(19)
(11)EP 3 725 445 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.01.2022 Bulletin 2022/01

(21)Application number: 19169813.3

(22)Date of filing:  17.04.2019
(51)International Patent Classification (IPC): 
B23K 1/00(2006.01)
B23K 1/08(2006.01)
(52)Cooperative Patent Classification (CPC):
B23K 1/0004

(54)

RESISTANCE SOLDERING METHOD AND SOLDERING DEVICE

WIDERSTANDSLÖTVERFAHREN UND LÖTVORRICHTUNG

PROCÉDÉ DE SOUDURE DE RÉSISTANCE ET DISPOSITIF DE SOUDURE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
21.10.2020 Bulletin 2020/43

(73)Proprietor: Mahle International GmbH
70376 Stuttgart (DE)

(72)Inventor:
  • TAVCAR, Matevz
    62233 Komen (SI)

(74)Representative: BRP Renaud & Partner mbB Rechtsanwälte Patentanwälte Steuerberater 
Königstraße 28
70173 Stuttgart
70173 Stuttgart (DE)


(56)References cited: : 
CN-A- 104 959 722
US-A- 3 621 193
JP-A- H 115 158
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to a resistance soldering method for the production of a plate assembly comprised of at least two basic elements which are materially bonded by means of the resistance soldering method as described in the preamble of claim 1, and to a soldering device for this purpose.

    [0002] Resistance soldering methods and soldering devices for this purpose are already known from the prior art. US 3621193 A, on which the preamble of claims 1 and 16 is based, describes a positive contact resistance soldering unit which has a relay therein. CN 104959722 A describes a resistance soldering pliers with a fault detection device. JP H11 5158 A describes various brazing methods such as torch brazing, high frequency brazing, and electric resistance brazing. The resistance soldering method is appropriate, for example, for the production of a winding of an electrical machine. For the production of the respective winding, a solder element is arranged between the two copper plates, and the copper plates, together with the solder element, are compressed between the electrodes of the soldering device. A voltage is applied to the electrodes of the soldering device, which then flows through the two copper plates and the solder element. As a result of the heat generated by the application of the voltage to the solder element, the latter melts and connects the two copper plates in a materially bonded manner. The correct positioning of the solder element between the two copper plates is critical to the production of the respective winding. If this is not achieved, and the solder element is not arranged between the copper plates, it is possible that the two copper plates will not be soldered, or only incorrectly soldered together.

    [0003] Resistance soldering methods are customarily executed automatically and, correspondingly, the solder element is positioned automatically between the respective copper plates. The solder element can thus also assume an incorrect position such that, in the winding thus produced, a number of soldering points may be defective. Any such windings must be discarded thereafter, by the execution of controls. In order to avoid the additional costs and additional complexity associated with subsequent controls, it is customary in resistance soldering for the presence of the solder element to be directly and optically detected by means of a CCD camera (CCD: charge coupled device). However, this is associated with a high complexity of evaluation and high costs.

    [0004] The object of the invention is therefore the improvement of a resistance soldering method of the generic type, and the provision of an improved soldering device for this purpose, thus permitting the above-mentioned disadvantages to be overcome.

    [0005] According to the invention, this object is fulfilled by the subject matter of the independent claims. Advantageous forms of embodiment are the subject matter of the dependent claims.

    [0006] A resistance soldering method is provided for the production of a plate assembly comprised of at least two basic elements which are materially bonded by the resistance soldering method, using a soldering device. Specifically, the resistance soldering method is appropriate for the production of a winding of an electrical machine. In the resistance soldering method, a first basic element and a second basic element are spaced and, with respect to a mounting direction, are arranged one above the other between a first electrode and a second electrode of the soldering device. Between the first basic element and the second basic element, a solder element is arranged in contact with said elements. An output voltage is applied to the electrodes, as a result of which an electric circuit is constituted, and the two basic elements are soldered together by means of the solder element. In the resistance soldering method, the correct or incorrect position of the solder element in the plate assembly is detected by a control unit. According to the invention, the control unit, upon the detection of the correct or incorrect position of the solder element in the plate assembly, determines at least one voltage which is constituted between the solder element and one point on the electric circuit.

    [0007] Thereafter, with reference to the at least one voltage thus determined, the control unit detects the correct or incorrect position of the solder element in the plate assembly, by means of an evaluation and/or a comparison.

