(19)
(11)EP 3 676 962 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 18746386.4

(22)Date of filing:  05.07.2018
(51)International Patent Classification (IPC): 
H04B 5/00(2006.01)
G01S 5/00(2006.01)
G01C 21/16(2006.01)
(86)International application number:
PCT/US2018/040895
(87)International publication number:
WO 2019/074560 (18.04.2019 Gazette  2019/16)

(54)

HEMISPHERE AMBIGUITY CORRECTION IN ELECTROMAGNETIC POSITION TRACKING SYSTEMS

HEMISPHÄRENMEHRDEUTIGKEITSKORREKTUR IN ELEKTROMAGNETISCHEN POSITIONSVERFOLGUNGSSYSTEMEN

CORRECTION D'AMBIGUÏTÉ HÉMISPHÉRIQUE DANS DES SYSTÈMES DE SUIVI DE POSITION ÉLECTROMAGNÉTIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.10.2017 US 201762571445 P
16.11.2017 US 201715814611

(43)Date of publication of application:
08.07.2020 Bulletin 2020/28

(73)Proprietor: Google LLC
Mountain View, CA 94043 (US)

(72)Inventors:
  • CHUNG, Sherk
    Mountain View, California 94043 (US)
  • ATKINSON, Ian
    Mountain View, California 94043 (US)
  • JAIN, Advait
    Mountain View, California 94043 (US)
  • OGANESIAN, Lucine
    Mountain View, California 94043 (US)
  • STEIN, Murphy
    Mountain View, California 94043 (US)
  • PARKAR, Saket
    Mountain View, California 94043 (US)
  • OLIVER, Robert
    Mountain View, California 94043 (US)

(74)Representative: Maikowski & Ninnemann Patentanwälte Partnerschaft mbB 
Postfach 15 09 20
10671 Berlin
10671 Berlin (DE)


(56)References cited: : 
US-A1- 2016 011 013
US-A1- 2016 377 688
  
  • ABRUDAN TRAIAN E ET AL: "Distortion Rejecting Magneto-Inductive Three-Dimensional Localization (MagLoc)", IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, IEEE SERVICE CENTER, PISCATAWAY, US, vol. 33, no. 11, 1 November 2015 (2015-11-01), pages 2404-2417, XP011586778, ISSN: 0733-8716, DOI: 10.1109/JSAC.2015.2430518 [retrieved on 2015-10-14]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND


Field of the Disclosure



[0001] The present disclosure relates generally to position tracking systems and more specifically to electromagnetic (EM) position tracking systems.

Description of the Related Art



[0002] Position tracking systems that use near-field EM fields, also known as EM position tracking systems, generally include a transmitter that generates an EM field using a tri-axis coil to induce a current on a second tri-axis coil located at a remote receiver. The receiver generates values corresponding to the EM field magnitude which are then processed to compute a position and/or orientation (or "pose") of the receiver relative to the transmitter. However, the calculations that convert the EM field magnitude values (EM magnitude values) into position data can have multiple valid solutions (that is, multiple candidate poses can satisfy the equations that govern the conversion). The resulting ambiguity in the correct position is referred to as "hemisphere ambiguity" since the two candidate positions can be expressed as opposite of each other along a sphere, where each of possible position solutions are in separate hemispheres of the sphere.

[0003] US 2016/377688 A1 discloses a mobile robot which includes a body movable over a surface within an environment, a calibration coil carried on the body and configured to produce a calibration magnetic field, a sensor circuit carried on the body and responsive to the calibration magnetic field, and a controller carried on the body and in communication with the sensor circuit. The sensor circuit is configured to generate calibration signals based on the calibration magnetic field. The controller is configured to calibrate the sensor circuit as a function of the calibration signals, thereby resulting in a calibrated sensor circuit configured to detect a transmitter magnetic field within the environment and to generate detection signals based on the transmitter magnetic field. The controller is configured to estimate a pose of the mobile robot as a function of the detection signals.

[0004] US 2016/011013 A1 discloses a method and apparatus for synchronizing a magnetic field transmitter and receiver to resolve phase ambiguity so that phase information for the position and orientation of the receiver may be derived and maintained. A synchronization process allows for the phase information to be initially derived based upon known information from other sources, and then tracked from one measurement to the next. Further information from an inertial measurement unit (IMU) may be used to determine the phase information or to correct for errors in the determination from receiver data of the position and orientation of a receiver, and prevent such errors from accumulating as the receiver moves away from a transmitter.

SUMMARY



[0005] The solution is specified by a first independent claim referring to a method (claim 1), a second independent claim referring to a method (claim 2), a third independent claim referring to a system (claim 6) and a fourth independent claim referring to a system (claim 7). Dependent claims specify embodiments thereof.

[0006] While several embodiments and/or examples have been disclosed in the description, the subject matter for which protection is sought is strictly and solely limited to those embodiments and/or examples encompassed by the scope of the appended claims. Embodiments and/or examples mentioned in the description that do not fall under the scope of the claims are useful for understanding the invention.

BRIEF DESCRIPTION OF THE DRAWINGS



[0007] The present disclosure may be better understood, and its numerous features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference symbols in different drawings indicates similar or identical items.

FIG. 1 is a block diagram of an EM position tracking system that includes a base unit generating an EM field for use by a mobile unit in accordance with some embodiments.

FIG. 2 is a block diagram illustrating the EM position tracking system of FIG. 1 that includes a head-mounted display (HMD)-based system with an inertial measurement unit (IMU) to perform hemisphere disambiguation in accordance with some embodiments.

FIG. 3 is a block diagram of an EM position tracking system that includes a mobile unit generating an EM field and a base unit in accordance with some embodiments.

FIG. 4 is a block diagram of an EM position tracking system that includes a mobile unit generating an EM field and a base unit having a second sensor for hemisphere disambiguation in accordance with some embodiments.

FIG. 5 is a diagram of the EM position tracking system of FIG. 1 showing hemisphere ambiguity associated with a mobile unit moving in relation to a base unit within an EM field in accordance with some embodiments.

FIG. 6 is a diagram of the EM position tracking system of FIG. 4 with a moving base moving closer to a mobile unit and exhibiting hemisphere ambiguity in accordance with some embodiments.

FIG. 7 is a diagram of the EM position tracking system of FIG. 4 with a moving base moving away from a mobile unit and exhibiting hemisphere ambiguity in accordance with some embodiments.

FIG. 8 is a block diagram of the EM position tracking system of FIG. 4 with the base unit moving laterally in relation to a stationary mobile unit and showing hemisphere ambiguity in accordance with some embodiments.

FIG. 9 is a flow diagram of a method of hemisphere disambiguation at the EM position tracking system of FIG. 1, with a controller in motion in relation to a base unit in accordance with some embodiments.

FIG. 10 is a flow diagram of a method of hemisphere disambiguation at the EM position tracking system of FIG. 4, with a base unit in motion in relation to a mobile unit in accordance with some embodiments.


