| (11) | EP 3 713 177 B1 |
(12) | EUROPEAN PATENT SPECIFICATION |
|
|
(54) | SEQUENCE-BASED SIGNAL PROCESSING METHOD AND SIGNAL PROCESSING APPARATUS VERFAHREN FÜR SEQUENZBASIERTE SIGNALVERARBEITUNG UND VORRICHTUNG ZUR SIGNALVERARBEITUNG PROCÉDÉ DE TRAITEMENT DE SIGNAL BASÉ SUR UNE SÉQUENCE ET APPAREIL DE TRAITEMENT DE SIGNAL |
|
| |||||||||||||||||||||||||||||||
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). |
TECHNICAL FIELD
BACKGROUND
SUMMARY
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a schematic flowchart of sequence-based signal sending and processing according to an embodiment of this application;
FIG. 2 is a schematic flowchart of determining a sequence {xn} by a terminal device according to an embodiment of this application;
FIG. 3 is a schematic flowchart of generating and sending a first signal by a terminal device according to an embodiment of this application;
FIG. 4a, FIG. 4b, and FIG. 4c are schematic diagrams of obtaining, by performing DFT on a sequence {xn} including N elements, a sequence {ƒn} including N elements in frequency domain according to an embodiment of this application;
FIG. 5a and FIG. 5b are schematic diagrams showing that a sequence {ƒn} that includes N elements in frequency domain and that is obtained by performing DFT on a sequence {xn} including N elements is mapped to N subcarriers according to an embodiment of this application;
FIG. 6 is a schematic diagram of processing a first signal by a network device according to an embodiment of this application;
FIG. 7a and FIG. 7b are schematic flowcharts of determining whether a frequency domain of a time domain sequence is flat according to an embodiment of this application;
FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of this application;
FIG. 9 is a schematic structural diagram of another terminal device according to an embodiment of this application;
FIG. 10 is a schematic structural diagram of a network device according to an embodiment of this application;
FIG. 11 is a schematic structural diagram of another network device according to an embodiment of this application; and
FIG. 12 is a schematic structural diagram of a communications system according to an embodiment of this application.
DESCRIPTION OF EMBODIMENTS
{1,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,0,0,1,1,0,1, 1};
{1,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,0,1,1,1,1,0,0};
{1,0,0,0,0,1,0,0,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0,0};
{1,0,0,0,0,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1};
{1,0,0,0,0,1,0,1,0,0,0,1,0,0,1,0,0,0,1,1,1,1,0,1};
{1,0,0,0,0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,1,1,0,1,1};
{1,0,0,0,0,1,1,1,0,1,1,0,1,1,1,0,1,0,1,1,1,1,0,0};
{1,0,0,0,0,1,1,1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,1,0};
{1,0,0,1,0,0,0,0,0,0,1,0,1,0,0,1,1,0,1,0,0,0,1,1};
{1,0,0,1,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1,0,1,0,1};
{1,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,0,1,0,0,0,1,1,0};
{1,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,0,1,0,0,1,0,1,1};
{1,0,0,1,0,0,0,0,0,1,0,1,0,0,1,1,0,0,0,0,1,0,1,1};
{1,0,0,1,0,0,0,0,0,1,0,1,1,1,0,0,1,0,1,0,0,0,0,1};
{1,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,1,0,1,1,1,1,0,0};
{1,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,1,1,0,1,0};
{1,0,0,1,0,0,0,0,0,1,1,1,0,0,1,0,1,0,1,1,1,1,0,0};
{1,0,0,1,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,0,0,0,0,1};
{1,0,0,1,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,1,1,0,0,0};
{1,0,0,1,0,0,0,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,0,0};
{1,0,0,1,0,0,0,0,0,1,1,1,0,1,1,0,1,1,1,0,0,0,1,0};
{1,0,0,1,0,0,0,0,0,1,1,1,1,0,1,0,0,1,1,0,0,0,1,0};
{1,0,0,1,0,0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,1,0,1,1};
{1,0,0,1,0,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,1,1,1,1};
{1,0,0,1,0,0,0,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,0,1};
{1,0,0,1,0,0,0,0,1,0,1,1,0,0,1,1,1,1,1,0,1,0,1,1};
{1,0,0,1,0,0,0,0,1,1,1,0,1,0,1,1,1,1,0,0,1,0,0,0};
{1,0,0,1,0,0,0,0,1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,0};
{1,0,0,1,0,0,0,0,1,1,1,1,0,1,1,0,1,1,1,0,1,0,1,1};
{1,0,0,1,0,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,0,1,1,1};
{1,0,0,1,0,0,0,1,0,0,1,0,1,0,1,1,1,1,1,0,0,1,1,1};
{1,0,0,1,0,0,0,1,0,0,1,1,1,1,0,0,0,0,1,0,0,0,1,0};
{1,0,0,1,0,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1,1,0,1,0};
{1,0,0,1,0,0,0,1,0,0,1,1,1,1,0,1,0,1,1,1,0,0,0,0};
{1,0,0,1,0,0,0,1,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0,0};
{1,0,0,1,0,0,0,1,0,1,0,0,0,1,1,0,1,1,1,1,0,0,0,0};
{1,0,0,1,0,0,0,1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,1,0};
{1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,1,1,1,0,1,0,1};
{1,0,0,1,0,0,0,1,1,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0};
{1,0,0,1,0,0,0,1,1,1,0,1,0,1,1,0,1,1,1,1,1,0,0,0};
{1,0,0,1,0,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,0,0,0,0};
{1,0,0,1,0,0,0,1,1,1,0,1,1,0,1,1,1,1,1,0,0,0,1,0};
{1,0,0,1,0,0,0,1,1,1,1,0,1,0,1,1,1,0,1,1,0,0,0,0};
{1,0,0,1,0,0,0,1,1,1,1,1,0,1,0,0,1,1,0,0,0,0,1,0};
{1,0,0,1,0,0,0,1,1,1,1,1,0,1,1,0,1,0,1,1,1,0,0,0};
{1,0,0,1,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,0,1,0};
{1,0,0,1,0,0,1,0,1,0,0,0,1,1,0,0,0,1,0,1,1,1,1,1};
{1,0,0,1,0,0,1,0,1,0,0,0,1,1,1,1,1,1,0,0,1,1,1,0};
{1,0,0,1,0,0,1,0,1,0,1,0,0,0,0,0,0,1,1,0,0,1,1,1};
{1,0,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,0,0,0,1,0};
{1,0,0,1,0,0,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0,1,0,1};
{1,0,0,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0,1,0};
{1,0,0,1,0,0,1,1,1,1,0,1,0,1,0,0,0,1,1,0,0,0,0,0};
{1,0,0,1,0,0,1,1,1,1,0,1,0,1,0,0,1,1,1,0,0,0,0,0};
{1,0,0,1,0,0,1,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,0};
{1,0,0,1,0,0,1,1,1,1,1,1,0,1,0,0,1,1,1,0,0,0,1,0};
{1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,1,1,1,0,0,0,1,0,1};
{1,0,0,1,0,1,0,0,0,0,0,1,0,0,1,1,1,0,1,0,0,0,0,1};
{1,0,0,1,0,1,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,0,1};
{1,0,0,1,0,1,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,1,1,1};
{1,0,0,1,0,1,0,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,0,1};
{1,0,0,1,0,1,0,0,0,0,1,1,0,0,1,0,1,1,1,1,1,0,0,0};
{1,0,0,1,0,1,0,0,0,0,1,1,0,0,1,1,1,1,1,0,1,0,0,0};
{1,0,0,1,0,1,0,0,0,1,0,1,1,0,0,0,0,0,0,1,0,0,1,1};
{1,0,0,1,0,1,0,0,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0};
{1,0,0,1,0,1,0,0,0,1,1,1,0,0,1,0,1,1,1,1,1,1,0,0};
{1,0,0,1,0,1,0,0,0,1,1,1,0,0,1,0,1,1,1,1,1,1,0,1};
{1,0,0,1,0,1,0,0,0,1,1,1,0,1,1,0,1,1,1,0,0,0,0,0};
{1,0,0,1,0,1,0,0,0,1,1,1,0,1,1,0,1,1,1,1,1,0,0,0};
{1,0,0,1,0,1,0,0,0,1,1,1,1,1,0,1,1,0,0,1,1,1,1,0};
{1,0,0,1,0,1,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,0};
{1,0,0,1,0,1,0,1,1,0,0,0,0,0,1,0,0,0,0,1,1,1,0,1};
{1,0,0,1,0,1,0,1,1,0,0,0,0,0,1,0,0,0,1,1,1,1,0,1};
{1,0,0,1,0,1,0,1,1,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0};
{1,0,0,1,0,1,0,1,1,0,0,1,0,0,0,0,1,1,1,0,1,1,1,1};
{1,0,0,1,0,1,0,1,1,0,0,1,0,0,0,1,1,1,1,0,1,1,1,1};
{1,0,0,1,0,1,0,1,1,0,1,1,1,1,1,0,0,0,1,1,1,1,0,1};
{1,0,0,1,0,1,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0,0,1};
{1,0,0,1,0,1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,1,1,0,1};
{1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,0,0,0,0};
{1,0,0,1,0,1,1,0,0,0,1,1,0,0,0,0,0,0,1,0,1,1,1,0};
{1,0,0,1,0,1,1,0,1,0,0,0,1,0,1,1,1,1,1,1,0,0,1,1};
{1,0,0,1,0,1,1,0,1,1,1,1,1,0,1,1,1,0,0,0,1,0,1,1};
{1,0,0,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,0,0,1,1,1,0};
{1,0,0,1,0,1,1,1,0,0,0,1,1,0,1,1,1,1,1,1,0,1,0,1};
{1,0,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0,0,1,1,0};
{1,0,0,1,0,1,1,1,0,1,0,0,0,1,1,0,1,1,1,1,0,1,1,1};
{1,0,0,1,0,1,1,1,0,1,0,1,1,0,0,0,1,1,0,1,1,1,1,1};
{1,0,0,1,0,1,1,1,1,0,0,1,1,0,1,1,1,1,1,0,0,0,1,0};
{1,0,0,1,0,1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,0,0,0,1};
{1,0,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0,1,0,0,1};
{1,0,0,1,0,1,1,1,1,1,1,0,0,1,1,0,1,0,1,0,0,0,0,1};
{1,0,0,1,1,0,0,0,0,1,0,1,0,0,1,1,1,0,1,0,0,0,0,0};
{1,0,0,1,1,0,0,0,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0,0};
{1,0,0,1,1,0,0,0,1,0,1,0,0,0,0,1,0,0,1,1,1,1,1,0};
{1,0,0,1,1,0,1,0,0,0,0,0,1,1,1,0,1,1,1,1,0,1,0,1};
{1,0,0,1,1,0,1,0,0,0,0,1,0,0,1,1,1,0,1,0,1,1,1,1};
{1,0,0,1,1,0,1,0,0,0,0,1,1,1,1,1,0,1,1,0,1,0,1,1};
{1,0,0,1,1,0,1,0,1,0,0,0,0,1,0,0,0,0,1,1,1,1,0,0};
{1,0,0,1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0,1,1,0,0,0};
{1,0,0,1,1,0,1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,1};
{1,0,0,1,1,0,1,0,1,1,1,1,1,1,0,1,1,0,0,0,1,1,1,0};
{1,0,0,1,1,0,1,1,1,0,0,0,0,1,0,0,0,0,0,1,1,0,1,0};
{1,0,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,1,0};
{1,0,0,1,1,0,1,1,1,1,0,0,0,1,1,1,1,1,0,1,1,0,1,0};
{1,0,0,1,1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,1,1};
{1,0,0,1,1,0,1,1,1,1,1,1,0,1,0,0,1,1,1,0,0,0,1,0};
{1,0,0,1,1,1,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,1,0};
{1,0,0,1,1,1,0,0,1,1,1,1,1,1,0,1,0,0,0,1,0,1,1,0};
{1,0,0,1,1,1,0,1,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,1};
{1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,0,0,0,0,1,0,0,0,0};
{1,0,0,1,1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,1,0,1,1,0};
{1,0,0,1,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0,0,1,0,1,1};
{1,0,0,1,1,1,0,1,0,1,1,0,1,1,1,1,1,0,0,0,0,1,0,1};
{1,0,0,1,1,1,0,1,0,1,1,1,0,1,1,0,1,1,1,1,0,0,0,0};
{1,0,0,1,1,1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0,1};
{1,0,0,1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,0,0,0,1,0,1};
{1,0,0,1,1,1,1,0,1,1,1,1,0,1,1,0,0,0,1,0,1,1,1,0};
{1,0,0,1,1,1,1,1,0,1,0,0,0,0,1,0,1,0,0,1,1,0,1,1};
{1,0,0,1,1,1,1,1,0,1,1,0,1,1,0,0,0,0,1,0,1,0,1,1};
{1,0,0,1,1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,1,1,0,1,0};
{1,0,0,1,1,1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,1,0,1,0};
{1,0,0,1,1,1,1,1,1,0,1,0,0,1,1,0,0,0,0,1,0,1,0,1};
{1,1,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0,1};
{1,1,0,0,0,0,0,0,1,0,1,0,0,1,1,0,1,0,0,1,1,1,0,1};
{1,1,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1,0,1,0,1,1,0};
{1,1,0,0,0,0,0,0,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,0};
{1,1,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,1,1,0,1,0,1};
{1,1,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,1,1,1,0,1,0};
{1,1,0,0,0,0,0,0,1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0};
{1,1,0,0,0,0,0,0,1,1,0,1,0,1,1,1,0,1,1,0,1,0,0,0};
{1,1,0,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,1,0,1,0,0,0};
{1,1,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,0,0,0,1,1,0};
{1,1,0,0,0,0,0,1,0,0,0,1,0,1,1,0,1,0,0,1,1,1,0,1};
{1,1,0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,0,1,0,1,0,0,1};
{1,1,0,0,0,0,0,1,0,1,0,0,0,1,1,0,1,1,1,1,0,1,0,0};
{1,1,0,0,0,0,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0,0,0,0};
{1,1,0,0,0,0,0,1,0,1,1,0,0,1,1,1,1,0,1,0,1,1,0,1};
{1,1,0,0,0,0,0,1,0,1,1,1,0,1,1,0,1,0,1,1,1,1,0,0};
{1,1,0,0,0,0,1,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,0};
{1,1,0,0,0,0,1,0,0,1,0,0,1,1,1,0,1,0,1,0,0,0,0,0};
{1,1,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1,1,1,1,0,1,1,0};
{1,1,0,0,0,0,1,1,0,1,1,1,1,0,1,1,0,1,1,1,0,1,0,1};
{1,1,0,0,0,0,1,1,1,0,1,0,1,1,1,0,1,1,0,1,1,1,1,0};
{1,1,0,0,0,0,1,1,1,1,0,1,1,1,1,0,1,0,1,0,0,1,1,0};
{1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,1,0,0,1,0,1};
{1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,1,0,1,1,0,1};
{1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,0,1,1,1,0,0,0,1,0};
{1,1,0,0,0,1,0,0,0,1,1,0,1,0,0,0,0,0,1,0,0,1,0,1};
{1,1,0,0,0,1,0,0,0,1,1,0,1,0,0,1,0,1,1,1,0,1,1,1};
{1,1,0,0,0,1,0,0,0,1,1,0,1,0,0,1,1,0,1,0,1,1,1,1};
{1,1,0,0,0,1,0,0,0,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0};
{1,1,0,0,0,1,0,0,0,1,1,1,1,1,0,1,1,1,0,1,0,0,1,0};
{1,1,0,0,0,1,0,0,0,1,1,1,1,1,1,0,1,0,1,1,0,0,1,0};
{1,1,0,0,0,1,0,0,1,0,1,1,1,0,0,1,0,1,1,1,1,1,0,1};
{1,1,0,0,0,1,0,0,1,0,1,1,1,1,1,0,1,1,1,0,0,1,0,1};
{1,1,0,0,0,1,0,1,0,1,1,1,1,1,0,0,1,1,1,1,0,1,1,0};
{1,1,0,0,0,1,0,1,1,0,1,0,0,0,1,1,0,1,1,1,1,1,0,1};
{1,1,0,0,0,1,0,1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,1,0};
{1,1,0,0,0,1,0,1,1,0,1,1,1,0,0,1,0,1,1,1,1,1,0,1};
{1,1,0,0,0,1,0,1,1,0,1,1,1,1,1,0,1,0,0,1,1,1,0,1};
{1,1,0,0,0,1,0,1,1,1,1,0,0,1,1,0,1,0,1,1,1,1,1,0};
{1,1,0,0,0,1,0,1,1,1,1,1,0,1,1,0,0,1,1,1,1,0,1,0};
{1,1,0,0,0,1,1,0,1,0,0,0,0,0,0,1,0,0,1,1,0,1,0,1};
{1,1,0,0,0,1,1,0,1,0,0,0,0,0,0,1,1,0,1,1,0,1,0,1};
{1,1,0,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,0,1,1,1,1,1};
{1,1,0,0,0,1,1,0,1,0,1,0,0,0,0,1,0,0,1,1,0,1,1,1};
{1,1,0,0,0,1,1,0,1,0,1,0,0,0,0,1,1,0,1,1,0,1,1,1};
{1,1,0,0,0,1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0};
{1,1,0,0,0,1,1,1,1,1,1,1,0,1,0,1,0,0,1,1,0,0,1,0};
{1,1,0,0,1,0,0,0,0,0,1,1,1,0,0,1,0,1,0,1,1,1,1,0};
{1,1,0,0,1,0,0,1,1,1,0,1,0,1,0,0,1,1,1,1,0,1,1,1};
{1,1,0,0,1,0,0,1,1,1,1,1,0,1,1,1,1,0,0,1,0,1,0,1};
{1,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,1,0};
{1,1,0,0,1,0,1,0,0,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1};
{1,1,0,0,1,0,1,0,0,0,1,0,1,1,0,1,1,1,0,0,1,1,1,1};
{1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0,0,0,0,0,0,1};
{1,1,0,0,1,0,1,1,0,1,0,0,0,1,0,0,0,0,0,1,1,1,0,1};
{1,1,0,0,1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1};
{1,1,0,0,1,1,0,1,0,0,0,0,0,1,1,0,1,1,1,1,0,1,0,1};
{1,1,0,0,1,1,0,1,0,0,0,0,0,1,1,1,0,1,1,0,1,0,1,1};
{1,1,0,0,1,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,1,0,1,1};
{1,1,0,0,1,1,1,0,1,0,0,1,0,0,0,1,0,1,0,0,1,1,1,1};
{1,1,0,0,1,1,1,0,1,0,1,0,0,0,0,1,1,0,1,1,0,1,1,1};
{1,1,0,0,1,1,1,0,1,1,0,1,0,0,0,1,0,1,0,0,1,1,1,1};
{1,1,0,0,1,1,1,1,0,1,0,0,0,1,1,0,1,1,1,1,1,0,1,0};
{1,1,0,0,1,1,1,1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0,0};
{1,1,0,0,1,1,1,1,1,0,1,0,1,0,0,0,1,1,0,1,1,0,1,1};
{1,1,0,1,0,0,0,0,0,1,0,0,0,1,1,0,1,0,0,0,1,1,1,0};
{1,1,0,1,0,0,0,0,0,1,0,0,0,1,1,1,0,1,0,0,1,0,0,0};
{1,1,0,1,0,0,0,0,0,1,0,0,0,1,1,1,0,1,1,0,1,0,0,0};
{1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,1,0,1,0,0,1,1,1,0};
{1,1,0,1,0,0,1,0,0,0,1,1,1,0,1,0,0,1,1,1,0,1,1,1};
{1,1,0,1,0,0,1,0,0,0,1,1,1,0,1,1,1,1,1,0,1,0,0,1}.
