(19)
(11)EP 3 708 942 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.10.2021 Bulletin 2021/41

(21)Application number: 20162631.4

(22)Date of filing:  12.03.2020
(51)International Patent Classification (IPC): 
F28G 7/00(2006.01)
F28G 1/12(2006.01)
(52)Cooperative Patent Classification (CPC):
F28G 1/166; F28G 7/005

(54)

PULSE SOOT BLOWER

IMPULSRUSSBLÄSER

SOUFFLEUR DE SUIE À IMPULSIONS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.03.2019 IL 26530519

(43)Date of publication of application:
16.09.2020 Bulletin 2020/38

(73)Proprietor: Lushkevich, Leonid
3181207 Karmiel (IL)

(72)Inventor:
  • BISTRITSKY, Aharon
    24600 Acre (IL)

(74)Representative: Lecomte & Partners 
76-78, rue de Merl
2146 Luxembourg
2146 Luxembourg (LU)


(56)References cited: : 
EP-A2- 2 329 191
US-A1- 2009 293 817
CN-A- 101 463 998
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to a gas pulse blower for removing soot, ash and slag deposits from external surfaces of internal elements in fuel combustion facilities, and, more specifically, to a gas pulse blower provided with at least one pre-compression chamber.

    BACKGROUND OF THE INVENTION



    [0002] Proper maintenance of fuel combustion facilities generally includes removal of undesired soot deposits on external surfaces of internal elements within an exhaust path of combustion products. EP 2329191 discloses a gas impulse blower for cleaning a surface within a vessel fillable with a combustion gas-oxidizer mixture. The blower comprises: (a) a combustion assembly configured to generate a deflagration wave; and (b) an impulse generator having an inlet and an outlet and adapted to receive the deflagration wave into said inlet and eject the detonation wave from said outlet onto a surface to be cleaned. The impulse generator has a compartmentalized housing comprising at least two serially-connected compartments. The compartments are configured for being fed with said gas-oxidizer mixture by the combustion assembly in an individual manner so as to conduct the wave to the outlet. EP2329191 provides a basis for the two-part form of claim 1.

    [0003] CN101463998 discloses a fuel gas shock wave ash disposal system equipped with an Archimedes spiral accelerating installation, comprising a combustible gas pipeline, a combustible gas valve, a combustible gas flow meter and an air duct, an air valve and an air flow meter. The combustible gas valve and the combustible gas flow meter are connected in sequence by the combustible gas pipeline. The air valve and the air flow meter are connected in sequence by the air duct. the combustible gas flow meter is connected with a pre-mixer by the combustible gas pipeline. The air flow meter is connected with the pre-mixer by the air duct. The right end of the pre-mixer is connected with an igniter by a premixing pipeline. The igniter is connected with an Archimedes spiral explosion mixture space formed by arranging pins in the explosion tube. The explosion mixture space is connected with an output tube. Pins are arranged on the inner wall of the explosion tube according to the Archimedes spiral, thus forming a disturbed cone-type structure. Therefore, pressure at the outlet of the explosion mixture space is greatly increased and fuel gas shock wave with powerful pulse energy is generated when cleaning ash of high viscosity and high adhesive attraction on a heat exchange surface, ensuring better ash removal effect.

    [0004] US 20090293817 discloses a detonation combustor cleaning device including at least one combustion chamber having combustion flow path and including a deflection member. An ignition device is operatively connected to the at least one combustion chamber is selectively activated to ignite a combustible fuel within the at least one combustion chamber to produce a shockwave that moves in a first direction along the combustion flow path, impacts the deflection member, reverses direction and passes into a vessel to dislodge particles clinging to inner surfaces thereof.

    [0005] A detonation wave generated by the gas pulse blowers known in the art depends on a mass of a combustible gas-oxidizer mixture which is defined by a length of a passage filled with the combustible gas-oxidizer mixture where the deflagration wave propagates. Augmentation of the generated detonation wave results in increase in dimensions of the gas pulse blower. In addition, amount of combustible gas-oxidizer mixture within the passage cannot be adjustable regarding a desirable impact force to be generated. Thus, there is a long-felt and unmet need for providing an effective device characterized by adjustability of the generated impact force and compactness.

    SUMMARY OF THE INVENTION



    [0006] It is hence one object of the invention to disclose a pulse soot blower for removing soot, ash and slag deposits from external surfaces of internal elements in fuel combustion equipment. The aforesaid pulse soot blower comprises (a) a mixture chamber connectable to sources of a combustible gas and an oxidizer; the mixture chamber configured for receiving and mixing the combustible gas and the oxidizer; (b) a
    pipe-shaped passage of flame front propagation fillable with the combustible gas-oxidizer mixture fed from the mixing chamber; (c) an ignition assembly for generating a flame front within the passage; (d) a pulse generator chamber in fluid connection with the pipe-shaped passage, said pulse generator chamber configured for receiving the flame front from the passage and generating a detonation wave therewithin.

    [0007] It is a core purpose of the invention to further provide the pulse soot blower with a first pre-compression chamber downstream to said ignition assembly and upstream to said pulse generator; said first pre-compression chamber being configured for forming a detonation wave therewithin.

    [0008] Another object of the invention is to disclose the combustible gas being selected from the group consisting of hydrogen, acetylene, propane, butane, methane or any combination thereof.