DETAILED DESCRIPTION



[0008] FIGs. 1-10 illustrate methods and systems for hemisphere disambiguation in an EM position tracking system wherein the methods and systems employ a second sensor to support EM position tracking for objects in an EM field. For example, an HMD can employ an EM position tracking system using a base unit, such as the HMD itself, and a mobile unit, such as a wireless handheld controller, to identify the pose of the mobile unit (e.g., the handheld controller). The EM position tracking system generates an EM pose value for the mobile unit in the EM field. Hemisphere ambiguity arises when a processor associated with the EM position tracking system calculates, based on a set of EM equations, a pose value for the tracked object (e.g., the handheld controller) moving within the EM field and creates two candidate pose values. As both candidate poses are valid solutions for the EM equations, the processor cannot determine, based on the EM equations alone, which pose value accurately reflects the actual pose of the object. Accordingly, to arrive at the correct pose, the EM position tracking system also employs a second sensor, such as an IMU, to generate a "direction of movement" value corresponding to the movement of the object being tracked in the EM field. The processor calculates a final pose by comparing the two candidate pose values, derives an estimated direction of movement value based on previous pose values, and compares the derived estimated direction of movement value to the direction of movement value from the second sensor. The processor then chooses the candidate pose value that is closest to the direction estimated from the second sensor. The HMD therefore performs hemisphere disambiguation without user input (for example, the user manually entering data on a keyboard or pre-selecting preferred hemispheres), thereby improving the user experience.

[0009] FIG. 1 is a block diagram of an EM position tracking system 100 that includes a base unit 102 generating an EM field 110 for use by a mobile unit 112 in accordance with some embodiments. Other embodiments are possible and are not limited by this disclosure. Base unit 102 includes an EM transmitter module (EM transmitter) 105 having a coil 104 and a power amplifier 106, and further includes a first processor 108. The mobile unit 112 includes an EM receiver module (EM receiver) 115 having a coil 114 and an analog-to-digital converter (ADC) 116, a second processor 118, and a second sensor 120. The base unit 102 establishes communications with the mobile unit 112 by a communications link 122. The communications link 122 can be, but is not limited to, a wireless network link, a RF radio link, an IR light link, a USB connection, an Ethernet link, or other methods suitable for communications. The communications link 122 allows the base unit 102 to send and receive data to and from the mobile unit 112. The data includes, but is not limited to, pose data and sensor data from the base unit 102 or the mobile unit 112.

[0010] In the present embodiment, the base unit 102 generates the EM field 110 to be received by the mobile unit 112. The mobile unit 112 is located within the EM field 110 where the magnitude of the EM field 110 is sensed by the EM coil 114. As the mobile unit 112 moves around and within the EM field 110, a set of EM field magnitude values are generated by the EM coil 114. These values could be constantly changing in both magnitude and direction in three dimensions as the mobile unit 112 changes pose within the EM field 110. The ADC 116 receives the EM field magnitude values from the EM coil 114 and converts them into a digital form for use by the second processor 118. In at least one embodiment, the base unit 102 is stationary, while in other embodiments, the base unit 102 is moving. In other embodiments, base unit 102 includes a housing (not shown) to mount on a head of a user. The mobile unit 112 second processor 118 performs calculations on the EM field magnitude values to generate EM pose data. Alternatively, the mobile unit 112 can send the EM field magnitude values to the base unit 102 first processor 108 as one input for calculation of the pose. In yet another embodiment, the base unit 102 and the mobile unit 112 can share calculation tasks as needed or assigned based on processor tasking, time-shared procedures, or the like as requested at the time the calculations are made. In yet another embodiment, the calculations are done a third processor (not shown) in communication with the first processor 108 or second processors 118.

[0011] In the present embodiment, the power amplifier 106 receives a transmit signal from the first processor 108 and sends electrical power to the EM coil 104 for use in generating the EM field 110. The transmit signal enables the power amplifier 106 to begin generating the EM field 110. In some embodiments, the power amplifier 106 is located within the base unit 102. The EM transmitter 104 can use a tri-axis coil or other device to generate the EM field 110 that transits into the world frame environment that includes the mobile unit 112. The mobile unit 112 is placed within the EM field 110 and senses the field magnitudes of the EM field 110 a distance away from the base unit 102 using the EM receiver 114. Within the mobile unit 112, the EM coil 114 senses the EM field 110 and identifies EM magnitude values which are sent to the ADC 116. The ADC 116 conditions the EM magnitude values for use by the second processor 118. In at least some embodiments, the ADC 116 can also function as an electrical filter for the incoming EM magnitude values to further process and level-shift the EM magnitude values for use by the second processor 118. Also, in at least some embodiments, ADC 116 can be employed as a noise isolation filter for the incoming EM magnitude values. The second processor 118 receives the EM magnitude values and converts them into EM pose data of the mobile unit 112 in relation to the base unit 102 based on the EM field 110 magnitude sensed by the mobile unit 112.

[0012] The mobile unit 112 also employs the second sensor 120 as a second sensing device to determine direction of movement data of the mobile unit 112. The second sensor 120 is placed in mechanical contact with a known fixed alignment with the mobile unit 112 to gather direction of movement data. The second sensor 120 can include, but is not limited to, an IMU, an accelerometer, a gyroscope, a magnetometer, other inertial-type sensors, other motion sensors, other pose sensors, or a GPS sensor. In the present embodiment, the second sensor 120 includes an accelerometer and a gyroscope. Once initialized, the second sensor 120 generates and sends direction of movement data to the second processor 118. In at least some applications, the second sensor 120 generates direction of movement data directly compatible for use by the second processor 118. In other embodiments, the direction of movement data may undergo additional filtering and conversion in order to be used by the second processor 118. The communications link 122 connecting the base unit 102 and the mobile unit 112 is used to send signals to and from the base unit 102 first processor 108 and the mobile unit 112 second processor 118 to exchange pose data, direction of movement data, data for operation of the EM position tracking system 100, HMD, VR, or AR system, and the like.

[0013] EM position tracking system 100 performs hemisphere disambiguation in accordance with some embodiments. First processor 108 or second processor 118 calculates a set of candidate pose values based on the EM field magnitude values generated by the mobile unit 112. Mobile unit 112 also employs the second sensor 120 that generates direction of movement data for use by the first processor 108 or the second processor 118 in calculating a final pose value as described herein.

[0014] In some embodiments, the EM transmitter 105 and the EM receiver 115 are swapped, so that the EM transmitter 105 is in mechanical contact with the mobile unit 112, and the EM receiver 115 is in mechanical contact with the base unit 102.

