(19)
(11)EP 3 693 313 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.05.2022 Bulletin 2022/19

(21)Application number: 19215328.6

(22)Date of filing:  11.12.2019
(51)International Patent Classification (IPC): 
B66B 5/00(2006.01)
B66B 7/06(2006.01)
B66B 5/02(2006.01)
(52)Cooperative Patent Classification (CPC):
B66B 5/0031; B66B 5/02; B66B 7/06

(54)

HOISTING ROPE MONITORING DEVICE

HUBSEILÜBERWACHUNGSVORRICHTUNG

DISPOSITIF DE SURVEILLANCE DE CÂBLE DE LEVAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.01.2019 US 201916260731

(43)Date of publication of application:
12.08.2020 Bulletin 2020/33

(73)Proprietor: Otis Elevator Company
Farmington, Connecticut 06032 (US)

(72)Inventor:
  • MURATA, Jiro
    Sanbu-gun, Chiba 289-1693 (JP)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
WO-A1-2011/147456
CN-U- 207 395 939
WO-A1-2018/172597
JP-A- 2011 195 293
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This invention generally relates to elevator systems. More particularly, this invention relates to a hoisting rope monitoring device for monitoring the snagging of hoisting ropes.

    [0002] Many elevator systems include an elevator car and counterweight that are suspended within a hoistway by roping comprising one or more hoisting ropes. Typically, wire ropes, cables or belts are used as the hoisting ropes for supporting the weight of the elevator car and counterweight and for moving the elevator car to desired positions within the hoistway. The hoisting ropes are typically routed about several sheaves according to a desired roping arrangement.

    [0003] There are conditions where one or more of the hoisting ropes may begin to sway within the hoistway. Rope sway may occur, for example, during earthquakes or very high wind conditions because the building will move responsive to the earthquake or high winds. As the building moves, long ropes associated with the elevator car and counterweight will tend to sway from side to side. This is most prominent in high rise buildings where an amount of building sway is typically larger compared to shorter buildings and when the natural frequency of a rope within the hoistway is an integer multiple of the frequency of building sway.

    [0004] Excessive rope sway of the hoisting ropes are undesirable for two main reasons; they can cause damage to the ropes or other equipment in the hoistway and their motion can produce objectionable vibration levels in the elevator car. The hoisting ropes may also snag or get caught on equipment in the hoistway such as rail brackets or hoistway doors due to rope sway. This may be dangerous if the elevator keeps on moving in such situation.

    [0005] There are many ideas to prevent or detect the sway or snag of hoisting ropes. However, almost all of these ideas require additional or new devices which will decrease feasibility due to cost and technical difficulties. CN207395939 describes an elevator rope tension monitoring device in which strain gauges are installed directly on each of the elevator ropes, and are used to measure changes in elevator rope tension. JP2011195293 describes a tension measuring device configured to determine the variation in tension between the ropes of an elevator car. WO2018/172597 describes a system for determining whether the load distribution among the ropes of an elevator car has been affected following an earthquake. WO2011/147456 describes an elevator rope tension monitoring device in which amplitude and frequency information is determined from a signal measured using a rope tension sensor.

    BRIEF SUMMARY



    [0006] According to one embodiment of the invention, a method for monitoring hoisting ropes in an elevator system is provided according to claim 1.

    [0007] In some embodiments, measuring tension of each hoisting rope includes measuring tension by a tension gauge provided on each hoisting rope.

    [0008] In some embodiments, rope snag is checked when a rope sway with a rope amplitude higher than the predetermined level is detected.

    [0009] In some embodiments, rope snag is checked after the rope sway has settled.

    [0010] In some embodiments, moving the elevator car to a predetermined refuge floor includes moving the elevator car at a normal speed to the predetermined refuge floor when the rope amplitude is higher than a predetermined first level.

