(19)
(11)EP 3 708 939 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.10.2021 Bulletin 2021/41

(21)Application number: 20161221.5

(22)Date of filing:  05.03.2020
(51)International Patent Classification (IPC): 
F28D 7/16(2006.01)
(52)Cooperative Patent Classification (CPC):
F28D 7/1615; F28F 9/0131; F28D 7/16; F28F 2009/226; F28D 7/163; F28F 9/22; F28F 2275/125

(54)

HEAT EXCHANGER AND ASSOCIATED TUBE SHEET

WÄRMETAUSCHER UND ZUGEHÖRIGES ROHRBLATT

ÉCHANGEUR DE CHALEUR ET FEUILLE DE TUBE ASSOCIÉE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.03.2019 US 201962818426 P

(43)Date of publication of application:
16.09.2020 Bulletin 2020/38

(73)Proprietor: Carrier Corporation
Palm Beach Gardens, FL 33418 (US)

(72)Inventor:
  • SIENEL, Tobias H.
    Palm Beach Gardens, FL Florida 33418 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
US-A- 3 324 941
US-A- 4 643 249
US-A1- 2016 273 845
US-A- 3 332 479
US-A- 5 036 912
US-A1- 2018 283 813
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Heat exchangers generally include many tubes that extend through a body portion to transfer heat from the fluid traveling inside the tubes and the fluid located inside the body portion. Due to the size of some heat exchangers, it is necessary to support the tubes inside the body portion to prevent or reduce movement of the plurality of tubes during operation. One way of supporting the tubes extending through the heat exchanger is with a tube sheet. Tube sheet includes a plurality of holes that accept a corresponding one of the tubes. To allow the tubes to be installed within the tube sheet, the holes in the tube sheet are larger than the tubes and a mechanical fastener or swaging process is used to secure the tubes to the tube sheet to support the tubes.

    [0002] US 3324941 A discloses a heat exchanger according to the preamble of claim 1 and describes a structure for supporting tubes of a heat exchanger in predetermined spaced relationship one with another, comprising spaced first and second members each having openings therethrough, defining a plurality of tube-receiving passageways. Expansible means are arranged between the first and second members adjacent each of the tube-receiving passageways. Each of the expansible means forms a wall portion of the associated tube-receiving passageway. The expansible means comprises an elastomeric material which expands when exposed to heat exchange medium. US 3332479 A discloses a similar system wherein a structure for supporting tubes of a heat exchanger is provided with expansible means arranged about openings for receiving tubes of the heat exchanger.

    [0003] US 4643249 A discloses a heat exchanger baffle plate having a plurality of openings for receiving a plurality of longitudinally extending tubes, which is disposed within a shell and is constructed of a vibration-damping material.

    [0004] US 5036912 A discloses a shell-and-tube type heat exchanger wherein the tube bundle is supported by end members each comprising a layer of elastomeric material sandwiched between two rigid plates.

    SUMMARY



    [0005] According to a first aspect, a heat exchanger includes a body portion and a pair of end plates at least partially forming an enclosure with the body portion. A plurality of tubes extend through at least one of the body portion and the pair of end plates. At least one tube sheet includes a plurality of openings with a corresponding one of the plurality of tubes located in one of the plurality of openings. The tube sheet is made of a material which expands in the presence of refrigerant. The tube sheet is formed of a single unitary piece of material.

    [0006] Optionally, the heat exchanger is a non-baffled heat exchanger.

    [0007] Optionally, the at least one tube sheet includes refrigerant expanding material extending uninterrupted between adjacent openings of the plurality of openings.

    [0008] Optionally, the tube sheet at least partially follows an inner contour of the body portion.

    [0009] Optionally, the tube sheet extends between 20% and 90% of a diameter of the body portion.

    [0010] Optionally, the body portion includes a first refrigerant port and a second refrigerant port. At least one tube sheet includes a plurality of tube sheets.

    [0011] Optionally, a support structure supports the tube sheet.

    [0012] Optionally, the support structure includes a plurality of rods forming a matrix.

    [0013] Optionally, the plurality of tubes include heat transfer enhancing features on an exterior surface that engage the at least one tube sheet.

    [0014] According to a second aspect there is provided, a method of operating a heat exchanger comprising the step of supporting a plurality of tubes that extend through a corresponding one of a plurality of opening in a tube sheet. The tube sheet is placed in contact with a refrigerant. The tube sheet expands in response to contact with the refrigerant entering the heat exchanger and contacts the plurality of tubes. The plurality of tubes sheets are made of a single unitary piece of refrigerant expanding material.