[0015] FIG. 2 is a block diagram illustrating the EM position tracking system of FIG. 1 that includes a head-mounted display (HMD)-based system 200 with an inertial measurement unit (IMU) 214 to perform hemisphere disambiguation in accordance with some embodiments. The EM position tracking system 100 is used by the HMD-based system 200 to determine the pose of the mobile unit 112 in relation to the base unit 102 in accordance with some embodiments. HMD-based system 200 is but one embodiment of EM position tracking system 100 as described in FIG. 1. In the illustrated embodiment, HMD-based system 200 includes a HMD 202 that corresponds to the base unit 102 of FIG. 1, while a handheld controller 232 corresponds to the mobile unit 112 of FIG. 1. In at least some embodiments, the HMD device 202 is also termed a base unit 202, and the handheld controller 232 is also termed a mobile unit 232. In at least one embodiment, the HMD device 202 is stationary, while in other embodiments, the HMD device 202 is moving. In other embodiments, HMD device 202 includes a housing (not shown) to mount on a head of a user. The HMD-based system 200 contains various electronic and optical components used to display visual content to the user, output audio content to the user, and track the pose of the mobile unit 112 as described further herein. The HMD-based system 200 contains various electronic and optical components used to display visual content to the user, output audio content to the user, and track the pose of the handheld controller 232 as described further herein.

[0016] As a general overview of the operation of the HMD-based system 200, the HMD device 202 includes a processor 204 that executes instructions to provide a virtual reality (VR) experience to a user. For example, the processor 204 can execute instructions to display visual content via the one or more near-eye displays and output audio content via one or more speakers (not shown). To support provision of the VR experience, the HMD device 202 keeps track of its own pose within an environment of the HMD-based system 200. As used herein, the term "pose" refers to the position of an object, the orientation of the object, or a combination thereof. Thus, the HMD device 202 can keep track of its position within the environment, can keep track of its orientation within the environment, or can keep track of both its position and its orientation.

[0017] To keep track of its pose within the environment, in one embodiment the HMD device 202 employs a simultaneous localization and mapping (SLAM) module 205, which is configured to generate pose information for the HMD device 202 based on SLAM techniques. For example, in some embodiments, the SLAM module 205 is configured to receive imagery of the environment from one or more image capturing devices (not shown), identify features from those images, and to identify the pose of the HMD device 202 based on the identified features. In at least one embodiment, the SLAM module 205 can employ additional pose detection sensors, such as inertial sensors, global positioning system sensors, and the like, to assist in identifying the pose of the HMD device 202. The SLAM module 205 provides the pose information to the processor 204, which in turn employs the pose information to place the HMD device 202 in a virtual environment.

[0018] To further enhance the VR experience, the HMD device 202 also continuously updates the pose of the handheld controller 232. In particular, to identify the pose, HMD-based system 200 utilizes an EM field detection system including an EM field transmitter 240 to generate an EM field 110 and, located in the handheld controller 232, an EM field receiver 241 to detect a magnitude of the EM field 110. In the depicted example, the EM field transmitter 240 is located at or within a housing of the HMD device 202, and the EM field receiver 241 is located at or within a housing of the handheld controller 232. However, because the EM field detection system is generally configured to generate a relative pose between the EM transmitter 240 and the EM receiver 241, other configurations are possible. For example, in at least one embodiment, the EM transmitter 240 is located at or within a housing of the handheld controller 232, and the EM receiver 241 is located at or within a housing of the HMD device 202. In another embodiment, both the HMD device 202 and the handheld controller 232 contain EM field receivers 240 while the EM transmitter 241 is located in a third base unit (not shown). In yet another embodiment, the HMD device 202 and handheld controller 232 contain EM transmitters 240, while the EM receiver is located in a third base unit.

[0019] In the illustrated example, the handheld controller 232 includes the IMU 214 to assist in pose detection for the handheld controller 232. In particular, the IMU 214 periodically or continuously generates pose information for the handheld controller 232 based on one or more motion sensors of the IMU 214, such as one or more accelerometers, gyroscopes, or a combination thereof. A processor 207 of the handheld controller 232 combines pose data generated by the IMU 214 (hereinafter, the "IMU pose data") and pose data generated based on the EM field 110 (hereinafter, the "EM pose data") to generate a combined pose and provides the combined pose to the HMD device 202 via a communication link 122. The HMD device 202 can employ the combined pose to identify the pose of the handheld controller 232 relative to the HMD device 202, and make changes to the virtual environment based on the combined pose. This allows a user to interact with the virtual environment using the handheld controller 232.

[0020] Hemisphere ambiguity arises in the HMD-based system 200 when the EM magnitude data is used to calculate an EM pose value. The ambiguity is caused by using a coil sensor, such as the EM receiver 241 to generate a pose value in 3-dimensional (3-D) space. A consequence of using EM magnitude data to solve for position is that the calculations will produce a set of two valid pose solutions, referred to as candidate pose values. To correct for such ambiguity, the HMD-based system 200 of FIG. 2 corrects for hemisphere ambiguity by comparing an estimated direction of movement indicated by the EM pose data with the direction of movement data provided by the IMU 214. In particular, the processor 207 compares the current EM pose data with previous EM pose data to derive an estimated EM-based direction of movement data for the object. The processor 207 then compares the EM-based direction of movement data and selects the candidate pose value most closely aligned with the estimated direction of movement of the object. The selected candidate pose value is used by the HMD-based system 200 to calculate distances, ranges, motion, and the like of the handheld controller 232 as needed for system operation and image generation in the HMD-based system 200.

[0021] FIG. 3 is a block diagram of an EM position tracking system 300 that includes a mobile unit 312 generating the EM field 110 and a base unit 302 in accordance with some embodiments. FIG. 3 shows a similar system as disclosed in FIG. 1, but while FIG. 1 illustrates a base unit 102 generating the EM field 110 and being received by the mobile unit 112, FIG. 3 illustrates an alternative environment where the mobile unit 312 generates the EM field 110 that is sensed at the base unit 302. In the embodiment of FIG. 3, the base unit 302 employs an EM receiver 305 having a coil 304 and an ADC 306, and further includes a first processor 308. The mobile unit 312 uses an EM transmitter 315 having a coil 314 and a power amplifier 316, and further includes a second processor 318, and a second sensor 320.

[0022] In one or more embodiments, base unit 302 establishes a relative pose to the world frame by employing sensors (not shown) to sense its own location and establishing that location as a baseline location. The sensors may be internal to the base unit 302 or, in alternative embodiments, be part of an external alignment procedure or tool to align and calibrate the base unit 302 to a known pose at system startup. In the present embodiment, the power amplifier 316 receives a transmit signal from the second processor 318 and sends electrical power to the coil 314 for use in generating the EM field 110. The transmit signal enables the power amplifier 316 to begin generating the EM field 110 for use by the base unit 302. Meanwhile, in at least some embodiments, the first processor 308 or the second processor 318 can store data, including, but not limited to, pose data, lookup table data, calibration data, etc. recorded over time as described herein. In a similar manner as disclosed in FIG. 1, EM position tracking system 300 generates EM pose data and direction of movement data for use by the first processor 308, second processor 318 or a third processor (not shown) in calculating a final pose for the mobile unit 312.