{1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,1,0,1,1,1,1,0,1};
{1,0,0,0,0,1,0,0,0,1,0,1,1,1,0,0,1,0,1,1,1,1,0,1};
{1,0,0,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0,1,1,1,1,0,0};
{1,0,0,0,0,1,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0};
{1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,1,1,0,1,0,0,0,1,0};
{1,0,0,1,0,0,0,0,0,1,0,1,0,1,1,0,0,1,1,1,1,0,0,0};
{1,0,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0,1};
{1,0,0,1,0,0,0,0,0,1,1,1,0,1,1,0,0,1,1,1,1,0,1,0};
{1,0,0,1,0,0,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1};
{1,0,0,1,0,0,0,1,0,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1};
{1,0,0,1,0,0,0,1,1,0,0,0,0,1,1,0,1,0,1,0,1,1,1,1};
{1,0,0,1,0,0,0,1,1,1,0,1,0,1,1,1,1,1,1,0,0,1,1,0};
{1,0,0,1,0,0,0,1,1,1,1,0,0,1,1,0,1,0,1,0,0,0,0,0};
{1,0,0,1,0,0,0,1,1,1,1,0,0,1,1,0,1,1,1,1,1,0,1,0};
{1,0,0,1,0,0,0,1,1,1,1,1,0,1,1,0,1,0,1,0,0,0,0,1};
{1,0,0,1,0,0,0,1,1,1,1,1,1,0,1,0,1,1,1,0,0,1,1,0};
{1,0,0,1,0,1,0,0,0,0,0,0,0,1,1,0,1,0,0,1,1,0,1,1};
{1,0,0,1,0,1,0,0,0,0,0,1,1,0,1,0,0,0,1,1,0,1,1,1};
{1,0,0,1,0,1,0,0,0,1,0,0,0,1,1,1,1,1,1,0,0,1,1,0};
{1,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,1,1,0,0,0,0,0,0};
{1,0,0,1,0,1,0,0,0,1,1,1,1,1,1,0,1,0,0,1,1,0,0,0};
{1,0,0,1,0,1,0,0,1,1,0,1,0,0,0,1,0,0,0,0,0,0,1,1};
{1,0,0,1,0,1,0,0,1,1,0,1,0,0,0,1,1,1,1,1,1,0,1,1};
{1,0,0,1,0,1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,0,1,0,1};
{1,0,0,1,0,1,0,0,1,1,1,0,1,1,1,1,1,1,0,0,0,1,0,1};
{1,0,0,1,0,1,0,1,0,0,0,0,0,1,1,0,1,1,1,0,0,1,1,1};
{1,0,0,1,0,1,0,1,1,0,0,0,0,0,1,0,0,0,1,0,0,1,1,1};
{1,0,0,1,0,1,0,1,1,0,0,0,0,1,1,0,1,1,1,0,1,1,1,1};
{1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,1,1,1,1,0,1,0,0,1};
{1,0,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0,0,0,0,0,1,1};
{1,0,0,1,0,1,0,1,1,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0};
{1,0,0,1,0,1,0,1,1,1,1,1,0,1,1,0,0,1,1,1,1,0,0,0};
{1,0,0,1,0,1,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,0,0,1};
{1,0,0,1,0,1,1,0,0,0,0,0,0,0,1,0,1,0,0,1,1,1,0,1};
{1,0,0,1,0,1,1,0,0,1,0,0,0,1,1,0,1,0,1,1,1,1,1,1};
{1,0,0,1,0,1,1,0,0,1,1,1,0,1,0,1,1,1,1,1,1,0,0,0};
{1,0,0,1,0,1,1,0,0,1,1,1,1,1,1,0,0,0,1,0,0,0,1,0};
{1,0,0,1,0,1,1,0,0,1,1,1,1,1,1,0,1,0,1,1,1,0,0,0};
{1,0,0,1,0,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0,1};
{1,0,0,1,0,1,1,0,1,1,1,0,0,0,0,0,0,1,0,1,0,0,0,1};
{1,0,0,1,0,1,1,0,1,1,1,0,0,0,1,0,1,0,0,0,0,0,0,1};
{1,0,0,1,0,1,1,1,0,0,1,0,0,0,0,1,1,0,1,0,1,1,1,1};
{1,0,0,1,0,1,1,1,0,1,0,1,1,0,1,1,1,1,1,1,0,0,0,1};
{1,0,0,1,0,1,1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0,0,1};
{1,0,0,1,0,1,1,1,1,1,1,1,0,0,0,1,1,0,1,0,1,0,0,1};
{1,0,0,1,1,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,1,1,0};
{1,0,0,1,1,0,0,0,0,0,0,1,1,1,0,1,1,1,0,1,0,1,1,0};
{1,0,0,1,1,0,0,0,0,1,0,1,0,1,1,0,1,1,1,1,1,0,0,0};
{1,0,0,1,1,0,0,0,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0,0};
{1,0,0,1,1,0,0,0,0,1,1,1,0,1,1,0,1,1,1,1,1,0,1,0};
{1,0,0,1,1,0,0,0,1,0,1,0,0,0,0,0,0,1,1,1,0,1,1,0};
{1,0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,1,0,1,0,1,1,1,0};
{1,0,0,1,1,0,1,0,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,1};
{1,0,0,1,1,1,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0};
{1,0,0,1,1,1,0,1,0,0,0,0,1,0,0,1,1,1,1,0,1,1,1,0};
{1,0,0,1,1,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,0,0};
{1,0,0,1,1,1,0,1,0,0,1,1,1,1,1,0,1,0,1,1,0,0,0,0};
{1,0,0,1,1,1,0,1,1,0,0,0,0,0,1,0,1,0,1,0,0,1,1,1};
{1,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,0,0,0,0,0,1,0,1};
{1,0,0,1,1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,1,0,0,0};
{1,0,0,1,1,1,1,1,0,1,1,1,0,1,1,0,0,0,0,1,1,0,1,0};
{1,0,0,1,1,1,1,1,1,1,0,1,0,1,1,0,0,0,1,0,0,1,1,0};
{1,1,0,0,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,1,0,1,1,0};
{1,1,0,0,0,0,0,0,1,1,0,1,0,0,1,1,1,0,1,1,1,0,1,0};
{1,1,0,0,0,0,0,0,1,1,0,1,0,1,1,1,0,1,1,1,0,0,1,0};
{1,1,0,0,0,0,0,0,1,1,0,1,1,0,1,0,1,0,1,1,1,1,0,0};
{1,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,1,0,0,1,0,1,0,1};
{1,1,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,1,0,0,1,1};
{1,1,0,0,0,0,0,1,0,1,0,0,1,1,1,1,0,1,1,0,0,0,1,0};
{1,1,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,1,0,1,0,1,1,0};
{1,1,0,0,0,0,0,1,1,0,0,0,0,1,0,0,1,0,1,0,1,1,1,0};
{1,1,0,0,0,0,0,1,1,0,1,1,0,1,0,1,0,0,0,1,0,0,0,0};
{1,1,0,0,0,0,0,1,1,0,1,1,1,0,1,0,1,0,0,1,0,0,0,0};
{1,1,0,0,0,0,1,0,0,0,0,0,1,1,1,0,1,0,1,0,0,1,0,0};
{1,1,0,0,0,0,1,0,0,1,1,1,0,1,0,0,0,0,1,0,0,0,1,0};
{1,1,0,0,0,0,1,0,0,1,1,1,1,0,1,0,1,1,1,0,1,1,0,1};
{1,1,0,0,0,0,1,0,1,0,1,0,0,1,0,0,1,1,1,1,1,1,0,0};
{1,1,0,0,0,0,1,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0};
{1,1,0,0,0,0,1,1,0,0,1,0,1,0,1,1,0,1,1,1,0,1,1,1};
{1,1,0,0,0,0,1,1,0,1,1,1,0,1,1,0,1,0,1,1,1,0,1,1};
{1,1,0,0,0,0,1,1,1,1,0,1,1,1,0,1,0,1,1,0,1,1,1,0};
{1,1,0,0,0,0,1,1,1,1,1,0,1,1,1,0,1,1,0,1,0,1,0,0};
{1,1,0,0,0,1,0,0,0,1,0,1,0,0,1,1,1,1,1,1,0,0,1,0};
{1,1,0,0,0,1,0,0,1,0,0,0,0,1,1,0,1,1,1,0,1,0,1,1};
{1,1,0,0,0,1,0,1,0,1,1,0,1,1,0,0,1,1,1,1,0,1,1,1};
{1,1,0,0,0,1,0,1,1,1,1,0,0,1,0,0,0,0,1,0,0,0,1,0};
{1,1,0,0,0,1,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1,1,1,0};
{1,1,0,0,1,0,0,0,0,1,1,0,1,0,0,0,1,0,0,0,0,1,0,1};
{1,1,0,0,1,0,0,0,1,0,1,0,1,1,0,1,1,1,1,0,0,1,1,1};
{1,1,0,0,1,0,0,1,0,1,0,1,0,0,0,0,1,1,0,0,1,1,1,1};
{1,1,0,0,1,0,0,1,0,1,0,1,1,1,0,1,1,1,1,0,0,1,1,1};
{1,1,0,0,1,0,1,0,0,0,1,0,0,0,1,1,0,1,0,0,1,1,1,1};
{1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,1,0,0,0,1,1,0,1,1};
{1,1,0,0,1,1,0,1,0,1,0,0,1,0,0,0,1,0,0,0,0,0,1,1};
{1,1,0,0,1,1,0,1,1,0,1,0,1,0,0,0,1,1,1,1,1,0,1,1};
{1,1,0,0,1,1,1,1,0,1,1,0,1,0,1,0,0,0,1,0,0,1,1,1};
{1,1,0,0,1,1,1,1,0,1,1,1,0,1,0,1,0,0,1,0,0,1,1,1};
{1,1,0,1,0,0,0,0,1,1,0,1,1,1,1,0,1,1,1,0,1,0,0,1};
{1,1,0,1,0,0,0,1,0,0,0,0,1,0,0,1,1,1,1,0,1,0,0,0};
{1,1,0,1,0,0,0,1,0,0,0,0,1,1,0,1,1,1,1,0,1,0,0,0}.