    [0009] A further object of the invention is to disclose the oxidizer being selected from the group consisting of oxygen and air.

    [0010] A further object of the invention is to disclose the pre-compression chamber comprising at least one turbulator.

    [0011] A further object of the invention is to disclose the pulse generator comprising at least one turbulator.

    [0012] A further object of the invention is to disclose the turbulator being oloid-shaped.

    [0013] A further object of the invention is to disclose the combustible gas being fed into the mixing chamber by a first compressor.

    [0014] A further object of the invention is to disclose the oxidizer fed into the mixing chamber by a second compressor.

    [0015] A further object of the invention is to disclose the at least one of the first and second compressors being an electrical-lightening-in-water compressor.

    [0016] A further object of the invention is to disclose the pulse soot blower comprising at least one second pre-compression chamber interconnecting the passage and the pulse generator in parallel with the first pre-compression chamber.

    [0017] A further object of the invention is to disclose the pulse soot blower comprising a bypass interconnecting the passage and the pulse generator.

    [0018] A further object of the invention is to disclose the pulse soot blower comprising at least one first normally open valve located in a location selected from the group consisting of an inlet of the first pre-compression chamber; the at least one second pre-compression chamber, bypass and any combination thereof.

    [0019] A further object of the invention is to disclose the pulse soot blower comprising at least one second normally closed valve configured for operating in an ultrafast manner; the second normally closed valve being located in a location selected from the group consisting of an outlet of the first pre-compression chamber; the at least one second pre-compression chamber, an outlet of the pulse generator and any combination thereof.

    [0020] A further object of the invention is to disclose the pulse soot blower soot comprising bombarding means configured for inserting ballistic bodies into said detonation wave.

    [0021] A further object of the invention is to disclose a method of removing soot, ash and slag deposits from external surfaces of internal elements in fuel combustion equipment. The aforesaid method comprises steps of: (a) providing a pulse soot blower further comprising: (i) a mixture chamber connectable to sources of a combustible gas and an oxidizer; the mixture chamber configured for receiving and mixing the combustible gas and the oxidizer; (ii) a passage of flame front propagation fillable with the combustible gas-oxidizer mixture fed from the mixing chamber; (iii) an ignition assembly generating flame front propagation within the passage; (iv) a pulse generator configured for receiving the flame front propagation from the passage and generating a detonation wave therewithin; the pulse soot blower further comprises at least one pre-compression chamber fluidly interconnecting the passage and the pulse generator; the pulse soot blower further comprises at least one first normally open valve located at an inlet of any one of the at least two pre-compression chambers in parallel therebetween; the pulse soot blower further comprises at least one second normally closed valve configured for operating in an instant manner; the at least one second normally closed valve is located in a location selected from the group consisting of an outlet of the at least one pre-compression chamber, outlet of the pulse generator and any combination thereof; (b) filling the passage, the at least one pre-compression chamber and pulse generator with the combustible gas-oxidizer mixture; (c) igniting the combustible gas-oxidizer mixture within the passage by ignition assembly and forming flame front within ignition assembly; (d) synchronically to the step of igniting the combustible gas-oxidizer mixture and opening the normally closed second valves; (e) propagating the flame front via at least one pre-compression chamber into the pulse generator; (f) transiting the flame front to a detonation wave within the pulse generator; and (g) blowing off the detonation wave into an interior of the heat-generating facilities.

    [0022] A further object of the invention is to disclose the method comprising a step of turbulizing the gas-oxidizer mixture in the at least one pre-compression chamber by at least one turbulator.

    [0023] A further object of the invention is to disclose the method comprising a step of turbulizing the gas-oxidizer mixture in the pulse generator by at least one turbulator.

    [0024] A further object of the invention is to disclose the method comprising a step of feeding the combustible gas into the mixing chamber by a first compressor.

    [0025] A further object of the invention is to disclose the method comprising a step of feeding the oxidizer into the mixing chamber by a second compressor.

    [0026] A further object of the invention is to disclose the method comprising a step of providing a bypass interconnecting the passage and the pulse generator; the bypass is provided with the first valve thereon.

    [0027] A further object of the invention is to disclose the step filling the passage, the at least one pre-compression chamber and pulse generator with the combustible gas-oxidizer mixture comprising successively executable sub-steps of filling the pulse generator with the combustible gas-oxidizer mixture up to a first pressure thereof via the bypass , closing the first normally open valve located at the bypass, filling the at least one pre-compression chamber up to a second pressure; the first pressure is lower than the second pressure.

    [0028] A further object of the invention is to disclose the method comprising steps of filling the pulse generator with air via the bypass up to a third pressure, closing the first normally open valve located at the bypass and generating a pneumatic shock onto the internal surfaces in heat-generating facilities by fast opening the second normally closed second valve located at the outlet of the pulse generator.

    [0029] A further object of the invention is to disclose a valve driven by an electric discharge in water. The aforesaid valve comprises: (a) a housing; (b) a first passage configured for conducting a fluid flow to be controlled; (c) a member movable in a reciprocative manner; the member configured for releasably blocking the fluid flow within the passage.