    [0011] In some embodiments, moving the elevator car to a predetermined refuge floor includes moving the elevator car at a slow speed to the predetermined refuge floor and shutting down elevator operation when the rope amplitude is higher than a predetermined second level which is higher than the predetermined first level.

    [0012] Some embodiments further comprise receiving an earthquake detection signal, shutting down elevator operation, determining if the earthquake and building sway has stopped and checking rope snag after the earthquake and building sway has stopped.

    [0013] According to another embodiment of the invention, an elevator system is provided according to claim 8.

    [0014] In some embodiments, the hoisting rope monitoring device further includes an earthquake sensor.

    [0015] In some embodiments, the controller is an elevator controller.

    [0016] In some embodiments, rope snag is checked when a rope sway with a rope amplitude higher than the predetermined level is detected.

    [0017] In some embodiments, the elevator controller further receives an earthquake detection signal from the earthquake sensor, shuts down elevator operation, determines if the earthquake and building sway has stopped and checks rope snag after the earthquake and building sway has stopped.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0018] The foregoing and other features, and advantages of the disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which like elements are numbered alike in the several Figs.

    Fig. 1 illustrates a schematic view of an elevator system including the hoisting rope monitoring device of the present invention.

    Fig. 2 illustrates a schematic view of the elevator system of Fig. 1 with the hoisting ropes swaying.

    Fig. 3 illustrates a schematic view of the elevator system of Fig. 1 with one of the hoisting ropes caught on a structure in the hoistway.

    Fig. 4 is a flowchart showing the process of normal operation which may be performed by the elevator controller of Fig. 1.

    Fig. 5 is a flowchart showing the process of earthquake operation which may be performed by the elevator controller of Fig. 1.

    Fig. 6 is a flowchart showing the process of rope sway operation which may be performed by the elevator controller of Fig. 1.


    DETAILED DESCRIPTION



    [0019] Fig. 1 schematically shows selected portions of an elevator system 1 of the present invention. An elevator car 2 and counterweight 3 are both vertically movable within a hoistway 4. A plurality of hoisting ropes 5 couple the elevator car 2 to the counterweight 3. In this embodiment, the hoisting ropes 5 comprise round steel ropes but the hoisting ropes 5 may comprise belts including a plurality of longitudinally extending wire cords and a coating covering the wire cords. A variety of roping configurations may be useful in an elevator system that includes features designed according to an embodiment of this invention.

    [0020] The hoisting ropes 5 extend over a traction sheave 6 that is driven by a machine (not shown) positioned in a machine room 7 or in an upper portion of the hoistway 4. Traction between the sheave 6 and the hoisting ropes 5 drives the car 2 and counterweight 3 through the hoistway 4. Operation of the machine is controlled by an elevator controller 8 which may be positioned in the machine room 7. An earthquake sensor 9 for detecting an earthquake is also provided in the machine room 7 or in the proximity of the building including the elevator system 1. The earthquake sensor 9 provides an earthquake detection signal to the elevator controller 8. A tension gauge 10 is provided on each hoisting rope 5 above the elevator car 2. Each tension gauge 10 provides measured tension values to the elevator controller 8 via wired or wireless communication. The elevator controller 8 uses the measured tension values to calculate the load in the car 2, as is conventional.

    [0021] The hoisting rope monitoring device of the present invention is comprised of the elevator controller 8, the earthquake sensor 9 and the tension gauges 10 provided on the hoisting ropes 5 which all may be existing components of a conventional elevator system.

    [0022] Fig. 2 shows the hoisting ropes 5 swaying due to an earthquake or very high wind conditions. The sway, i.e., the lateral swinging motion of the hoisting ropes 5 causes the rope tension in the hoisting ropes 5 to periodically fluctuate. The elevator controller 8 of the present invention calculates the frequency F and amplitude A of rope sway of the hoisting ropes 5 from the periodical fluctuation of the measured rope tension values input from the tension gauges 10.