{0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0,1,1,1,0,1};
{0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,1,0,0,0,1,1,1,0,1};
{0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,1,0,0,1,1,0,1};
{0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,1};
{0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0,0,1,0,1,1,0,0,0,1,1};
{0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,1,1,1,0,1};
{0,0,0,0,0,0,1,0,0,0,1,0,1,0,1,1,0,1,1,0,0,0,0,0,1,1,0,0,1,0,1,0,0,1,1,1};
{0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,0,0,1,0,1,1,0,0,1,1,1,1,1};
{0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,0,1,0,1,1,0,1,1,1,1,0,1,0,1,0,0,0,1,1,1};
{0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,1,1,0,1,0,1,0,0,1,0,1,1,0,0,1,1,1,1};
{0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,1,1,1,0,0,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1};
{0,0,0,0,0,0,1,0,0,1,0,1,1,0,0,1,0,0,0,0,1,1,1,1,0,1,0,1,0,1,1,1,0,0,1,1};
{0,0,0,0,0,0,1,0,0,1,1,1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0,1,1,0,0,1,0,1,0,1};
{0,0,0,0,0,0,1,0,1,0,1,0,0,1,1,0,0,0,0,1,1,0,1,1,1,0,0,1,0,1,1,1,1,0,0,1};
{0,0,0,0,0,0,1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0,0,0,1,0,0,1,1};
{0,0,0,0,0,0,1,1,0,0,1,0,0,0,1,0,1,0,0,1,1,0,0,0,0,1,1,1,1,0,1,1,0,1,0,1};
{0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0,1,1,0,1,0,0,1};
{0,0,0,0,0,0,1,1,0,1,0,0,0,1,0,0,0,1,1,0,1,0,1,1,0,0,1,1,1,1,1,0,1,0,1,1};
{0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,0,0,0,1,0,0,0,1,0,1,1};
{0,0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,1,1,1,1,0,1,1,0,1,0,0,1,1,0,1,1,0,0,0,1};
{0,0,0,0,0,0,1,1,1,0,0,1,0,1,0,0,1,1,0,0,0,0,0,1,1,0,1,1,0,1,0,1,0,0,0,1};
{0,0,0,0,0,0,1,1,1,0,1,1,1,0,1,0,1,1,0,0,1,0,0,1,1,1,0,0,0,0,1,0,1,0,0,1};
{0,0,0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,0,1,0,1,0,1,1,1,0,0,0,1,0,0,0,1,0,0,1};
{0,0,0,0,0,0,1,1,1,1,1,0,0,1,1,0,1,0,0,1,0,0,1,0,1,0,1,0,0,0,1,1,0,0,0,1};
{0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0,0,1,0,0,1,1,1};
{0,0,0,0,0,1,0,0,0,1,0,0,1,1,1,1,0,1,0,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,1};
{0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,1,1,0,1,1,1,0,0,0,1,1,1,1,0,1};
{0,0,0,0,0,1,0,0,1,0,1,0,0,1,1,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,1,1,0,1,1,1};
{0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,0,1,0,1,0,0,1,1,1,1,0,0,1,1,1,1,1,0,1};
{0,0,0,0,0,1,0,1,0,0,1,1,1,1,1,1,0,0,1,0,1,1,1,0,1,1,1,0,0,1,0,1,0,0,1,1};
{0,0,0,0,0,1,0,1,0,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,1};
{0,0,0,0,0,1,0,1,1,0,0,0,0,1,0,0,0,0,1,0,1,1,1,0,1,1,0,0,1,1,1,0,1,0,1,1};
{0,0,0,0,0,1,0,1,1,1,1,0,0,0,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,0,1,0,0,0,1};
{0,0,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0,0,1,1,0,0,1};
{0,0,0,0,0,1,0,1,1,1,1,1,0,1,1,0,0,1,1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0,1,1};
{0,0,0,0,0,1,1,0,0,0,0,1,1,0,1,0,1,0,1,1,0,1,1,1,0,0,1,1,0,1,1,1,1,1,0,1};
{0,0,0,0,0,1,1,0,0,0,0,1,1,0,1,1,1,0,1,0,1,0,0,1,0,1,1,1,1,0,0,1,0,0,0,1};
{0,0,0,0,0,1,1,0,0,1,0,0,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,1,0,1,0,1};
{0,0,0,0,0,1,1,0,0,1,0,1,0,0,1,0,0,0,0,0,1,1,1,0,1,1,1,0,1,1,0,1,0,1,1,1};
{0,0,0,0,0,1,1,0,0,1,0,1,0,0,1,1,1,0,1,1,1,0,1,0,0,1,1,1,1,1,1,0,0,1,0,1};
{0,0,0,0,0,1,1,0,0,1,0,1,1,0,1,1,0,1,0,1,0,1,1,1,0,0,1,1,1,0,1,1,1,1,1,1};
{0,0,0,0,0,1,1,0,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0,0,0,1,1,0,1};
{0,0,0,0,0,1,1,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0,1,0,0,1,0,0,0,1};
{0,0,0,0,0,1,1,1,1,1,1,0,1,1,1,0,0,1,1,1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,1,1};
{0,0,0,0,1,0,0,0,0,1,0,1,1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0,1,0,0,0,1,0,1,1};
{0,0,0,0,1,0,0,0,0,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1,1,0,1,1};
{0,0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,1,0,0,0,0,1,1,0,1,1,1,0,0,1,0,1,1,1,0,1};
{0,0,0,0,1,0,0,0,0,1,1,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1};
{0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,1,0,0,0,1,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1};
{0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,1,0,0,1,0,1,0,1,1,1,1,1,0,0,1,1,0,1,1,1};
{0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,1,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1,1,0,1,1};
{0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,0,0,1,0,1,1};
{0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1};
{0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,1,0,0,1,1,1,1,0,1,1,1,1,0,1,0,0,0,1,0,1,1};
{0,0,0,0,1,0,0,0,1,0,1,1,1,1,0,1,0,0,1,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,1,1};
{0,0,0,0,1,0,0,0,1,0,1,1,1,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1,1,0,1,1};
{0,0,0,0,1,0,0,0,1,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,0,0,1,0,1,1};
{0,0,0,0,1,0,0,1,0,1,0,1,1,1,1,1,1,0,0,1,1,0,1,1,1,0,1,0,1,1,0,0,1,1,1,1};
{0,0,0,0,1,0,0,1,0,1,1,0,0,1,0,0,1,1,1,0,1,1,1,1,1,1,0,0,0,1,1,1,0,1,0,1};
{0,0,0,0,1,0,1,0,1,0,0,0,1,1,0,0,1,1,1,1,1,1,0,1,1,0,1,0,0,1,1,0,1,1,1,1};
{0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,1,1,1,1,0,1,1,1,0,0,1,0,0,1,1,0,1,0,0,1};
{0,0,0,0,1,0,1,1,0,0,0,1,0,0,1,1,1,1,0,0,1,1,0,1,0,1,0,1,1,1,1,1,1,0,1,1};
{0,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1,1,0,1,1,1,0,1,1};
{0,0,0,0,1,0,1,1,0,1,1,1,0,1,1,1,1,1,0,0,0,1,1,0,1,1,0,1,0,1,1,1,0,1,1,1};
{0,0,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,0,0,1,1,0,1,0,0,0,1,0,0,0,0,1,1,0,1};
{0,0,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0,0,1,1,0,1};
{0,0,0,0,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,1};
{0,0,0,0,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,0,0,1,1,0,1,0,0,0,1};
{0,0,0,0,1,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,1,1};
{0,0,0,0,1,0,1,1,1,1,1,0,1,1,1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0,0,1,1,1};
{0,0,0,0,1,1,0,0,1,0,1,1,0,1,0,1,0,0,0,1,1,1,0,1,1,1,0,1,1,0,1,1,1,1,1,1};
{0,0,0,0,1,1,0,1,0,0,0,1,0,0,0,0,1,1,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,1};
{0,0,0,0,1,1,0,1,0,0,0,1,0,0,0,0,1,1,1,0,1,1,0,0,1,1,1,1,1,0,1,0,1,0,0,1};
{0,0,0,0,1,1,0,1,0,0,0,1,0,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,1};
{0,0,0,0,1,1,0,1,0,0,0,1,0,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,1};
{0,0,0,0,1,1,0,1,0,0,0,1,0,1,1,1,1,0,1,1,1,1,0,0,1,0,0,0,1,1,0,1,0,0,0,1};
{0,0,0,0,1,1,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,1};
{0,0,0,0,1,1,0,1,1,1,0,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,1,0,1};
{0,0,0,0,1,1,0,1,1,1,1,1,1,0,1,0,1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0,1,1,0,1};
{0,0,0,0,1,1,1,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,1,1,1,1,1,0,1};
{0,0,0,0,1,1,1,0,1,1,1,0,1,0,1,1,0,1,1,0,0,0,1,1,1,1,1,0,1,1,1,0,1,1,0,1};
{0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,0,0,1,1,1,1,1,1,0,1,0,1,0,0,1};
{0,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,1,0,1,0,1};
{0,0,0,0,1,1,1,1,1,1,0,1,1,0,1,1,1,0,1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0,1,1};
{0,0,0,1,0,0,0,1,0,0,1,0,1,0,0,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,0,1,1,1,1,1};
{0,0,0,1,0,0,0,1,0,1,0,0,1,1,0,1,1,0,0,0,1,1,1,1,0,1,0,1,1,0,1,1,1,1,1,1};
{0,0,0,1,0,0,0,1,1,1,1,1,0,1,1,0,1,0,1,1,0,0,1,1,1,1,1,0,0,0,1,0,1,0,0,1};
{0,0,0,1,0,0,0,1,1,1,1,1,1,0,1,1,0,1,0,1,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1};
{0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,1,1,1,1,0,1,1,1,1,0,1};
{0,0,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,1,1,1,0,1,0,0,0,1,0,1,1};
{0,0,0,1,0,1,0,0,1,1,0,0,1,0,1,1,1,1,0,1,0,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1};
{0,0,0,1,0,1,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,0,0,1,1,0,1};
{0,0,0,1,0,1,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,1,1,0,0,1};
{0,0,0,1,0,1,1,1,1,1,1,1,0,0,1,1,1,0,0,1,0,1,1,1,1,0,1,0,0,1,1,0,0,1,0,1};
{0,0,0,1,0,1,1,1,1,1,1,1,1,0,1,0,0,1,1,0,0,1,0,1,0,0,1,1,1,0,0,1,0,1,1,1};
{0,0,0,1,0,1,1,1,1,1,1,1,1,0,1,0,0,1,1,1,0,0,1,0,1,0,0,1,1,0,0,1,0,1,1,1};
{0,0,0,1,1,0,1,0,1,1,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,1,0,1,1,1,1,1,1};
{0,0,0,1,1,1,0,1,0,0,1,1,0,0,1,0,1,0,0,1,1,1,0,0,1,0,1,1,1,1,1,1,1,1,0,1};
{0,0,0,1,1,1,0,1,0,0,1,1,1,0,0,1,0,1,0,0,1,1,0,0,1,0,1,1,1,1,1,1,1,1,0,1};
{0,0,0,1,1,1,1,1,1,0,1,1,1,0,1,0,1,0,0,1,0,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1};
{0,1,0,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,0,0};
{0,1,0,0,0,0,1,0,1,0,1,0,0,1,1,0,1,1,0,0,0,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0};
{0,1,0,0,0,0,1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,1,0,0,0,0,1,0};
{0,1,0,0,0,0,1,0,1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0,0,1,1,0,1,1,0,0,0,0,1,0};
{0,1,0,0,0,0,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,0,0};
{0,1,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,1,0,1,1,0,1,0,0,0,0,0,1,1,1,0,1,0,1,0};
{0,1,0,0,0,1,0,0,1,0,1,0,1,1,1,0,0,0,0,0,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0,0};
{0,1,0,0,0,1,1,0,0,1,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,0,0,0};
{0,1,0,0,1,0,0,0,0,1,1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,1,1,0,1,0,1,0,1,0,0,0};
{0,1,0,0,1,0,0,0,0,1,1,0,1,1,0,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,1,0,1,0,0,0};
{0,1,0,1,0,0,0,0,0,0,1,1,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,1,0};
{0,1,0,1,0,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,1,0};
{0,1,0,1,0,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,0,0,1,1,1,1,1,1,1,0,0,1,0,1,1,0};
{0,1,0,1,0,0,0,0,1,0,1,0,0,1,1,0,1,0,0,1,1,1,1,1,1,1,0,0,0,1,0,0,1,1,0,0};
{0,1,0,1,0,0,0,0,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,1,0,1,1,1,0,0,0,0,0,1,0,0};
{0,1,0,1,0,0,0,0,1,1,0,1,0,0,0,1,0,1,1,1,1,0,1,1,1,0,0,1,1,0,1,1,1,1,1,0};
{0,1,0,1,0,0,0,1,0,0,0,0,0,1,1,1,0,1,1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,0,0,0};
{0,1,0,1,0,0,0,1,0,0,0,1,1,0,1,0,0,0,0,1,1,1,1,1,1,0,1,1,1,0,0,1,0,1,1,0};
{0,1,0,1,0,0,1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,0};
{0,1,0,1,0,0,1,1,0,0,0,0,0,1,1,0,1,1,1,0,1,1,1,1,0,0,1,0,1,0,1,1,0,0,0,0};
{0,1,0,1,0,0,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1,0};
{0,1,0,1,0,0,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,0,0};
{0,1,0,1,0,0,1,1,0,1,0,0,1,1,1,0,1,1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0,1,0,0};
{0,1,0,1,0,0,1,1,1,1,1,0,1,1,0,0,1,1,1,0,1,1,1,1,0,1,0,0,0,1,0,1,1,0,0,0};
{0,1,0,1,0,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,1,0,0,0};
{0,1,0,1,0,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,1,1,0,0,0,0,0,1,1,0,1,1,0,0,0};
{0,1,0,1,0,1,1,0,0,0,0,1,0,0,0,1,0,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,1,1,1,0};
{0,1,0,1,0,1,1,0,0,1,1,0,1,1,1,1,1,1,1,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,0,0};
{0,1,0,1,0,1,1,0,0,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0,0,0};
{0,1,0,1,0,1,1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,0};
{0,1,0,1,0,1,1,0,1,1,0,1,1,1,1,1,1,0,1,0,0,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0};
{0,1,0,1,0,1,1,0,1,1,1,0,1,1,1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,1,1,1,1,1,0,0};
{0,1,0,1,0,1,1,1,0,0,0,0,1,1,0,0,0,1,0,1,1,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0};
{0,1,0,1,0,1,1,1,0,0,1,0,1,1,1,1,0,0,1,0,0,0,1,1,0,1,0,0,1,1,0,0,0,0,0,0};
{0,1,0,1,0,1,1,1,0,1,1,0,0,0,1,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,1,0,0,1,0};
{0,1,0,1,0,1,1,1,1,1,1,0,0,0,1,0,1,1,0,1,0,0,1,1,0,0,0,0,0,1,0,0,0,1,1,0};
{0,1,0,1,0,1,1,1,1,1,1,1,0,0,1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0,1,0,1,1,0,0};
{0,1,0,1,1,0,0,0,0,1,0,0,0,1,0,1,1,0,1,1,1,0,0,1,1,0,1,0,1,1,1,1,1,1,0,0};
{0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,1,1,1,0,1,0,1,0,0,1,1,0,0,1,0,0,0,0,0,0};
{0,1,0,1,1,1,0,0,0,0,1,1,0,0,0,1,1,0,1,1,1,0,1,0,1,0,0,1,0,0,1,0,0,0,0,0};
{0,1,0,1,1,1,1,0,0,0,0,0,0,1,0,0,0,1,1,0,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,0};
{0,1,0,1,1,1,1,0,1,0,1,1,1,0,1,1,1,1,1,0,0,0,1,0,0,1,1,1,0,0,0,1,0,0,1,0};
{0,1,0,1,1,1,1,1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,1,0,0,1,1,1,0,0,1,1,1,1,0,0};
{0,1,0,1,1,1,1,1,1,1,0,1,1,0,0,1,1,0,1,0,1,0,0,0,1,1,1,1,0,0,1,1,1,0,1,0}.