    [0008] In the resistance soldering method, the two electrically-conductive basic elements are soldered together by means of the solder element. The two electrodes of the soldering device, the two basic elements and the solder element each have a determinable electrical resistance such that, in the resistance soldering method, upon the application of the output voltage to the plate assembly, a series circuit and consequently a voltage divider are constituted. The correct position of the solder element in the plate assembly is thus the position of the solder element between the two basic elements. With the solder element in the correct position, a soldering point can be constituted between the two basic elements, and the two basic elements can be joined together in a materially bonded manner. Any position of the solder element which deviates herefrom is thus the incorrect position. Depending upon the position of the solder element in the circuit, the voltage determined by the control unit between the solder element and the same point in the circuit can also differ, as the voltage is measured on differing elements of the circuit. By means of an evaluation and/or a comparison, the control unit can then detect the correct or incorrect position of the solder strip. Advantageously, the control unit, in the method according to the invention, can determine the voltage between the solder element and one point in the electric circuit or, alternatively, can also determine a plurality of voltages between the solder element and the plurality of mutually divergent points in the electric circuit.

    [0009] Advantageously, it can be provided that the control unit compares the at least one determined voltage with a saved comparative value, and thus detects the correct or incorrect position of the solder element in the plate assembly. The saved comparative value can correspond, for example, to the voltage between the solder element and the predefined point in the electric circuit, in the event of the correct positioning of the solder strip. If the at least one voltage thus determined does not correspond to the comparative value, the control unit can thus establish the incorrect position of the solder strip in the plate assembly. If the at least one voltage thus determined corresponds to the comparative value, the control unit can thus establish the correct position of the solder strip in the plate assembly. It will naturally be understood that the comparison executed by the control unit can also be executed with a specified tolerance. If, in the resistance soldering method, voltages are determined between the solder element and mutually divergent points in the circuit, these can be compared with the respective saved comparative values.

    [0010] It can additionally be provided that, in the detection of the correct or incorrect position of the solder element in the plate assembly, the control unit determines a first voltage which is constituted between the first electrode or the first basic element and the solder element and/or a second voltage which is constituted between the second electrode or the second basic element and the solder element. In the event of the correct positioning of the solder element in the plate assembly, the first voltage can be dependent upon a first electrical resistance, which can be composed of the electrical resistance of the first electrode and/or of the electrical resistance of the first basic element and/or of the contact resistance between the first electrode and the first basic element and/or of the electrical resistance of the solder element. In the event of the correct positioning of the solder element in the plate assembly, the second voltage can be dependent upon a second electrical resistance, which can be composed of the electrical resistance of the second electrode and/or of the electrical resistance of the second basic element and/or of the contact resistance between the second electrode and the second basic element and/or of the electrical resistance of the solder element. The voltages determined by the control unit can then be compared with the saved comparative values, and the correct or incorrect position of the solder element can be detected accordingly.

    [0011] In an alternative embodiment of the resistance soldering method, it is provided that, in the detection of the correct or incorrect position of the solder element in the plate assembly, the control unit determines the output voltage, a first voltage which is constituted between the first electrode or the first basic element and the solder element, and a second voltage which is constituted between the second electrode or the second basic element and the solder element. Thereafter, in accordance with the output voltage, the first voltage and the second voltage, the control unit detects the correct or incorrect position of the solder element in the plate assembly. In the detection of the correct or incorrect position of the solder element in the plate assembly, the first voltage and the second voltage are determined, which vary according to the position of the solder element in the plate assembly. The control unit can thus detect the correct or incorrect position of the solder element in the plate assembly in a simplified and secure manner.

    [0012] Advantageously, the resistance soldering method can be executed such that, in the event of the correct positioning of the solder element in the plate assembly, the first voltage is dependent upon a totalized first resistance. The first totalized resistance is composed of the electrical resistance of the first electrode and/or of the electrical resistance of the first basic element and/or of the contact resistance between the first electrode and the first basic element and/or of the electrical resistance of the solder element. Moreover, in the event of the correct positioning of the solder element in the plate assembly, the second voltage is dependent upon a totalized second resistance. The second totalized resistance is comprised of the electrical resistance of the second electrode and/or of the electrical resistance of the second basic element and/or of the contact resistance between the second electrode and the second basic element and/or of the electrical resistance of the solder element. It is understood that the totalized first resistance and the totalized second resistance can also include further electrical resistances - such as, for example, the resistances of electrical conductors.