    [0023] Fig. 3 shows one of the hoisting ropes 5, the rightmost hoisting rope 5, snagged or caught on a structure 12 in the hoistway such as a rail bracket or hoistway door. In this situation, the tension in the snagged hoisting rope 5 will become significantly higher compared to the other hoisting ropes 5.

    [0024] Figs. 4 to 6 show the process performed by the elevator controller 8 of the present invention for monitoring the swaying or snagging of hoisting ropes 5. Fig. 4 shows the process performed during normal operation. In step 101, it is checked if an earthquake has been detected by the earthquake sensor 9. If yes, the process proceeds to earthquake operation. If no, the process proceeds to step 102 to check whether the car 2 is in an idle mode at any landing floor. If no, the process waits until the car 2 switches to an idle mode. If yes, the tension of each hoisting rope 5 is measured and the frequency and amplitude of each rope sway is calculated in step 103.

    [0025] In step 104, it is checked if the amplitude of any hoisting rope 5 is higher than a second reference level. If yes, the process proceeds to rope sway operation. If no, it is checked if the amplitude of any hoisting rope 5 is higher than a first reference level. The second reference level is larger than the first reference level (second reference level > first reference level). If yes, the car 2 is moved at a normal speed to a predetermined refuge floor where the hoisting ropes 5 do not resonate with the natural frequency of the building and the process ends at END The refuge floor may be determined beforehand based on the natural frequency of the building and the natural frequency of the hoisting ropes 5 with the elevator car 2 parked at each floor. If no, the process proceeds directly to END The process of steps 101 to 106 is repeated while the elevator is in an idle mode. As soon as the elevator controller 8 receives a car call, the process is interrupted to respond to the call.

    [0026] Fig. 5 shows the process performed during earthquake operation. In step 111, it is checked if the car 2 is running. If yes, the car 2 is stopped at the nearest floor in step 112 and the door is opened and an announcement to get off the elevator car 2 is provided to passengers in step 113. After making sure that all passengers have exited the elevator car 2, such as by checking the load inside the car 2, the doors are closed and elevator operation is shut down in step 114.

    [0027] In step 115, it is checked if the earthquake and building sway has stopped. If no, the process repeats steps 114 and 115 until the earthquake and building sway stops. Once the earthquake and building sway stops, the process proceeds to step 116, measures the tension of each hoisting rope 5 and calculates a mean value of the tension in the hoisting ropes 5.

    [0028] Next, it is checked if there are any hoisting ropes 5 with a tension 100% higher than the mean value. It is to be understood that 100% is merely an example and the percentage should be determined based on elevator/building configuration and on customer requirements. If yes, a signal indicating rope snag is sent to an operator or a remote center and an alert "Rope snag detected" may be provided in step 118. Elevator operation is kept shut down until a mechanic arrives at the site to restore the elevator and reset the alert manually in step 119. If no, the process proceeds to step 120 and the elevator returns to normal operation once all other safety checks are passed.

    [0029] Fig. 6 shows the process performed during rope sway operation. In step 121, the car 2 is moved at a slow speed to a predetermined refuge floor where the hoisting rope 5 does not resonate with the natural frequency of the building. As previously explained, the refuge floor may be determined beforehand based on the natural frequency of the building and the natural frequency of the hoisting ropes 5 with the elevator car 2 parked at each floor. Then elevator operation is shut down in step 122. In step 123, the tension of each hoisting rope 5 is measured and the frequency and amplitude of each rope sway is calculated. In step 124, it is checked if the amplitudes of all hoisting ropes 5 are lower than the second reference level. If no, steps 123 and 124 are repeated until the amplitudes of all hoisting ropes 5 become lower than the second reference level. If yes, the mean value of the tension in the hoisting ropes 5 is calculated in step 125.

