(19)
(11)EP 3 705 703 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.09.2023 Bulletin 2023/37

(21)Application number: 20167133.6

(22)Date of filing:  14.03.2014
(51)International Patent Classification (IPC): 
F02C 7/28(2006.01)
F01D 11/00(2006.01)
F04D 29/06(2006.01)
F02C 7/06(2006.01)
F04D 29/08(2006.01)
(52)Cooperative Patent Classification (CPC):
F02C 7/06; F04D 29/063; F04D 29/124; F05D 2260/941; F01D 25/183; F01D 11/003; F01D 25/16; F16J 15/16; F16J 15/342; F16J 15/3452; F05D 2240/55; F05D 2240/70; F05D 2260/231; F02C 7/28; F04D 29/059; F04D 29/102

(54)

SHIELD FOR ARRANGING BETWEEN A BEARING AND A ROTATING SEAL ELEMENT

ABSCHIRMUNG ZUR ANORDNUNG ZWISCHEN EINEM LAGER UND EINEM ROTIERENDEN DICHTUNGSELEMENT

BLINDAGE D'AGENCEMENT ENTRE UN PALIER ET UN ÉLÉMENT D'ÉTANCHÉITÉ ROTATIF


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 15.03.2013 US 201361787334 P

(43)Date of publication of application:
09.09.2020 Bulletin 2020/37

(62)Application number of the earlier application in accordance with Art. 76 EPC:
18158232.1 / 3346112
14770411.8 / 2971694

(73)Proprietor: Raytheon Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventor:
  • JAMES, Denman H.
    West Hartford, CT Connecticut 06119 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
GB-A- 1 336 808
US-A- 4 623 297
US-B1- 6 287 100
US-A- 4 406 460
US-A- 4 928 978
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL BACKGROUND OF THE INVENTION


    1. Technical Field



    [0001] This disclosure relates generally to rotational equipment and, more particularly, to an assembly including a bearing and a rotating seal element.

    2. Background Information



    [0002] A seal assembly is typically used in rotational equipment to provide a seal between regions of high and low fluid pressure and/or temperature. A seal assembly may be used, for example, to provide a gas and/or liquid seal between a stator and a rotor of a turbine engine, a pump, a compressor, a turbine of a hydro-electric or wind generator, as well as various other types of rotational equipment.

    [0003] A seal assembly for a turbine engine may include a lift-off face seal that is connected to a seal support. The seal support is connected to a stator with a plurality of fasteners. The seal support includes a plurality of coil springs that bias the face seal axially against a forward side of a seal landing. The seal landing is mounted on a shaft. The seal landing has an aft side that axially contacts an inner race of a bearing, which supports the shaft.

    [0004] During turbine engine operation, a side of the face seal and the forward side of the seal landing may be exposed to relatively hot air. A portion of this air may be directed into passages within the face seal to provide a film of air between the face seal and the seal landing. Heat energy may be transferred from the air into the seal landing, which may significantly increase the temperature of the seal landing. A portion of relatively cool lubrication oil may travel axially from the bearing onto the aft side of the seal landing. This lubrication oil may transfer the heat energy out of and thereby cool the seal landing. However, since air and lubrication oil typically have different heat transfer coefficients, the aft side of the seal landing may become significantly cooler than the forward side. The seal landing therefore may be subject to a relatively nonuniform temperature gradient, which may cause the seal landing to cone away from the face seal. Such coning may increase leakage between the face seal and the seal landing.

    [0005] US4406460A and GB1336808A disclose engine systems of the prior art.

    [0006] There is a need in the art for an improved seal assembly.

    SUMMARY OF THE DISCLOSURE



    [0007] According to an aspect of the invention, a turbine engine assembly is provided according to claim 1.

    [0008] Various optional embodiments are provided by the dependent claims.