    [0015] Optionally, the plurality of tubes include heat transfer enhancing features on an exterior surface that engage the tube sheet.

    [0016] Optionally, the tube sheet extends between 20% and 90% of a diameter of a body portion of the heat exchanger.

    [0017] Optionally, a support structure supports the tube sheet.

    [0018] Optionally, vibrations and movement of the plurality of tubes are reduced with the tube sheet in contact with the refrigerant.

    [0019] Optionally, the heat exchanger is a non-baffled heat exchanger.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0020] Certain exemplary embodiments will now be described in greater detail by way of example only and with reference to the accompanying drawings in which:

    Figure 1 illustrates an example heat exchanger;

    Figure 2 illustrates a sectional view of the heat exchanger taken along line 2-2 of Figure 1 showing a tube sheet;

    Figure 3 illustrates an enlarged view of a portion of Figure 2;

    Figure 4 illustrates the sectional view of Figure 2 with refrigerant in the heat exchanger;

    Figure 5 illustrates an enlarged view of a portion of Figure 4;

    Figure 6 illustrates a sectional view taken along line 6-6 of Figure 2 showing multiple tube sheets;

    Figure 7 illustrates another example tube sheet;

    Figure 8 illustrates an enlarged view of another example opening in the tube sheet; and

    Figure 9 illustrates the tube sheet of Figure 8 in an expanded state.


    DETAILED DESCRIPTION



    [0021] Figure 1 illustrates an example heat exchanger 20, such as an evaporator or a condenser, used in a refrigeration system or other device for transferring heat between multiple fluids. The heat exchanger 20 includes a body portion 22 enclosed by a pair of end plates 24. A plurality of tubes 28 extend through the enclosure defined by the body portion 22 and the pair of end plates 24. A water box 25 encloses the end plates 24 to provide fluid into or out of the plurality of tubes 28. The plurality of tubes 28 are fluidly sealed with a corresponding one of the pair of end plates 24 to prevent fluid from leaving the heat exchanger 20 between the plurality of tubes 28 and the corresponding end plate 24 that the tubes 28 extend through.

    [0022] Refrigerant enters the heat exchanger 20 through either a first port 26A or a second port 26B and exits the heat exchanger 20 through the other of the first port 26A or the second port 26B. In the illustrated example, the first and second ports 26A, 26B are located on opposite sides of the heat exchanger 20. Although only a single first port 26A and a single second port 26B are shown in the illustrated example, there could be multiple first ports 26A and second ports 26B and the first ports 26A and the second ports 26B could be located in other portions of the heat exchanger 20, such as the pair of ends plates 24.

    [0023] Figure 2 illustrates a sectional view of the heat exchanger 20 taken along line 2-2 of Figure 1. As shown in Figure 2, the body portion 22 at least partially forms an internal cavity 30 with the end plates 24 (see Figure 1). In the illustrated example, the body portion 22 includes a circular cross section. However, the body portion 22 is not limited to having a circular cross-section and could form other cross-sectional shapes, such as squares, rectangles, or ovals.

    [0024] The plurality of tubes 28 are at least partially supported by a tube sheet 32. The tube sheet 32 includes an outer perimeter 32A that at least partially follows an inner contour 22A of the body portion 22. The tube sheet 32 could be attached to the body portion 22 through a mechanical connection, such as a fastener or adhesive, or be friction fit against the inner contour 22A to allow some movement of the tube sheet 32. In the illustrated example, the tube sheet 32 extends between 60% and 70% of a diameter of the body portion 22 to provide a region of the internal cavity 30 that is unobstructed by the tube sheet 32. In another example, the tube sheet 32 could extend anywhere from 20% up to 90% of the diameter of the body portion. Additionally, the tube sheet 32 could be located inward from opposing sides of inner contour 22A of the body portion 22 such that there is an unobstructed region of the internal cavity 30 on opposite sides of the tube sheet 32.