    [0030] Next, it is checked if there are any hoisting ropes 5 with tension 100% higher than the mean value in step 126. It is to be understood that 100% is merely an example and that the percentage should be determined based on elevator/building configuration and on customer requirements. If yes, a signal indicating the detection of rope snag is sent to an operator or a remote center and an alert "Rope snag detected" may be provided in step 127. Elevator operation is kept shut down until a mechanic arrives at the site to restore and reset the alert manually in step 128 and the process ends at END. If no, the process proceeds to step 129 and an inspection run of the elevator is performed at a slow speed.

    [0031] In step 130, it is checked if there is any failure. If yes, the process proceeds to step 128 and keeps elevator operation shut down until a mechanic arrives at the site to restore and reset the alert manually. If no, the process returns to normal operation.

    [0032] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. While the description has been presented for purposes of illustration and description, it is not intended to be exhaustive or limited to embodiments in the form disclosed. Accordingly, the disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.


    Claims

    1. A method for monitoring hoisting ropes (5) in an elevator system (1), comprising:

    measuring tension of each hoisting rope (5);

    calculating a mean value of the tension in the hoisting ropes (5);

    determining if the tension in any hoisting rope (5) is significantly higher than the mean value; and

    providing a signal that rope snag has been detected if the tension in any hoisting rope (5) is significantly higher than the mean value; characterized in that the method further comprises:
    measuring tension of each hoisting rope (5) while an elevator car (2) is parked at a floor;

    calculating rope frequency and rope amplitude of each rope sway based on periodical fluctuation of the tension; and

    moving an elevator car (2) to a predetermined refuge floor if the rope amplitude is higher than a predetermined level.


     
    2. The method of claim 1, wherein measuring tension of each hoisting rope (5) includes measuring tension by a tension gauge (10) provided on each hoisting rope (5).
     
    3. The method of claim 1 or 2, wherein rope snag is checked when a rope sway with a rope amplitude higher than the predetermined level is detected.
     
    4. The method of claim 3, wherein rope snag is checked after the rope sway has settled.
     
    5. The method of claim any preceding claim, wherein moving the elevator car (2) to a predetermined refuge floor includes moving the elevator car at a normal speed to the predetermined refuge floor when the rope amplitude is higher than a predetermined first level.
     
    6. The method of claim 5, wherein moving the elevator car (2) to a predetermined refuge floor includes moving the elevator car (2) at a slow speed to the predetermined refuge floor and shutting down elevator operation when the rope amplitude is higher than a predetermined second level which is higher than the predetermined first level.
     
    7. The method of claim 1, further comprising:

    receiving an earthquake detection signal;

    shutting down elevator operation;

    determining if the earthquake and building sway has stopped; and

    checking rope snag after the earthquake and building sway has stopped.


     
    8. An elevator system (1) comprising:

    an elevator car (2) vertically movable within a hoistway (4);

    a counterweight (3) connected to the elevator car (2) via a plurality of hoisting ropes (5) and vertically movable within the hoistway (4); and

    a hoisting rope monitoring device for monitoring the snagging of at least one hoisting rope (5), the hoisting rope monitoring device including:

    a tension gauge (10) provided on each hoisting rope (5); and

    a controller (8) which receives tension measurement of each hoisting rope (5) from each tension gauge (10), calculates a mean value of the tension in the hoisting ropes (5), determines if the tension in any hoisting

    rope (5) is significantly higher than the mean value, and provides a signal that rope snag has been detected if the tension in any hoisting

    rope (5) is significantly higher than the mean value; characterized in that:
    the controller (8) further receives the tension measurement of each hoisting rope (5) from each tension gauge (10) while the elevator car (2) is parked at a floor, calculates rope frequency and rope amplitude of each rope sway based on periodical fluctuation of the tension, and moves the elevator car (2) to a predetermined refuge floor if the rope amplitude is higher than a predetermined level.


     
    9. The elevator system of claim 8, wherein the hoisting rope monitoring device further includes an earthquake sensor (9).
     
    10. The elevator system of claim 8, wherein the controller (8) is an elevator controller.
     
    11. The elevator system of any of claims 8 to 10 wherein rope snag is checked when a rope sway with a rope amplitude higher than the predetermined level is detected.
     