    [0030] It is further object of the invention to provide the housing with an electric discharge chamber filled with water and provided with a pair of heteropolar electrodes immersed in the water. The pair of heteropolar electrodes is connectable to a high-voltage power supply configured for energizing the pair of heteropolar electrodes. The member is movable within a second passage between first and second positions corresponding open and closed positions of the valve, respectively; the second passage is in fluid connection with the electric discharge chamber such that gases and steam generated by the electric discharge in water move in an instant the member from the first position to the second position and vice versa.

    [0031] A further object of the invention is to disclose the first and second passages intersecting each other. The member comprises a through bore; coincidence of the through bore with the first passage corresponds to the first position. No coincidence corresponds to the second position.

    [0032] A further object of the invention is to disclose the member provided with a piston reciprocatively movable within a piston chamber in an airtight manner.

    [0033] A further object of the invention is to disclose the piston chamber being provided with a labyrinth channel providing resistance for an air flow vented from said piston chamber and so that the impact generated by rise in the internal pressure is cushioned. A vacuum breaker is provided and configured for filling said piston chamber with ambient air.

    [0034] A further object of the invention is to disclose the electric discharge chamber being in fluid connection with ambient air via a labyrinth channel and a drain trap.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0035] In order to understand the invention and to see how it may be implemented in practice, a plurality of embodiments is adapted to now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which

    Fig. 1 is a schematic diagram of a first embodiment of a pulse soot blower;

    Fig. 2 is a schematic diagram of a second embodiment of a pulse soot blower;

    Figs 3a and 3b are schematic diagrams of a first embodiment of a pump for feeding a combustible gas/air at phases of filling and ejection, respectively;

    Figs 4a and 4b are schematic diagrams of a first embodiment of a pump for feeding a combustible gas/air at phases of filling and ejection, respectively; and

    Fig. 5a and 5b are schematic diagrams of an ultra-fast valve in closed and open positions, respectively.


    DETAILED DESCRIPTION OF THE INVENTION



    [0036] The following description is provided, so as to enable any person skilled in the art to make use of said invention and sets forth the best modes contemplated by the inventor of carrying out this invention. Various modifications, however, are adapted to remain apparent to those skilled in the art, since the generic principles of the present invention have been defined specifically to provide a pulse soot blower for removing soot, ash and slag deposits from internal surfaces in heat-generating facilities and a method of doing the same.

    [0037] The present invention is based on generation of a flame front wave within a combustible gas-oxidizer mixture and transiting the aforesaid flame front wave to a detonation wave. The present invention is applicable to cleaning the external surfaces of different types of tubes (pipes, tube bundles, fin tubes etc.) or other surfaces in steam generators (boilers) and other fuel burning equipment. The soot pulse blower is also usable for preventing accumulation of sedimentations, bridging or build-ups of any kind of powders in industry as well.

    [0038] Cleaning contaminations like ash, soot, slug, etc. on different heat transfer surfaces in boilers, furnaces, heaters and incinerators or other fuel burning equipment such as combustion chambers, pipe bundles, economizers, super heaters, air preheaters, heaters and filters which are exploited at power stations, chemical plants, petrochemical, oil refinery plants, waste-to-energy plants, pulp and paper industry etc. are also in the scope of the present invention.

    [0039] Reference is now made to Fig. 1 presenting first embodiment 100 of the present invention. The operational principle, as mentioned above, is based on ignition of a combustible gas-oxidizer mixture and creating a flame front wave which on its path transmits to a detonation wave (not shown). Use of hydrogen, acetylene, propane, butane, methane or any other combustible gas is in the scope of the present invention. Numeral 10 refers to a source of a combustible gas such as a gas cylinder or bottle, a gas producer unit or alike. The combustible gas is pumped from source 10 via receiver chamber 40 to mixture chamber 60 by gas pump 20. Oxygen of air is used as an oxidizer. Therefore, atmosphere air is fed to mixture chamber 60 via receiver chamber 50 by pump 30. A combustible gas-air mixture obtained in mixture chamber 60 then flows into passage 65, pre-compression chamber 110 and pulse generator 140. Ignitor 80 is embedded into a wall of passage 65 and controlled by ignition control unit 70. A flame front wave initiated by a spark generated by ignitor 80 propagates along passage 65 via pre-compression chamber 110 and reaches pulse generator 140. The purpose of introduction pre-compression chamber 110 into the soot pulse blower is to increase a mass of deflagrated gas mixture and boost a deflagration wave force. It should be emphasized that a flame front of the deflagration wave generated within pre-compression chamber propagating into pulse generator 140 acts like a piston within a combustion engine at the phase of compression. The flame front pushes the combustible gas-air mixture located in front of it into the pulse generator 140. In other words, the flame front when it propagates along its path increases pressure of the combustible gas-air mixture and finally a shock force. When the flame front reaches pulse generator 140, deflagration-to-detonation transition occurs. To show schematically operation of the soot pulse blower, outlet 160 is inserted into an opening in wall 170 of a heat-generating facility.

    [0040] Reference is now made to Fig. 2 presenting second embodiment 100a of the present invention. Pre-compression chambers 90 and 110 interconnect passage 65 and pulse generator 140 in a parallel manner. Any number of pre-compression chambers is in the scope of the present invention. Second embodiment 100a comprises normally open valves 120, 123 and 125 and normally closed valves 130, 133 and 135. The latter normally closed valves 130, 133 and 135 are controlled by ignition control unit 70 and openable synchronically with ignition of the combustible gas-air mixture by ignitor 80. According to one embodiment of the present invention, bypass 67 is parallel to pre-compression chambers 90 and 110.