    [0013] If the two basic elements and the two electrodes are identical, and the first voltage is measured between the first electrode and the solder strip and the second voltage is measured between the solder element and the second solder strip, the first totalized resistance is equal to the second totalized resistance, and the first voltage is correspondingly equal to the second voltage. The first totalized resistance is composed of the electrical resistance of the first electrode, of the electrical resistance of the first basic element, and of the contact resistance between the first electrode and the first basic element. The second totalized resistance is composed of the electrical resistance of the second electrode, of the electrical resistance of the second basic element, and of the contact resistance between the second electrode and the second basic element.

    [0014] Conversely, if the solder element is arranged incorrectly between the first electrode and the first basic element, the first voltage continues to be determined by the totalized first resistance, and the second voltage by the totalized second resistance. However, the totalized first resistance differs from that associated with the correct position of the solder element, in that it is composed of the electrical resistance of the first electrode. The totalized second resistance differs from that associated with the correct position of the solder element, in that it is composed of the electrical resistances of the two basic elements, the solder element and the second electrode, and of the electrical contact resistances between the second electrode and the second basic element, and between the two basic elements. As a result of the differing totalized resistances, the two voltages also differ from one another. The same applies if the solder element is incorrectly arranged between the second electrode and the second basic element.

    [0015] If, incorrectly, the solder element is not at all arranged between the two basic elements, the totalized first resistance and the totalized second resistance are close to zero, and both the first voltage and the second voltage correspond to the output voltage. It is understood that the two totalized resistances, depending upon the position of the solder element, can also include the electrical resistance of electrical conductors.

    [0016] Advantageously, it can be provided that the control unit calculates a first ratio between the first voltage and the output voltage, and a second ratio between the second voltage and the output voltage. The control unit, by an evaluation and/or a comparison of the first ratio and the second ratio, then detects the correct or incorrect position of the solder element in the plate assembly. In this advantageous manner, the values of the first voltage, the second voltage and the compensating voltage can be relativized, and the control unit can detect the correct or incorrect position of the solder element in the plate assembly, independently of the absolute values of the first voltage, the second voltage and the compensating voltage.

    [0017] In an advantageous further development of the resistance soldering method, it is provided that the control unit, by means of an output voltage measuring device, continuously measures an output voltage signal during the resistance soldering process and, from the output voltage signal, executes a read-off of the output voltage which correlates to a specified time point. Additionally, the control unit can integrate the output voltage signal, prior to the read-off of the output voltage, by means of an integrator. If, in the detection of the correct or incorrect position of the solder element, the first voltage and the second voltage are consulted, the control unit, by means of a first voltage measuring device, can record a first voltage signal and, by means of a second voltage measuring device, can record a second voltage signal throughout the resistance soldering process, with no interruption. The control unit, from the first voltage signal, then executes a read-off of the first voltage which correlates to a specified time point and, from the second voltage signal, executes a read-off of the second voltage which correlates to a specified time point. Additionally, the control unit can respectively integrate the first voltage signal prior to the read-off of the first voltage and the second voltage signal prior to the read-off of the second voltage, by means of an integrator. It can also be provided that the control unit executes the read-off of the output voltage, the first voltage and the second voltage at the same specified time point.

    [0018] In the resistance soldering method, it can be provided that the first basic element is employed in the form of a first electrical conductor and/or the second basic element is employed in the form of a second electrical conductor. Alternatively or additionally, the first basic element and/or the second basic element can respectively be employed in the form of a plurality of electrical conductors which are soldered together by the resistance soldering method. Thus, in the resistance soldering method, for example, two electrical conductors can firstly be soldered to one another to constitute a basic element. This basic element and a further electrical conductor, or a further basic element comprised of a plurality of electrical conductors which are soldered to one another by the resistance soldering method, can then be soldered together to constitute a further basic element. In this manner, in principle, the plate assembly can be produced from a plurality of electrical conductors which are soldered to one another.

    [0019] In summary, in the resistance soldering method according to the invention, the correct or incorrect position of the solder element in the plate assembly can be detected in a simplified and secure manner by means of the control unit. As a result, defective soldering points in the plate assembly can be prevented, and the number of rejected components reduced accordingly.