    12. The elevator system of claims 9 and 10, wherein the elevator controller (8) further receives an earthquake detection signal from the earthquake sensor (9), shuts down elevator operation, determines if the earthquake and building sway has stopped and checks rope snag after the earthquake and building sway has stopped.
     


    Ansprüche

    1. Verfahren zur Überwachung von Hubseilen (5) in einem Aufzugsystem (1), umfassend:

    Messen der Zugspannung jedes Hubseils (5);

    Berechnen eines Mittelwerts der Zugspannung in den Hubseilen (5) ;

    Bestimmen, ob die Zugspannung in irgendeinem Hubseil (5) deutlich höher als der Mittelwert ist; und

    Bereitstellen eines Signals, dass ein Hängenbleiben des Seils erfasst wurde, wenn die Zugspannung in irgendeinem Hubseil (5) deutlich höher als der Mittelwert ist; dadurch gekennzeichnet, dass das Verfahren ferner umfasst:

    Messen der Zugspannung jedes Hubseils (5), während eine Aufzugkabine (2) in einem Stockwerk geparkt ist;

    Berechnen der Seilfrequenz und der Seilamplitude jeder Seilschwingung basierend auf einer periodischen Zugspannungsschwankung; und

    Bewegen einer Aufzugkabine (2) zu einem vorbestimmten Notausgangs-Stockwerk, wenn die Seilamplitude höher als ein vorbestimmtes Niveau ist.


     
    2. Verfahren nach Anspruch 1, wobei das Messen der Zugspannung jedes Hubseils (5) das Messen der Zugspannung durch einen Zugspannungsmesser (10) umfasst, der an jedem Hubseil (5) vorgesehen ist.
     
    3. Verfahren nach Anspruch 1 oder 2, wobei ein Hängenbleiben des Seils geprüft wird, wenn eine Seilschwingung mit einer Seilamplitude, die höher als das vorbestimmte Niveau ist, erfasst wird.
     
    4. Verfahren nach Anspruch 3, wobei das Hängenbleiben des Seils überprüft wird, nachdem sich die Seilschwingung gelegt hat.
     
    5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Bewegen der Aufzugkabine (2) zu einem vorbestimmten Notausgang-Stockwerk das Bewegen der Aufzugkabine mit einer normalen Geschwindigkeit zu dem vorbestimmten Notausgang-Stockwerk einschließt, wenn die Seilamplitude höher als ein vorbestimmtes erstes Niveau ist.
     
    6. Verfahren nach Anspruch 5, wobei das Bewegen der Aufzugkabine (2) zu einem vorbestimmten Notausgang-Stockwerk das Bewegen der Aufzugkabine (2) mit einer langsamen Geschwindigkeit zu dem vorbestimmten Notausgang-Stockwerk und das Abschalten des Aufzugbetriebs einschließt, wenn die Seilamplitude höher als ein vorbestimmtes zweites Niveau ist, das höher als das vorbestimmte erste Niveau ist.
     
    7. Verfahren nach Anspruch 1, ferner umfassend:

    Empfangen eines Erdbebendetektionssignals;

    Abschalten des Aufzugbetriebs;

    Bestimmen, ob das Erdbeben und die Gebäudeschwingung aufgehört haben; und

    Überprüfen des Hängenbleiben des Seils, nachdem das Erdbeben und die Gebäudeschwingung aufgehört haben.


