der Formel (A5) mit einem Kupplungslösungsmittel, wobei das Waschen das Durchleiten eines Kupplungslösungsmittels durch das Reaktorgefäß umfasst;
(g) das Durchführen von Y Iterationen der folgenden aufeinanderfolgenden Schritte:
(g1) das Waschen des im unmittelbar vorherigen Schritt gebildeten Produkts mit einem Waschlösungsmittel, wobei das Waschen das Durchleiten eines Waschlösungsmittels durch das Reaktorgefäß umfasst;
(g2) das Einbringen eines Entblockungsmittels in das Reaktorgefäß, so dass es mit dem im unmittelbar vorherigen Schritt gebildeten Produkt in Kontakt kommt;
(g3) das Waschen des im unmittelbar vorherigen Schritt gebildeten Produkts mit einem Waschlösungsmittel und einem Neutralisierungsmittel, wobei das Waschen das Durchleiten eines Waschlösungsmittels und eines Neutralisierungsmittels durch das Reaktorgefäß umfasst;
(g4) das Waschen des im unmittelbar vorherigen Schritt gebildeten Produkts mit einem Waschlösungsmittel, wobei das Waschen das Durchleiten eines Waschlösungsmittels durch das Reaktorgefäß umfasst;
(g5) das Waschen des im unmittelbar vorherigen Schritt gebildeten Produkts mit einem Kupplungslösungsmittel, wobei das Waschen das Durchleiten eines Kupplungslösungsmittels durch das Reaktorgefäß umfasst;
(g6) das Einbringen, in das das im unmittelbar vorherigen Schritt gebildete Produkt enthaltende Reaktorgefäß, einer Lewissäure und einer Verbindung der Formel (A8):

wobei
Y für n-1 steht;
R3 aus der aus Trityl, Monomethoxytrityl, Dimethoxytrityl und Trimethoxytrityl bestehenden Gruppe ausgewählt ist; und
R4 unabhängig für jede Verbindung der Formel (A8) ausgewählt ist aus der Gruppe bestehend aus:



so dass die Verbindung der Formel (A8) mit der im unmittelbar vorherigen Schritt gebildeten Verbindung in Kontakt kommt, unter Bildung einer Verbindung der Formel (A9) :

wobei R8 für

steht;
B für

steht;
n für eine ganze Zahl von 9 bis 39 steht;
R1 für ein Trägermedium steht;
R3 aus der aus Trityl, Monomethoxytrityl, Dimethoxytrityl und Trimethoxytrityl bestehenden Gruppe ausgewählt ist;
und R4 jeweils unabhängig ausgewählt ist aus der Gruppe bestehend aus:



(h) das Waschen der Verbindung der Formel (A9) mit einem Kupplungslösungsmittel zum Entfernen der Verbindung der Formel (A8) , wobei das Waschen das Durchleiten eines Kupplungslösungsmittels durch das Reaktorgefäß umfasst;
(i) das Waschen der Verbindung der Formel (A9) mit einem Waschlösungsmittel zum Entfernen des Kupplungslösungsmittels, wobei das Waschen das Durchleiten eines Waschlösungsmittels durch das Reaktorgefäß umfasst;
(j) das Inkontaktbringen eines Entblockungsmittels mit einer Verbindung der Formel (A9) in einem Reaktorgefäß unter Bildung einer Verbindung der Formel (A10):

wobei R9 für

steht;
B für

steht;
n für eine ganze Zahl von 9 bis 39 steht;
R1 für ein Trägermedium steht; und
R4 jeweils unabhängig ausgewählt ist aus der Gruppe bestehend aus:



und
(k) das Inkontaktbringen eines Spaltmittels mit einer Verbindung der Formel (10) in einem Reaktorgefäß unter Bildung einer Verbindung der Formel (A11).
8. Verfahren nach Anspruch 7, wobei die Schritte (a), (g2) und (j) weiterhin das Inkontaktbringen der entblockten Verbindung des jeweiligen Schritts mit einem Neutralisierungsmittel umfassen.
9. Verfahren nach einem der Ansprüche 7-8, wobei es sich bei dem Waschlösungsmittel um ein halogeniertes Lösungsmittel handelt und wobei es sich bei dem Kupplungslösungsmittel vorzugsweise um 1,3-Dimethyl-2-imidazolidinon oder N-Methyl-2-pyrrolidon handelt.
10. Verfahren nach einem der Ansprüche 7-9, wobei die Schritte (a), (b), (c), (d), (e), (f), (g1), (g2), (g3), (g4), (g5), (g6), (h), (i), (j) und (k) jeweils gegebenenfalls in einem chargenweisen Verfahren durchgeführt werden.
11. Verfahren nach Anspruch 7, wobei das Verfahren in einem Durchflussreaktor durchgeführt wird, wobei der Durchflussreaktor mindestens Folgendes umfasst:
(a) eine Zuführungszone, wobei die Zuführungszone eine oder mehrere Zuführungsleitungen umfasst, die jeweils mit einer Pumpe ausgestattet sind, und wobei die Einlasszonen der Zuführungsleitungen unabhängig voneinander mit Behältern verbunden sind, die ein Neutralisierungsmittel, ein Kupplungslösungsmittel, ein Entblockungsmittel, ein Waschlösungsmittel und eine Verbindung der Formel (A8) umfassen: wobei

R3 aus der aus Trityl, Monomethoxytrityl, Dimethoxytrityl und Trimethoxytrityl bestehenden Gruppe ausgewählt ist; und
R4 unabhängig für jede Verbindung der Formel (A8) ausgewählt ist aus der Gruppe bestehend aus:



wobei die Verbindung der Formel (A8) in einem Kupplungslösungsmittel gelöst ist;
(b) eine Reaktionszone, die mit der Auslasszone der einen oder mehreren Zuführungsleitungen verbunden ist und ein PMO-Syntheseharz enthält;
(c) eine Auslasszone, in der der Abfallstrom oder das Produkt unabhängig gesammelt werden kann;
(d) eine Vorrichtung zum Einstellen des Drucks; und
(e) ein Mittel zum unabhängigen Einstellen der Temperatur der Zuführungszone und der Reaktionszone.
12. Verfahren nach Anspruch 11, wobei der Durchflussreaktor zur Herstellung von Eteplirsen verwendet wird.
13. Verfahren nach einem der Ansprüche 1-12, wobei es sich in dem jeweiligen Schritt verwendeten Entblockungsmittel um eine eine halogenierte Säure umfassende Lösung handelt und wobei das Entblockungsmittel vorzugsweise aus der aus Chloressigsäure, Dichloressigsäure, Trichloressigsäure, Fluoressigsäure, Difluoressigsäure und Trifluoressigsäure bestehenden Gruppe ausgewählt ist.
14. Verfahren nach einem der Ansprüche 1-13, wobei die Lewissäure aus der aus LiCl, LiBr, LiI und LiOTf bestehenden Gruppe ausgewählt ist.
15. Verfahren nach einem der Ansprüche 1-14, wobei sich das Neutralisierungsmittel in einer Lösung befindet, die ein halogeniertes Lösungsmittel und Isopropylalkohol umfasst, und wobei es sich bei dem Neutralisierungsmittel vorzugsweise um ein Monoalkyl-, Dialkyl- oder Trialkylamin handelt.
1. Procédé pour la préparation d'un composé oligomérique de formule (I) :
n étant un entier de 9 à 39 ;
T étant OH ou

, et
chaque R2 étant, indépendamment pour chaque occurrence, choisi dans le groupe constitué par :


et

le procédé comprenant les étapes séquentielles de :
(a) mise en contact d'un composé de formule (A1) :

B étant

ou

R1 étant un milieu support ; et
R3 étant choisi dans le groupe constitué par trityle, monométhoxytrityle, diméthoxytrityle et triméthoxytrityle ; avec un agent de déblocage pour former le composé de formule (II) :

B étant

ou

et R1 étant un milieu support ;
(b) mise en contact du composé de formule (II) avec un composé de formule (A2) :