[0023] EM position tracking system 300 performs hemisphere disambiguation in accordance with some embodiments. In at least one embodiment, the base unit 302 is stationary, while in other embodiments, the base unit 302 is moving. In other embodiments, base unit 302 includes a housing (not shown) to mount on a head of a user. The EM position tracking system 300 contains various electronic and optical components used to display visual content to the user, output audio content to the user, and track the pose of the mobile unit 312 as described further herein. In the present embodiment, mobile unit 312 generates the EM field 110, which is sensed by the base unit 302. The first processor 108, second processor 118 or a third processor (not shown) calculates a set of pose values based on the EM field magnitude values generated by the base unit 302. The mobile unit 112 also employs the second sensor 320 to generate a direction of movement value for use by the first processor 308 or the second processor 318 or a third processor (not shown) in calculating a final pose value as described herein.

[0024] FIG. 4 illustrates an EM position tracking system 400 that can perform hemisphere disambiguation in accordance with some embodiments. The EM position tracking system 400 is similar to the example of FIG. 3, but in the example of FIG. 4 the second sensor 420 is located at a base unit 402. The other modules of the EM position tracking system 400, including an RX module 405 (including a coil 404 and ADC 406), and processor 408 of the base unit 404, and a TX module 415 (including a coil 414 and amplifier 416) and a processor 418 of a mobile unit 412 operate similarly to the corresponding modules of FIG. 3. However, because the second sensor 420 is located at the base unit 402, the EM position tracking system 400 can disambiguate hemisphere ambiguity based on the motion of the base unit 402, rather than the mobile unit 412. In particular, and as described further herein, the EM position tracking system can perform hemisphere disambiguation based on direction of movement indicated by the second sensor 420, or can perform hemisphere disambiguation by employing the second sensor 420 to identify movement of the base unit 402 relative to a world frame.

[0025] FIG. 5 is a diagram of an EM position tracking system 500 showing hemisphere ambiguity associated with a mobile unit 112 moving in relation to a base unit 102 within an EM field 110 in accordance with some embodiments. FIG. 5 illustrates the candidate poses of mobile unit 112 before and after moving within the EM field 110 of FIG. 1. The first processor 108 (not shown) of base unit 102 calculates a set of two possible candidate pose solutions as disclosed in FIG. 1. The two candidate pose solutions are shown graphically in FIG. 5 by the mobile unit 112 beginning in positions 506A ("starting position 'A') and 508A (starting position 'C'). Both candidate poses are mathematically valid solutions and the EM position tracking system 500 cannot determine which is the correct pose without additional information. For systems such as VR "inside-out" systems, the starting pose of the handheld controller (mobile unit 112) relative to the HMD device (base unit 102) could be arbitrary and since the controller operation is not limited to a particular area of space, ascertaining the actual candidate pose is not trivial.

[0026] As described further below, in the example of FIG. 5 when the mobile unit 112 moves, at least two sensors provide an indication of a direction of motion: an EM sensor and a second, non-EM sensor such as an IMU. To disambiguate between candidate poses, the EM position tracking system 100 selects the candidate pose that more closely aligns with the direction of movement indicated by the second, non-EM sensor. With respect to the example of FIG. 5, the mobile unit 112 is shown both before and after being moved within the EM field 110. One candidate starting pose is shown at candidate starting position 'A' 506A. The example of FIG. 5 also illustrates an "r-vector" 502A, which represents the displacement in space of the candidate poses with respect to the base unit. When the mobile unit 112 moves, it transits along candidate pose movement 506A to candidate ending position 'B' 506B. At the same time, the EM tracking position system 100 calculates both the candidate pose and the copy pose. In this example, along with the candidate pose just described, a second candidate pose results. These include mobile unit 112 in starting position 'C' 508A, the mobile unit 112 moving along in the direction of the candidate pose movement 504B, and mobile unit 112 stopping at the candidate ending position 'D' 508B. Thus, determining a pose solution as used in the EM position tracking system 100, results in two possible candidate pose solutions.

[0027] In at least some embodiments, the second sensor 120 is an IMU located in the mobile unit 112 and rigidly affixed some distance from the EM receiver 114, such that distance between the mobile unit 112 and the EM receiver 114 is to be accounted for. In such embodiments, the acceleration of the EM receiver 114 is expressed by:

where:

(a) is the acceleration of the accelerometer with regard to the world frame;

(r) is the vector from the second sensor 120 location to the EM receiver 114;

(ω) is the angular velocity of the gyroscope with regard to the world frame;

(α) is the angular acceleration of the second sensor 120 with regards to the world frame;

ω × (ω × r) represents the centrifugal force; and

× r) represents the Euler force, where the Euler force is the tangential force that is sensed in reaction to an angular acceleration.



[0028] It will be appreciated that the above equation applies for an IMU, and will vary depending on the type of non-EM sensor employed as the second sensor.

[0029] FIG. 6 is a diagram of the EM position tracking system 400 (FIG. 4) performing hemisphere disambiguation with a moving base 402, and in particular with the base unit 402 moving closer to the mobile unit 412 and exhibiting hemisphere ambiguity in accordance with some embodiments. In the illustrated example, the base 402 identifies two candidate poses: a pose that starts at location 'A' 602A and ends its apparent movement (resulting from the EM tracking system 400) at location 'B' 602B, and a candidate pose that begins its apparent movement at location 'C' 504A and ends its apparent movement at location 'D' 504B. In the foregoing example, the apparent movement of the base unit 102 in relation to the mobile unit 112 is determined from the EM position tracking system 400 of FIG. 4 and. In at least some embodiments, the base unit 402 moves closer to one of the candidate poses, whereby the movement of the base unit 402 can be used for hemisphere disambiguation. One characteristic of hemisphere ambiguity is that when the range between the correct candidate pose and the base unit 402 decreases, the range to both candidate poses decrease. Therefore, if a candidate pose is stationary and the base unit 402 moves towards the correct candidate pose, the range to both the candidate poses decreases. In a likewise method, if the base unit 102 moves away from the correct candidate pose, the range to both candidate poses increases.

[0030] The position of the candidate poses in relation to the base unit 402 is measured using EM position tracking technology. The base unit 402 includes the second sensor 420 of FIG. 4 to determine the direction of movement values of the base unit 402. The second sensor can be any sensor that can be used to derive direction of motion. Examples include but are not limited to an IMU, a magnetometer, inertial sensors, pose sensors, a SLAM system, or another positioning system. When the second sensor 420 calculates that the base unit 402 has moved towards a first candidate pose, the range between the base unit 102 and the candidate poses is re-calculated using the EM pose data. If the calculated range to both the candidate pose mobile units 112 has decreased, then the first candidate pose is the correct pose. If the calculated range shows that the range has increased, the other candidate pose is the correct pose.