    [0020] The invention further relates to a soldering device for the resistance soldering of two basic elements to constitute a plate assembly. The soldering device is specifically appropriate for the resistance soldering of a winding of an electrical machine. The soldering device comprises a first electrode and a second electrode, between which the two basic elements can be compressed in the mounting direction, with the interposition of a solder element, and can be resistance soldered by the application of an output voltage. The soldering device further comprises a control unit for detecting the correct or incorrect position of the solder element in the plate assembly. According to the invention, the soldering device is configured for the execution of the resistance soldering method described above.

    [0021] In a further development of the soldering device, it is provided that the soldering device comprises a controlling system for the operation of the soldering device. The controlling system is configured for the operation of the soldering device according to the resistance soldering method described above. The controlling system can thus comprise actuators for the actuation of the two electrodes and/or a voltage supply unit for the supply of the output voltage to the soldering device and/or the control unit for detecting the correct or incorrect position of the solder element in the plate assembly.

    [0022] Advantageously, it can be provided that the control unit comprises an output voltage measuring device for detecting an output voltage signal, a first voltage measuring device for detecting a first voltage signal between the first electrode or the first basic element and the solder element, and a second voltage measuring device for detecting a second voltage signal between the second electrode or the second basic element and the solder element. The control unit can moreover comprise at least one integrator for integrating the output voltage signal and/or the first voltage signal and/or the second voltage signal. The output voltage determined by the control unit can be correlated to the output voltage signal at a specified time point. The first voltage determined by the control unit can be correlated to the first voltage signal at a specified time point, and the second voltage determined by the control unit can be correlated to the second voltage signal at a specified time point. Advantageously, the specified time point for the read-off of the output voltage, the first voltage and the second voltage can be one and the same.

    [0023] Further significant characteristics and advantages of the invention proceed from the sub-claims, from the drawings and from the associated description of the figures, with reference to the drawings.

    [0024] It is understood that the above-mentioned characteristics, and those described hereinafter, can not only be employed in the respective combination indicated, but also in other combinations, or in isolation, without departing from the scope of the present invention.

    [0025] Preferred exemplary embodiments of the invention are represented in the drawings, and are described in greater detail in the following description, wherein the same reference numbers are applied to identical, similar or functionally equivalent components.

    [0026] In the figures, schematically in each case:
    Figs. 1 and 2
    show views of a soldering device according to the invention for executing a resistance soldering method according to the invention;
    Fig. 3
    shows a schematic plan of the resistance soldering method according to the invention;
    Fig. 4
    shows a view of the soldering device according to the invention, with a plate assembly in which the solder element is in the correct position;
    Figs. 5 to 7
    show views of the soldering device according to the invention, with the plate assembly in which the solder element is in the incorrect position.


    [0027] Fig. 1 and fig. 2 show views of a soldering device 1 according to the invention for executing a resistance soldering method 2 according to the invention. The soldering device 1 comprises a first electrode 3a and a second electrode 3b, between which a plate assembly 4 is arranged for resistance soldering. The plate assembly 4 comprises a first basic element 5a and a second basic element 5b, between which a solder element 6 is arranged. In this case, the first basic element 5a and the second basic element 5b are respectively constituted by an electrical conductor 7a and an electrical conductor 7b. The soldering device 1 comprises a control unit 9, which can detect the correct or incorrect position of the solder element 6 in the plate assembly 4. The control unit 9 is only schematically represented here.

    [0028] The correct position of the solder element 6 in the plate assembly 4 is thus the position of the solder element 6 between the two basic elements 5a and 5b, as represented here. With the solder element 6 in the correct position, a soldering point 8 - c.f. fig. 2 - can be constituted between the two basic elements 5a and 5b. At the soldering point 8, the two basic elements 5a and 5b are materially bonded to one another. Any position of the solder element 6 in the plate assembly 4 which deviates herefrom is thus the incorrect position.

    [0029] In the resistance soldering method 2, according to fig. 1, the first basic element 5a and the second basic element 5b are spaced and, with respect to a mounting direction 10, are arranged one above the other between the first electrode 3a and the second electrode 3b of the soldering device 1. The solder element 6 is arranged between the first basic element 5a and the second basic element 5b. By means of the electrodes 3a and 3b, the solder element 6 is then compressed together with the basic elements 5a and 5b by a force F, as represented in fig. 2. Thereafter, an output voltage U0 - c.f. fig. 3 - is applied to the electrodes 3a and 3b and, as a result, the two basic elements 5a and 5b are soldered to one another at the soldering point 8 by means of the solder element 6. It is understood that the soldering point 8 defined herein is not a point-type bond and, depending upon the quantity of heat generated by the resistance soldering method 2, can also extend over the entire contact region of the two basic elements 5a and 5b.