{0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,1,1,1,0,0,1,1,0,1,0,1,0,0,1,0,1,1,1};
{0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0,1};
{0,0,0,0,0,0,0,1,0,0,0,1,1,0,1,0,1,1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0,1,1,1};
{0,0,0,0,0,0,0,1,0,0,1,0,1,1,0,0,0,1,1,1,1,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1};
{0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,1,0,1,1,1,0,1,1,0,0,0,1,0,1,1,1,0,0,1,1,1};
{0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,1,1,0,0,1,0,0,1,1,0,1,0,1,0,1,1};
{0,0,0,0,0,0,0,1,1,0,0,1,0,1,0,1,0,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1,1};
{0,0,0,0,0,0,0,1,1,0,1,0,0,0,1,0,0,0,0,1,1,0,1,0,1,0,1,1,0,1,1,0,0,1,1,1};
{0,0,0,0,0,0,0,1,1,0,1,0,1,0,1,1,0,0,1,0,0,1,1,1,1,1,0,1,0,1,1,0,0,0,1,1};
{0,0,0,0,0,0,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1};
{0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0,1,0,0,0,1,0,1,1};
{0,0,0,0,0,0,0,1,1,1,0,0,1,1,1,0,1,0,0,0,1,1,0,1,1,1,0,1,0,0,1,0,0,1,0,1};
{0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,0,1,1,1,0,0,1,0,1,1,1,0,1,0,1,1,0,0,0,1};
{0,0,0,0,0,0,0,1,1,1,0,1,0,1,0,1,1,0,0,1,1,0,1,1,1,1,0,0,0,1,1,0,1,0,0,1};
{0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,1,0,0,1,1,1,1,0,0,1,0,0,0,1,1,1,0,1,0,1};
{0,0,0,0,0,0,1,0,0,1,1,0,1,1,0,1,0,1,1,1,1,1,0,0,0,1,1,0,0,0,1,0,1,0,1,1};
{0,0,0,0,0,0,1,0,1,0,0,1,0,1,1,0,0,1,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,0,1,1};
{0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,0,0,1,1,1,1,0,0,1,0,1,1,0,0,0,1,0,0,1};
{0,0,0,0,0,0,1,0,1,1,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,1,0,1,1,1,0,0,0,1,1,1};
{0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,0,1,1,0,1,0,0,1,0,1};
{0,0,0,0,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0,1,0,1,0,1,0,1,1,0,1,1,1,1};
{0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,0,1,0,1,1,0,1,1,0,0,1};
{0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,1,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,1,1,0,1};
{0,0,0,0,0,0,1,1,1,1,0,1,1,0,1,0,1,0,1,0,0,0,1,1,0,0,0,0,1,0,0,1,0,0,1,1};
{0,0,0,0,0,1,0,0,0,0,1,1,0,1,1,0,0,0,1,1,1,1,0,1,1,0,1,0,1,0,1,1,1,0,1,1};
{0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1,1,1,1};
{0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,1,1,0,1,1,1,0,0,0,1,1,1,0,1,0,1,1,1,1,0,1};
{0,0,0,0,0,1,0,0,1,0,1,0,0,1,0,0,0,1,0,0,0,1,0,1,1,1,0,0,0,1,1,1,1,0,1,1};
{0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,0,1,1,1};
{0,0,0,0,0,1,0,1,0,0,1,0,0,1,1,0,1,1,1,1,1,1,0,0,1,0,1,0,1,1,1,0,0,1,1,1};
{0,0,0,0,0,1,0,1,0,0,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,1,1,0,1,1};
{0,0,0,0,0,1,0,1,1,1,1,0,1,0,1,1,1,0,0,0,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0,1};
{0,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,0,0,1,0,1};
{0,0,0,0,0,1,1,0,1,1,1,0,1,0,1,0,1,1,0,1,1,1,1,0,0,0,1,1,0,1,1,0,0,0,0,1};
{0,0,0,0,0,1,1,0,1,1,1,1,0,0,0,1,1,1,0,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0,0,1};
{0,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,1};
{0,0,0,0,0,1,1,1,0,0,1,1,1,0,1,0,1,0,0,1,1,1,1,1,1,0,1,1,0,0,1,0,0,1,0,1};
{0,0,0,0,0,1,1,1,0,1,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,1,1,0,0,0,1,0,0,1,0,1};
{0,0,0,0,0,1,1,1,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0,1,0,0,0,1,1,1};
{0,0,0,0,0,1,1,1,1,0,1,0,0,1,0,1,0,0,0,1,0,0,0,1,1,1,0,0,1,0,0,1,0,0,0,1};
{0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,1,0,1,1,1,0,1,0,0,1,0,1,1,1,0,1,1,1,1};
{0,0,0,0,1,0,0,0,0,1,1,1,1,0,1,1,1,0,1,0,0,1,0,1,1,1,0,1,0,0,0,1,1,0,0,1};
{0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,1,1,1,1,1,1,1,0,0,1,1,0,1,0,1,0,1,1,0,1,1};
{0,0,0,0,1,0,0,0,1,0,1,1,0,1,0,0,0,1,0,1,1,1,0,0,1,1,0,1,1,1,1,0,1,1,1,1};
{0,0,0,0,1,0,0,0,1,0,1,1,0,1,1,0,0,0,0,1,1,1,0,1,1,1,0,1,1,0,0,0,0,1,0,1};
{0,0,0,0,1,0,0,0,1,1,1,0,1,1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0,1,0,1,1};
{0,0,0,0,1,0,0,1,0,1,0,1,0,0,0,1,0,0,1,1,1,1,1,0,1,1,1,1,0,0,1,0,0,1,1,1};
{0,0,0,0,1,0,0,1,0,1,0,1,0,1,1,1,0,0,1,1,1,1,0,1,1,0,1,1,0,0,1,1,1,1,1,1};
{0,0,0,0,1,0,0,1,1,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,1,1,0,1,1,0,1,0,0,1,1,1};
{0,0,0,0,1,0,0,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,0,1,1,1,0,1,0,0,0,1,1,1};
{0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,1,1,0,1,1,1,0,0,0,0,1,1,0,1,1,0,1,0,0,0,1};
{0,0,0,0,1,0,1,0,0,0,1,1,1,0,0,0,1,0,0,1,1,1,0,1,1,0,1,1,0,1,1,1,1,1,0,1};
{0,0,0,0,1,0,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,1,1,0,1,1,0,1,1,1,0,1,1,1,1,1};
{0,0,0,0,1,0,1,1,1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,1,0,0,0,1,1,1,0,0,0,1,0,1};
{0,0,0,0,1,1,0,1,0,0,0,1,0,0,1,0,0,0,1,1,1,1,1,0,1,0,1,1,0,1,1,1,0,0,0,1};
{0,0,0,0,1,1,0,1,0,0,1,1,1,0,1,1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,1,1,1,0,1,1};
{0,0,0,0,1,1,0,1,1,0,1,0,1,0,1,1,0,0,1,1,1,1,1,1,1,0,0,0,1,1,0,1,0,0,0,1};
{0,0,0,0,1,1,0,1,1,1,0,0,0,1,0,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,0,0,1,0,1,1};
{0,0,0,0,1,1,1,0,0,0,1,0,1,1,1,0,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,1,0,0,1};
{0,0,0,0,1,1,1,0,0,1,0,0,1,1,1,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,0,0,1};
{0,0,0,0,1,1,1,0,0,1,0,1,1,0,1,1,1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,1,1,0,0,1};
{0,0,0,0,1,1,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,0,1,0,0,0,1};
{0,0,0,0,1,1,1,1,1,0,1,1,1,0,1,1,0,1,1,0,0,0,1,1,1,0,1,1,1,0,1,0,1,1,0,1};
{0,0,0,0,1,1,1,1,1,1,0,0,1,1,0,1,1,0,1,1,1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,1};
{0,0,0,1,0,0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,1,1,1,1,0,1,1,1,0,0,0,1,1,1,1,1};
{0,0,0,1,0,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,0,1,0,1,1,1,1,1,1,0,0,0,1,1,1};
{0,0,0,1,0,0,0,1,0,0,1,1,1,1,0,1,0,1,1,1,1,0,1,1,1,0,1,0,0,1,0,0,1,1,1,1};
{0,0,0,1,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,0,1,0,1,1,0,1,0,0,1,1,0,1,1,1,1};
{0,0,0,1,0,0,0,1,1,1,0,0,0,1,1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,0,1,0,1,0,0,1};
{0,0,0,1,0,0,0,1,1,1,1,0,0,1,0,0,1,0,1,1,1,0,1,1,1,1,0,1,0,1,1,1,1,0,0,1};
{0,0,0,1,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,1,1,1,1,0,0,1,1,1,0,1};
{0,0,0,1,0,0,0,1,1,1,1,1,0,0,0,1,1,1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,1,0,0,1};
{0,0,0,1,0,0,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1,1,0,1,0,1,1,0,1,1,0,1};
{0,0,0,1,0,1,0,0,1,1,1,0,1,1,1,1,1,1,1,0,0,0,1,0,1,1,0,1,1,0,0,0,1,1,0,1};
{0,0,0,1,0,1,1,0,0,0,1,1,0,1,1,0,1,0,0,0,1,1,1,1,1,1,1,0,1,1,1,0,0,1,0,1};
{0,0,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0,0,1,1,1,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1};
{0,0,0,1,0,1,1,0,1,1,0,1,0,1,1,1,1,1,1,1,0,0,0,1,1,0,0,0,1,0,1,1,1,0,0,1};
{0,0,0,1,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1,1,1,1,1,1};
{0,0,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0,0,1,1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1};
{0,0,0,1,1,1,0,0,1,0,0,0,1,1,1,1,1,0,1,1,1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,1};
{0,0,0,1,1,1,1,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0,1,1};
{0,1,0,0,0,0,1,1,1,0,0,0,0,0,1,0,1,0,1,0,0,1,0,0,1,1,0,1,1,1,1,0,1,1,0,0};
{0,1,0,0,0,1,0,0,0,0,1,0,0,1,1,0,1,0,1,0,0,0,0,0,1,1,1,1,0,0,1,1,1,0,1,0};
{0,1,0,0,0,1,0,0,0,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,1,1,1,1,0,0,0,1,1,0,1,0};
{0,1,0,0,0,1,0,0,1,0,1,1,0,0,0,1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,0,0};
{0,1,0,0,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,0,0};
{0,1,0,0,0,1,1,0,1,1,1,1,0,1,1,0,0,1,0,0,1,0,1,0,1,0,0,0,0,0,1,1,1,0,0,0};
{0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,1,1,1,0};
{0,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,1,1,1,1,0,0};
{0,1,0,1,0,1,0,0,0,1,1,1,1,0,0,1,0,0,1,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,1,0};
{0,1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,0,1,0,0,1,1,1,1,0,0};
{0,1,0,1,0,1,1,1,1,1,0,0,0,0,1,1,0,0,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,0};
{0,1,0,1,1,0,1,1,0,0,0,0,1,1,1,0,1,0,1,0,1,1,0,1,1,1,1,1,1,1,0,0,1,1,0,0};
{0,1,0,1,1,0,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,1,1,0,0};
{0,1,0,1,1,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0,1,1,0,1,0,0,1,1,1,0,0,0,0,1,0,0}.
a generator polynomial of the two preset m-sequences of a length of 127 includes: { x7+x3+1 and x7+x6+1 }, and when an initial state of the first m-sequence is {1, 1, 1, 1, 1, 1, 1}, an initial state of the second m-sequence includes:
{1,0,0,1,0,0,1}; {0,0,1,1,1,1,0}; {0,0,0,1,1,1,0}; {0,1,1,0,0,1,0}; {1,1,0,1,1,1,1}; {1,1,0,0,1,0,1}; {1,0,0,1,1,0,1}; {0,0,0,0,1,0,0}; {1,0,1,0,1,1,0}; {1,0,1,1,0,0,1}; {1,1,0,0,0,0,0}; {1,0,1,0,0,0,0}; {0,0,0,0,0,0,1}; {1,0,0,1,1,0,0}; {1,1,1,0,0,1,0}; {0,1,1,1,0,1,0}; {0,0,1,1,0,1,1}; {1,1,1,1,0,0,0}; {0,0,1,1,0,0,0}; {1,1,1,1,0,0,1}; {0,0,0,1,0,1,0}; {0,1,0,0,1,1,1}; {1,1,1,1,1,0,0}; {1,1,1,0,0,0,0}; {0,0,1,1,1,0,0}; {1,0,1,1,1,1,0}; {0,0,1,1,1,1,1}; {1,1,0,0,1,1,1}; {1,1,0,1,0,0,0}; {0,0,0,0,0,1,0}; or
a generator polynomial of the two preset m-sequences of a length of 127 includes: { x7+x+1 and x7+x4+1 }, and when an initial state of the first m-sequence is {1, 1, 1, 1, 1, 1, 1}, an initial state of the second m-sequence includes:
{0,0,0,1,0,1,0}; {1,1,0,0,0,0,0}; {0,1,0,1,0,1,0}; {1,1,0,0,1,0,0}; {1,0,1,1,0,1,0}; {0,0,1,1,0,1,0}; {1,1,1,1,0,0,0}; {1,0,1,0,0,0,0}; {0,1,0,0,0,1,1}; {1,0,0,1,0,0,0}; {0,0,0,1,1,0,1}; {1,1,0,0,0,0,1}; {0,0,1,1,1,1,0}; {0,0,1,1,1,0,0}; {0,1,1,0,0,1,0}; {0,1,0,1,0,1,1}; {0,1,1,1,0,0,0}; {0,1,0,1,1,1,1}; {1,0,1,0,1,1,0}; {1,0,0,1,1,1,0}; {1,1,1,1,0,1,0}; {0,0,1,1,0,0,0}; {1,1,1,1,1,0,1}; {1,0,0,0,0,0,0}; {0,0,1,1,1,1,1}; {1,0,1,1,0,1,1}; {0,1,1,1,1,0,0}; {1,1,0,1,1,0,0}; {0,1,1,0,1,0,1}; {0,1,0,1,1,1,0}; or
a generator polynomial of the two preset m-sequences of a length of 127 includes: { x7+x6+1 and x7+x4+1 }, and when an initial state of the first m-sequence is {1, 1, 1, 1, 1, 1, 1}, an initial state of the second m-sequence includes:
{1,0,0,1,0,1,1}; {0,0,1,1,1,1,1}; {0,0,1,0,1,1,1}; {1,1,1,0,0,1,1}; {1,0,1,1,1,1,0}; {0,1,1,0,0,1,0}; {1,1,0,0,0,1,1}; {1,1,1,0,0,1,0}; {0,1,1,0,1,0,1}; {1,1,0,1,1,1,1}; {1,0,0,1,0,0,0}; {1,1,0,1,0,0,1}; {1,1,0,1,1,0,0}; {0,0,0,1,1,0,1}; {1,1,0,0,0,0,0}; {0,1,1,1,1,1,1}; {0,1,1,1,1,1,0}; {0,1,1,1,1,0,1}; {1,1,0,1,0,1,0}; {0,1,0,0,1,0,1}; {0,0,0,1,0,1,0}; {1,1,0,1,0,0,0}; {0,0,0,0,1,1,0}; {1,0,1,1,0,0,0}; {0,1,0,0,1,1,0}; {1,1,1,0,0,0,0}; {0,0,0,0,1,0,0}; {0,0,0,1,1,0,0}; {0,1,0,1,0,1,0}; {1,0,0,0,0,1,1}.
{1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,1,0,1}; {1,0,0,1,1,0,1,1,0,0,0,0,0,0,0,1,0,1};
{1,0,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0,1}; {1,1,1,0,1,0,0,0,1,0,0,0,1,1,0,1,0,0};
{1,1,0,0,1,1,1,1,0,0,0,1,0,1,0,0,1,0}; {1,0,0,1,0,1,0,1,1,1,0,0,1,1,1,1,0,0};
{1,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,0,0}; {1,0,0,0,0,1,1,0,1,0,1,0,0,0,1,0,0,0};
{1,0,0,0,1,0,1,0,1,1,0,0,0,0,1,1,1,1}; {1,0,1,1,0,1,0,0,0,0,0,1,0,0,0,1,1,1};
{1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0}; {1,0,1,1,0,0,0,0,0,0,0,1,0,1,0,0,1,1};
{1,0,1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,1}; {1,0,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0};
{1,1,0,0,0,0,0,0,0,1,1,0,1,0,1,0,0,1}; {1,1,0,1,0,0,1,1,0,1,0,1,1,1,1,1,1,1};
{1,1,1,1,1,1,0,0,1,0,0,1,0,1,0,1,1,0}; {1,0,0,0,0,0,0,0,1,0,1,1,0,1,1,0,1,1};
{1,0,0,1,0,0,1,0,0,1,0,1,1,1,1,1,1,1}; {1,1,0,0,0,0,1,0,0,1,0,1,0,0,0,1,1,0};
{1,0,0,0,1,1,0,0,0,1,0,1,0,0,1,0,0,0}; {1,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,1,1};
{1,0,0,0,0,1,1,1,0,0,1,0,1,0,0,1,1,1}; {1,0,0,0,0,0,1,1,1,1,0,1,1,0,1,0,1,1};
{1,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,1,0}; {1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,1,0};
{1,0,0,1,0,1,1,1,0,0,0,1,0,1,0,0,0,0}; {1,1,0,1,0,1,1,1,1,1,0,0,0,1,1,0,1,0};
{1,1,0,1,1,1,1,0,1,0,0,1,1,0,1,0,0,0}; {1,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,1,1};
{1,0,0,1,0,1,1,1,1,0,1,1,1,1,1,0,1,0}; {1,0,1,1,0,0,0,1,1,1,1,1,0,1,0,1,1,1};
{1,0,1,1,1,0,0,0,0,1,0,0,0,1,1,1,0,1}; {1,1,1,0,1,0,1,0,0,0,1,1,1,0,1,1,1,1};
{1,0,1,1,1,1,0,0,0,1,0,1,0,0,0,0,1,1}; {1,0,0,0,0,1,0,1,0,0,0,1,1,1,1,0,1,0};
{1,0,1,1,0,0,0,0,1,1,1,0,0,0,1,1,0,1}; {1,0,0,1,0,1,1,1,0,1,1,1,1,1,0,1,1,0};
{1,1,0,1,0,0,1,1,0,0,1,0,0,0,0,0,1,0}; {1,0,0,0,0,0,0,0,1,0,1,1,0,1,0,1,1,0};
{1,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0}; {1,0,0,0,1,0,1,0,0,1,1,1,1,1,0,1,1,0};
{1,0,0,1,0,1,0,0,1,0,1,1,1,1,1,1,1,0}; {1,1,0,1,0,1,1,0,1,1,0,1,1,1,1,1,1,0};
{1,1,1,1,0,1,0,1,1,0,1,1,0,1,1,1,0,0}; {1,0,0,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0};
{1,0,1,1,1,0,0,1,1,0,1,1,1,1,1,0,0,1}; {1,0,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,0};
{1,0,0,0,0,0,0,1,0,1,1,1,1,0,1,0,0,0}; {1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,1,0,1};
{1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,0,0,1}; {1,0,1,0,0,0,0,1,0,1,1,1,1,1,1,0,0,0};
{1,1,0,1,0,0,0,0,0,0,1,0,1,1,1,1,0,0}; {1,1,1,1,0,0,0,1,0,0,0,1,0,1,0,1,1,1};
{1,1,1,0,1,0,1,0,0,0,1,0,0,0,1,1,1,1}; {1,0,0,1,1,1,1,1,1,1,0,1,0,0,1,1,0,1};
{1,0,1,1,1,1,1,1,1,0,0,1,0,1,0,0,1,1}; {1,0,0,0,0,0,1,0,1,1,1,1,0,0,1,1,0,1};
{1,0,0,1,1,0,0,0,0,1,0,1,1,1,1,1,0,1}; {1,0,0,0,0,1,1,0,0,1,1,0,0,0,0,1,0,1};
{1,0,1,0,0,0,1,0,0,0,1,1,1,0,0,0,1,1}; {1,0,1,0,1,0,0,0,1,1,1,0,0,0,1,1,0,0};
{1,1,0,1,1,1,0,1,0,1,1,0,0,0,1,1,1,0}; {1,0,1,1,0,1,0,1,1,1,1,0,0,1,0,0,0,0};
{1,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,1,0}; {1,1,1,0,0,0,0,1,0,1,0,1,1,1,1,1,1,0};
{1,0,0,0,0,0,0,1,0,1,0,1,1,1,1,0,0,0}; {1,0,0,0,0,1,1,0,1,0,0,0,0,0,1,0,0,1};
{1,0,0,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1}; {1,0,0,0,0,0,1,0,1,1,1,0,1,0,1,1,1,0};
{1,0,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,0}; {1,0,0,0,1,1,1,1,1,0,1,1,0,1,0,1,1,1};
{1,1,0,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0}; {1,1,1,0,1,0,0,0,1,1,0,1,0,1,1,1,1,1};
{1,1,1,1,1,0,1,0,1,1,0,0,0,1,0,1,1,1}; {1,0,0,0,1,0,1,1,0,1,1,0,1,1,1,1,1,0};
{1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0}; {1,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1};
{1,1,1,0,1,0,1,1,0,0,0,0,0,0,1,1,0,1}; {1,0,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,1};
{1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,0,1}; {1,1,1,1,1,1,0,0,1,0,1,0,0,0,1,0,1,1};
{1,0,0,0,0,0,1,0,1,0,0,1,0,1,1,1,1,0}; {1,0,0,0,0,1,0,1,1,0,1,0,1,1,1,1,1,0};
{1,0,0,0,0,1,1,1,1,0,1,0,1,0,0,1,1,0}; {1,0,0,1,0,1,0,1,1,1,1,0,0,0,0,1,1,0};
{1,0,0,0,0,1,1,1,0,1,1,0,1,0,1,1,0,0}; {1,1,0,0,1,0,1,0,0,1,0,0,0,1,1,1,1,0};
{1,0,0,0,1,1,0,0,0,0,1,1,0,1,0,1,0,0}; {1,0,0,0,0,1,0,1,1,1,0,0,0,0,1,0,1,0};
{1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0,1,1}; {1,0,0,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0};
{1,0,0,1,0,1,0,0,1,1,1,1,1,1,0,0,0,1}; {1,0,1,1,1,1,0,0,1,0,1,0,0,0,0,1,1,1};
{1,1,0,0,0,1,1,1,0,1,1,1,1,0,0,1,0,1}; {1,1,1,0,0,1,0,1,0,0,1,1,1,1,0,1,1,1};
{1,0,0,0,0,0,0,1,0,0,1,1,1,1,1,0,0,1}; {1,0,0,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1};
{1,0,1,0,1,1,1,1,0,0,0,0,1,0,0,1,0,0}; {1,1,1,0,0,1,0,1,0,1,1,0,0,0,0,1,0,0};
{1,1,1,1,0,1,1,1,1,0,0,1,0,1,0,1,1,0}; {1,1,0,0,0,0,1,0,1,0,0,0,1,0,0,1,0,0};
{1,1,0,1,1,0,1,1,0,0,0,0,0,1,0,1,0,0}; {1,1,1,0,0,1,1,1,1,0,1,0,1,0,1,1,1,0};
{1,0,0,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0}; {1,0,1,1,1,0,1,0,0,1,0,1,1,0,0,0,0,0};
{1,0,1,1,1,1,1,1,0,0,1,0,1,1,0,1,0,0}; {1,1,0,1,0,1,1,1,1,1,0,0,1,0,0,1,0,0}.