     
    8. Aufzugsystem (1), umfassend:

    eine Aufzugkabine (2), die in einem Aufzugschacht (4) vertikal bewegbar ist;

    ein Gegengewicht (3), das mit der Aufzugkabine (2) über eine Vielzahl von Hubseilen (5) verbunden und innerhalb des Aufzugschachts (4) vertikal bewegbar ist; und

    eine Hubseilüberwachungsvorrichtung zum Überwachen des Hängenbleibens mindestens eines Hubseils (5), wobei die Hubseilüberwachungsvorrichtung Folgendes einschließt:

    einen Zugspannungsmesser (10), der an jedem Hubseil (5) vorgesehen ist; und

    eine Steuerung (8), die Zugspannungsmessungen jedes Hubseils (5) von jedem Zugspannungsmesser (10) empfängt, die einen Mittelwert der Zugspannung in den Hubseilen (5) berechnet, die bestimmt, ob die Zugspannung in irgendeinem Hubseil (5) deutlich höher als der Mittelwert ist, und die ein Signal bereitstellt, dass ein Hängenbleiben des Seils erfasst wurde, wenn die Spannung in irgendeinem Hubseil (5) deutlich höher als der Mittelwert ist;

    dadurch gekennzeichnet, dass:
    die Steuerung (8) ferner die Zugspannungsmessung jedes Hubseils (5) von jedem Zugspannungsmesser (10) empfängt, während die Aufzugkabine (2) in einem Stockwerk geparkt ist, die Seilfrequenz und die Seilamplitude jeder Seilschwingung basierend auf einer periodischen Schwankung der Zugspannung berechnet und die Aufzugkabine (2) zu einem vorbestimmten Notausgang-Stockwerk bewegt, wenn die Seilamplitude höher als ein vorbestimmtes Niveau ist.


     
    9. Aufzugsystem nach Anspruch 8, wobei die Hubseilüberwachungsvorrichtung ferner einen Erdbebensensor (9) einschließt.
     
    10. Aufzugsystem nach Anspruch 8, wobei die Steuerung (8) eine Aufzugsteuerung ist.
     
    11. Aufzugsystem nach einem der Ansprüche 8 bis 10, wobei ein Hängenbleiben des Seils überprüft wird, wenn ein Seilschwingen mit einer Seilamplitude erfasst wird, die höher als das vorbestimmte Niveau ist.
     
    12. Aufzugsystem nach Anspruch 9 und 10, wobei die Aufzugsteuerung (8) ferner ein Erdbebendetektionssignal von dem Erdbebensensor (9) empfängt, den Aufzugbetrieb abschaltet, bestimmt, ob das Erdbeben und die Gebäudeschwingung aufgehört haben, und das Hängenbleiben des Seils prüft, nachdem das Erdbeben und die Gebäudeschwingung aufgehört haben.
     


    Revendications

    1. Procédé de surveillance de câble de levage (5) dans un système d'ascenseur (1), comprenant :

    la mesure de la tension de chaque câble de levage (5) ;

    le calcul d'une valeur moyenne de la tension dans les câbles de levage (5) ;

    la détermination du fait de savoir si la tension d'un quelconque câble de levage (5) est significativement plus élevée que la valeur moyenne ; et

    la fourniture d'un signal indiquant qu'une anomalie sur le câble a été détectée si la tension dans un quelconque câble de levage (5) est significativement plus élevée que la valeur moyenne ;

    caractérisée en ce que le procédé comprend en outre :

    la mesure de la tension de chaque câble de levage (5) alors qu'une cabine d'ascenseur (2) est stationnée à un étage ;

    le calcul de la fréquence de câble et de l'amplitude de câble de chaque oscillation du câble en fonction de la fluctuation périodique de la tension ; et

    le déplacement d'une cabine d'ascenseur (2) vers un étage de refuge prédéterminé si l'amplitude du câble est supérieure à un niveau prédéterminé.


     
    2. Procédé selon la revendication 1, dans lequel la mesure de la tension de chaque câble de levage (5) comprend la mesure de la tension à l'aide d'une jauge de tension (10) fournie sur chaque câble de levage (5).
     
    3. Procédé selon la revendication 1 ou 2, dans lequel une anomalie sur le câble est vérifiée lorsqu'une oscillation de câble avec une amplitude de câble supérieure au niveau prédéterminé est détectée.
     