    [0041] An exemplary operating procedure is the following. A combustible gas and air are mixed in mixture chamber 60. Then, passage 65, at least one of pre-compression chambers 90 and 110 and pulse generator 140 are filled with the combustible gas-air mixture at initial pressure. Any one of pre-compression chambers 90 and 110 will not be filled with the combustible gas-air mixture if corresponding normally open valves 120 or 123 is closed. It should be emphasized that embodiment 100a provides adjustability of the generated detonation wave by means of change in pressure of the combustible gas-air mixture accommodated in pre-compression chambers 90 and 110 and pulse generator 140. Specifically, at the step of initial filling, valves 120, 123 and 125 are open while valves 130, 133 and 135 are closed. After the aforesaid step of initial filling, valve 125 is closed and the pressure in the passage 65 is increased by pumps 20 and 30. Therefore, pre-compression chambers 90 and 110 are filled with the combustible gas-air mixture at elevated pressure. Filling pre-compression chambers in an individual manner is also in the scope of the present invention.

    [0042] At the step of ignition of the combustible gas-air mixture accommodated in the soot pulse blower, a spark of ignitor 80 generates a flame front (not shown) which propagates along passage 65 and pre-compression chambers 90 and 110. As mentioned above, normally closed valves 130,133 and 135 are controlled by ignition control unit 70. Aforesaid valves 130,133 and 135 are opened synchronically with ignition of the combustible gas-air mixture. Therefore, the deflagration wave of improved force reaches pulse generator 140 where deflagration-to-detonation transition occurs.

    [0043] According to one embodiment of the present invention, the soot pulse blower is provided with bombarding means 150 configured for inserting ballistic bodies 155 into the detonation wave generated within pulse generator 140.

    [0044] According to one embodiment of the present invention, any one of pre-compression chambers or pulse generator is provided with at least one turbulator therewithin (not show), for example, an oloid.

    [0045] The innovation implemented in the present invention provides a compact apparatus with an adjustable wave force of the generated shock.

    [0046] Reference is now made to Figs 3a and 3b presenting first exemplary embodiment of pump 20/30 in Figs 1 and 2. Figs 3a and 3b depict positions 200a and 200b corresponding to pumping-in and pumping-out phases. The operational principle of pump is based on an electric discharge in water. Specifically, housing 260 includes electric discharge chamber 230 and heteropolar electrodes 210 and 220. The latter electrodes are connectable to a high-voltage power supply (not shown). The pump comprises piston 270 reciprocatively movable within chamber 280. High voltage applied to electrodes 210 and 220 generates an electric breakdown in water accommodated in chamber 230. Rise in internal pressure moves piston 270 from a lower position in Fig. 3a to an upper position in Fig. 3b . The rise in the internal pressure is caused by heating the water resulting in steam generation. A pause after an electric voltage pulse brings about to steam condensation, drop in the internal pressure and return of piston 270 into the lower position. It should be mentioned that chamber 230 is in fluid connection with ambient air via a labyrinth channel 240 and a drain trap 250. Combustible gas or air is pumped into pump chamber 280 via labyrinth channel 290 and pumped out into outlet pipe 310 via check valve 300.

    [0047] Reference is now made to Figs 4a and 4b presenting second exemplary embodiment of pump 20/30 in Figs 1 and 2. Figs 4a and 4b depict positions of 400a and 400b corresponding to pumping-in and pumping-out phases. Summarizing the technical features discriminating between the first and second embodiments, contrary to a piston arrangement in the first embodiment, in the second embodiment, flexible membrane 410 is a driving element. Specifically, at the electric discharge phase (Fig. 4a), rise in internal pressure in electric discharge chamber 230 due to generation of steam therewithin arches flexible membrane 410. At the pause phase, flexible membrane 410 returns to the initial position.

    [0048] Reference is now made to Figs 5a and 5b presenting exemplary embodiments 500a and 500b of the second valve which comprises a housing 530 having first passage 520 configured for conducting a fluid flow to be controlled. Numerals 523 and 525 refer to inlet and outlet of first passage 520. Member 510 is reciprocatively movable within second passage 513. As mentioned above, the second valve is normally closed (Fig. 5a). Member 510 is provided with through bore 515. At the electric discharge phase, member 510 is movable upwards due to rise in the internal pressure in chamber 230 such that through bore 515 coincides with first passage 520. Coincidence of through bore 515 and first passage 520 corresponds to the open position of the second valve (Fig. 5b). Similar to the pumps described above, member 510 returns to its initial position (closed position) at the pause phase. It should be mentioned that piston chamber 505 here functions as a pneumatic damper absorbing an impact force generated by rise in the internal pressure in chamber 230. Specifically, at the phase valve opening, the air accommodated in chamber 505 is vented to atmosphere via labyrinth channel 550. The aforesaid labyrinth channel 550 provides resistance for the vented air flow and so that the impact generated by rise in the internal pressure in chamber 230 is cushioned. At the pause phase of steam condensation, ambient air can be sucked into chamber 230 via vacuum breaker 550.