R5 étant

ou

R3 étant choisi dans le groupe constitué par trityle, monométhoxytrityle, diméthoxytrityle et triméthoxytrityle ; et
R4 étant choisi dans le groupe constitué par :



et

pour former un composé de formule (A3) :

B étant

ou

R1 étant un milieu support ;
R5 étant

ou

R3 étant choisi dans le groupe constitué par trityle, monométhoxytrityle, diméthoxytrityle et triméthoxytrityle ; et
R4 étant choisi dans le groupe constitué par :



et

(c) mise en contact du composé de formule (A3) avec un agent de déblocage pour former un composé de formule (IV) :

B étant

ou

R1 étant un milieu support ;
R6 étant

ou

et
R4 étant choisi dans le groupe constitué par :



et

(d) mise en contact du composé de formule (IV) avec un composé de formule (A4) :

en la présence d'un catalyseur de type acide de Lewis ;
R3 étant choisi dans le groupe constitué par trityle, monométhoxytrityle, diméthoxytrityle et triméthoxytrityle ; et
R4 étant choisi dans le groupe constitué par :



et

pour former un composé de formule (A5) :

R7 étant de formule (A5a) ou de formule (A5b) :


B étant

ou

R1 étant un milieu support ;
R3 étant choisi dans le groupe constitué par trityle, monométhoxytrityle, diméthoxytrityle et triméthoxytrityle ; et
R4 étant choisi dans le groupe constitué par :



et

(e) réalisation de Y itérations des étapes séquentielles de :
(e1) mise en contact du produit formé par l'étape immédiatement précédente avec un agent de déblocage ; et
(e2) mise en contact du composé formé par l'étape immédiatement précédente avec un composé de formule (A8) :

en la présence d'un catalyseur de type acide de Lewis ;
Y étant n - 1 si R7 est de la formule (A5a) ou Y étant n - 2 si R7 est de la formule (A5b) ;
R3 étant choisi dans le groupe constitué par trityle, monométhoxytrityle, diméthoxytrityle et triméthoxytrityle ; et
R4 étant, indépendamment pour chaque composé de formule (A8), choisi dans le groupe constitué par :



et

pour former un composé de formule (A9) :

R8 étant

ou

B étant

ou

n étant un entier de 9 à 39 ;
R1 étant un milieu support ;
R3 étant choisi dans le groupe constitué par trityle, monométhoxytrityle, diméthoxytrityle et triméthoxytrityle ; et
R4 étant, indépendamment pour chaque occurrence, choisi dans le groupe constitué par :



et

et
(f) mise en contact du composé de formule (A9) avec un agent de déblocage pour former un composé de formule (A10) :

R9 étant

B étant

ou

n étant un entier de 9 à 39 ;
R1 étant un milieu support ; et
R4 étant, indépendamment pour chaque occurrence, choisi dans le groupe constitué par :



et

(g) mise en contact du composé de formule (A10) avec un agent de clivage pour former un composé de formule (A11) :

R9 étant

C étant

ou H ;
n étant un entier de 9 à 39 ; et
R4 étant, indépendamment pour chaque occurrence, choisi dans le groupe constitué par :



et

et
(h) mise en contact du composé de formule (A11) avec un agent de déprotection pour former le composé oligomérique de formule (I).
2. Procédé selon la revendication 1, l'une des étapes (d) ou (e2) comprenant en outre la mise en contact du composé formé par l'étape immédiatement précédente avec un agent de coiffage, et préférablement les étapes (a), (c), (e1) et (f) comprenant en outre la mise en contact du composé débloqué de chaque étape avec un agent de neutralisation.
3. Procédé selon l'une quelconque des revendications 1 et 2, les composés de formule (A4) et de formule (A8) étant chacun, indépendamment, dans une solution comprenant de la N-éthylmorpholine et de la diméthylimidazolidinone.
4. Procédé selon l'une quelconque des revendications 1 à 3, l'agent de clivage comprenant le dithiothréitol et le 1,8-diazabicyclo[5.4.0]undéc-7-ène.
5. Procédé selon l'une quelconque des revendications 1 à 4, pour les étapes (a) à (g), B étant

et pour l'étape (h), C étant
6. Procédé selon la revendication 1, l'une quelconque parmi les étapes (a), (b), (c), (d), (e1), (e2), (f), (g), ou (h) étant mise en œuvre dans une synthèse par lot ou dans une synthèse continue.
7. Procédé continu pour la préparation d'un composé oligomérique de formule (A11) :
R9 étant