{1,0,1,1,0,1,1,0,1,0,0,0}; {1,0,1,0,0,1,1,1,0,0,1,0}; {1,0,1,0,1,1,0,1,1,0,1,0}; {1,0,1,1,0,0,0,1,1,0,1,1}; {1,0,1,0,0,1,0,0,1,0,1,0}; {1,0,1,1,0,0,1,0,1,0,0,1};
{1,0,1,1,0,0,0,1,0,0,0,1}; {1,0,1,1,0,1,1,1,0,1,1,0}; {1,0,1,1,0,1,0,1,1,0,1,1}; {1,0,1,1,0,1,0,0,0,1,0,1}; {1,0,1,0,1,0,1,1,0,0,0,1}; {1,0,1,0,1,1,0,0,1,0,0,1};
{1,0,1,0,0,0,1,0,0,0,0,0}; {1,1,1,1,0,1,1,1,0,1,0,1}; {1,0,1,1,0,1,0,1,1,1,0,1}; {1,0,1,0,1,1,1,0,1,1,0,1}; {1,0,1,0,0,1,0,0,1,0,0,0}; {1,0,1,0,1,1,0,1,1,0,1,1};
{1,0,1,0,0,1,0,1,0,0,1,1}; {1,0,1,0,0,1,0,1,1,1,0,0}; {1,0,1,1,0,1,0,1,1,0,0,0}; {1,0,1,0,1,1,0,1,0,0,0,1}; {1,0,1,0,1,1,0,1,1,0,0,0}; {1,0,1,1,0,1,0,1,0,0,0,1};
{1,0,1,0,0,1,0,0,1,1,1,0}; {1,0,1,0,1,0,0,0,1,1,0,1}; {1,0,1,1,0,0,1,1,1,0,0,0}; {1,0,1,1,0,1,1,0,0,1,1,1}; {1,0,1,1,0,0,1,1,1,1,0,1}; {1,0,1,1,0,1,1,1,1,0,0,1}.
{1,0,1,1,0,0,1,1,1,1,1,0,1,0,1,0,0,1}; {1,0,1,0,1,0,0,0,0,0,1,1,0,0,1,0,0,1};
{1,1,1,1,1,1,0,0,0,0,1,0,0,1,1,1,1,0}; {1,0,1,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0};
{1,0,1,1,0,1,0,1,1,0,0,1,0,0,0,1,0,0}; {1,0,1,1,1,0,0,1,1,1,1,1,0,0,0,0,1,1};
{1,0,0,0,0,1,0,0,1,0,0,1,0,0,1,1,1,0}; {1,0,0,0,1,1,0,1,1,0,1,1,0,1,1,1,1,0};
{1,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1}; {1,0,1,1,1,1,1,0,0,1,1,1,1,1,0,1,0,0};
{1,0,1,0,1,0,1,1,1,0,0,1,0,1,1,1,0,0}; {1,0,1,1,0,0,0,1,1,0,1,1,1,1,0,1,1,0};
{1,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,1,0}; {1,1,1,0,0,1,0,0,1,0,1,0,1,0,0,1,0,0};
{1,0,1,0,0,1,0,0,0,1,0,0,1,1,1,0,1,0}; {1,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,1,0};
{1,0,1,1,1,0,0,1,0,1,0,0,1,1,1,0,1,0}; {1,0,0,0,1,0,1,0,1,0,0,0,1,1,0,1,0,1};
{1,0,1,1,0,1,0,0,0,0,0,1,1,1,1,0,1,1}; {1,0,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0};
{1,1,1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0}; {1,0,0,0,0,1,1,0,1,1,0,1,0,1,1,1,0,0};
{1,0,1,1,0,0,0,1,1,1,0,1,1,0,0,0,1,0}; {1,1,1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0};
{1,0,1,0,0,1,1,1,0,0,1,1,1,1,0,1,1,0}; {1,0,1,1,1,1,0,0,1,1,1,0,0,1,0,1,0,1};
{1,1,0,1,0,1,0,0,1,0,0,1,1,1,1,0,0,0}; {1,0,1,0,0,1,0,1,1,0,1,1,0,1,1,1,0,0};
{1,1,0,1,1,0,0,1,0,1,1,1,0,0,0,0,1,1}; {1,0,1,1,0,1,0,0,1,0,0,0,0,1,1,0,0,0}.
{1,0,1,0,1,1,0,0,1,0,0,1,0,1,0,1,0,0,1,0,0,1,1,0};
{1,0,1,0,0,0,1,1,0,1,0,0,0,1,0,1,1,0,0,0,1,0,1,1};
{1,0,1,0,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,0,1,0,0,1};
{1,1,1,1,1,0,0,1,0,0,0,1,1,1,1,0,1,1,1,1,1,1,0,0};
{1,0,1,0,0,0,1,0,0,1,1,1,0,0,0,0,0,1,0,0,1,0,1,1};
{1,1,1,1,0,1,1,1,0,0,1,0,0,1,0,1,0,0,0,1,1,1,1,0};
{1,0,1,0,0,0,1,0,0,0,1,1,0,1,0,1,1,0,0,1,0,1,0,0};
{1,1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0,0,0,1,0,0,1};
{1,0,1,1,0,1,1,1,1,0,1,1,1,0,0,1,0,0,0,0,1,1,1,1};
{1,0,1,0,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,0,0,1,1,0};
{1,1,1,1,0,0,0,0,1,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1};
{1,0,1,0,0,1,1,1,0,0,0,1,1,1,0,0,1,0,1,0,1,1,1,0};
{1,1,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1,1,0,1,0,1,0,0};
{1,0,1,0,0,0,1,1,1,0,0,1,0,1,0,0,1,1,1,0,0,0,1,0};
{1,1,1,1,1,0,1,0,1,1,0,0,0,1,0,0,1,0,1,0,0,1,1,0};
{1,0,1,0,0,1,1,1,0,1,1,0,1,0,1,1,0,0,1,0,0,0,0,0};
{1,0,1,0,0,1,1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,1,0,1};
{1,0,1,0,0,1,0,1,0,1,0,0,1,1,0,1,0,0,0,1,0,0,0,1};
{1,0,1,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0};
{1,0,1,0,1,1,1,0,0,0,1,0,0,1,0,1,0,0,1,0,0,0,1,1};
{1,0,1,0,0,1,0,0,0,1,1,1,0,1,0,1,1,1,0,0,0,1,0,0};
{1,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,0,0,1,0,0,1,0,1};
{1,0,1,0,0,0,1,0,0,0,0,1,1,0,0,0,1,1,0,1,0,1,0,0};
{1,0,1,0,1,1,1,0,0,0,0,0,1,1,1,0,1,1,1,0,0,0,1,1};
{1,0,1,0,0,1,1,0,1,1,0,1,1,1,0,0,0,0,1,1,1,1,1,0};
{1,0,1,0,1,0,0,1,1,1,0,0,1,1,1,0,1,0,1,1,1,1,0,1};
{1,0,1,0,0,0,1,1,0,1,0,0,0,1,1,0,1,0,0,1,0,0,1,0};
{1,1,1,0,0,0,1,1,0,1,1,1,0,1,0,1,1,0,1,1,1,1,0,1};
{1,0,1,0,0,0,0,1,1,1,0,1,0,1,0,0,1,1,0,1,0,0,0,1};
{1,0,1,0,0,1,0,0,1,1,0,0,0,0,1,0,1,0,0,1,1,0,1,0}.
{1,0,0,1,1,1,1,1,1,0,1,0,0,1,1,0,0,0,0,1,0,1,0,1};
{1,0,0,1,0,0,0,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,0,0};
{1,0,0,1,1,1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,1,0,1,0};
{1,1,0,0,1,0,1,0,0,0,1,0,1,1,0,1,1,1,0,0,1,1,1,1};
{1,0,0,1,0,0,0,1,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0,0};
{1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,1,0,1,1,0,1};
{1,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,0,1,1,1,1,0,0};
{1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,1,1,1,0,1,0,1};
{1,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,0,1,0,0,1,0,1,1};
{1,1,0,0,0,0,1,1,1,0,1,0,1,1,1,0,1,1,0,1,1,1,1,0};
{1,0,0,1,0,1,0,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,0,1};
{1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,0,0,0,0};
{1,0,0,1,1,1,0,1,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,1};
{1,0,0,1,0,0,0,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,0,1};
{1,0,0,1,0,1,1,1,0,1,0,1,1,0,0,0,1,1,0,1,1,1,1,1};
{1,1,0,0,1,0,0,1,1,1,1,1,0,1,1,1,1,0,0,1,0,1,0,1};
{1,1,0,0,0,0,1,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,0};
{1,0,0,1,0,1,0,0,0,1,0,1,1,0,0,0,0,0,0,1,0,0,1,1};
{1,1,0,0,0,0,0,1,0,0,0,1,0,1,1,0,1,0,0,1,1,1,0,1};
{1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,0,0,0,0,1,0,0,0,0};
{1,1,0,0,1,0,1,1,0,1,0,0,0,1,0,0,0,0,0,1,1,1,0,1};
{1,0,0,1,0,1,1,1,0,1,0,0,0,1,1,0,1,1,1,1,0,1,1,1};
{1,0,0,1,0,0,0,0,0,0,1,0,1,0,0,1,1,0,1,0,0,0,1,1};
{1,0,0,1,0,1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,1,1,0,1};
{1,0,0,1,1,0,1,0,1,1,1,1,1,1,0,1,1,0,0,0,1,1,1,0};
{1,0,0,1,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,0,0,0,0,1};
{1,0,0,0,0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,1,1,0,1,1};
{1,0,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,0,0,0,1,0};
{1,0,0,1,1,0,1,1,1,1,0,0,0,1,1,1,1,1,0,1,1,0,1,0};
{1,1,0,0,0,1,0,1,1,1,1,0,0,1,1,0,1,0,1,1,1,1,1,0}.
{1,0,0,1,1,1,1,1,1,0,1,0,0,1,1,0,0,0,0,1,0,1,0,1};
{1,0,0,1,0,0,0,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,0,0};
{1,0,0,1,1,1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,1,0,1,0};
{1,1,0,0,1,0,1,0,0,0,1,0,1,1,0,1,1,1,0,0,1,1,1,1};
{1,0,0,1,0,0,0,1,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0,0};
{1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,1,0,1,1,0,1};
{1,0,0,1,0,0,0,1,0,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1};
{1,1,0,0,0,0,0,0,1,1,0,1,0,0,1,1,1,0,1,1,1,0,1,0};
{1,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,0,1,1,1,1,0,0};
{1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,1,1,1,0,1,0,1};
{1,1,0,0,0,0,1,1,1,0,1,0,1,1,1,0,1,1,0,1,1,1,1,0};
{1,0,0,1,0,1,0,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,0,1};
{1,1,0,0,1,0,0,1,0,1,0,1,1,1,0,1,1,1,1,0,0,1,1,1};
{1,0,0,1,0,0,0,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,0,1};
{1,1,0,0,1,0,0,1,1,1,1,1,0,1,1,1,1,0,0,1,0,1,0,1};
{1,0,0,1,0,1,0,0,0,1,0,1,1,0,0,0,0,0,0,1,0,0,1,1};
{1,0,0,1,0,1,0,0,0,1,0,0,0,1,1,1,1,1,1,0,0,1,1,0};
{1,0,0,1,0,1,1,0,0,1,1,1,1,1,1,0,0,0,1,0,0,0,1,0};
{1,0,0,1,0,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,1,1,1,1};
{1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,0,0,0,0,1,0,0,0,0};
{1,0,0,1,0,1,1,1,0,1,0,0,0,1,1,0,1,1,1,1,0,1,1,1};
{1,0,0,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0,0,1,0,1,1,0};
{1,0,0,1,0,0,0,1,0,0,1,0,1,0,1,1,1,1,1,0,0,1,1,1};
{1,0,0,1,1,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,0,0};
{1,0,0,1,0,1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,1,1,0,1};
{1,0,0,1,1,0,1,0,1,1,1,1,1,1,0,1,1,0,0,0,1,1,1,0};
{1,0,0,1,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,0,0,0,0,1};
{1,1,0,1,0,0,0,0,0,1,0,0,0,1,1,0,1,0,0,0,1,1,1,0};
{1,0,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,0,0,0,1,0};
{1,0,0,1,0,1,1,1,1,1,1,1,0,0,0,1,1,0,1,0,1,0,0,1}.