    Claims

    1. A pulse soot blower (100, 100a) for removing soot, ash and slag deposits from internal surfaces in fuel burning equipment; said pulse soot blower comprising:

    a. a mixture chamber (60) connectable to sources (10) of a combustible gas and an oxidizer; said mixture chamber (60) configured for receiving and mixing said combustible gas and said oxidizer;

    b. a pipe-shaped passage (65) fillable with said combustible gas-oxidizer mixture fed from said mixing chamber (60); said pipe-shaped passage (65) configured for flame front propagation;

    c. an ignition assembly (80) generating a flame front wave within said passage (65);

    d. a pulse generator chamber (140) in fluid connection with said pipe-shaped passage (65); said pulse generator (140) configured for receiving said flame front wave from said passage (65) and generating a detonation wave therewithin; characterised in that said pulse soot blower further comprises a first pre-compression chamber (110) downstream to said ignition assembly (80) and upstream to said pulse generator (140); said first pre-compression chamber (110) configured for forming a detonation wave therewithin.


     
    2. The pulse soot blower (100, 100a) according to claim 1, wherein said combustible gas is selected from the group consisting of hydrogen, acetylene, propane, butane, methane or any combination thereof.
     
    3. The pulse soot blower (100, 100a) according to claim 1, wherein said oxidizer is selected from the group consisting of oxygen and air.
     
    4. The pulse soot blower (100, 100a) according to claim 1, wherein said pre-compression chamber (110) comprises at least one turbulator.
     
    5. The pulse soot blower (100, 100a) according to claim 1, wherein said pulse generator (140) comprises at least one turbulator.
     
    6. The pulse soot blower (100, 100a) according to claims 4 or 5, wherein said at least one turbulator is oloid-shaped.
     
    7. The pulse soot blower (100, 100a) according to claim 1, wherein said combustible gas is fed into said mixing chamber (60) by a first compressor.
     
    8. The pulse soot blower (100, 100a) according to claim 1, wherein said oxidizer is fed into said mixing chamber (60) by a second compressor.
     
    9. The pulse soot blower (100, 100a) according to claim 1 comprising at least one second pre-compression chamber (90) interconnecting said passage (65) and said pulse generator (140) in parallel with said first pre-compression chamber (110).
     
    10. The pulse soot blower (100, 100a) according to claim 1 comprising a bypass interconnecting said passage (65) and said pulse generator (140).
     
    11. The pulse soot blower (100, 100a) according to claims 1, 9 or 10 comprising at least one first normally open valve located in a location selected from the group consisting of an inlet of said first pre-compression chamber (110); said at least one second pre-compression chamber (90), bypass and any combination thereof.
     
    12. The pulse soot blower (100, 100a) according to claims 1, 9 or 10 comprising at least one second normally closed valve configured for operating in an ultrafast manner; said second normally closed valve is located in a location selected from the group consisting of an outlet of said first pre-compression chamber (110); said at least one second pre-compression chamber (90), an outlet of said pulse generator (140) and any combination thereof.
     
    13. The pulse soot blower (100, 100a) according to claim 1 comprising bombarding means configured for inserting ballistic bodies into said detonation wave.
     
    14. A method of removing soot, ash and slag deposits from internal surfaces in heat-generating facilities; said method comprising steps of:

    a. providing a pulse soot blower (100, 100a) further comprising:

    i. a mixture chamber (60) connectable to sources of a combustible gas and an oxidizer; said mixture chamber configured for receiving and mixing said combustible gas and said oxidizer;

    ii. a pipe-shaped passage (65) fillable with said combustible gas-oxidizer mixture fed from said mixing chamber (60); said pipe-shaped passage (65) configured for flame front propagation;

    iii. an ignition assembly (80) generating a flame front within said passage (65);

    iv. a pulse generator (140) chamber being in fluid connection with pipe-shaped passage (65);

    v. said pulse generator (140) configured for receiving said flame front from said passage (65) and generating a detonation wave therewithin; said pulse soot blower further comprises at least one pre-compression chamber (90, 110) disposed on said passage (65) downstream to said ignition assembly (80) and upstream to said pulse generator (140); each of said pre-compression chambers (90, 110) is configured for forming a detonation wave therewithin; said pulse soot blower further comprises at least one first normally open valve located at an inlet of any one of said at least two pre-compression chambers (90, 110) in parallel therebetween; said pulse soot blower further comprises at least one second normally closed valve configured for operating in an ultrafast manner; said at least one second normally closed valve is located in a location selected from the group consisting of an outlet of said at least one pre-compression chamber (90, 110), outlet of said pulse generator (140) and any combination thereof;

    b. filling said passage (65), said at least one pre-compression chamber (90, 110) and pulse generator (140) with said combustible gas-oxidizer mixture;

    c. igniting the combustible gas-oxidizer mixture within the passage (65) by ignition assembly (80) and forming flame front within ignition assembly (80);

    d. synchronically to said step of igniting said combustible gas-oxidizer mixture and opening said second normally closed second valves;

    e. forming a flame front deflagration wave within said at least one pre-compression chamber (90, 110);

    f. transiting a combustion mode from deflagration to detonation;

    g. propagating the flame front from at least one pre-compression chamber (90, 110) into the pulse generator (140);

    h. detonating said combustible gas-oxidizer mixture accommodated within said pulse generator (140); and

    i. blowing off said detonation wave into an interior of said heat-generating facilities.