C étant

n étant un entier de 9 à 39 ; et
R4 étant, indépendamment pour chaque occurrence, choisi dans le groupe constitué par :



et

le procédé comprenant les étapes séquentielles de :
(a) mise en contact d'un agent de déblocage avec un composé de formule (A3) :

B étant

R1 étant un milieu support ;
R5 étant

et
R3 étant choisi dans le groupe constitué par trityle, monométhoxytrityle, diméthoxytrityle et triméthoxytrityle ;
dans une cuve de réacteur pour former un composé de formule (IV) :

B étant

R1 étant un milieu support ; R6 étant

(b) lavage du composé de formule (IV) avec un solvant de lavage et un agent de neutralisation, le lavage comprenant un passage d'un solvant de lavage et d'un agent de neutralisation à travers la cuve de réacteur ;
(c) lavage du composé de formule (IV) avec un solvant de lavage, le lavage comprenant un passage d'un solvant de lavage à travers la cuve de réacteur ;
(d) lavage du composé de formule (IV) avec un solvant de couplage, le lavage comprenant un passage d'un solvant de couplage à travers la cuve de réacteur ;
(e) introduction dans la cuve de réacteur d'un acide de Lewis et d'un composé de formule (A4) :

R3 étant choisi dans le groupe constitué par trityle, monométhoxytrityle, diméthoxytrityle et triméthoxytrityle ;
R4 étant choisi dans le groupe constitué par :



et

de sorte que le composé de formule (A4) entre en contact avec le composé de formule (IV) pour former un composé de formule (A5) :

R7 étant de la formule (A5a) ou formule (A5b) :

B étant

R1 étant un milieu support ;
R3 étant choisi dans le groupe constitué par trityle, monométhoxytrityle,
diméthoxytrityle et triméthoxytrityle ; et
R4 étant choisi parmi :



et

(f) lavage du composé de formule (A5) avec un solvant de couplage, le lavage comprenant un passage d'un solvant de couplage à travers la cuve de réacteur ;
(g) réalisation de Y itérations des étapes séquentielles de :
(g1) lavage du produit formé par l'étape immédiatement précédente avec un solvant de lavage, le lavage comprenant un passage d'un solvant de lavage à travers la cuve de réacteur ;
(g2) introduction d'un agent de déblocage dans la cuve de réacteur de sorte qu'il entre en contact avec le produit formé par l'étape immédiatement précédente ;
(g3) lavage du produit formé par l'étape immédiatement précédente avec un solvant de lavage et un agent de neutralisation, le lavage comprenant un passage d'un solvant de lavage et d'un agent de neutralisation à travers la cuve de réacteur ;
(g4) lavage du produit formé par l'étape immédiatement précédente avec un solvant de lavage, le lavage comprenant un passage d'un solvant de lavage à travers la cuve de réacteur ;
(g5) lavage du produit formé par l'étape immédiatement précédente avec un solvant de couplage, le lavage comprenant un passage d'un solvant de couplage à travers la cuve de réacteur ;
(g6) introduction, dans la cuve de réacteur contenant le produit formé par l'étape immédiatement précédente, d'un acide de Lewis et d'un composé de formule (A8) :

Y étant n - 1 ;
R3 étant choisi dans le groupe constitué par trityle, monométhoxytrityle, diméthoxytrityle et triméthoxytrityle ; et
R4 étant, indépendamment pour chaque composé de formule (A8), choisi dans le groupe constitué par :



et

de sorte que le composé de formule (A8) entre en contact avec le composé formé par l'étape immédiatement précédente pour former un composé de formule (A9) :