    [0009] The foregoing features and the operation of the invention will become more apparent in light of the following description and the accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] 

    FIG. 1 is a side cutaway illustration of a geared turbine engine;

    FIG. 2 is a partial side sectional illustration of a turbine engine assembly for the engine of FIG. 1 at a first circumferential location;

    FIG. 3 is a partial side sectional illustration of the engine assembly of FIG. 2 at a second circumferential location;

    FIG. 4 is a side sectional illustration of a bearing for the engine assembly of FIGS. 2 and 3;

    FIG. 5 is a side sectional illustration of a shield for the engine assembly of FIGS. 2 and 3;

    FIG. 6 is a partial side sectional illustration of a portion of an alternate embodiment turbine engine assembly for the engine of FIG. 1;

    FIG. 7 is a partial side sectional illustration of the engine assembly of FIG. 2 during a mode of operation;

    FIG. 8 is a partial side sectional illustration of a portion of an alternate embodiment turbine engine assembly for the engine of FIG. 1; and

    FIG. 9 is a partial side sectional illustration of a portion of another alternate embodiment turbine engine assembly for the engine of FIG. 1.


    DETAILED DESCRIPTION OF THE INVENTION



    [0011] FIG. 1 is a sectional illustration of a geared turbine engine 20 that extends along an axis 22 between a forward airflow inlet 24 and an aft airflow exhaust 26. The engine 20 includes a fan section 28, a low pressure compressor (LPC) section 29, a high pressure compressor (HPC) section 30, a combustor section 31, a high pressure turbine (HPT) section 32, and a low pressure turbine (LPT) section 33. These engine sections 28-33 are arranged sequentially along the axis 22 and housed within an engine case 34.

    [0012] Each of the engine sections 28-30, 32 and 33 includes a respective rotor 36-40. Each of the rotors 36-40 includes a plurality of rotor blades arranged circumferentially around and connected (e.g., mechanically fastened, welded, brazed, adhered or otherwise attached) to one or more respective rotor disks. The fan rotor 36 is connected to a gear train 42. The gear train 42 and the LPC rotor 37 are connected to and driven by the LPT rotor 40 through a low speed shaft 44. The HPC rotor 38 is connected to and driven by the HPT rotor 39 through a high speed shaft 45. The low and high speed shafts 44 and 45 are rotatably supported by a plurality of bearings 46. Each of the bearings 46 is connected to the engine case 34 by at least one stator 48 such as, for example, an annular support strut.

    [0013] Air enters the engine 20 through the airflow inlet 24, and is directed through the fan section 28 and into an annular core gas path 50 and an annular bypass gas path 52. The air within the core gas path 50 may be referred to as "core air". The air within the bypass gas path 52 may be referred to as "bypass air" or "cooling air". The core air is directed through the engine sections 29-33 and exits the engine 20 through the airflow exhaust 26. Within the combustion section 31, fuel is injected into and mixed with the core air and ignited to provide forward engine thrust. The bypass air is directed through the bypass gas path 52 and out of the engine 20 to provide additional forward engine thrust or reverse thrust via a thrust reverser. The bypass air may also be utilized to cool various turbine engine components within one or more of the engine sections 29-33.

    [0014] FIGS. 2 and 3 illustrate a turbine engine assembly 54 included in the engine 20 of FIG. 1. The engine assembly 54 includes one of the shafts 44, 45, a seal assembly 56, one of the bearings 46, and an annular shield 58 (e.g., a rotor shield). The seal assembly 56 is adapted to seal a gap between one of the stators 48 and the respective shaft 44, 45. The seal assembly 56 includes an annular seal support 60, an annular stator seal element 62, and an annular rotor seal element 64. The stator seal element 62 may be configured as a hydrostatic seal such as a lift-off face seal. The rotor seal element 64 may be configured as a face seal landing.

    [0015] FIG. 4 illustrates the bearing 46 included in the engine assembly 54 of FIGS. 2 and 3. The bearing 46 extends axially between a bearing forward end 66 and a bearing aft end 68. The bearing 46 includes an annular inner race 70, an annular outer race 72, and a plurality of bearing elements 74 (e.g., cylinders, cones or balls). These bearing elements 74 are arranged circumferentially around the axis 22, and radially between the inner and the outer races 70 and 72.