     


    Ansprüche

    1. Ein Impuls-Rußgebläse (100, 100a) zum Entfernen von Ruß-, Asche- und Schlackeablagerungen von den Innenflächen von Brennstoffverbrennungsanlagen;

    wobei das Impuls-Rußgebläse Folgendes umfasst:

    a. eine Mischkammer (60), die mit den Quellen (10) eines brennbaren Gases und eines Oxidationsmittels verbunden werden kann;
    wobei die Mischkammer (60) das brennbare Gas und das Oxidationsmittel aufnimmt und mischt;

    b. ein rohrförmiger Durchlass (65), der mit dem von der Mischkammer (60) zugeführten brennbaren Gas-Oxidationsmittel-Gemisch befüllt wird;
    wobei der rohrförmige Durchlass (65) zum Verbreiten der Flammenfront konfiguriert ist;

    c. eine Zündanordnung (80) zum Erzeugen einer Flammenfrontwelle im Durchlass (65);

    d. eine Impulsgeberkammer (140), die über eine Flüssigkeitsverbindung mit dem rohrförmigen Durchlass (65) verfügt;

    wobei der Impulsgeber (140) die Flammenfrontwelle aus dem Durchlass (65) aufnimmt und darin eine Detonationswelle erzeugt;

    dadurch gekennzeichnet, dass das Impuls-Rußgebläse zudem eine erste, der Zündanordnung (80) nachgeschaltete und dem Impulsgeber (140) vorgeschaltete Vorkompressionskammer (110) umfasst;

    wobei in der ersten Vorkompressionskammer (110) eine Detonationswelle erzeugt wird.


     
    2. Das Impuls-Rußgebläse (100, 100a) gemäß Anspruch 1,
    wobei das brennbare Gas aus einer Gruppe ausgewählt wird, die Folgendes umfasst: Wasserstoff, Acetylen, Propan, Butan, Methan oder eine beliebige Kombination hiervon.
     
    3. Das Impuls-Rußgebläse (100, 100a) gemäß Anspruch 1,
    wobei das Oxidationsmittel aus einer Gruppe ausgewählt wird, die aus Sauerstoff und Luft besteht.
     
    4. Das Impuls-Rußgebläse (100, 100a) gemäß Anspruch 1,
    wobei die Vorkompressionskammer (110) mindestens einen Turbulator umfasst.
     
    5. Das Impuls-Rußgebläse (100, 100a) gemäß Anspruch 1,
    wobei der Impulsgeber (140) mindestens einen Turbulator umfasst.
     
    6. Das Impuls-Rußgebläse (100, 100a) gemäß Anspruch 4 oder 5,
    wobei der mindestens eine Turbulator Oloid-förmig ist.
     
    7. Das Impuls-Rußgebläse (100, 100a) gemäß Anspruch 1,
    wobei das brennbare Gas der Mischkammer (60) über einen ersten Kompressor zugeführt wird.
     
    8. Das Impuls-Rußgebläse (100, 100a) gemäß Anspruch 1, wobei das Oxidationsmittel der Mischkammer (60) über einen zweiten Kompressor zugeführt wird.
     
    9. Das Impuls-Rußgebläse (100, 100a) gemäß Anspruch 1, das über mindestens eine zweite Vorkompressionskammer (90) verfügt, die den Kanal (65) und den Impulsgeber (140) parallel zur ersten Vorkompressionskammer (110) miteinander verbindet.
     
    10. Das Impuls-Rußgebläse (100, 100a) gemäß Anspruch 1, das über eine Nebenleitung verfügt, die den Durchlass (65) und den Impulsgeber (140) miteinander verbindet.
     
    11. Das Impuls-Rußgebläse gemäß Anspruch 1, 9 oder 10, das mindestens ein erstes Schließventil umfasst, das sich an einer Stelle befindet, die aus einer Gruppe ausgewählt wird, die Folgendes umfasst: den Einlass der ersten Vorkompressionskammer (110); die mindestens eine zweite Vorkompressionskammer (90), eine Nebenleitung und eine beliebige Kombination hiervon.
     
    12. Das Impuls-Rußgebläse gemäß Anspruch 1, 9 oder 10, das mindestens ein zweites Öffnerventil, das für den ultraschnellen Betrieb gedacht ist;
    wobei sich das zweite Öffnerventil an einer Stelle befindet, die aus einer Gruppe ausgewählt wird, die aus Folgendem besteht: dem Auslass der ersten Vorkompressionskammer (110); der mindestens einen zweiten Vorkompressionskammer (90), dem Auslass des Impulsgebers (140) und einer beliebigen Kombination hiervon.
     
    13. Das Impuls-Rußgebläse (100, 100a) gemäß Anspruch 1, das eine Befeuerungsvorrichtung zum Einführen ballistischer Gehäuse in die Detonationswelle umfasst.
     