[0031] In some embodiments, the EM position tracking system 400 with a moving base is located within a world frame, with the base unit 402 and the mobile unit 412 anywhere within the sphere of the world frame. In at least some embodiments, both the base unit 402 and the mobile unit 412 are in motion relative to the world frame. The process disclosed above will produce the final pose regardless of whether one or both the base unit 402 and the mobile unit 412 are moving in the world frame by using the net movement of the base relative to the mobile unit. In another example, assume the base unit 402 is moving towards the candidate pose mobile unit 412 while the candidate pose mobile unit 412 is moving towards the base unit 402. In some embodiments, the direction of movement of the base unit 402 is derived from acceleration, or velocity, or change in distance of the base unit 402.

[0032] FIG. 7 is a diagram of the EM position tracking system 400 of FIG. 4 with a with the base unit 402 moving away from the mobile unit 412 and exhibiting hemisphere ambiguity in accordance with some embodiments. The EM position tracking system 400 with the moving base is similar to that disclosed in FIG. 6 except that the base unit 402 is moving away from the correct candidate pose. In the illustrated example, the base unit 402 is moving, resulting in a candidate pose that start at location 'A' 702A and ends its apparent movement at location 'B' 702B, and a candidate pose that begins its apparent movement at location 'C' 704A and ends its apparent movement at location 'D' 704B. In the example of FIG. 7, the base unit 402 is moving, resulting in an apparent movement of the candidate poses away from the base unit 402. In at least some embodiments, the movement of the base unit 402 can be used for hemisphere disambiguation as described above with respect to FIG. 6.

[0033] FIG. 8 is a block diagram of the EM position tracking system 400 with the base unit 402 moving laterally in relation to a mobile unit 412 and showing hemisphere ambiguity in accordance with some embodiments. In the illustrated example, the base unit 402 starts at location 'A' 702A and moves laterally to location 'B' 702B in relation to the mobile unit 412. In at least some embodiments, the base unit 102 uses the second sensor 420 to track the pose of the base unit 402 in relation to the world frame environment. The second sensor 420 is a non-EM sensor that indicates the position of the base unit 102 in a world frame. Thus, the second sensor, in the embodiment of FIG. 8, can be a SLAM module, a GPS module, pose sensor, or other sensor that can identify the position of the base unit 402 in the world frame. By using the second sensor, poses calculated from the EM position tracking system 400 of FIG. 1 are transformed into the world frame. When the base unit 402 moves relative to the mobile unit 412, one candidate pose associated with the mobile unit 412 will remain in the correct position in the world frame while another candidate pose associated with the mobile unit 412 will move to an erroneous position in the world frame from location 'A' 804A to location 'B' 804B. The pose that remains in the correct position in the world frame is the correct pose. In at least some embodiments, the same process described in FIG. 8 for hemisphere disambiguation can be applied when the mobile unit 412 is stationary, and in other embodiments when the mobile unit is in motion.

[0034] FIG. 9 is a flow diagram of a method 900 of hemisphere disambiguation by the EM position tracking system 100 of FIG. 1, with a mobile unit 112 of FIG. 1 in motion in relation to a base unit 102 in accordance with some embodiments. Either first processor 108 or the second processor 118 or a third processor (not shown) can execute the instructions for correcting for hemisphere ambiguity as described herein. For the following description, it is assumed that all calculations are done by the base unit 102 first processor 108. However, the mobile unit 112 second processor 118 can execute the instructions, or, in some embodiments, the workload can be shared between first processor 108 and the second processor 118 without limitation. Also in some embodiments, some portions of the process can be executed by a third processor. At block 902, the Tx module 105, located in the base unit 102 of the EM position tracking system 100 of FIG. 1, generates the EM field 110, whose signals are received by the Rx module 115 located in the mobile unit 112. The Rx module 115 generates EM data which is sent to the first processor 108. At block 904, the first processor 108 receives the EM data from the mobile unit 112. At block 906, the first processor 108 uses the EM data and calculates a set of candidate pose solution values corresponding to the pose of the mobile unit 112 in relation to the base unit 102. As the set of candidate pose solution values are calculated using data from EM coils, at least two separate and valid candidate pose solutions result from the calculations, with each solution on opposite points of a sphere, where only one candidate pose is correct. At block 908, the first processor 108 calculates an estimated direction of movement value for the candidate poses based on previously computed candidate poses. Meanwhile, at block 909 the mobile unit 112 moves to a new pose in relation to the base unit 102. At block 910, the mobile unit 112 second sensor 120 provides data that is used to generate direction of movement data and sends the data to the first processor 108. At block 912, the first processor 108 receives the direction of movement data from the mobile unit 112. At block 914, the first processor 108 compares the estimated direction of movement of the candidate poses to the direction of movement data, and selects the correct candidate pose. The hemisphere disambiguation process 800 thus selects, from the set of two candidate poses, using the direction of movement data to determine the final pose value. The first processor 108 then outputs the final pose data to the EM position tracking system 100 of FIG. 1.

[0035] FIG. 10 is a flow diagram of a method of hemisphere disambiguation 1000 by the EM position tracking system 400 of FIG. 4 in accordance with some embodiments. FIG. 10 describes a hemisphere disambiguation process wherein the base unit 402 is moving relative to the mobile unit 412. Either first processor 408 or the second processor 418 of FIG. 4 or a third processor can execute the instructions for correcting for hemisphere ambiguity as disclosed in the following disclosure. For the following description, it is assumed that all calculations are done by the base unit 402 first processor 408. However, in other embodiments the calculations can be executed by the second processor 418 of the mobile unit 412, or, in some embodiments, the workload can be shared between the first processor 408 and the second processor 418 or a third processor without limitation.

[0036] At block 1002, the mobile unit 412 generates an EM field 410, and the Rx module 405 of the base unit 402 generates EM sensor data based on the relative magnitudes of the EM field 410. At block 1004, the first processor 408 receives the EM sensor data from the Rx module 405. At block 1006, the first processor 408 uses the EM sensor data to calculate a set of candidate pose solution values corresponding to the pose of the mobile unit 412 in relation to the base unit 402. At least two separate and valid candidate pose solutions result from the calculations, with each solution on opposite points of a sphere, where only one pose is correct. At block 1008, the first processor 408 calculates an estimated direction of movement of the base unit 402 using previous candidate pose calculations. Meanwhile, at block 1010, the base unit 402 moves to a new pose in relation to the mobile unit 412. At block 1012, the second sensor data 420 generates direction of movement data and sends the data to the first processor 408. At block 1014, the first processor 408 receives the direction of movement data from the second sensor 420. At block 1016, the processor 408 compares the EM pose data to the direction of movement data to select the correct hemisphere. The processor 408 then outputs the final pose data to the EM position tracking system 400.

[0037] In some embodiments, certain aspects of the techniques described above may implemented by one or more processors executing software. The software comprises one or more sets of executable instructions stored or otherwise tangibly embodied on a non-transitory computer readable storage medium. The software can include the instructions and certain data that, when executed by the one or more processors, manipulate the one or more processors to perform one or more aspects of the techniques described above. The non-transitory computer readable storage medium can include, for example, a magnetic or optical disk storage device, solid state storage devices such as Flash memory, a cache, random access memory (RAM) or other non-volatile memory device or devices, and the like. The executable instructions stored on the non-transitory computer readable storage medium may be in source code, assembly language code, object code, or other instruction format that is interpreted or otherwise executable by one or more processors.