    [0016] The inner race 70 extends radially outward to a race outer surface 76 having a radius 78. The outer race 72 circumscribes the inner race 70, and extends radially inward to a race inner surface 80 having a radius 82 that is greater than the radius 78. In the bearing 46 of FIG. 4, the radiuses 78 and 82 are measured at (e.g., on, adjacent or proximate) the forward end 66 for ease of illustration. One or both of these radiuses 78 and 82, however, may alternatively be measured at another location along the outer and inner surfaces 76 and 80. The radius 78, for example, may be measured at a radial outer most location where the outer surface 76 has the largest radius. In another example, the radius 82 may be measured at a radial inner most location where the inner surface 80 has the smallest radius. An annular gap 84 extends radially between the inner and the outer surfaces 76 and 80 at the forward end 66.

    [0017] FIG. 5 illustrates the shield 58 included in the engine assembly 54 of FIGS. 2 and 3. The shield 58 extends axially between a shield forward end 86 and a shield aft end 88. The shield 58 includes a tubular sleeve 90 and an annular disk 92 (e.g., an annular flange). The sleeve 90 extends axially between the forward and the aft ends 86 and 88, thereby defining an axial sleeve width 94. The sleeve 90 extends radially from a shield inner surface 96 to the disk 92, thereby defining a radial sleeve thickness 98 that may be less than the sleeve width 94. The disk 92 is axially offset from the forward end 86 and/or the aft end 88. The disk 92 extends axially between opposing surfaces 100, thereby defining an axial disk width 102 that is less than the sleeve width 94. The disk 92 extends radially out from the sleeve 90 to a shield outer surface 104, thereby defining a radial disk thickness 106. This disk thickness 106 may be greater than the disk width 102 and/or the sleeve thickness 98. The outer surface 104 has a radius 108 that is greater than the radius 78 (see FIG. 4). This radius 108, for example, may be substantially equal to the radius 82 as illustrated in FIGS. 2 and 3. Alternatively, the radius 108 may be less than or greater than the radius 82. In addition or alternatively, the radius 108 may be greater than a radius 110 of a radial outer surface 112 of the rotor seal element 64 as illustrated in FIG. 2.

    [0018] Referring to FIGS. 2 and 3, the rotor seal element 64, the shield 58 and the inner race 70 are mounted on the shaft 44, 45. The shield forward end 86 axially engages (e.g., contacts) the rotor seal element 64. The shield aft end 88 axially engages the inner race 70. The disk 92 therefore substantially blocks a line of sight (e.g., an axial line of sight) into the gap 84 as well as a line of sight (e.g., an axial line of sight) between the gap 84 and the rotor seal element 64.

    [0019] The outer race 72 is connected to the stator 48. The stator seal element 62 is connected to the seal support 60, and circumscribes the shaft 44, 45. The seal support 60 is connected to the stator 48. The seal support 60 and the stator 48 may form an annular housing 114. The housing 114 defines an annular chamber 116 into (e.g., through) which the shaft 44, 45 extends, and in which the seal elements 62 and 64, the shield 58 and the bearing 46 are arranged. The seal support 60 biases the stator seal element 62 towards a seal surface 118 of the rotor seal element 64 that faces axially away from the bearing 46. The stator seal element 62 therefore axially engages and forms a seal with the rotor seal element 64. Alternatively, as illustrated in FIG. 6, the seal surface 118 may face radially away from the inner race 70 and/or the bearing 46. The stator seal element 62 therefore may radially engage and form a seal with the rotor seal element 64.