{1,0,0,1,1,1,1,1,1,0,1,0,0,1,1,0,0,0,0,1,0,1,0,1};
{1,0,0,1,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,0,1,0};
{1,0,0,1,0,0,0,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,0,0};
{1,0,0,1,0,1,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0,0,1};
{1,0,0,1,1,1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,1,0,1,0};
{1,1,0,0,1,0,1,0,0,0,1,0,1,1,0,1,1,1,0,0,1,1,1,1};
{1,0,0,1,1,0,1,1,1,0,0,0,0,1,0,0,0,0,0,1,1,0,1,0};
{1,1,0,0,1,1,1,0,1,1,0,1,0,0,0,1,0,1,0,0,1,1,1,1};
{1,0,0,1,0,0,0,1,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0,0};
{1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,1,0,1,1,0,1};
{1,1,0,0,0,1,0,0,1,0,1,1,1,0,0,1,0,1,1,1,1,1,0,1};
{1,1,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0,1};
{1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0,0,0,0,0,0,1};
{1,0,0,1,0,0,1,0,1,0,1,0,0,0,0,0,0,1,1,0,0,1,1,1};
{1,0,0,0,0,1,0,1,0,0,0,1,0,0,1,0,0,0,1,1,1,1,0,1};
{1,0,0,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0,1,0};
{1,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,0,1,1,1,1,0,0};
{1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,1,1,1,0,1,0,1};
{1,0,0,1,0,1,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,0,1};
{1,0,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0,1,0,0,1};
{1,0,0,1,0,1,1,0,1,1,1,1,1,0,1,1,1,0,0,0,1,0,1,1};
{1,1,0,0,0,0,1,1,1,0,1,0,1,1,1,0,1,1,0,1,1,1,1,0};
{1,0,0,1,0,1,0,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,0,1};
{1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,0,0,0,0};
{1,0,0,1,1,1,0,1,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,1};
{1,0,0,1,0,0,0,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,0,1};
{1,0,0,1,0,1,1,1,0,1,0,1,1,0,0,0,1,1,0,1,1,1,1,1};
{1,1,0,0,1,0,0,1,1,1,1,1,0,1,1,1,1,0,0,1,0,1,0,1};
{1,1,0,0,0,0,1,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,0};
{1,0,0,1,0,1,0,0,0,1,0,1,1,0,0,0,0,0,0,1,0,0,1,1};
{1,1,0,0,0,0,0,1,0,0,0,1,0,1,1,0,1,0,0,1,1,1,0,1};
{1,0,0,1,0,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,1,1,1,1};
{1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,0,0,0,0,1,0,0,0,0};
{1,1,0,0,1,0,1,1,0,1,0,0,0,1,0,0,0,0,0,1,1,1,0,1};
{1,0,0,1,0,1,1,1,0,1,0,0,0,1,1,0,1,1,1,1,0,1,1,1};
{1,0,0,1,1,0,0,0,1,0,1,0,0,0,0,1,0,0,1,1,1,1,1,0};
{1,1,0,0,0,1,0,1,1,1,1,1,0,1,1,0,0,1,1,1,1,0,1,0};
{1,0,0,1,0,0,0,1,0,0,1,1,1,1,0,0,0,0,1,0,0,0,1,0};
{1,1,0,0,1,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,1,0,1,1};
{1,0,0,1,0,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,0,1,1,1};
{1,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,1,0};
{1,0,0,1,0,0,0,1,0,0,1,0,1,0,1,1,1,1,1,0,0,1,1,1};
{1,1,0,0,0,1,0,0,0,1,1,1,1,1,1,0,1,0,1,1,0,0,1,0};
{1,0,0,1,0,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1,1,0,1,0};
{1,0,0,1,0,0,0,0,0,0,1,0,1,0,0,1,1,0,1,0,0,0,1,1};
{1,0,0,1,0,1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,1,1,0,1};
{1,1,0,0,0,1,0,1,0,1,1,1,1,1,0,0,1,1,1,1,0,1,1,0};
{1,0,0,1,0,1,1,0,0,0,1,1,0,0,0,0,0,0,1,0,1,1,1,0};
{1,0,0,1,1,0,1,0,1,1,1,1,1,1,0,1,1,0,0,0,1,1,1,0};
{1,1,0,0,1,1,1,1,1,0,1,0,1,0,0,0,1,1,0,1,1,0,1,1};
{1,0,0,1,0,0,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0,1,0,1};
{1,0,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0,0,1,1,0};
{1,0,0,0,0,1,1,1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,1,0};
{1,1,0,1,0,0,1,0,0,0,1,1,1,0,1,0,0,1,1,1,0,1,1,1};
{1,0,0,0,0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,1,1,0,1,1};
{1,1,0,1,0,0,0,0,0,1,0,0,0,1,1,0,1,0,0,0,1,1,1,0};
{1,0,0,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,0,0,0,1,0};
{1,0,0,1,1,0,1,1,1,1,0,0,0,1,1,1,1,1,0,1,1,0,1,0};
{1,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,1,1,0,1,0};
{1,1,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,1,1,0,1,0,1};
{1,0,0,1,0,0,0,1,0,0,1,1,1,1,0,1,0,1,1,1,0,0,0,0};
{1,0,0,1,0,0,0,0,1,1,1,0,1,0,1,1,1,1,0,0,1,0,0,0}.
{1,0,0,1,1,1,1,1,1,0,1,0,0,1,1,0,0,0,0,1,0,1,0,1};
{1,0,0,1,0,0,0,1,1,1,1,1,0,1,1,0,1,1,1,0,0,0,1,0};
{1,0,0,1,0,0,0,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,0,0};
{1,0,0,1,0,1,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0,0,1};
{1,0,0,1,1,1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,1,0,1,0};
{1,1,0,0,1,0,1,0,0,0,1,0,1,1,0,1,1,1,0,0,1,1,1,1};
{1,0,0,1,0,1,1,1,0,0,1,0,1,1,1,1,1,0,1,1,1,0,0,0};
{1,1,0,0,0,0,0,1,1,0,0,0,0,1,0,0,1,0,1,0,1,1,1,0};
{1,0,0,1,0,0,0,1,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0,0};
{1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,1,0,1,1,0,1};
{1,1,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0,1};
{1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0,0,0,0,0,0,1};
{1,0,0,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0,1,0};
{1,1,0,0,1,0,1,0,0,0,1,0,0,0,1,1,0,1,0,0,1,1,1,1};
{1,0,0,1,0,0,0,1,0,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1};
{1,1,0,0,0,0,0,0,1,1,0,1,0,0,1,1,1,0,1,1,1,0,1,0};
{1,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,0,1,1,1,1,0,0};
{1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,1,1,1,0,1,0,1};
{1,0,0,1,0,1,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,0,0,1};
{1,0,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0,1,0,0,1};
{1,0,0,1,0,1,1,0,1,1,1,1,1,0,1,1,1,0,0,0,1,0,1,1};
{1,1,0,0,0,0,1,1,1,0,1,0,1,1,1,0,1,1,0,1,1,1,1,0};
{1,0,0,1,0,1,0,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,0,1};
{1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,0,0,0,0};
{1,0,0,1,1,1,0,1,0,0,0,0,0,1,1,0,1,0,1,1,1,1,0,1};
{1,1,0,0,1,0,0,1,0,1,0,1,1,1,0,1,1,1,1,0,0,1,1,1};
{1,0,0,1,0,0,0,0,1,0,1,0,0,1,1,1,1,1,0,1,0,0,0,1};
{1,1,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,1,0,1,0,1,1,0};
{1,0,0,1,0,1,0,0,1,1,0,1,0,0,0,1,0,0,0,0,0,0,1,1};
{1,0,0,1,0,1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,0,1,0,1};
{1,0,0,1,0,1,1,1,0,1,0,1,1,0,0,0,1,1,0,1,1,1,1,1};
{1,1,0,0,1,0,0,1,1,1,1,1,0,1,1,1,1,0,0,1,0,1,0,1};
{1,1,0,0,0,0,1,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,0};
{1,0,0,1,0,1,0,0,0,1,0,1,1,0,0,0,0,0,0,1,0,0,1,1};
{1,0,0,1,0,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,1,1,1,1};
{1,0,0,1,1,1,0,1,0,0,0,1,0,1,1,0,0,0,0,1,0,0,0,0};
{1,0,0,1,0,1,1,1,0,1,0,0,0,1,1,0,1,1,1,1,0,1,1,1};
{1,0,0,1,1,0,0,0,1,0,1,0,0,0,0,1,0,0,1,1,1,1,1,0};
{1,0,0,1,0,0,0,1,0,0,1,1,1,1,0,0,0,0,1,0,0,0,1,0};
{1,1,0,0,0,0,1,1,0,1,1,1,0,1,1,0,1,0,1,1,1,0,1,1};
{1,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,0,1,1,1,0,0,1,0};
{1,0,0,1,0,0,0,1,0,0,1,0,1,0,1,1,1,1,1,0,0,1,1,1};
{1,1,0,0,0,1,0,0,0,1,1,1,1,1,1,0,1,0,1,1,0,0,1,0};
{1,0,0,1,0,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1,1,0,1,0};
{1,0,0,1,0,1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,1,1,0,1};
{1,1,0,0,0,1,0,1,0,1,1,1,1,1,0,0,1,1,1,1,0,1,1,0};
{1,0,0,1,0,1,1,0,0,0,1,1,0,0,0,0,0,0,1,0,1,1,1,0};
{1,1,0,0,1,1,1,1,1,0,1,0,1,0,0,0,1,1,0,1,1,0,1,1};
{1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,1,1,0,1,0,0,0,1,0};
{1,0,0,1,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,0,0,0,0,1};
{1,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,1,1,0,0,0,0,0,0};
{1,0,0,1,0,1,0,0,0,1,1,1,1,1,0,1,1,0,0,1,1,1,1,0};
{1,0,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0,0,1,1,0};
{1,0,0,0,0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,1,1,0,1,1};
{1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,1,1,1,1,0,1,0,0,1};
{1,0,0,1,0,1,1,1,1,1,1,1,0,0,0,1,1,0,1,0,1,0,0,1}.
{0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,0,0,0,1,0,0,0,1,0,1,1};
{0,0,0,0,0,1,0,1,0,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,1};
{0,1,0,1,0,0,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,0,0};
{0,1,0,1,0,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,1,0};
{0,1,0,0,0,0,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,0,0};
{0,0,0,0,0,1,0,1,1,1,1,0,0,0,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,0,1,0,0,0,1};
{0,0,0,1,0,1,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,1,1,0,0,1};
{0,1,0,1,0,0,0,0,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,1,0,1,1,1,0,0,0,0,0,1,0,0};
{0,0,0,0,0,0,1,0,0,0,1,0,1,0,1,1,0,1,1,0,0,0,0,0,1,1,0,0,1,0,1,0,0,1,1,1};
{0,0,0,0,0,0,1,1,1,0,0,1,0,1,0,0,1,1,0,0,0,0,0,1,1,0,1,1,0,1,0,1,0,0,0,1};
{0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0,0,1,0,0,1,1,1};
{0,0,0,0,0,1,1,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0,1,0,0,1,0,0,0,1};
{0,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1,1,0,1,1,1,0,1,1};
{0,0,0,0,1,1,0,1,1,1,0,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,1,0,1};
{0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,0,0,1,1,1,1,1,1,0,1,0,1,0,0,1};
{0,1,0,1,0,1,1,1,1,1,1,0,0,0,1,0,1,1,0,1,0,0,1,1,0,0,0,0,0,1,0,0,0,1,1,0};
{0,0,0,0,1,0,0,1,0,1,0,1,1,1,1,1,1,0,0,1,1,0,1,1,1,0,1,0,1,1,0,0,1,1,1,1};
{0,1,0,1,0,1,1,0,0,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0,0,0};
{0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0,1,1,1,0,1};
{0,1,0,0,0,0,1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,1,0,0,0,0,1,0};
{0,1,0,1,0,1,1,0,1,1,0,1,1,1,1,1,1,0,1,0,0,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0};
{0,0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,1,1,1,1,0,1,1,0,1,0,0,1,1,0,1,1,0,0,0,1};
{0,1,0,1,0,1,1,1,0,1,1,0,0,0,1,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,1,0,0,1,0};
{0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,0,1,0,1,1,0,1,1,1,1,0,1,0,1,0,0,0,1,1,1};
{0,1,0,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,0,0};
{0,0,0,0,0,0,1,1,1,1,1,0,0,1,1,0,1,0,0,1,0,0,1,0,1,0,1,0,0,0,1,1,0,0,0,1};
{0,0,0,1,0,1,0,0,1,1,0,0,1,0,1,1,1,1,0,1,0,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1};
{0,1,0,1,0,1,1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,0};
{0,0,0,0,1,1,0,0,1,0,1,1,0,1,0,1,0,0,0,1,1,1,0,1,1,1,0,1,1,0,1,1,1,1,1,1};
{0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,1,1,0,1,0,1,0,0,1,0,1,1,0,0,1,1,1,1}.
{0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,0,0,0,1,0,0,0,1,0,1,1};
{0,0,0,0,0,1,0,1,0,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,1};
{0,1,0,1,0,0,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,0,0};
{0,1,0,1,0,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,1,0};
{0,1,0,0,0,0,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,0,0};
{0,0,0,0,0,1,0,1,1,1,1,0,0,0,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,0,1,0,0,0,1};
{0,0,0,1,0,1,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,1,1,0,0,1};
{0,0,0,1,1,1,0,0,1,0,0,0,1,1,1,1,1,0,1,1,1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,1};
{0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1,1,1,1};
{0,0,0,0,1,0,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,1,1,0,1,1,0,1,1,1,0,1,1,1,1,1};
{0,0,0,0,0,0,1,0,0,0,1,0,1,0,1,1,0,1,1,0,0,0,0,0,1,1,0,0,1,0,1,0,0,1,1,1};
{0,0,0,0,0,0,1,1,1,0,0,1,0,1,0,0,1,1,0,0,0,0,0,1,1,0,1,1,0,1,0,1,0,0,0,1};
{0,0,0,0,1,0,0,0,1,1,1,0,1,1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0,1,0,1,1};
{0,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1,1,0,1,1,1,0,1,1};
{0,0,0,0,1,1,0,1,1,1,0,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,1,0,1};
{0,0,0,0,0,0,0,1,1,0,0,1,0,1,0,1,0,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1,1};
{0,0,0,0,0,0,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1};
{0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,0,1,1,1};
{0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,0,0,1,1,1,1,1,1,0,1,0,1,0,0,1};
{0,1,0,1,0,1,1,1,1,1,1,0,0,0,1,0,1,1,0,1,0,0,1,1,0,0,0,0,0,1,0,0,0,1,1,0};
{0,0,0,1,0,1,0,1,1,0,1,1,0,1,1,1,1,1,1,0,1,0,0,0,1,1,1,1,0,0,1,1,1,0,0,1};
{0,0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,1,1,1,1,0,1,1,0,1,0,0,1,1,0,1,1,0,0,0,1};
{0,0,0,1,0,0,1,1,1,0,0,1,1,1,1,0,0,0,1,0,1,1,1,1,1,1,0,1,1,0,1,1,0,1,0,1};
{0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,0,1,0,1,1,0,1,1,1,1,0,1,0,1,0,0,0,1,1,1};
{0,0,0,0,1,0,0,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,0,1,1,1,0,1,0,0,0,1,1,1};
{0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,1,1,1,0};
{0,1,0,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,0,0};
{0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,0,1,1,0,1,0,0,1,0,1};
{0,0,0,1,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,0,1,0,1,1,0,1,0,0,1,1,0,1,1,1,1};
{0,0,0,1,0,0,0,1,1,1,1,1,1,0,1,1,0,1,0,1,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1}.