[0038] A computer readable storage medium may include any storage medium, or combination of storage media, accessible by a computer system during use to provide instructions and/or data to the computer system. Such storage media can include, but is not limited to, optical media (e.g., compact disc (CD), digital versatile disc (DVD), Blu-Ray disc), magnetic media (e.g., floppy disc, magnetic tape, or magnetic hard drive), volatile memory (e.g., random access memory (RAM) or cache), non-volatile memory (e.g., read-only memory (ROM) or Flash memory), or microelectromechanical systems (MEMS)-based storage media. The computer readable storage medium may be embedded in the computing system (e.g., system RAM or ROM), fixedly attached to the computing system (e.g., a magnetic hard drive), removably attached to the computing system (e.g., an optical disc or Universal Serial Bus (USB)-based Flash memory), or coupled to the computer system via a wired or wireless network (e.g., network accessible storage (NAS)).

[0039] Note that not all of the activities or elements described above in the general description are required, that a portion of a specific activity or device may not be required, and that one or more further activities may be performed, or elements included, in addition to those described. Still further, the order in which activities are listed are not necessarily the order in which they are performed. Also, the concepts have been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present disclosure as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense. The scope of the invention is defined by the appended claims. Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature of any or all the claims. Moreover, the particular embodiments disclosed above are illustrative only, as the disclosed subject matter may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. No limitations are intended to the details of construction or design herein shown, other than as defined in the appended claims. Accordingly, the protection sought herein is as set forth in the claims below.


Claims

1. A method comprising:

receiving electromagnetic, EM, field magnitude values indicative of a first pose of a mobile unit (112) in relation to a base unit (102);

receiving sensor data from a second sensor (120) associated with one of the mobile unit and the base unit, wherein the sensor data is indicative of a direction of movement of the one of the mobile unit and the base unit;

calculating, by one or more processors, a set of two candidate pose solutions based on the EM field magnitude values;

selecting a final pose from the set of two candidate pose solutions based on the sensor data from the second sensor; and

sending the final pose to the one or more processors (108, 118); characterised in that selecting the final pose comprises:

determining that the base unit has moved towards a first candidate pose out of the two candidate poses;

re-calculating the range between the base unit and the two candidate poses using EM pose data;

selecting the first candidate pose as the final pose if the calculated range to both candidate poses has decreased, otherwise selecting the other candidate pose as the final pose.


 
2. A method comprising:

receiving electromagnetic, field magnitude values indicative of a first pose of a mobile unit (112) in relation to a base unit (102);

receiving sensor data from a second sensor (120) associated with one of the mobile unit and the base unit, wherein the sensor data is indicative of a direction of movement of the one of the mobile unit and the base unit;

calculating, by one or more processors, a set of two candidate pose solutions based on the EM field magnitude values;

selecting a final pose from the set of two candidate pose solutions based on the sensor data from the second sensor; and sending the final pose to the one or more processors (108, 118);

characterised in that selecting the final pose comprises:

determining that the base unit has moved away from a first candidate pose out of the two candidate poses;

recalculating the range between the base unit and the two candidate poses using EM pose data;

selecting the first candidate pose as the final pose if the calculated range to both candidate poses has increased, otherwise selecting the other candidate pose as the final pose.


 
3. The method of any preceding claim, wherein the base unit is comprised of a head-mounted display device.
 
4. The method of any preceding claim, wherein the mobile unit is comprised of a virtual reality handheld controller device.
 
5. The method of any preceding claim, wherein the sensor data is indicative of a pose of the one of the base unit and the mobile unit in relation to a world frame.
 
6. A system comprising:

a base unit (102) within an electromagnetic, EM, (110);

a mobile unit (112) located within the EM field;

an EM transmitter (105) that generates the EM field and is associated with one of the base unit and the mobile unit;

an EM receiver (115) that senses EM field magnitude values and is associated with the other of the mobile unit and the base unit;

a second sensor (120), associated with one of the mobile unit and the base unit, wherein the second sensor generates sensor data indicative of a direction of movement value of the one of the mobile unit and the base unit, wherein the direction of movement value includes one of a distance vector, a velocity vector, and an acceleration vector; and

at least one processor (108) that calculates a set of candidate pose values of the mobile unit relative to the base unit based on the EM field magnitude values, and selects a final pose from the set of candidate pose values based on the sensor data from the second sensor; characterised in that the at least one processor is configured to select the final pose by:

determining that the base unit has moved towards a first candidate pose out of the two candidate poses;

re-calculating the range between the base unit and the two candidate poses using EM pose data;

selecting the first candidate pose as the final pose if the calculated range to both candidate poses has decreased, otherwise selecting the other candidate pose as the final pose.


 
7. A system comprising:

a base unit (102) within an electromagnetic, EM, field (110);

a mobile unit (112) located within the EM field;

an EM transmitter (105) that generates the EM field and is associated with one of the base unit and the mobile unit;

an EM receiver (115) that senses EM field magnitude values and is associated with the other of the mobile unit and the base unit;

a second sensor (120), associated with one of the mobile unit and the base unit, wherein the second sensor generates sensor data indicative of a direction of movement value of the one of the mobile unit and the base unit, wherein the direction of movement value includes one of a distance vector, a velocity vector, and an acceleration vector; and

at least one processor (108) that calculates a set of two candidate pose values of the mobile unit relative to the base unit based on the EM field magnitude values, and selects a final pose from the set of two candidate pose values based on the sensor data from the second sensor;

characterised in that the at least one processor is configured to select the final pose by:

determining that the base unit has moved away from a first candidate pose out of the two candidate poses;

recalculating the range between the base unit and the two candidate poses using EM pose data;

selecting the first candidate pose as the final pose if the calculated range to both candidate poses has increased, otherwise selecting the other candidate pose as the final pose.


 
8. The system of any one of claims 6 to 7, wherein the transmitter is comprised of a head-mounted display device.
 
9. The system of any one of claims 6 to 8, wherein a receiver is comprised of a virtual reality handheld controller device.
 