    [0020] FIG. 7 illustrates the engine assembly 54 during a mode of engine operation where the seal elements 62 and 64 are exposed to relatively hot gas 120 within a plenum 122 located outside of the housing 114. A portion of this gas 120 may be directed into passages 124 within the stator seal element 62 to provide a film of air (e.g., a buffer) and reduce wear between the seal elements 62 and 64. Heat energy may be transferred from the gas 120 into the rotor seal element 64. Concurrently, the bearing 46 may receive relatively cool lubrication fluid (e.g., oil) to lubricate and/or cool the races 70 and 72 as well as the bearing elements 74. Various methods are known in the art for providing lubrication fluid to a bearing and therefore will not be discussed in further detail. A first portion 126 of the lubrication fluid may travel out of the bearing 46 in an axially aft and radially outward direction. A second portion 128 of the lubrication fluid may travel out of the gap 84 in an axially forward and radially outward direction. The disk 92 may substantially prevent some or all of the second portion 128 of the lubrication fluid from traveling towards (e.g., directly axially to) the rotor seal element 64. The disk 92 therefore may significantly reduce the quantity of lubrication fluid that would otherwise contact and transfer heat energy out of the rotor seal element 64. The rotor seal element 64 therefore may be subject to a relatively uniform temperature gradient, which may reduce coning of the rotor seal element 64.

    [0021] FIG. 8 illustrates an alternate embodiment turbine engine assembly 130 for the engine 20 of FIG. 1. In contrast to the engine assembly 54 of FIGS. 2 and 3, the engine assembly 130 includes one or more spacers 132 and 134 (e.g., tubular sleeves) and an alternate embodiment shield 136. The first spacer 132 is mounted on the shaft 44, 45 axially between the rotor seal element 64 and the shield 136. The second spacer 134 is mounted on the shaft 44, 45 axially between the shield 136 and the inner race 70. In contrast to the shield 58 of FIGS. 2 and 3, the shield 136 includes a disk 138 that extends radially between the shield inner surface 96 and the shield outer surface 104. The surface 100 engages the first spacer 132, and the second surface 100' engages the second spacer 134.

    [0022] FIG. 9 illustrates another alternate embodiment turbine engine assembly 140 for the engine 20 of FIG. 1. In contrast to the engine assembly of FIGS. 2 and 3, the engine assembly 140 includes a spacer 142 (e.g., a tubular sleeve) and an alternate embodiment shield 144 (e.g., a stator shield). The spacer 142 is mounted on the shaft 44, 45, and axially engages the rotor seal element 64 and the inner race 70. In contrast to the shield 58 of FIGS. 2 and 3, the shield 144 includes a base 146 that circumscribes an annular disk 148 (e.g., an annular flange), which may include one or more apertures 149 (e.g., drainage apertures) that extend axially through the disk 148. The base 146 is connected to the stator 48. The disk 148 extends axially between opposing surfaces 150, thereby defining an axial disk width. The disk 148 extends radially inward from the base 146 to a shield inner surface 154, thereby defining a radial disk thickness that may be greater than the disk width. The inner surface 154 has a radius 158 that is less than the radius 82 (see FIG. 4) of the inner surface 80. This radius 158, for example, may be substantially equal to the radius 78 of the outer surface 76 as illustrated in FIG. 9. Alternatively, the radius 158 may be less than or greater than the radius 78.

    [0023] The terms "forward", "aft", "inner" and "outer" are used to orientate the components of the engine assemblies 54, 130 and 140 described above relative to the turbine engine 20 and its axis 22. A person of skill in the art will recognize, however, one or more of these components such as the shields 58, 136 and 144 may be utilized in other orientations than those described above. The shield 58, 136 or 144, for example, may be arranged axially downstream of the inner race 70. The present invention therefore is not limited to any particular engine assembly or shield spatial orientations.

    [0024] One or more of the foregoing engine assemblies and/or their components may have various configurations other than those illustrated in the drawings and described above. For example, a control gap may be defined between the stator seal element 62 and the rotor seal element 64. The stator seal element 62 may be configured as a ring seal element. One of the elements 62, 64 may include one or more knife edge seals that radially and/or axially engage an (e.g., abradable) portion of the other one of the elements 64, 62. The shield may also or alternatively be utilized to prevent lubrication fluid from directly contacting other components other than the rotor seal element. The shield may also or alternatively be configured, for example, to prevent lubrication oil from directly contacting temperature sensitive equipment such as telemetric electronics that may be housed within the chamber. The present invention therefore is not limited to any particular engine assembly or assembly component configurations.