{0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,0,0,0,1,0,0,0,1,0,1,1};
{0,0,0,0,0,1,0,1,0,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,1};
{0,1,0,1,0,0,0,0,0,0,1,1,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,1,0};
{0,1,0,1,0,0,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,0,0};
{0,0,0,0,1,0,0,0,0,1,0,1,1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0,1,0,0,0,1,0,1,1};
{0,1,0,0,0,0,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,0,0};
{0,0,0,0,0,1,0,1,1,1,1,0,0,0,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,0,1,0,0,0,1};
{0,0,0,1,0,1,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,1,1,0,0,1};
{0,1,0,1,0,0,0,0,1,0,1,1,0,1,1,0,1,1,1,0,0,0,1,1,0,1,1,1,0,0,0,0,0,1,0,0};
{0,0,0,0,0,0,1,0,0,0,1,0,1,0,1,1,0,1,1,0,0,0,0,0,1,1,0,0,1,0,1,0,0,1,1,1};
{0,0,0,0,0,0,1,1,1,0,0,1,0,1,0,0,1,1,0,0,0,0,0,1,1,0,1,1,0,1,0,1,0,0,0,1};
{0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0,0,1,0,0,1,1,1};
{0,0,0,0,0,1,1,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0,1,0,0,1,0,0,0,1};
{0,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1,1,0,1,1,1,0,1,1};
{0,0,0,0,1,1,0,1,1,1,0,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,1,0,1};
{0,1,0,1,1,1,1,0,0,0,0,0,0,1,0,0,0,1,1,0,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,0};
{0,1,0,1,0,0,1,1,0,1,0,0,1,1,1,0,1,1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0,1,0,0};
{0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,0,0,1,1,1,1,1,1,0,1,0,1,0,0,1};
{0,1,0,1,0,1,1,1,1,1,1,0,0,0,1,0,1,1,0,1,0,0,1,1,0,0,0,0,0,1,0,0,0,1,1,0};
{0,0,0,0,1,0,0,1,0,1,0,1,1,1,1,1,1,0,0,1,1,0,1,1,1,0,1,0,1,1,0,0,1,1,1,1};
{0,1,0,1,0,1,1,0,0,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0,0,0};
{0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0,1,1,1,0,1};
{0,0,0,1,1,1,0,1,0,0,1,1,0,0,1,0,1,0,0,1,1,1,0,0,1,0,1,1,1,1,1,1,1,1,0,1};
{0,1,0,0,0,0,1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,1,0,0,0,0,1,0};
{0,1,0,0,1,0,0,0,0,1,1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,1,1,0,1,0,1,0,1,0,0,0};
{0,1,0,1,0,1,1,0,1,1,0,1,1,1,1,1,1,0,1,0,0,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0};
{0,0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,1,1,1,1,0,1,1,0,1,0,0,1,1,0,1,1,0,0,0,1};
{0,1,0,1,0,1,1,1,0,1,1,0,0,0,1,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,1,0,0,1,0};
{0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,0,1,0,1,1,0,1,1,1,1,0,1,0,1,0,0,0,1,1,1};
{0,1,0,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,0,0};
{0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,1,0,0,1,1,0,1};
{0,0,0,0,0,0,1,1,1,1,1,0,0,1,1,0,1,0,0,1,0,0,1,0,1,0,1,0,0,0,1,1,0,0,0,1};
{0,0,0,1,0,1,0,0,1,1,0,0,1,0,1,1,1,1,0,1,0,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1};
{0,1,0,1,0,1,1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,0};
{0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,1,0,0,0,1,1,1,0,1};
{0,0,0,0,1,1,0,0,1,0,1,1,0,1,0,1,0,0,0,1,1,1,0,1,1,1,0,1,1,0,1,1,1,1,1,1};
{0,1,0,1,0,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,1,0,0,0};
{0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,1,1,1,0,1};
{0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,1,1,0,1,0,1,0,0,1,0,1,1,0,0,1,1,1,1};
{0,1,0,0,0,0,1,0,1,0,1,0,0,1,1,0,1,1,0,0,0,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0};
{0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,1,0,1,0,1,0,0,1,0,0,1,0,1,1,0,0,1,1,1,1,1};
{0,1,0,0,0,0,1,0,1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0,0,1,1,0,1,1,0,0,0,0,1,0};
{0,1,0,1,0,0,1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,0};
{0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,1,1,1,0,1,0,1,0,0,1,1,0,0,1,0,0,0,0,0,0};
{0,0,0,0,1,0,1,0,1,0,0,0,1,1,0,0,1,1,1,1,1,1,0,1,1,0,1,0,0,1,1,0,1,1,1,1};
{0,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,1,0,1,0,1};
{0,1,0,1,1,1,1,1,1,1,0,1,1,0,0,1,1,0,1,0,1,0,0,0,1,1,1,1,0,0,1,1,1,0,1,0};
{0,0,0,1,0,0,0,1,1,1,1,1,1,0,1,1,0,1,0,1,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1};
{0,1,0,0,0,1,0,0,1,0,1,0,1,1,1,0,0,0,0,0,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0,0};
{0,1,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,1,0,1,1,0,1,0,0,0,0,0,1,1,1,0,1,0,1,0};
{0,0,0,1,0,0,0,1,0,1,0,0,1,1,0,1,1,0,0,0,1,1,1,1,0,1,0,1,1,0,1,1,1,1,1,1};
{0,0,0,0,0,0,1,0,1,0,1,0,0,1,1,0,0,0,0,1,1,0,1,1,1,0,0,1,0,1,1,1,1,0,0,1};
{0,1,0,1,0,1,1,1,1,1,1,1,0,0,1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0,1,0,1,1,0,0};
{0,0,0,0,0,0,1,0,0,1,1,1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0,1,1,0,0,1,0,1,0,1};
{0,1,0,1,0,1,1,1,0,0,1,0,1,1,1,1,0,0,1,0,0,0,1,1,0,1,0,0,1,1,0,0,0,0,0,0};
{0,0,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0,0,1,1,0,0,1};
{0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,0,1,0,1,0,0,1,1,1,1,0,0,1,1,1,1,1,0,1};
{0,1,0,1,0,0,0,0,1,0,1,0,0,1,1,0,1,0,0,1,1,1,1,1,1,1,0,0,0,1,0,0,1,1,0,0};
{0,1,0,1,0,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,0,0,1,1,1,1,1,1,1,0,0,1,0,1,1,0}.
{0,0,0,0,0,0,1,1,0,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,0,0,0,1,0,0,0,1,0,1,1};
{0,0,0,0,0,1,0,1,0,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,1};
{0,1,0,1,0,0,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,0,0};
{0,1,0,1,0,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,1,0};
{0,1,0,0,0,0,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,0,0};
{0,0,0,0,0,1,0,1,1,1,1,0,0,0,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,0,1,0,0,0,1};
{0,0,0,1,0,1,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,1,1,0,0,1};
{0,0,0,1,1,1,0,0,1,0,0,0,1,1,1,1,1,0,1,1,1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,1};
{0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1,1,1,1};
{0,0,0,0,1,0,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,1,1,0,1,1,0,1,1,1,0,1,1,1,1,1};
{0,0,0,0,0,0,1,0,0,0,1,0,1,0,1,1,0,1,1,0,0,0,0,0,1,1,0,0,1,0,1,0,0,1,1,1};
{0,0,0,0,0,0,1,1,1,0,0,1,0,1,0,0,1,1,0,0,0,0,0,1,1,0,1,1,0,1,0,1,0,0,0,1};
{0,0,0,0,1,0,0,0,1,1,1,0,1,1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0,1,0,1,1};
{0,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1,1,0,1,1,1,0,1,1};
{0,0,0,0,1,1,0,1,1,1,0,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,1,0,1};
{0,0,0,0,0,0,0,1,1,0,0,1,0,1,0,1,0,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1,1};
{0,1,0,1,1,1,1,0,0,0,0,0,0,1,0,0,0,1,1,0,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,0};
{0,1,0,1,0,0,1,1,0,1,0,0,1,1,1,0,1,1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0,1,0,0};
{0,0,0,0,0,0,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1};
{0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,0,1,1,1};
{0,0,0,0,0,1,0,1,1,1,1,0,1,0,1,1,1,0,0,0,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0,1};
{0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,1,1,0,1,1,1,0,0,0,1,1,1,0,1,0,1,1,1,1,0,1};
{0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,0,0,1,1,1,1,1,1,0,1,0,1,0,0,1};
{0,1,0,1,0,1,1,1,1,1,1,0,0,0,1,0,1,1,0,1,0,0,1,1,0,0,0,0,0,1,0,0,0,1,1,0};
{0,0,0,0,1,0,0,1,0,1,0,1,1,1,1,1,1,0,0,1,1,0,1,1,1,0,1,0,1,1,0,0,1,1,1,1};
{0,1,0,1,0,1,1,0,0,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0,0,0};
{0,0,0,1,0,1,0,1,1,0,1,1,0,1,1,1,1,1,1,0,1,0,0,0,1,1,1,1,0,0,1,1,1,0,0,1};
{0,0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,1,1,1,1,0,1,1,0,1,0,0,1,1,0,1,1,0,0,0,1};
{0,0,0,1,0,0,1,1,1,0,0,1,1,1,1,0,0,0,1,0,1,1,1,1,1,1,0,1,1,0,1,1,0,1,0,1};
{0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,0,1,0,1,1,0,1,1,1,1,0,1,0,1,0,0,0,1,1,1};
{0,0,0,0,1,0,0,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,0,1,1,1,0,1,0,0,0,1,1,1};
{0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,1,1,1,0};
{0,0,0,1,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1,1,1,1,1,1};
{0,0,0,0,0,0,0,1,1,0,1,0,0,0,1,0,0,0,0,1,1,0,1,0,1,0,1,1,0,1,1,0,0,1,1,1};
{0,1,0,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,0,0,0};
{0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,1,0,0,1,1,0,1};
{0,0,0,0,0,0,1,1,1,1,1,0,0,1,1,0,1,0,0,1,0,0,1,0,1,0,1,0,0,0,1,1,0,0,0,1};
{0,0,0,1,0,1,0,0,1,1,0,0,1,0,1,1,1,1,0,1,0,0,1,1,1,0,0,1,1,1,1,1,1,1,0,1};
{0,1,0,1,0,1,1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,1,1,1,1,1,1,1,0,1,1,0,0,1,0,0};
{0,1,0,1,0,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,1,1,0,0,0};
{0,0,0,0,1,1,0,1,0,0,1,1,1,0,1,1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,1,1,1,0,1,1};
{0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,1,0,0,1,1,1,1,0,0,1,0,0,0,1,1,1,0,1,0,1};
{0,0,0,1,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,0,1,0,1,1,0,1,0,0,1,1,0,1,1,1,1};
{0,1,0,0,0,1,0,0,0,0,1,0,0,1,1,0,1,0,1,0,0,0,0,0,1,1,1,1,0,0,1,1,1,0,1,0};
{0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0,1};
{0,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,1,1,1,0,0,1,1,0,1,0,1,0,0,1,0,1,1,1};
{0,1,0,1,1,0,1,0,0,0,1,1,0,0,0,0,1,1,1,0,1,0,1,0,0,1,1,0,0,1,0,0,0,0,0,0};
{0,0,0,0,1,1,1,1,0,1,1,0,0,1,0,1,1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,1,0,1,0,1};
{0,0,0,1,0,0,0,1,1,1,1,1,1,0,1,1,0,1,0,1,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1};
{0,1,0,0,0,1,0,0,1,0,1,0,1,1,1,0,0,0,0,0,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0,0};
{0,1,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,1,0,1,1,0,1,0,0,0,0,0,1,1,1,0,1,0,1,0};
{0,0,0,1,0,0,0,1,0,1,0,0,1,1,0,1,1,0,0,0,1,1,1,1,0,1,0,1,1,0,1,1,1,1,1,1};
{0,0,0,1,0,0,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1,1,0,1,0,1,1,0,1,1,0,1};
{0,0,0,1,0,1,1,0,1,1,0,1,0,1,1,1,1,1,1,1,0,0,0,1,1,0,0,0,1,0,1,1,1,0,0,1};
{0,1,0,0,0,0,1,1,1,0,0,0,0,0,1,0,1,0,1,0,0,1,0,0,1,1,0,1,1,1,1,0,1,1,0,0};
{0,1,0,0,0,1,1,0,1,1,1,1,0,1,1,0,0,1,0,0,1,0,1,0,1,0,0,0,0,0,1,1,1,0,0,0};
{0,0,0,0,0,1,1,1,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0,1,0,0,0,1,1,1};
{0,0,0,0,0,0,1,0,1,1,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,1,0,1,1,1,0,0,0,1,1,1};
{0,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,1};
{0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,1,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,1,1,0,1}; and/or
when N=18, the fourth sequence set is a sequence set 18.{1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,1,0,1}; {1,0,0,1,1,0,1,1,0,0,0,0,0,0,0,1,0,1};
{1,1,0,0,1,1,1,1,0,0,0,1,0,1,0,0,1,0}; {1,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,0,0};
{1,0,0,0,0,1,1,0,1,0,1,0,0,0,1,0,0,0}; {1,0,0,0,1,0,1,0,1,1,0,0,0,0,1,1,1,1};
{1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0}; {1,0,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0};
{1,1,0,0,0,0,0,0,0,1,1,0,1,0,1,0,0,1}; {1,0,0,0,1,1,0,1,0,1,0,0,1,1,1,0,0,0};
{1,0,0,1,1,0,0,0,1,0,1,0,0,1,0,0,0,0}; {1,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,1,0};
{1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,1,0}; {1,1,0,1,0,1,1,1,1,0,0,1,1,0,1,0,0,0};
{1,0,0,1,0,1,1,1,0,1,1,1,1,1,0,1,1,0}; {1,1,0,1,0,0,1,1,0,0,1,0,0,0,0,0,1,0};
{1,0,0,0,1,0,1,0,0,1,1,1,1,1,0,1,1,0}; {1,0,1,1,1,0,0,1,1,0,1,1,1,1,1,0,0,1};
{1,0,0,0,0,1,1,1,0,0,1,0,1,1,0,1,1,1}; {1,0,0,0,0,0,0,1,0,1,1,1,1,0,1,0,0,0};
{1,1,0,0,0,1,0,1,1,1,1,1,1,0,1,0,0,0}; {1,0,1,1,0,1,0,1,1,1,1,0,0,1,0,0,0,0};
{1,0,0,0,0,0,1,0,1,1,1,0,1,0,1,1,1,0}; {1,1,0,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0};
{1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,0,1,0}; {1,0,0,0,1,1,1,1,1,1,0,1,0,1,1,0,0,1};
{1,1,1,0,0,1,1,1,1,0,1,0,1,1,0,1,0,0}; {1,0,0,1,0,1,1,0,1,0,0,0,0,1,0,0,0,0};
{1,1,1,0,1,0,1,0,0,1,0,0,0,0,1,1,1,1}; {1,0,0,0,0,1,1,1,1,0,1,1,0,1,0,1,0,0}.
determining, by a user equipmnent, a sequence {xn} comprising N elements, wherein N is a positive integer greater than 1, xn is an element in the sequence {xn}, the sequence {xn} is a sequence satisfying a preset condition, the preset condition is: xn = A·bn · jn , a value of n ranges from 0 to N-1, A is a non-zero complex number,
, the element bn = u·(1-2·sn), u is a non-zero complex number, and a set of one or more sequences {sn} comprising an element sn comprises at least one sequence in a first sequence set or at least one equivalent sequence of the sequence in the first sequence set, the equivalent sequence {qn} satisfies qn = s(n+M)modN , M ∈ {0,1,2,..., N-1}; and
generating, by the user equipmnent, a demodulation reference signal, DMRS, based on the sequence {xn};
sending, by the user equipment equipmnent, the DMRS, wherein
when N=12, sequences in the first sequence set comprise some or all sequences in a sequence set 1, and the sequences in the sequence set 1 comprise:
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0}; {1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0}; {1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0}; {1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1}; {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0}.
performing, by the user equipment, discrete Fourier transform processing on the N elements in the sequence {xn}, to obtain a sequence {fn}; and
separately mapping, by the user equipment, N elements in the sequence {fn} to N continuous subcarriers, to obtain the DMRScomprising the N elements; or separately mapping N elements in the sequence {fn} to N subcarriers having equal spacings, to obtain the DMRS comprising the N elements;
sending, by the user equipment, the DMRS through radio frequency.
before performing the discrete Fourier transform processing on the N elements in the sequence {xn}, filtering, by the user equipment, the sequence {xn}; or
after performing the discrete Fourier transform processing on the N elements in the sequence {xn}, filtering, by the user equipment, the sequence {xn}.
receiving, by a base station, a demodulation reference signal, DMRS, wherein the DMRS is generated by a sequence {xn};
obtaining, by a base station, N elements in a sequence {xn}, wherein N is a positive integer greater than 1, xn is an element in the sequence {xn}, the sequence {xn} is a sequence satisfying a preset condition, the preset condition is: xn = A·bn·jn, a value of n ranges from 0 to N-1, A is a non-zero complex number,
, the element bn =u·(1-2·sn), u is a non-zero complex number, and a set of one or more sequences {sn} comprising an element sn comprises at least one sequence in a first sequence set or at least one equivalent sequence of the sequence in the first sequence set, the equivalent sequence {qn} satisfies qn = s(n+M)modN , M ∈ {0,1,2,..., N-1} ; and
processing, by the base station, the DMRS based on the N elements in the sequence {xn}, wherein
when N=12, sequences in the first sequence set comprise some or all sequences in a sequence set 1, and the sequences in the sequence set 1 comprise:
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0}; {1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0}; {1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0}; {1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1}; {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0};{1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0}.
obtaining, by the base station, on N continuous subcarriers, the DMRS on the N subcarriers; or obtaining, on N subcarriers having equal spacings, the DMRS on the N subcarriers;
obtaining, by the base station, N elements in a sequence {fn}, wherein N is a positive integer greater than 1, the DMRS is generated by mapping the sequence {fn} to the N subcarriers, and fn is an element in the sequence {fn}; and
performing, by the base station, inverse discrete Fourier transform processing on the sequence {fn}, to obtain the N elements in the sequence {xn}.
a processing unit, configured to: determine a sequence {xn} comprising N elements, and generate a demodulation reference signal, DMRS, based on the sequence {xn}, wherein N is a positive integer greater than 1, xn is an element in the sequence {xn}, the sequence {xn} is a sequence satisfying a preset condition, the preset condition is: xn = A·bn·jn , a value of n ranges from 0 to N-1, A is a non-zero complex number,
, the element bn = u·(1-2·sn), u is a non-zero complex number, and a set of one or more sequences {sn} comprising the element sn comprises at least one sequence in a first sequence set or at least one equivalent sequence of the sequence in the first sequence set, the equivalent sequence {qn} satisfies qn = s(n+M)modN , M ∈ {0,1,2,..., N-1}, wherein
when N=12, sequences in the first sequence set comprise some or all sequences in a sequence set 1, and the sequences in the sequence set 1 comprise:
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0};{1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0};{1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0}; {1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1};{1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0}; {1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1}; {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0};
a transceiver unit, configured to send the DMRS.
a transceiver unit, configured to receive a demodulation reference signal, DMRS, wherein the DMRS is generated by a sequence {xn}; and
a processing unit, configured to: obtain N elements in a sequence {xn}, wherein N is a positive integer greater than 1, xn is an element in the sequence {xn}, the sequence {xn} is a sequence satisfying a preset condition, the preset condition is: xn = A·bn·jn, a value of n ranges from 0 to N-1, A is a non-zero complex number,
, the element bn =u·(1-2·sn), u is a non-zero complex number, and a set of one or more sequences {sn} comprising an element sn comprises at least one sequence in a first sequence set or at least one equivalent sequence of the sequence in the first sequence set, the equivalent sequence {qn} satisfies qn = s(n+M)modN , M ∈ {0,1,2,..., N-1}; and process the DMRS based on the N elements in the sequence {xn}, wherein
when N=12, sequences in the first sequence set comprise some or all sequences in a sequence set 1, and the sequences in the sequence set 1 comprise:
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0};{1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0};{1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0}; {1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1}; {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0}.
a storage medium including executable instructions; and
a processor;
wherein the executable instructions, when executed by the processor, cause the device to perform any one of claims 1 to 5.