10. The system of any one of claims 6 to 9, wherein the second sensor generates data used to calculate a pose of the base unit in a world frame;
 


Ansprüche

1. Verfahren, umfassend:

Empfangen von elektromagnetischen, EM, Feldstärkewerten, die indikativ für eine erste Stellung einer mobilen Einheit (112) in Bezug auf eine Basiseinheit (102) sind;

Empfangen von Sensordaten von einem zweiten Sensor (120), der mit einer der mobilen Einheit oder der Basiseinheit assoziiert ist, wobei die Sensordaten indikativ für eine Bewegungsrichtung von einer der mobilen Einheit oder der Basiseinheit sind;

Berechnen, durch einen oder mehrere Prozessoren, eines Satzes von zwei Kandidatenstellungslösungen basierend auf den EM-Feldstärkewerten;

Auswählen einer endgültigen Stellung aus dem Satz von zwei Kandidatenstellungslösungen basierend auf den Sensordaten des zweiten Sensors; und

Senden der endgültigen Stellung an einen oder mehrere Prozessoren (108, 118);

dadurch gekennzeichnet, dass das Auswählen der endgültigen Stellung umfasst:

Ermitteln, dass sich die Basiseinheit auf eine erste Kandidatenstellung aus den beiden Kandidatenstellungen zubewegt hat;

Neuberechnen des Bereichs zwischen der Basiseinheit und den beiden Kandidatenstellungen unter Nutzung von EM-Stellungsdaten;

Auswählen der ersten Kandidatenstellung als endgültige Stellung, wenn sich der berechnete Bereich zu beiden Kandidatenstellungen verringert hat, ansonsten Auswählen der anderen Kandidatenstellung als endgültige Stellung.


 
2. Verfahren, umfassend:

Empfangen von elektromagnetischen, EM, Feldstärkewerten, die indikativ für eine erste Stellung einer mobilen Einheit (112) in Bezug auf eine Basiseinheit (102) sind;

Empfangen von Sensordaten von einem zweiten Sensor (120), der mit einer der mobilen Einheit oder der Basiseinheit assoziiert ist, wobei die Sensordaten indikativ für eine Bewegungsrichtung von einer der mobilen Einheit oder der Basiseinheit sind;

Berechnen, durch einen oder mehrere Prozessoren, eines Satzes von zwei Kandidatenstellungslösungen basierend auf den EM-Feldstärkewerten;

Auswählen einer endgültigen Stellung aus dem Satz von zwei Kandidatenstellungslösungen basierend auf den Sensordaten des zweiten Sensors; und

Senden der endgültigen Stellung an einen oder mehrere Prozessoren (108, 118);

dadurch gekennzeichnet, dass das Auswählen der endgültigen Stellung umfasst:

Ermitteln, dass sich die Basiseinheit von einer ersten Kandidatenstellung aus den beiden Kandidatenstellungen wegbewegt hat;

Neuberechnen des Bereichs zwischen der Basiseinheit und den beiden Kandidatenstellungen unter Nutzung von EM-Stellungsdaten;

Auswählen der ersten Kandidatenstellung als endgültige Stellung, wenn sich der berechnete Bereich zu beiden Kandidatenstellungen erhöht hat, ansonsten Auswählen der anderen Kandidatenstellung als endgültige Stellung.


 
3. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Basiseinheit aus einem am Kopf befestigten Anzeigegerät besteht.
 
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die mobile Einheit aus einem tragbaren Virtual-Reality-Steuergerät besteht.
 
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Sensordaten eine Stellung von einer der Basiseinheit und der mobilen Einheit in Bezug auf einen Weltrahmen angeben.
 
6. System, umfassend:

eine Basiseinheit (102) innerhalb eines elektromagnetischen, EM, Feldes (110);

eine mobile Einheit (112), die sich innerhalb des EM-Feldes befindet;

einen EM-Sender (105), der das EM-Feld erzeugt und mit entweder der Basiseinheit oder der mobilen Einheit assoziiert ist;

einen EM-Empfänger (115), der die EM-Feldstärkewerte erfasst und mit der anderen der mobilen Einheit und der Basiseinheit assoziiert ist;

einen zweiten Sensor (120), der mit einer von der mobilen Einheit und der Basiseinheit assoziiert ist, wobei der zweite Sensor Sensordaten erzeugt, die indikativ für einen Bewegungsrichtungswert von einer von der mobilen Einheit und der Basiseinheit sind, wobei der Bewegungsrichtungswert einen von einem Abstandsvektor, einem Geschwindigkeitsvektor und einem Beschleunigungsvektor beinhaltet; und

zumindest einen Prozessor (108), der einen Satz von Kandidatenstellungswerten der mobilen Einheit relativ zu der Basiseinheit basierend auf den EM-Feldstärkewerten berechnet, und eine endgültige Stellung aus dem Satz von Kandidatenstellungswerten basierend auf den Sensordaten von dem zweiten Sensor auswählt;

dadurch gekennzeichnet, dass

der zumindest eine Prozessor zum Auswählen der endgültigen Stellung konfiguriert ist, durch: Ermitteln, dass sich die Basiseinheit zu einer ersten Kandidatenstellung aus den zwei Kandidatenstellungen bewegt hat;

Neuberechnen des Bereichs zwischen der Basiseinheit und den beiden Kandidatenstellungen unter Nutzung von EM-Stellungsdaten;

Auswählen der ersten Kandidatenstellung als endgültige Stellung, wenn sich der berechnete Bereich zu beiden Kandidatenstellungen verringert hat, ansonsten Auswählen der anderen Kandidatenstellung als endgültige Stellung.


 
7. System, umfassend:

eine Basiseinheit (102) innerhalb eines elektromagnetischen, EM, Feldes (110);

eine mobile Einheit (112), die sich innerhalb des EM-Feldes befindet;

einen EM-Sender (105), der das EM-Feld erzeugt und mit entweder der Basiseinheit oder der mobilen Einheit assoziiert ist;

einen EM-Empfänger (115), der die EM-Feldstärkewerte erfasst und mit der anderen der mobilen Einheit und der Basiseinheit assoziiert ist;

einen zweiten Sensor (120), der mit einer von der mobilen Einheit und der Basiseinheit assoziiert ist, wobei der zweite Sensor Sensordaten erzeugt, die indikativ für einen Bewegungsrichtungswert von einer von der mobilen Einheit und der Basiseinheit sind, wobei der Bewegungsrichtungswert einen von einem Abstandsvektor, einem Geschwindigkeitsvektor und einem Beschleunigungsvektor beinhaltet; und

zumindest einen Prozessor (108), der einen Satz von zwei Kandidatenstellungswerten der mobilen Einheit relativ zu der Basiseinheit basierend auf den EM-Feldstärkewerten berechnet, und eine endgültige Stellung aus dem Satz von zwei Kandidatenstellungswerten basierend auf den Sensordaten von dem zweiten Sensor auswählt;

dadurch gekennzeichnet, dass

der zumindest eine Prozessor zum Auswählen der endgültigen Stellung konfiguriert ist, durch:

Ermitteln, dass sich die Basiseinheit von einer ersten Kandidatenstellung aus den beiden Kandidatenstellungen wegbewegt hat;

Neuberechnen des Bereichs zwischen der Basiseinheit und den beiden Kandidatenstellungen unter Nutzung von EM-Stellungsdaten;

Auswählen der ersten Kandidatenstellung als endgültige Stellung, wenn sich der berechnete Bereich zu beiden Kandidatenstellungen erhöht hat, ansonsten Auswählen der anderen Kandidatenstellung als endgültige Stellung.