    [0025] The tube sheet 32 is made of an expandable material that is formed from a single unitary piece of material. The expandable material includes a material which will swell or expand in the presence of a working fluid, such as a refrigerant. For example, the expandable material expands in the presence of the working fluid by a process that includes at least one of adsorption of molecules of the working fluid onto the expandable material (e.g., onto the wettable surface) or diffusion of the working fluid into the expandable material. The expandable material can include a polymer material, for example, Nylon (e.g., Nylon 6,6), polytetrafluoroethylene (PTFE), polyimide, polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polyamide-imide (PAI). The expandable material can optionally further include a filler material, for example, glass fiber, carbon fiber, basalt fiber, aramid fiber or the like. The expandable material can include 0 weight % (wt%) to 90 wt% filler material. The tube sheet 32 is formed from a single piece of material, and may be formed through either casting the material in a die or machining a sheet of the material to the desired profile to accommodate the plurality of tubes 28 and the shape of the inner contour 22A. The working fluid can include R744 (CO2), R410a, R1234zd, R290 (propane), R1224yd, R1123, R1234ze, or another similar working fluid.

    [0026] In the illustrated example, the tube sheet 32 includes a plurality of openings 34 that each have a diameter D1. The diameter D1 is larger than an outer diameter DT of each of the plurality of tubes 28 (see Figure 3). The difference in length between the diameter D1 and the diameter DT creates a spacing between the plurality of tubes 28 and a corresponding one of the openings 34. The spacing formed between the plurality of tubes 28 and the corresponding one of the openings 34 allows for the plurality of tubes 28 to easily pass through the tube sheet 32 during assembly of the heat exchanger 20.

    [0027] Figures 4 and 5 illustrate the tube sheet 32 in an expanded state when exposed to refrigerant. Refrigerant is introduced into the heat exchanger 20 through one of the first and second ports 26A or 26B and exits the heat exchanger 20 through the other of the first and second ports 26A or 26B. The refrigerant entering and exiting the heat exchanger 20 through the first and second ports 26A, 26B can be in at least one of a liquid state, a vapor state, or a two-phase state.

    [0028] When the tube sheet 32 is in an expanded state, the diameter D1 of the openings 34 decreases to close the spacing between the openings 34 and the outer diameter of the corresponding one of the plurality of tubes 28. This brings the tube sheet 32 into at least partial contact with the plurality of tubes 28 to stabilize the plurality of tubes 28 to prevent damage resulting from vibrations or movement during operation of the heat exchanger 20. The tube sheet 32 can also include passages 35 extending through a mid-portion of the tube sheet 32 or edge passages 37 at least partially defined by the tube sheet 32 and the body portion 22.

    [0029] Also, the expanding properties of the tube sheet 32 in response to exposure to refrigerant eliminates the need for additional mechanical attachment between the tube sheet 32 and the plurality of tubes 28. By eliminating the need for additional mechanical attachment between tube sheet 32 and the plurality of tubes 28, the amount of time required to manufacture the heat exchanger 20 is greatly reduced due to a number of mechanical attachments between the plurality of tubes 28 and the tube sheet 32 and the level of precision needed to make those attachments.

    [0030] Also, by eliminating the need for mechanical attachments between the tube sheet 32 and the plurality of tubes 28, such as swaging or using fasteners, the plurality of tubes 28 can include heat enhancing features 40 over the entire length of the tubes 28. This increases the heat transfer between the refrigerant in the internal cavity 30 and the fluid passing through the tubes 28. Also, as shown in Figure 5, the tube sheet 32 has expanded such that the opening 34 contacts the tube 28 to provide support for the tube.

    [0031] Figures 8 and 9 illustrate another example opening 34A in the tube sheet 32. The opening 34A is irregular in shape and includes a plurality of projections. When the tube sheet 32 is placed in contact with refrigerant, the tube sheet 32 expands and contacts the tube 28 (Figure 9) to prevent the tube 28 from moving or vibration during operation of the heat exchanger 20. The projections in the opening 34A also allow refrigerant to pass between the tube 28 and the tube sheet 32.

    [0032] Figure 6 illustrates a sectional view taken along line 6-6 of Figure 2. As shown in Figure 6, the tube sheets 32 only extend partially across a diameter of the internal cavity 30 to allow the flow of refrigerant through the heat exchanger 20. In the illustrated example, there are three tube sheets 32 located in the internal cavity 30 and all three of the tube sheets 32 are all aligned along the same portion of the internal cavity 30 to allow movement of refrigerant as described above. In another example, the tube sheet 32 could be spaced from opposing sides of body portion 22 when the plurality of tubes 28 only extend through a middle portion of the internal cavity 30.