    [0025] A person of skill in the art will recognize the foregoing engine assemblies may be included in various turbine engines other than the one described above. A person of skill in the art will also recognize the engine assemblies may be included in various types of rotational equipment other than a turbine engine. The present invention therefore is not limited to any particular types or configurations of rotational equipment.

    [0026] While various embodiments of the present invention have been disclosed, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. For example, the present invention as described herein includes several aspects and embodiments that include particular features. Although these features may be described individually, it is within the scope of the present invention that some or all of these features may be combined within any one of the aspects and remain within the scope of the invention. Accordingly, the present invention is not to be restricted except in light of the attached claims.


    Claims

    1. A turbine engine assembly, comprising:

    a turbine engine shaft (44, 45) extending along an axis;

    a first rotor and a second rotor that are connected by the shaft (44, 45), wherein the first rotor includes a first plurality of rotor blades that are connected to a first rotor disk, and the second rotor includes a second plurality of rotor blades that are connected to a second rotor disk;

    a bearing (46) including an inner race (70) and an outer race (72), wherein the inner race (70) is mounted on the shaft (44, 45) and is separated from the outer race (72) by a gap (84); and

    a rotor seal element (64) mounted on the shaft (44, 45), said rotor seal element (64) being configured as a face seal landing; characterised by

    a shield (58) substantially blocking an axial line of sight between the gap (84) and the rotor seal element (64).


     
    2. The assembly of claim 1, wherein the rotor seal element (64) includes a seal surface that faces away from the bearing (46).
     
    3. The assembly of claim 1 or 2, wherein the shield (58) comprises an annular rotor shield that is mounted on the shaft (44, 45) axially between the inner race (70) and the rotor seal element (64).
     
    4. The assembly of claim 3, wherein:

    the inner race (70) extends radially outward to an outer surface (76) with a first radius (78);

    the outer race (72) extends radially inward to an inner surface (80) with a second radius (82); and

    the shield (58) extends radially outward to an outer surface (104) with a third radius (108) that is greater than the first radius (78) and less than the second radius (82).


     
    5. The assembly of claim 3, wherein:

    the outer race (72) extends radially inward to an inner surface (80) with a first radius (82); and

    the shield (58) extends radially outward to an outer surface (104) with a second radius (108) that is one of substantially equal to and greater than the first radius (78).


     
    6. The assembly of any preceding claim, wherein the shield (58) includes a sleeve (90) or a base (146) and an annular flange (92).
     
    7. The assembly of claim 6, wherein the bearing (46) is configured to receive a lubrication fluid, and the flange (92) is configured to substantially prevent the lubrication fluid from:

    traveling out of the bearing (46) onto the rotor seal element (64); and/or

    traveling axially from the bearing (46) onto the rotor seal element (64).


     
    8. The assembly of any preceding claim, wherein the shield (58) axially engages at least one of the inner race (70) and the rotor seal element (64).
     
    9. The assembly of any preceding claim, wherein the assembly further comprises a spacer (132, 134) mounted on the shaft (44, 45) axially between the shield (136) and one of the inner race (70) and the rotor seal element (64).
     
    10. The assembly of any of claims 1 to 9, wherein:

    the inner race (70) extends radially outward to an outer surface (76) with a first radius (78);

    the outer race (72) extends radially inward to an inner surface (80) with a second radius (82); and

    the shield (58) comprises a stator shield that extends radially inward to an inner surface (154) with a third radius (158) that is greater than the first radius (78) and less than the second radius (82).


     
    11. The assembly of any of claims 1 to 9, wherein:

    the inner race (70) extends radially outward to an outer surface (76) with a first radius (78); and

    the shield (58) comprises a stator shield that extends radially inward to an inner surface (154) with a second radius (158) that is one of substantially equal to and less than the first radius (78).