    4. Procédé selon la revendication 3, dans lequel une anomalie sur le câble est vérifiée après la stabilisation de l'oscillation de câble.
     
    5. Procédé selon une quelconque revendication précédente, dans lequel le déplacement de la cabine d'ascenseur (2) à un étage de refuge prédéterminé comprend le déplacement de la cabine d'ascenseur à une vitesse normale vers l'étage de refuge prédéterminé lorsque l'amplitude de câble est supérieure à un premier niveau prédéterminé.
     
    6. Procédé selon la revendication 5, dans lequel le déplacement de la cabine d'ascenseur (2) vers un étage de refuge prédéterminé comprend le déplacement de la cabine d'ascenseur (2) à une vitesse lente vers l'étage de refuge prédéterminé et l'arrêt du fonctionnement de l'ascenseur lorsque l'amplitude du câble est supérieure à un second niveau prédéterminé qui est supérieur au premier niveau prédéterminé.
     
    7. Procédé selon la revendication 1, comprenant en outre :

    la réception d'un signal de détection de tremblement de terre ;

    l'arrêt du fonctionnement de l'ascenseur ;

    la détermination de l'arrêt ou non du tremblement de terre et de l'oscillation du bâtiment ; et

    la vérification d'une anomalie sur le câble après l'arrêt de l'oscillation du tremblement de terre et du bâtiment.


     
    8. Système d'ascenseur (1), comprenant :

    une cabine d'ascenseur (2) mobile verticalement à l'intérieur d'une cage d'ascenseur (4) ;

    un contrepoids (3) relié à la cabine d'ascenseur (2) par une pluralité de câbles de levage (5) et mobile verticalement dans la cage d'ascenseur (4) ; et

    un dispositif de surveillance du câble de levage pour la surveillance de l'accrochage d'au moins un câble de levage (5), le dispositif de surveillance du câble de levage comprenant :

    une jauge de tension (10) prévue sur chaque câble de levage (5) ; et

    un dispositif de commande (8) qui reçoit la mesure de tension de chaque câble de levage (5) de chaque jauge de tension (10) calcule une valeur moyenne de la tension dans les câbles de levage (5), détermine si la tension dans un quelconque câble de levage (5) est significativement plus élevée que la valeur moyenne, et fournit un signal indiquant qu'une anomalie sur le câble a été détectée si la tension dans un quelconque câble de levage (5) est significativement plus élevée que la valeur moyenne ; caractérisé en ce que :
    le dispositif de commande (8) reçoit en outre la mesure de tension de chaque câble de levage (5) de chaque jauge de tension (10) pendant que la cabine d'ascenseur (2) est stationnée à un étage, calcule la fréquence de câble et l'amplitude de câble de chaque oscillation de câble en fonction de la fluctuation périodique de la tension, et déplace la cabine d'ascenseur (2) vers un étage de refuge prédéterminé si l'amplitude du câble est supérieure à un niveau prédéterminé.


     
    9. Système d'ascenseur selon la revendication 8, dans lequel le dispositif de surveillance du câble de levage comprend en outre un capteur de tremblement de terre (9).
     
    10. Système d'ascenseur selon la revendication 8, dans lequel le dispositif de commande (8) est un dispositif de commande d'ascenseur.
     
    11. Système d'ascenseur selon l'une quelconque des revendications 8 à 10, dans lequel une anomalie sur le câble est vérifiée lorsqu'une oscillation de câble avec une amplitude de câble supérieure au niveau prédéterminé est détectée.
     
    12. Système d'ascenseur selon les revendications 9 et 10, dans lequel le dispositif de commande d'ascenseur (8) reçoit en outre un signal de détection de tremblement de terre du capteur de tremblement de terre (9), arrête le fonctionnement de l'ascenseur, détermine si l'oscillation du tremblement de terre et du bâtiment s'est arrêtée et vérifie une anomalie sur le câble après l'arrêt de l'oscillation du tremblement de terre et du bâtiment.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description