    [0033] Figure 7 illustrates another example tube sheet 132 similar to the tube sheet 32 above except where described above or shown in the Figures. The tube sheet 132 includes openings 134 for accepting a corresponding one of the plurality of tubes 28 and reinforcement members 135 extending between the openings 134 in the tube sheet 132 forming a matrix. The reinforcement members 135 can be attached to an external surface of the tube sheet 132 to form a support structure or be located within the tube sheet 132 itself. The reinforcement members 135 can be metallic rods, such as steel or aluminum or the reinforcement members 135 can be fibrous. In the illustrated example, at least one of the reinforcement members 135 extends from a first perimeter location on the tube sheet 132 to a second perimeter location on the tube sheet 132 generally opposite the first perimeter location.

    [0034] Although the different non-limiting embodiments are illustrated as having specific components, the embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from any of the non-limiting embodiments in combination with features or components from any of the other non-limiting embodiments.

    [0035] It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed and illustrated in these exemplary embodiments, other arrangements could also benefit from the teachings of this disclosure.

    [0036] The foregoing description shall be interpreted as illustrative and not in any limiting sense. A worker of ordinary skill in the art would understand that certain modifications could come within the scope of this invention provided the modifications are within the scope of the appended claims.


    Claims

    1. A heat exchanger (20) comprising:

    a body portion (22);

    a pair of end plates (24) at least partially forming an enclosure with the body portion;

    a plurality of tubes (28) extending through at least one of the body portion and the pair of end plates; and

    at least one tube sheet (32; 132; 232) including a plurality of openings (34; 134; 234) with a corresponding one of the plurality of tubes located in one of the plurality of openings, wherein the tube sheet is made of a material which expands in the presence of refrigerant,

    characterized in that the tube sheet (32; 132) is formed of a single unitary piece of material.


     
    2. The heat exchanger (20) of claim 1, wherein the heat exchanger is a non-baffled heat exchanger.
     
    3. The heat exchanger (20) of claim 1 or 2, wherein the tube sheet (32; 132; 232) at least partially follows an inner contour (22A) of the body portion (22).
     
    4. The heat exchanger (20) of claim 3, wherein the at least one tube sheet (32; 132; 232) extends between 20% and 90% of a diameter of the body portion (22).
     
    5. The heat exchanger (20) of any of claims 1 to 4, wherein the body portion (22) includes a first refrigerant port (26A) and a second refrigerant port (26B) and the at least one tube sheet (32; 132; 232) includes a plurality of tube sheets.
     
    6. The heat exchanger (20) of any preceding claim, further comprising a support structure supporting the at least one tube sheet (32; 132; 232).
     
    7. The heat exchanger (20) of claim 6, wherein the support structure includes a plurality of rods forming a matrix.
     
    8. The heat exchanger (20) of any preceding claim, wherein the at least one tube sheet (32; 132; 232) includes refrigerant expanding material extending uninterrupted between adjacent openings of the plurality of openings (34; 134; 234).
     
    9. The heat exchanger (20) of any preceding claim, wherein the plurality of tubes (28) include heat transfer enhancing features on an exterior surface that engage the at least one tube sheet (32; 132; 232).
     
    10. A method of operating a heat exchanger (20) comprising the steps of:

    supporting a plurality of tubes (28) extending through a corresponding one of a plurality of opening (34; 134; 234) in a tube sheet (32; 132; 232); and

    placing the tube sheet in contact with a refrigerant, wherein the tube sheet expands in response to contact with the refrigerant entering the heat exchanger and contacts the plurality of tubes (28),

    characterized in that the plurality of tubes sheets (32; 132; 232) are made of a single unitary piece of refrigerant expanding material.


     
    11. The method of claim 10, wherein the plurality of tubes (28) include heat transfer enhancing features on an exterior surface that engage the tube sheet (32; 132; 232).
     
    12. The method of claim 10 or 11, wherein the tube sheet extends between 20% and 90% of a diameter of a body portion (22) of the heat exchanger.
     
    13. The method of claim 10, 11 or 12, further comprising a support structure supporting the tube sheet (32; 132; 232).
     
    14. The method of any of claims 10 to 13, further comprising reducing vibrations and movement of the plurality of tubes (28) with the tube sheet in contact with the refrigerant.
     