 
8. System nach einem der Ansprüche 6 bis 7, wobei der Sender ein am Kopf befestigtes Anzeigegerät umfasst.
 
9. System nach einem der Ansprüche 6 bis 8, wobei ein Empfänger aus einem tragbaren Virtual-Reality-Steuerungsgerät besteht.
 
10. System nach einem der Ansprüche 6 bis 9, wobei der zweite Sensor Daten erzeugt, die zum Berechnen einer Stellung der Basiseinheit in einem Weltrahmen verwendet werden;
 


Revendications

1. Procédé comprenant :

la réception de valeurs d'amplitude de champ électromagnétique, EM, indicatives d'une première pose d'une unité mobile (112) par rapport à une unité de base (102) ;

la réception de données de capteur à partir d'un deuxième capteur (120) associé à l'une parmi l'unité mobile et l'unité de base, dans laquelle les données de capteur sont indicatives d'une direction de mouvement de l'une parmi l'unité mobile et l'unité de base ;

le calcul, par un ou plusieurs processeurs, d'un ensemble de deux solutions de pose candidates sur base des valeurs d'amplitude de champ EM ;

la sélection d'une pose finale à partir de l'ensemble de deux solutions de pose candidates sur base des données de capteur du deuxième capteur ; et

l'envoi de la pose finale au ou aux processeurs (108, 118) ;

caractérisé en ce que la sélection de la pose finale comprend :

la détermination que l'unité de base s'est déplacée vers une première pose candidate parmi les deux poses candidates ;

le recalcul de la plage entre l'unité de base et les deux poses candidates à l'aide des données de pose EM ;

la sélection de la première pose candidate en tant que pose finale si la plage calculée pour les deux poses candidates a diminué, en sélectionnant sinon l'autre pose candidate comme pose finale.


 
2. Procédé comprenant :

la réception de valeurs d'amplitude de champ électromagnétique, EM, indicatives d'une première pose d'une unité mobile (112) par rapport une unité de base (102) ;

la réception de données de capteur à partir d'un deuxième capteur (120) associé à l'une parmi l'unité mobile et l'unité de base, dans laquelle les données de capteur sont indicatives d'une direction de mouvement de l'une parmi l'unité mobile et l'unité de base ;

le calcul, par un ou plusieurs processeurs, d'un ensemble de deux solutions de pose candidates sur base des valeurs d'amplitude de champ EM ;

la sélection d'une pose finale à partir de l'ensemble de deux solutions de pose candidates sur base des données de capteur du deuxième capteur ; et

l'envoi de la pose finale au ou aux processeurs (108, 118) ;

caractérisé en ce que la sélection de la pose finale comprend :

la détermination que l'unité de base s'est éloignée d'une première pose candidate parmi les deux poses candidates ;

le recalcul de la plage entre l'unité de base et les deux poses candidates à l'aide de données de pose EM ;

la sélection de la première pose candidate en tant que pose finale si la plage calculée pour les deux poses candidates a augmenté, en sélectionnant sinon l'autre pose candidate comme pose finale.


 
3. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'unité de base comprend un dispositif d'affichage monté sur la tête.
 
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'unité mobile est composée d'un dispositif de commande portable de réalité virtuelle.
 
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel les données de capteur sont indicatives d'une pose de l'une parmi l'unité de base et l'unité mobile par rapport à un cadre de monde.
 
6. Système comprenant :

une unité de base (102) dans un champ électromagnétique, EM, (110) ;

une unité mobile (112) située dans le champ EM ;

un émetteur EM (105) qui génère le champ EM et est associé à l'une parmi l'unité de base et l'unité mobile ;

un récepteur EM (115) qui détecte des valeurs d'amplitude de champ EM et est associé à l'autre parmi l'unité mobile et l'unité de base ;

un deuxième capteur (120), associé à l'une parmi l'unité mobile et l'unité de base, dans lequel le deuxième capteur génère des données de capteur indicatives d'une valeur de direction de mouvement de l'une parmi l'unité mobile et l'unité de base, dans lequel la valeur de direction de mouvement comprend l'un parmi un vecteur de distance, un vecteur de vitesse et un vecteur d'accélération ; et

au moins un processeur (108) qui calcule un ensemble de valeurs de pose candidates de l'unité mobile par rapport à l'unité de base sur base des valeurs d'amplitude de champ EM, et sélectionne une pose finale à partir de l'ensemble de valeurs de pose candidates sur base des données de capteur du deuxième capteur ;

caractérisé en ce que

l'au moins un processeur est configuré pour sélectionner la pose finale par : la détermination que l'unité de base s'est déplacée vers une première pose candidate parmi les deux poses candidates ;

le recalcul de la plage entre l'unité de base et les deux poses candidates à l'aide des données de pose EM ;

la sélection de la première pose candidate en tant que pose finale si la plage calculée pour les deux poses candidates a diminué, en sélectionnant sinon l'autre pose candidate comme pose finale.


 
7. Système comprenant :

une unité de base (102) dans un champ électromagnétique, EM, (110) ;

une unité mobile (112) située dans le champ EM ;

un émetteur EM (105) qui génère le champ EM et est associé à l'une parmi l'unité de base et l'unité mobile ;

un récepteur EM (115) qui détecte des valeurs d'amplitude de champ EM et est associé à l'autre parmi l'unité mobile et l'unité de base ;

un deuxième capteur (120), associé à l'une parmi l'unité mobile et l'unité de base, dans lequel le deuxième capteur génère des données de capteur indicatives d'une valeur de direction de mouvement de l'une parmi l'unité mobile et l'unité de base, dans lequel la valeur de direction de mouvement comprend l'un parmi un vecteur de distance, un vecteur de vitesse et un vecteur d'accélération ; et

au moins un processeur (108) qui calcule un ensemble de deux valeurs de pose candidates de l'unité mobile par rapport à l'unité de base sur base des valeurs d'amplitude de champ EM, et sélectionne une pose finale à partir de l'ensemble de deux valeurs de pose candidates sur base des données de capteur du deuxième capteur ;

caractérisé en ce que

l'au moins un processeur est configuré pour sélectionner la pose finale par :

la détermination que l'unité de base s'est éloignée d'une première pose candidate parmi les deux poses candidates ;

le recalcul de la plage entre l'unité de base et les deux poses candidates à l'aide de données de pose EM ;

la sélection de la première pose candidate en tant que pose finale si la plage calculée pour les deux poses candidates a augmenté, en sélectionnant sinon l'autre pose candidate comme pose finale.


 
8. Système selon l'une quelconque des revendications 6 à 7, dans lequel l'émetteur est composé d'un dispositif d'affichage monté sur la tête.
 
9. Système selon l'une quelconque des revendications 6 à 8, dans lequel un récepteur est composé d'un dispositif de commande portable de réalité virtuelle.
 
10. Système selon l'une quelconque des revendications 6 à 9, dans lequel le deuxième capteur génère des données utilisées pour calculer une pose de l'unité de base dans un cadre de monde ;
 




Drawing



































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description