Bestimmen, durch ein Benutzergerät, einer Sequenz {xn}, die N Elemente umfasst, wobei N eine positive ganze Zahl größer als 1 ist, xn ein Element in der Sequenz {xn} ist, die Sequenz {xn} eine Sequenz ist, die eine vorgegebene Bedingung erfüllt, die vorgegebene Bedingung wie folgt lautet: xn = A·bn·jn, ein Wert von n im Bereich von 0 bis N-1 liegt, A eine von null verschiedene komplexe Zahl ist,
, das Element bn = u · (1 - 2 · sn), u eine von null verschiedene komplexe Zahl ist und ein Satz einer oder mehrerer Sequenzen {sn}, die ein Element sn umfassen, mindestens eine Sequenz in einem ersten Sequenzsatz oder mindestens eine äquivalente Sequenz der Sequenz in dem ersten Sequenzsatz umfasst, wobei die äquivalente Sequenz {qn} qn = s(n+M)modN, M ∈ {0,1,2,..., N - 1} erfüllt; und
Erzeugen, durch das Benutzergerät, eines Demodulationsreferenzsignals, DMRS, basierend auf der Sequenz {xn};
Senden, durch das Benutzergerät, des DMRS, wobei
wenn N=12 gilt, Sequenzen in dem ersten Sequenzsatz einige oder alle Sequenzen in einem Sequenzsatz 1 umfassen und die Sequenzen in dem Sequenzsatz 1 Folgendes umfassen:
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0}; {1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0}; {1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0}; {1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1}; {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0}.
Durchführen, durch das Benutzergerät, einer diskreten Fouriertransformationsverarbeitung an den N Elementen in der Sequenz {xn}, um eine Sequenz {fn} zu erhalten; und
separates Abbilden, durch das Benutzergerät, von N Elementen in der Sequenz {fn} auf N zusammenhängende Unterträger, um das DMRS, das die N Elemente umfasst, zu erhalten; oder separates Abbilden von N Elementen in der Sequenz {fn} auf N Unterträger mit gleichen Abständen, um das DMRS, das die N Elemente umfasst, zu erhalten;
Senden, durch das Benutzergerät, des DMRS mittels Hochfrequenz.
vor Durchführen der diskreten Fouriertransformationsverarbeitung an den N Elementen in der Sequenz {xn}, Filtern, durch das Benutzergerät, der Sequenz {xn}; oder
nach Durchführen der diskreten Fouriertransformationsverarbeitung an den N Elementen in der Sequenz {xn}, Filtern, durch das Benutzergerät, der Sequenz {xn}.
Empfangen, durch eine Basisstation, eines Demodulationsreferenzsignals, DMRS, wobei das DMRS durch eine Sequenz {xn} erzeugt wird;
Erhalten, durch eine Basisstation, von N Elementen in einer Sequenz {xn}, wobei N eine positive ganze Zahl größer als 1 ist, xn ein Element in der Sequenz {xn} ist, die Sequenz {xn} eine Sequenz ist, die eine vorgegebene Bedingung erfüllt, die vorgegebene Bedingung wie folgt lautet: xn = A · bn · jn, ein Wert von n im Bereich von 0 bis N-1 liegt, A eine von null verschiedene komplexe Zahl ist,
, das Element bn = u · (1 - 2 · sn), u eine von null verschiedene komplexe Zahl ist und ein Satz einer oder mehrerer Sequenzen {sn}, die ein Element sn umfassen, mindestens eine Sequenz in einem ersten Sequenzsatz oder mindestens eine äquivalente Sequenz der Sequenz in dem ersten Sequenzsatz umfasst, wobei die äquivalente Sequenz {qn} qn = s(n+M)modN, M ∈ {0,1,2,..., N-1} erfüllt; und
Verarbeiten, durch die Basisstation, des DMRS basierend auf den N Elementen in der Sequenz {xn}; wobei
wenn N=12 gilt, Sequenzen in dem ersten Sequenzsatz einige oder alle Sequenzen in einem Sequenzsatz 1 umfassen und die Sequenzen in dem Sequenzsatz 1 Folgendes umfassen:
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0}; {1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0}; {1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0}; {1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1}; {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0}.
Erhalten, durch die Basisstation, auf N zusammenhängenden Unterträgern, des DMRS auf den N Unterträgern; oder Erhalten, auf N Unterträgern mit gleichen Abständen, des DMRS auf den N Unterträgern;
Erhalten, durch die Basisstation, von N Elementen in einer Sequenz {fn}, wobei N eine positive ganze Zahl größer als 1 ist, das DMRS durch Abbilden der Sequenz {fn} auf die N Unterträger erzeugt wird und fn ein Element in der Sequenz {fn} ist; und
Durchführen, durch die Basisstation, einer inversen Fouriertransformationsverarbeitung an der Sequenz {fn}, um die N Elemente in der Sequenz {xn} zu erhalten.
eine Verarbeitungseinheit, die zu Folgendem ausgelegt ist: Bestimmen einer Sequenz {xn}, die N Elemente umfasst, und Erzeugen eines Demodulationsreferenzsignals, DMRS, basierend auf der Sequenz {xn}, wobei N eine positive ganze Zahl größer als 1 ist, xn ein Element in der Sequenz {xn} ist, die Sequenz {xn} eine Sequenz ist, die eine vorgegebene Bedingung erfüllt, die vorgegebene Bedingung wie folgt lautet: xn = A · bn · jn, ein Wert von n im Bereich von 0 bis N-1 liegt, A eine von null verschiedene komplexe Zahl ist,
, das Element bn = u · (1 - 2 · sn), u eine von null verschiedene komplexe Zahl ist und ein Satz einer oder mehrerer Sequenzen {sn}, die das Element sn umfassen, mindestens eine Sequenz in einem ersten Sequenzsatz oder mindestens eine äquivalente Sequenz der Sequenz in dem ersten Sequenzsatz umfasst, wobei die äquivalente Sequenz {qn} qn = s(n+M)modN, M ∈ {0,1,2,..., N-1} erfüllt, wobei
wenn N=12 gilt, Sequenzen in dem ersten Sequenzsatz einige oder alle Sequenzen in einem Sequenzsatz 1 umfassen und die Sequenzen in dem Sequenzsatz 1 Folgendes umfassen:
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0}; {1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0}; {1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0}; {1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1}; {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0};
eine Sendeempfängereinheit, ausgelegt zum Senden des DMRS.
eine Sendeempfängereinheit, ausgelegt zum Empfangen eines Demodulationsreferenzsignals, DMRS, wobei das DMRS durch eine Sequenz {xn} erzeugt wird; und
eine Verarbeitungseinheit, die zu Folgendem ausgelegt ist: Erhalten von N Elementen in einer Sequenz {xn}, wobei N eine positive ganze Zahl größer als 1 ist, xn ein Element in der Sequenz {xn} ist, die Sequenz {xn} eine Sequenz ist, die eine vorgegebene Bedingung erfüllt, die vorgegebene Bedingung wie folgt lautet: xn = A · bn · jn, ein Wert von n im Bereich von 0 bis N-1 liegt, A eine von null verschiedene komplexe Zahl ist,
, das Element bn = u · (1 - 2 · sn), u eine von null verschiedene komplexe Zahl ist und ein Satz einer oder mehrerer Sequenzen {sn}, die ein Element sn umfassen, mindestens eine Sequenz in einem ersten Sequenzsatz oder mindestens eine äquivalente Sequenz der Sequenz in dem ersten Sequenzsatz umfasst, wobei die äquivalente Sequenz {qn} qn = s(n+M)modN, M ∈ {0,1,2,..., N-1} erfüllt;
und Verarbeiten des DMRS basierend auf den N Elementen in der Sequenz {xn}, wobei
wenn N=12 gilt, Sequenzen in dem ersten Sequenzsatz einige oder alle Sequenzen in einem Sequenzsatz 1 umfassen und die Sequenzen in dem Sequenzsatz 1 Folgendes umfassen:
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0}; {1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0}; {1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0}; {1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1}; {1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1}; {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0}; {1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1}; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0}; {1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0}.
ein Speichermedium, das ausführbare Anweisungen aufweist; und
einen Prozessor;
wobei die ausführbaren Anweisungen bei Ausführung durch den Prozessor bewirken, dass die Vorrichtung einen der Ansprüche 1 bis 5 durchführt.
déterminer, par un équipement utilisateur, une séquence {xn} comprenant N éléments, où N est un entier positif supérieur à 1, xn est un élément dans la séquence {xn}, la séquence {xn} est une séquence satisfaisant une condition prédéfinie, la condition prédéfinie est : xn = A.bn.jn, une valeur de n est comprise entre 0 et N-1, A est un nombre complexe non nul,
, l'élément bn = u.(1-2.sn), u est un nombre complexe non nul, et un ensemble d'une ou plusieurs séquences {sn} comprenant un élément sn comprend au moins une séquence dans un premier ensemble de séquences ou au moins une séquence équivalente de la séquence dans le premier ensemble de séquences, la séquence équivalente {qn} satisfait à qn = s(n+M)modN, M∈{0, 1, 2, ..., N-1} ; et
générer, par l'équipement utilisateur, un signal de référence de démodulation, DMRS, basé sur la séquence {xn} ;
envoyer, par l'équipement utilisateur, le DMRS, où :
lorsque N = 12, les séquences dans le premier ensemble de séquences comprennent certaines ou toutes les séquences contenues dans un ensemble de séquences 1, et les séquences dans l'ensemble de séquences 1 comprennent :
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0} ; {1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0} ; {1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1} ; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1} ; {1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0} ; {1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1} ; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1} ; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0} ; {1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1} ; {1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0} ; {1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1} ; {1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1} ; {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0} ; {1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1} ; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0} ; {1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0}.
exécuter, par l'équipement utilisateur, un traitement de transformée de Fourier discrète sur les N éléments de la séquence {xn}, pour obtenir une séquence {fn} ; et
mettre en correspondance séparément, par l'équipement utilisateur, N éléments de la séquence {fn} avec N sous-porteuses continues, pour obtenir le DMRS comprenant les N éléments ; ou mettre en correspondance séparément N éléments de la séquence {fn} avec N sous-porteuses ayant des espacements égaux, pour obtenir le DMRS comprenant les N éléments ;
envoyer, par l'équipement utilisateur, le DMRS par radiofréquence.
avant d'effectuer le traitement par transformée de Fourier discrète sur les N éléments de la séquence {xn}, filtrer, par l'équipement utilisateur, la séquence {xn} ; ou
après avoir effectué le traitement par transformée de Fourier discrète sur les N éléments de la séquence {xn}, filtrer, par l'équipement utilisateur, la séquence {xn}.
recevoir, par une station de base, un signal de référence de démodulation, DMRS, où le DMRS est généré par une séquence {xn} ;
obtenir, par une station de base, N éléments dans une séquence {xn}, où N est un entier positif supérieur à 1, xn est un élément dans la séquence {xn}, la séquence {xn} est une séquence satisfaisant une condition prédéfinie, la condition prédéfinie est : xn = A.bn.jn, une valeur de n est comprise entre 0 et N-1, A est un nombre complexe non nul,
, l'élément bn = u.(1-2.sn), u est un nombre complexe non nul, et un ensemble d'une ou plusieurs séquences {sn} comprenant un élément sn comprend au moins une séquence dans un premier ensemble de séquences ou au moins une séquence équivalente de la séquence dans le premier ensemble de séquences, la séquence équivalente {qn} satisfait à qn = s(n+M)modN, M∈{0, 1, 2, ..., N-1} ; et
traiter, par la station de base, le DMRS sur la base des N éléments de la séquence {xn}, où :
lorsque N = 12, les séquences dans le premier ensemble de séquences comprennent certaines ou toutes les séquences contenues dans un ensemble de séquences 1, et les séquences dans l'ensemble de séquences 1 comprennent :
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0} ; {1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0} ; {1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1} ; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1} ; {1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0} ; {1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1} ; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1} ; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0} ; {1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1} ; {1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0} ; {1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1} ; {1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1} ; {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0} ; {1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1} ; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0} ; {1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0}.
obtenir, par la station de base, sur N sous-porteuses continues, le DMRS sur les N sous-porteuses ; ou obtenir, sur N sous-porteuses ayant des espacements égaux, le DMRS sur les N sous-porteuses ;
obtenir, par la station de base, N éléments dans une séquence {fn}, où N est un entier positif supérieur à 1, le DMRS est généré en mettant en correspondance la séquence {fn} avec les N sous-porteuses, et fn est un élément dans la séquence {fn} ; et
effectuer, par la station de base, un traitement de transformée de Fourier discrète inverse sur la séquence {fn} pour obtenir les N éléments dans la séquence {xn}.
une unité de traitement, configurée pour : déterminer une séquence {xn} comprenant N éléments et générer un signal de référence de démodulation, DMRS, sur la base de la séquence {xn}, où N est un entier positif supérieur à 1, xn est un élément dans la séquence {xn}, la séquence {xn} est une séquence satisfaisant une condition prédéfinie, la condition prédéfinie est : xn = A.bn.jn, une valeur de n est comprise entre 0 et N-1, A est un nombre complexe non nul,
, l'élément bn = u.(1-2.sn), u est un nombre complexe non nul, et un ensemble d'une ou plusieurs séquences {sn} comprenant l'élément sn comprend au moins une séquence dans un premier ensemble de séquences ou au moins une séquence équivalente de la séquence dans le premier ensemble de séquences, la séquence équivalente {qn} satisfait à qn = s(n+M)modN, M∈{0, 1, 2, ..., N-1} ; où
lorsque N = 12, les séquences dans le premier ensemble de séquences comprennent certaines ou toutes les séquences contenues dans un ensemble de séquences 1, et les séquences dans l'ensemble de séquences 1 comprennent :
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0} ; {1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0} ; {1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1} ; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1} ; {1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0} ; {1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1} ; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1} ; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0} ; {1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1} ; {1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0} ; {1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1} ; {1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1} ; {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0} ; {1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1} ; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0} ; {1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0} ;
une unité émettrice-réceptrice, configurée pour envoyer le DMRS.
une unité émettrice-réceptrice, configurée pour recevoir un signal de référence de démodulation, DMRS, où le DMRS est généré par une séquence {xn} ; et
une unité de traitement, configurée pour : obtenir N éléments dans une séquence {xn}, où N est un entier positif supérieur à 1, xn est un élément dans la séquence {xn}, la séquence {xn} est une séquence satisfaisant une condition prédéfinie, la condition prédéfinie est : xn = A.bn.jn, une valeur de n est comprise entre 0 et N-1, A est un nombre complexe non nul,
, l'élément bn = u.(1-2.sn), u est un nombre complexe non nul, et un ensemble d'une ou plusieurs séquences {sn} comprenant un élément sn comprend au moins une séquence dans un premier ensemble de séquences ou au moins une séquence équivalente de la séquence dans le premier ensemble de séquences, la séquence équivalente {qn} satisfait à qn = s(n+M)modN, M∈{0, 1, 2, ..., N-1} ; et traiter le DMRS sur la base des N éléments de la séquence {xn}, où :
lorsque N = 12, les séquences dans le premier ensemble de séquences comprennent certaines ou toutes les séquences contenues dans un ensemble de séquences 1, et les séquences dans l'ensemble de séquences 1 comprennent :
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0} ; {1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0} ; {1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1} ; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1} ; {1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0} ; {1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1} ; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1} ; {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0} ; {1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1} ; {1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0} ; {1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1} ; {1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1} ; {1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0} ; {1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1} ; {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0} ; {1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0}.
l'unité de traitement est en outre configurée pour : obtenir N éléments dans une séquence {fn}, où N est un entier positif supérieur à 1, le DMRS est généré en mettant en correspondance la séquence {fn} avec les N sous-porteuses, et fn est un élément dans la séquence {fn} ; et
effectuer un traitement de transformée de Fourier discrète inverse sur la séquence {fn} pour obtenir les N éléments dans la séquence {xn}.
un support de stockage comprenant des instructions exécutables ; et
un processeur ;
où les instructions exécutables, lorsqu'elles sont exécutées par le processeur, amènent le dispositif à exécuter l'une quelconque des revendications 1 à 5.
REFERENCES CITED IN THE DESCRIPTION
Non-patent literature cited in the description