     
    12. The assembly of any preceding claim, further comprising an annular stator seal element (62) that axially engages and forms a seal with the rotor seal element (64), wherein the rotor seal element (64) is arranged axially between the shield (58) and the stator seal element (62).
     
    13. The assembly of claim 12, wherein the stator seal element (62) is configured as a lift-off face seal.
     
    14. The assembly of any of claims 1 to 10, wherein the rotor seal element (64) includes a seal surface (118) that faces radially away from the bearing (46).
     
    15. The assembly of claim 14, further comprising an annular stator seal element (62) that radially engages and forms a seal with the rotor seal element (64).
     


    Ansprüche

    1. Turbinentriebwerksbaugruppe, umfassend:

    eine Turbinentriebwerkswelle (44, 45), die sich entlang einer Achse erstreckt;

    einen ersten Rotor und einen zweiten Rotor, die durch die Welle (44, 45) verbunden sind, wobei der erste Rotor eine erste Vielzahl von Rotorschaufeln beinhaltet, die mit einer ersten Rotorscheibe verbunden ist, und der zweite Rotor eine zweite Vielzahl von Rotorschaufeln beinhaltet, die mit einer zweiten Rotorscheibe verbunden ist;

    ein Lager (46), das einen Innenring (70) und einen Außenring (72) beinhaltet, wobei der Innenring (70) an der Welle (44, 45) montiert ist und von dem Außenring (72) durch einen Spalt (84) getrennt ist; und

    ein Rotordichtungselement (64), das an der Welle (44, 45) montiert ist, wobei das Rotordichtungselement (64) als ein Gleitringdichtungsaufsatz konfiguriert ist; gekennzeichnet durch

    eine Abschirmung (58), die eine axiale Blicklinie zwischen dem Spalt (84) und dem Rotordichtungselement (64) im Wesentlichen blockiert.


     
    2. Baugruppe nach Anspruch 1, wobei das Rotordichtungselement (64) eine Dichtungsfläche beinhaltet, die von dem Lager (46) abgewandt ist.
     
    3. Baugruppe nach Anspruch 1 oder 2, wobei die Abschirmung (58) eine ringförmige Rotorabschirmung umfasst, die axial zwischen dem Innenring (70) und dem Rotordichtungselement (64) an der Welle (44, 45) montiert ist.
     
    4. Baugruppe nach Anspruch 3, wobei:

    sich der Innenring (70) radial nach außen zu einer äußeren Fläche (76) mit einem ersten Radius (78) erstreckt;

    sich der Außenring (72) radial nach innen zu einer inneren Fläche (80) mit einem zweiten Radius (82) erstreckt; und

    sich die Abschirmung (58) radial nach außen zu einer äußeren Fläche (104) mit einem dritten Radius (108) erstreckt, der größer als der erste Radius (78) und kleiner als der zweite Radius (82) ist.


     
    5. Baugruppe nach Anspruch 3, wobei:

    sich der Außenring (72) radial nach innen zu einer inneren Fläche (80) mit einem zweiten Radius (82) erstreckt; und

    sich die Abschirmung (58) radial nach außen zu einer äußeren Fläche (104) mit einem zweiten Radius (108) erstreckt, der eins von im Wesentlichen gleich dem ersten Radius (78) und größer als dieser ist.


     
    6. Baugruppe nach einem der vorhergehenden Ansprüche, wobei die Abschirmung (58) eine Hülse (90) oder einen Sockel (146) und einen ringförmigen Flansch (92) beinhaltet.
     
    7. Baugruppe nach Anspruch 6, wobei das Lager (46) dazu konfiguriert ist, ein Schmierfluid aufzunehmen, und der Flansch (92) dazu konfiguriert ist, das Schmierfluid im Wesentlichen an Folgendem zu hindern:

    sich aus dem Lager (46) auf das Rotordichtungselement (64) zu bewegen; und/oder

    sich axial von dem Lager (46) auf das Rotordichtungselement (64) zu bewegen.


     
    8. Baugruppe nach einem der vorhergehenden Ansprüche, wobei die Abschirmung (58) mit mindestens einem von dem Innenring (70) und dem Rotordichtungselement (64) axial in Eingriff steht.
     