    14. Eine Methode zum Entfernen von Ruß-, Asche- und Schlackeablagerungen von den Innenflächen von Wärmeerzeugungsanlagen; wobei die Methode folgende Schritte umfasst:

    a. Bereitstellen eines Impuls-Rußgebläses (100, 100a), das zudem Folgendes umfasst:

    i. eine Mischkammer (60), die mit den Quellen eines brennbaren Gases und eines Oxidationsmittels verbunden werden kann;
    wobei die Mischkammer das brennbare Gas und das Oxidationsmittel aufnimmt und mischt;

    ii. ein rohrförmiger Durchlass (65), der mit dem von der Mischkammer (60) zugeführten brennbaren Gas-Oxidationsmittel-Gemisch befüllt wird;
    wobei der rohrförmige Durchlass (65) zum Verbreiten der Flammenfront konfiguriert ist;

    iii. eine Zündanordnung (80) zum Erzeugen einer Flammenfront im Durchlass (65);

    iv. eine Impulsgeberkammer (140), die über eine Flüssigkeitsverbindung mit dem rohrförmigen Durchlass (65) verfügt;

    v. einen Impulsgeber (140), der die Flammenfront aus dem Durchlass (65) aufnimmt und darin eine Detonationswelle erzeugt;

    wobei das Impuls-Rußgebläse im Durchlass (65) zudem mindestens eine erste, der Zündanordnung (80) nachgeschaltete und dem Impulsgeber (140) vorgeschaltete Vorkompressionskammer (90, 110) umfasst;

    wobei in den einzelnen Vorkompressionskammern (90, 110) jeweils eine Detonationswelle erzeugt wird;

    wobei das Impuls-Rußgebläse zudem mindestens ein erstes Schließventil umfasst, das am Einlass einer der mindestens zwei Vorkompressionskammern (90, 110) parallel geschaltet ist;

    wobei das Impuls-Rußgebläse zudem mindestens ein zweites Öffnerventil umfasst, das für den ultraschnellen Betrieb gedacht ist;

    wobei sich das mindestens eine zweite Öffnerventil an einer Stelle befindet, die aus einer Gruppe ausgewählt wird, die aus Folgendem besteht: dem Auslass der mindestens einen Vorkompressionskammer (90, 110), dem dem Auslass des Impulsgebers (140) und einer beliebigen Kombination hiervon.

    b. Befüllen des Durchlasses (65) der mindestens einen Vorkompressionskammer (90, 110) und des Impulsgebers (140) mit dem brennbaren Gas-Oxidationsmittel-Gemisch;

    c. Zünden des brennbaren Gas-Oxidationsmittel-Gemischs im Durchlass (65) mit der Zündanordnung (80) und Bilden einer Flammenfront in der Zündanordnung (80);

    d. synchron zum Zünden des brennbaren Gas-Oxidationsmittel-Gemischs Öffnen der zweiten Öffnerventile;

    e. Erzeugen einer Flammenfront-Verpuffungswelle in der mindestens einen Vorkompressionskammer (90, 110);

    f. Umschalten des Verbrennungsmodus von Verpuffung auf Detonation;

    g. Verteilen der Flammenfront aus der mindestens einen Vorkompressionskammer (90, 110) im Impulsgeber (140);

    h. Detonieren des brennbaren Gas-Oxidationsmittel-Gemischs im Impulsgeber (140); und

    i. Abblasen der Detonationswelle in das Innere der Wärmeerzeugungsanlagen.


     


    Revendications

    1. Souffleur de suie à impulsions (10, 100a) pour éliminer les dépôts de suie, de cendres et de scories des surfaces internes d'un équipement de combustion de combustible ; ledit souffleur de suie à impulsions comprenant :

    a. une chambre de mélange (60) pouvant être connectée à des sources (10) d'un gaz combustible et d'un oxydant ; ladite chambre de mélange étant configurée pour recevoir et mélanger ledit gaz combustible et ledit oxydant ;

    b. un passage en forme de tuyau (65) pouvant être rempli avec ledit mélange de gaz combustible et d'oxydant provenant de ladite chambre de mélange (60) ; ledit passage en forme de tuyau (65) étant configuré pour la propagation d'un front de flamme ;

    c. un ensemble d'allumage (80) générant une onde de front de flamme à l'intérieur dudit passage (65) ;

    d. une chambre de générateur d'impulsions (140) en connexion fluidique avec ledit passage en forme de tuyau (65) ; ledit générateur d'impulsions (140) étant configuré pour recevoir ladite onde de front de flamme dudit passage (65) et générer une onde de détonation dans celui-ci ; le souffleur de suie à impulsions étant caractérisé en ce qu'il comprend en outre une première chambre de pré-compression (110) en aval dudit ensemble d'allumage (80) et en amont dudit générateur d'impulsions (140), ladite première chambre de pré-compression (100) étant configurée pour y former une onde de détonation.


     
    2. Souffleur de suie à impulsions (100, 100a) selon la revendication 1, dans lequel ledit gaz combustible est choisi dans le groupe constitué par l'hydrogène, l'acétylène, le propane, le butane, le méthane ou toute combinaison de ceux-ci.
     
    3. Souffleur de suie à impulsions (100, 100a) selon la revendication 1, dans lequel ledit oxydant est choisi dans le groupe constitué par l'oxygène et l'air.
     
    4. Souffleur de suie à impulsions (100, 100a) selon la revendication 1, dans lequel ladite chambre de pré-compression (110) comprend au moins un turbulateur.
     