    15. The method of any of claims 10 to 14, wherein the heat exchanger (20) is a non-baffled heat exchanger.
     


    Ansprüche

    1. Wärmetauscher (20), umfassend:

    einen Körperabschnitt (22);

    ein Paar Endplatten (24), die mindestens teilweise eine Einhausung mit dem Körperabschnitt bilden;

    eine Vielzahl von Rohren (28), die sich durch mindestens eines des Körperabschnitts und des Paares Endplatten erstrecken; und

    mindestens eine Rohrplatte (32; 132; 232), die eine Vielzahl von Öffnungen (34; 134; 234) mit einem entsprechenden der Vielzahl von Rohren in einer der Vielzahl von Öffnungen gelegen beinhaltet, wobei die Rohrplatte aus einem Material hergestellt ist, das sich in der Gegenwart von Kältemittel ausdehnt,

    dadurch gekennzeichnet, dass die Rohrplatte (32; 132) aus einem einzelnen einheitlichen Materialstück gebildet ist.


     
    2. Wärmetauscher (20) nach Anspruch 1, wobei der Wärmetauscher ein rippenloser Wärmetauscher ist.
     
    3. Wärmetauscher (20) nach Anspruch 1 oder 2, wobei die Rohrplatte (32; 132; 232) mindestens teilweise einer Innenkontur (22A) des Körperabschnitts (22) folgt.
     
    4. Wärmetauscher (20) nach Anspruch 3, wobei sich die mindestens eine Rohrplatte (32; 132; 232) zwischen 20% und 90% eines Durchmessers des Körperabschnitts (22) erstreckt.
     
    5. Wärmetauscher (20) nach einem der Ansprüche 1 bis 4, wobei der Körperabschnitt (22) einen ersten Kältemittelanschluss (26A) und einen zweiten Kältemittelanschluss (26B) beinhaltet und die mindestens eine Rohrplatte (32; 132; 232) eine Vielzahl von Rohrplatten beinhaltet.
     
    6. Wärmetauscher (20) nach einem vorstehenden Anspruch, weiter umfassend eine Stützstruktur, die mindestens die eine Rohrplatte (32; 132; 232) stützt.
     
    7. Wärmetauscher (20) nach Anspruch 6, wobei die Stützstruktur eine Vielzahl von Stangen beinhaltet, die eine Matrix bilden.
     
    8. Wärmetauscher (20) nach einem vorstehenden Anspruch, wobei die mindestens eine Rohrplatte (32; 132; 232) durch Kältemittel ausdehnbares Material beinhaltet, das sich ununterbrochen zwischen angrenzenden Öffnungen der Vielzahl von Öffnungen (34; 134; 234) erstreckt.
     
    9. Wärmetauscher (20) nach einem vorstehenden Anspruch, wobei die Vielzahl von Rohren (28) wärmeübertragungsverbessernde Elemente an einer Außenoberfläche beinhalten, die sich mit der mindestens einen Rohrplatte (32; 132; 232) kuppeln.
     
    10. Verfahren zum Betreiben eines Wärmetauschers (20), umfassend die Schritte zum:

    Stützen einer Vielzahl von Rohren (28), die sich durch eine entsprechende einer Vielzahl von Öffnungen (34; 134; 234) in einer Rohrplatte (32; 132; 232) erstrecken; und

    Platzieren der Rohrplatte in Kontakt mit einem Kältemittel, wobei sich die Rohrplatte in Reaktion auf Kontakt mit dem Kältemittel, das in den Wärmetauscher gelangt und die Vielzahl von Rohren (28) kontaktiert, ausdehnt,

    dadurch gekennzeichnet, dass die Vielzahl von Rohrplatten (32; 132; 232) aus einem einzelnen einheitlichen Stück von durch Kältemittel ausdehnbarem Material hergestellt sind.


     
    11. Verfahren nach Anspruch 10, wobei die Vielzahl von Rohren (28) wärmeübertragungsverbessernde Elemente an einer Außenoberfläche beinhalten, die sich mit der Rohrplatte (32; 132; 232) kuppeln.
     
    12. Verfahren nach Anspruch 10 oder 11, wobei sich die Wärmeplatte zwischen 20% und 90% eines Durchmessers eines Körperabschnitts (22) des Wärmetauschers erstreckt.
     
    13. Verfahren nach Anspruch 10, 11 oder 12, weiter umfassend eine Stützstruktur, die die Rohrplatte (32; 132; 232) stützt.
     
    14. Verfahren nach einem der Ansprüche 10 bis 13, weiter umfassend Reduzieren von Vibrationen und Bewegung der Vielzahl von Rohren (28) mit der Rohrplatte in Kontakt mit dem Kältemittel.
     