    9. Baugruppe nach einem der vorhergehenden Ansprüche, wobei die Baugruppe ferner ein Abstandstück (132, 134) umfasst, das axial zwischen der Abschirmung (136) und einem von dem Innenring (70) und dem Rotordichtungselement (64) an der Welle (44, 45) montiert ist.
     
    10. Baugruppe nach einem der Ansprüche 1 bis 9, wobei:

    sich der Innenring (70) radial nach außen zu einer äußeren Fläche (76) mit einem ersten Radius (78) erstreckt;

    sich der Außenring (72) radial nach innen zu einer inneren Fläche (80) mit einem zweiten Radius (82) erstreckt; und

    die Abschirmung (58) eine Statorabschirmung umfasst, die sich radial nach innen zu einer inneren Fläche (154) mit einem dritten Radius (158) erstreckt, der größer als der erste Radius (78) und kleiner als der zweite Radius (82) ist.


     
    11. Baugruppe nach einem der Ansprüche 1 bis 9, wobei:

    sich der Innenring (70) radial nach außen zu einer äußeren Fläche (76) mit einem ersten Radius (78) erstreckt; und

    die Abschirmung (58) eine Statorabschirmung umfasst, die sich radial nach innen zu einer inneren Fläche (154) mit einem zweiten Radius (158) erstreckt, der eins von im Wesentlichen gleich dem ersten Radius (78) und kleiner als dieser ist.


     
    12. Baugruppe nach einem der vorhergehenden Ansprüche, ferner umfassend ein ringförmiges Statordichtungselement (62), das axial mit dem Rotordichtungselement (64) in Eingriff steht und eine Dichtung damit bildet, wobei das Rotordichtungselement (64) axial zwischen der Abschirmung (58) und dem Statordichtungselement (62) angeordnet ist.
     
    13. Baugruppe nach Anspruch 12, wobei das Statordichtungselement (62) als eine Abhebegleitringdichtung konfiguriert ist.
     
    14. Baugruppe nach einem der Ansprüche 1 bis 10, wobei das Rotordichtungselement (64) eine Dichtungsfläche (118) beinhaltet, die radial von dem Lager (46) abgewandt ist.
     
    15. Baugruppe nach Anspruch 14, ferner umfassend ein ringförmiges Statordichtungselement (62), das radial mit dem Rotordichtungselement (64) in Eingriff steht und eine Dichtung damit bildet.
     


    Revendications

    1. Ensemble moteur à turbine, comprenant :

    un arbre de moteur de turbine (44, 45) s'étendant le long d'un axe ;

    un premier rotor et un second rotor qui sont connectés par l'arbre (44, 45), dans lequel le premier rotor comporte une première pluralité de pales de rotor qui sont connectées à un premier disque de rotor, et le second rotor comporte une seconde pluralité de pales de rotor qui sont connectées à un second disque rotor ;

    un palier (46) comportant une bague interne (70) et une bague externe (72), dans lequel la bague interne (70) est montée sur l'arbre (44, 45) et est séparée de la bague externe (72) par un espace (84) ; et

    un élément d'étanchéité de rotor (64) monté sur l'arbre (44, 45), ledit élément d'étanchéité de rotor (64) étant configuré comme une zone de réception de joint d'étanchéité facial ;

    caractérisé par

    un blindage (58) bloquant sensiblement une ligne de visée axiale entre l'espace (84) et l'élément d'étanchéité de rotor (64).


     
    2. Ensemble selon la revendication 1, dans lequel l'élément d'étanchéité de rotor (64) comporte une surface d'étanchéité qui est tournée à l'opposé du palier (46).
     
    3. Ensemble selon la revendication 1 ou 2, dans lequel le blindage (58) comprend un blindage de rotor annulaire qui est monté sur l'arbre (44, 45) axialement entre la bague interne (70) et l'élément d'étanchéité de rotor (64).
     