    5. Souffleur de suie à impulsions selon la revendication 1, dans lequel ledit générateur d'impulsions (140) comprend au moins un turbulateur.
     
    6. Souffleur de suie pulsé selon la revendication 4 ou 5, dans lequel ledit au moins un turbulateur est de forme oloïde.
     
    7. Souffleur de suie à impulsions (100, 100a) selon la revendication 1, dans lequel ledit gaz combustible est introduit dans ladite chambre de mélange (60) par un premier compresseur.
     
    8. Souffleur de suie à impulsions (100, 100a) selon la revendication 1, dans lequel ledit oxydant est alimenté dans ladite chambre de mélange (60) par un second compresseur.
     
    9. Souffleur de suie à impulsions (100, 100a) selon la revendication 1, comprenant au moins une deuxième chambre de pré-compression (90) interconnectant ledit passage (65) et ledit générateur d'impulsions (140) en parallèle avec ladite première chambre de pré-compression (110).
     
    10. Souffleur de suie à impulsions selon la revendication 1, comprenant une dérivation interconnectant ledit passage et ledit générateur d'impulsions.
     
    11. Souffleur de suie à impulsions selon la revendication 1, 9 ou 10, comprenant au moins une première soupape normalement ouverte située dans un emplacement choisi dans le groupe constitué par une entrée de ladite première chambre de précompression (110); ladite au moins une seconde chambre de précompression (90), une dérivation et toute combinaison de celles-ci.
     
    12. Souffleur de suie à impulsions selon la revendication 1, 9 ou 10 comprenant au moins une seconde soupape normalement fermée configurée pour fonctionner de manière ultra-rapide ; ladite seconde soupape normalement fermée est située dans un emplacement choisi dans le groupe constitué par une sortie de ladite première chambre de pré-compression (110) ; ladite au moins une seconde chambre de pré-compression (90), une sortie dudit générateur d'impulsions (140) et toute combinaison de celles-ci.
     
    13. Souffleur de suie à impulsions selon la revendication 1, comprenant des moyens de bombardement configurés pour insérer des corps balistiques dans ladite onde de détonation.
     
    14. Procédé d'élimination des dépôts de suie, de cendres et de scories des surfaces internes dans des installations de production de chaleur ; ledit procédé comprenant les étapes consistant à :

    a. prévoir un souffleur de suie à impulsions (100, 100a) comprenant en outre :

    i. une chambre de mélange (60) pouvant être connectée à des sources d'un gaz combustible et d'un oxydant ; ladite chambre de mélange étant configurée pour recevoir et mélanger ledit gaz combustible et ledit oxydant ;

    ii. un passage en forme de tuyau (65) pouvant être rempli avec ledit mélange de gaz combustible et d'oxydant provenant de ladite chambre de mélange (60) ; ledit passage en forme de tuyau (65) étant configuré pour la propagation du front de flamme ;

    iii. un ensemble d'allumage (80) générant un front de flamme à l'intérieur dudit passage (65) ;

    iv. une chambre de générateur d'impulsions (140) en communication fluidique avec le passage en forme de tuyau (65) ;

    v. ledit générateur d'impulsions (140) étant configuré pour recevoir ledit front de flamme provenant dudit passage (65) et générer une onde de détonation à l'intérieur de celui-ci ; ledit souffleur de suie à impulsions comprend en outre au moins une chambre de pré-compression (90, 110) disposée sur ledit passage (65) en aval dudit ensemble d'allumage (80) et en amont dudit générateur d'impulsions (140) ; chacune desdites chambres de pré-compression (90, 110) étant configurée pour former une onde de détonation à l'intérieur de celle-ci ;

    ledit souffleur de suie à impulsions comprend en outre au moins une première soupape normalement ouverte située à une entrée de l'une quelconque desdites au moins deux chambres de précompression (90, 110) en parallèle entre elles ;

    ledit souffleur de suie à impulsions comprend en outre au moins une seconde soupape normalement fermée configurée pour fonctionner de manière ultrarapide ; ladite au moins une seconde soupape normalement fermée est située dans un emplacement choisi dans le groupe constitué par une sortie de ladite au moins une chambre de précompression (90, 110), une sortie dudit générateur d'impulsions (140) et toute combinaison de celles-ci ;

    b. remplir ledit passage (65), ladite au moins une chambre de précompression (90, 110) et le générateur d'impulsions (140) avec ledit mélange gaz combustible-oxydant ;

    c. mettre à feu le mélange gaz combustible-oxydant dans le passage (65) par l'ensemble d'allumage (80) et former un front de flamme dans l'ensemble d'allumage (80) ;

    d. de manière synchrone avec ladite étape d'allumage dudit mélange gaz-oxydant combustible, ouvrir lesdites secondes soupapes normalement fermées ;

    e. former une onde de déflagration de front de flamme à l'intérieur de ladite au moins une chambre de pré-compression (90, 110) ;

    f. faire passer un mode de combustion de la déflagration à la détonation ;

    g. propager le front de flamme de l'au moins une chambre de pré-compression (90, 110) dans le générateur d'impulsions (140) ;

    h. faire détonner ledit mélange gaz combustible-oxydant logé dans ledit générateur d'impulsions (140) ; et

    i. souffler ladite onde de détonation à l'intérieur desdites installations de génération de chaleur.


     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description