    [0030] In the resistance soldering method 2, the correct or incorrect position of the solder element 6 in the plate assembly 4 is detected by the control unit 9. Fig. 3 illustrates a schematic plan for this purpose. The electrodes 3a and 3b of the soldering device 1, the basic elements 5a and 5b and the solder element 6 of the plate assembly 4 each have a determinable electrical resistance such that, in the resistance soldering method 2, upon the application of the output voltage U0, a series circuit, and thus a voltage divider, are constituted by the electrodes 3a and 3b and the plate assembly 4. In the event of the correct positioning of the solder element 6 in the plate assembly 4 - as represented here - a first voltage U1 between the first electrode 3a and the solder element 6 is dependent upon a totalized first resistance R1. The totalized first resistance R1 is composed of the electrical resistance R3a of the first electrode 3a, of the electrical resistance R5a of the first basic element 5a, and of the contact resistance RK1 between the first electrode 3a and the first basic element 5a. A second voltage U2 between the second electrode 3b and the solder element 6 is dependent upon a totalized second resistance R2. The second totalized resistance R2 is composed of the electrical resistance R3b of the second electrode 3b, of the electrical resistance R5b of the second basic element 5b, and of the contact resistance RK2 between the second electrode 3b and the second basic element 5b.

    [0031] The control unit 9, upon the detection of the correct or incorrect position of the solder element 6 in the plate assembly 4, determines the output voltage U0, the first voltage U1 and the second voltage U2. The control unit 9 then calculates a first ratio between the first voltage U1 and the output voltage U0, and a second ratio between the second voltage U2 and the output voltage U0. By an evaluation and/or comparison of the first ratio and the second ratio, the control unit 9 can detect the correct or incorrect position of the solder element 6 in the plate assembly 4 in a simplified and secure manner.

    [0032] The detection of the correct or incorrect position of the solder element 6 is described in greater detail hereinafter with reference to fig. 4 to Fig. 7. In the interests of simplification, it is assumed that the two electrodes 3a and 3b and the two basic elements 5a and 5b are identical, and the electrical resistances R3a and R3b, the electrical resistances R5a and R5b, and the contact resistances RK1 and RK2 are respectively equal.

    [0033] Fig. 4 shows a view of the soldering device 1 and the plate assembly 4, in which the solder element 6 is arranged between the two basic elements 5a and 5b, and is thus in the correct position. An impeccable soldering point 8 is constituted in this case. Here, the electrical resistance R1 is equal to the electrical resistance R2, such that the voltages U1 and U2 are equal, and the first ratio U1 to U0 and the second ratio U2 to U0 are respectively 1/2.

    [0034] Fig. 5 shows a view of the soldering device 1 and the plate assembly 4, in which the solder element 6 is not at all arranged between the basic elements 5a and 5b, and is thus in the incorrect position. A soldering point 8 is not constituted between the basic elements 5a and 5b. In this case, the electrical resistance R1 is equal to the electrical resistance R2, and the voltages U1 and U2 are close to equal to the output voltage U0. The first ratio U1 to U0 and the second ratio U2 to U0 are respectively close to 1.

    [0035] Fig. 6 shows a view of the soldering device 1 and the plate assembly 4, in which the solder element 6 is arranged between the first electrode 3a and the first basic element 5a, and is thus in the incorrect position. In this case, no soldering point 8 is constituted between the basic elements 5a and 5b. The first resistance R1 is composed of the resistance R3a of the first electrode 3a. Conversely, the second resistance R2 is composed of the resistances R5a, R5b, R3b, RK2, and of a contact resistance between the two basic elements 5a and 5b. The first voltage U1 is correspondingly smaller than the second voltage U2. The first ratio U1 to U0 and the second ratio U2 to U0 differ from each other, and assume unequal values of 1/2 or 1.

    [0036] Fig. 7 shows a view of the soldering device 1 and the plate assembly 4, in which the solder element 6 is arranged between the second electrode 3b and the second basic element 5b, and is thus in the incorrect position. Here again, no soldering point 8 is constituted between the basic elements 5a and 5b. The same comments apply here as to fig. 6 wherein, however, the resistance R2 is smaller than the resistance R1.