    4. Ensemble selon la revendication 3, dans lequel :

    la bague interne (70) s'étend radialement vers l'extérieur jusqu'à une surface externe (76) avec un premier rayon (78) ;

    la bague externe (72) s'étend radialement vers l'intérieur jusqu'à une surface interne (80) avec un deuxième rayon (82) ; et

    le blindage (58) s'étend radialement vers l'extérieur jusqu'à une surface externe (104) avec un troisième rayon (108) qui est supérieur au premier rayon (78) et inférieur au deuxième rayon (82) .


     
    5. Ensemble selon la revendication 3, dans lequel :

    la bague externe (72) s'étend radialement vers l'intérieur jusqu'à une surface interne (80) avec un premier rayon (82) ; et

    le blindage (58) s'étend radialement vers l'extérieur jusqu'à une surface externe (104) avec un deuxième rayon (108) qui est l'un sensiblement égal et/ou supérieur au premier rayon (78).


     
    6. Ensemble selon une quelconque revendication précédente, dans lequel le blindage (58) comporte un manchon (90) ou une base (146) et une bride annulaire (92).
     
    7. Ensemble selon la revendication 6, dans lequel le palier (46) est configuré pour recevoir un fluide de lubrification, et la bride (92) est configurée pour empêcher sensiblement le fluide de lubrification :

    de se déplacer hors du palier (46) sur l'élément d'étanchéité de rotor (64) ; et/ou

    de se déplacer axialement du palier (46) sur l'élément d'étanchéité de rotor (64).


     
    8. Ensemble selon une quelconque revendication précédente, dans lequel le blindage (58) vient axialement en prise avec au moins l'un parmi la bague interne (70) et l'élément d'étanchéité de rotor (64).
     
    9. Ensemble selon une quelconque revendication précédente, dans lequel l'ensemble comprend en outre une entretoise (132, 134) montée sur l'arbre (44, 45) axialement entre le blindage (136) et l'un parmi la bague interne (70) et l'élément d'étanchéité de rotor (64).
     
    10. Ensemble selon l'une quelconque des revendications 1 à 9, dans lequel :

    la bague interne (70) s'étend radialement vers l'extérieur jusqu'à une surface externe (76) avec un premier rayon (78) ;

    la bague externe (72) s'étend radialement vers l'intérieur jusqu'à une surface interne (80) avec un deuxième rayon (82) ; et

    le blindage (58) comprend un blindage de stator qui s'étend radialement vers l'intérieur jusqu'à une surface interne (154) avec un troisième rayon (158) qui est supérieur au premier rayon (78) et inférieur au deuxième rayon (82).


     
    11. Ensemble selon l'une quelconque des revendications 1 à 9, dans lequel :

    la bague interne (70) s'étend radialement vers l'extérieur vers une surface externe (76) avec un premier rayon (78) ; et

    le blindage (58) comprend un blindage de stator qui s'étend radialement vers l'intérieur jusqu'à une surface interne (154) avec un deuxième rayon (158) qui est sensiblement égal ou inférieur au premier rayon (78).


     
    12. Ensemble selon une quelconque revendication précédente, comprenant en outre un élément d'étanchéité de stator annulaire (62) qui vient axialement axialement en prise et forme un joint d'étanchéité avec l'élément d'étanchéité de rotor (64), dans lequel l'élément d'étanchéité de rotor (64) est agencé axialement entre le blindage (58) et l'élément d'étanchéité de stator (62).
     
    13. Ensemble selon la revendication 12, dans lequel l'élément d'étanchéité de stator (62) est configuré comme un joint d'étanchéité facial de décollement.
     
    14. Ensemble selon l'une quelconque des revendications 1 à 10, dans lequel l'élément d'étanchéité de rotor (64) comporte une surface d'étanchéité (118) qui fait face radialement à l'opposé du palier (46).
     
    15. Ensemble selon la revendication 14, comprenant en outre un élément d'étanchéité de stator annulaire (62) qui vient radialement en prise et forme un joint d'étanchéité avec l'élément d'étanchéité de rotor (64).
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description