R8 étant

B étant

n étant un entier de 9 à 39 ;
R1 étant un milieu support ;
R3 étant choisi dans le groupe constitué par trityle, monométhoxytrityle, diméthoxytrityle et triméthoxytrityle ; et
R4 étant, indépendamment pour chaque occurrence, choisi dans le groupe constitué par :



et

(h) lavage du composé de formule (A9) avec un solvant de couplage pour éliminer le composé de formule (A8), le lavage comprenant un passage d'un solvant de couplage à travers la cuve de réacteur ;
(i) lavage du composé de formule (A9) avec un solvant de lavage pour éliminer le solvant de couplage, le lavage comprenant un passage d'un solvant de lavage à travers la cuve de réacteur ;
(j) mise en contact d'un agent de déblocage avec un composé de formule (A9) dans une cuve de réacteur pour former un composé de formule (A10) :

R9 étant

B étant

n étant un entier de 9 à 39 ;
R1 étant un milieu support ; et
R4 étant, indépendamment pour chaque occurrence, choisi dans le groupe constitué par :



et

et
(k) mise en contact d'un agent de clivage avec un composé de formule (10) dans une cuve de réacteur pour former un composé de formule (A11).
8. Procédé selon la revendication 7, les étapes (a), (g2), et (j) comprenant en outre la mise en contact du composé débloqué de chaque étape respective avec un agent de neutralisation.
9. Procédé selon l'une quelconque des revendications 7 et 8, le solvant de lavage étant un solvant halogéné, et préférablement, le solvant de couplage étant la 1,3-diméthyl-2-imidazolidinone ou la N-méthyl-2-pyrrolidone.
10. Procédé selon l'une quelconque des revendications 7 à 9, l'une quelconque des étapes (a), (b), (c), (d), (e), (f), (g1), (g2), (g3), (g4), (g5), (g6), (h), (i), (j), et (k) étant éventuellement mise en œuvre dans un procédé par lot.
11. Procédé selon la revendication 7, le procédé étant réalisé dans un réacteur à flux continu, le réacteur à flux continu comprenant au moins :
(a) une zone d'alimentation, la zone d'alimentation comprenant une ou plusieurs lignes d'alimentation chacune équipée d'une pompe, et les zones d'entrée des lignes d'alimentation étant indépendamment reliées à des cuves comprenant un agent de neutralisation, du solvant de couplage, un agent de déblocage, du solvant de lavage, et un composé de formule (A8) :

R3 étant choisi dans le groupe constitué par trityle, monométhoxytrityle, diméthoxytrityle et triméthoxytrityle ; et
R4 étant, indépendamment pour chaque composé de formule (A8), choisi dans le groupe constitué par :



et

le composé de formule (A8) étant dissous dans un solvant de couplage ;
(b) une zone de réaction qui est reliée à la zone de sortie de la ou des lignes d'alimentation et qui contient une résine de synthèse PMO ;
(c) une zone de sortie, moyennant quoi un flux de déchets ou un produit peut être indépendamment collecté ;
(d) un dispositif de commande de pression ; et
(e) un moyen de régulation de manière indépendante de la température de la zone d'alimentation et de la zone de réaction.
12. Procédé selon la revendication 11, le réacteur à flux continu étant utilisé pour la préparation d'Eteplirsen.
13. Procédé selon l'une quelconque des revendications 1 à 12, l'agent de déblocage utilisé dans chaque étape étant une solution comprenant un acide halogéné, et préférablement, l'agent de déblocage étant choisi dans le groupe constitué par l'acide chloroacétique, l'acide dichloroacétique, l'acide trichloroacétique, l'acide fluoroacétique, l'acide difluoroacétique et l'acide trifluoroacétique.
14. Procédé selon l'une quelconque des revendications 1 à 13, l'acide de Lewis étant choisi dans un groupe constitué par LiCl, LiBr, LiI, et LiOTf.
15. Procédé selon l'une quelconque des revendications 1 à 14, l'agent de neutralisation étant dans une solution comprenant un solvant halogéné et de l'alcool isopropylique et préférablement, l'agent de neutralisation étant une monoalkylamine, une dialkylamine ou une trialkylamine.