    15. Verfahren nach einem der Ansprüche 10 bis 14, wobei der Wärmetauscher (20) ein rippenloser Wärmetauscher ist.
     


    Revendications

    1. Échangeur de chaleur (20) comprenant :

    une partie de corps (22) ;

    une paire de plaques d'extrémité (24) formant au moins partiellement une enceinte avec la partie de corps ;

    une pluralité de tubes (28) s'étendant à travers au moins l'une de la partie de corps et de la paire de plaques d'extrémité ; et

    au moins une feuille de tube (32 ; 132 ; 232) incluant une pluralité d'ouvertures (34 ; 134 ; 234) avec un correspondant de la pluralité de tubes situés dans une de la pluralité d'ouvertures, dans lequel la feuille de tube est réalisée en un matériau qui se dilate en présence d'un réfrigérant,

    caractérisé en ce que la feuille de tube (32 ; 132) est formée d'une pièce unitaire de matériau unique.


     
    2. Échangeur de chaleur (20) selon la revendication 1, dans lequel l'échangeur de chaleur est un échangeur de chaleur sans déflecteur.
     
    3. Échangeur de chaleur (20) selon la revendication 1 ou 2, dans lequel la feuille de tube (32 ; 132 ; 232) suit au moins partiellement un contour intérieur (22A) de la partie de corps (22).
     
    4. Échangeur de chaleur (20) selon la revendication 3, dans lequel la au moins une feuille de tube (32 ; 132 ; 232) s'étend entre 20 % et 90 % d'un diamètre de la partie de corps (22).
     
    5. Échangeur de chaleur (20) selon l'une quelconque des revendications 1 à 4, dans lequel la partie de corps (22) inclut un premier orifice de réfrigérant (26A) et un second orifice de réfrigérant (26B) et la au moins une feuille de tube (32 ; 132 ; 232) inclut une pluralité de feuilles de tube.
     
    6. Échangeur de chaleur (20) selon une quelconque revendication précédente, comprenant en outre une structure de support supportant la au moins une feuille de tube (32 ; 132 ; 232).
     
    7. Échangeur de chaleur (20) selon la revendication 6, dans lequel la structure de support inclut une pluralité de tiges formant une matrice.
     
    8. Échangeur de chaleur (20) selon une quelconque revendication précédente, dans lequel la au moins une feuille de tube (32 ; 132 ; 232) inclut un matériau de dilatation de réfrigérant s'étendant de manière ininterrompue entre des ouvertures adjacentes de la pluralité d'ouvertures (34 ; 134 ; 234).
     
    9. Échangeur de chaleur (20) selon une quelconque revendication précédente, dans lequel la pluralité de tubes (28) inclut des caractéristiques d'amélioration de transfert de chaleur sur une surface extérieure qui vient en prise avec la au moins une feuille de tube (32 ; 132 ; 232).
     
    10. Procédé de fonctionnement d'un échangeur de chaleur, comprenant les étapes consistant à :

    supporter une pluralité de tubes (28) s'étendant à travers une correspondante d'une pluralité d'ouvertures (34 ; 134 ; 234) dans une feuille de tube (32 ; 132 ; 232) ; et

    placer la feuille de tube en contact avec un réfrigérant, dans lequel la feuille de tube se dilate en réponse à un contact avec le réfrigérant entrant dans l'échangeur de chaleur et vient en contact avec la pluralité de tubes (28),

    caractérisé en ce que la pluralité de feuilles de tube (32 ; 132 ; 232) est réalisée en une pièce unitaire unique de matériau de dilatation de réfrigérant.


     
    11. Procédé selon la revendication 10, dans lequel la pluralité de tubes (28) inclut des caractéristiques d'amélioration de transfert de chaleur sur une surface extérieure qui vient en prise avec la feuille de tube (32 ; 132 ; 232).
     
    12. Procédé selon la revendication 10 ou 11, dans lequel la feuille de tube s'étend entre 20 % et 90 % d'un diamètre d'une partie de corps (22) de l'échangeur de chaleur.
     
    13. Procédé selon la revendication 10, 11 ou 12, comprenant en outre une structure de support supportant la feuille de tube (32 ; 132 ; 232).
     
    14. Procédé selon l'une quelconque des revendications 10 à 13, comprenant en outre une réduction de vibrations et d'un déplacement de la pluralité de tubes (28) avec la feuille de tube en contact avec le réfrigérant.
     
    15. Procédé selon l'une quelconque des revendications 10 à 14, dans lequel l'échangeur de chaleur (20) est un échangeur de chaleur sans déflecteur.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description