    [0037] In summary, in the resistance soldering method 2 according to the invention, the correct or incorrect position of the solder element 6 can be detected by the control unit 9 in a simplified and secure manner. As a result, defective soldering points in the plate assembly 4 can be prevented, and the number of rejected components reduced accordingly.


    Claims

    1. A resistance soldering method (2) for producing a plate assembly (4) comprised of at least two basic elements (5a, 5b) which are materially bonded by said resistance soldering method (2), by means of a soldering device (1), specifically for producing a winding of an electrical machine,

    - wherein a first basic element (5a) and a second basic element (5b) are spaced and, with respect to a mounting direction (10), are arranged one above the other between a first electrode (3a) and a second electrode (3b) of the soldering device (1);

    - wherein, between the first basic element (5a) and the second basic element (5b), a solder element (6) is arranged in contact with said basic elements;

    - wherein an output voltage (U0) is applied to the electrodes (3a, 3b), as a result of which an electric circuit is constituted, and the two basic elements (5a, 5b) are soldered together by means of the solder element (6);

    characterized in that - the correct or incorrect position of the solder element (6) in the plate assembly (4) is detected by means of a control unit (9);

    - the control unit (9), upon the detection of the correct or incorrect position of the solder element (6) in the plate assembly (4), determines a voltage between the solder element (6) and one point on the electric circuit, or voltages between the solder element (6) and mutually divergent points on the electric circuit, and

    - the control unit (9), with reference to the voltage or voltages thus determined, by means of an evaluation and/or a comparison, detects the correct or incorrect position of the solder element (6) in the plate assembly (4).


     
    2. The resistance soldering method as claimed in claim 1,
    characterized in that
    the control unit (9) compares the determined voltage with a saved comparative value or the determined voltages with saved comparative values, and thus detects the correct or incorrect position of the solder element (6) in the plate assembly (4).
     
    3. The resistance soldering method as claimed in claim 2,
    characterized in that
    in the detection of the correct or incorrect position of the solder element (6) in the plate assembly (4), the control unit (9) determines a first voltage (U1) which is constituted between the first electrode (3a) or the first basic element (5a) and the solder element (6) and/or a second voltage (U2) which is constituted between the second electrode (3b) or the second basic element (5b) and the solder element (6).
     
    4. The resistance soldering method as claimed in claim 3,
    characterized in that

    - in the event of the correct positioning of the solder element (6) in the plate assembly (4), the first voltage (U1) is dependent upon a first electrical resistance (R1), which can be composed of the electrical resistance (R3a) of the first electrode (3a) and/or of the electrical resistance (R5a) of the first basic element (5a) and/or of the contact resistance (RK1) between the first electrode (3a) and the first basic element (5a) and/or of the electrical resistance of the solder element (6), and/or

    - in the event of the correct positioning of the solder element (6) in the plate assembly (4), the second voltage (U2) is dependent upon a second electrical resistance (R2), which can be composed of the electrical resistance (R3b) of the second electrode (3b) and/or of the electrical resistance (R5b) of the second basic element (5b) and/or of the contact resistance (RK2) between the second electrode (3b) and the second basic element (5b) and/or of the electrical resistance of the solder element (6).


     
    5. The resistance soldering method as claimed in claim 1,
    characterized in that

    - upon the detection of the correct or incorrect position of the solder element (6) in the plate assembly (4), the control unit (9) determines the output voltage (U0), a first voltage (U1) constituted between the first electrode (3a) or the first basic element (5a) and the solder element (6), and a second voltage (U2) constituted between the second electrode (3b) or the second basic element (5b) and the solder element (6); and

    - the control unit (9), in accordance with the output voltage (U0), the first voltage (U1) and the second voltage (U2), detects the correct or incorrect position of the solder element (6) in the plate assembly (4).


     
    6. The resistance soldering method as claimed in claim 5,
    characterized in that

    - the control unit (9) calculates a first ratio between the first voltage (U1) and the output voltage (U0), and a second ratio between the second voltage (U2) and the output voltage (U0); and

    - the control unit (9), by an evaluation and/or a comparison of the first ratio and the second ratio, detects the correct or incorrect position of the solder element in the plate assembly (4) .


     
    7. The resistance soldering method as claimed in claim 5 or 6,
    characterized in that

    - in the event of the correct positioning of the solder element (6) in the plate assembly (4), the first voltage (U1) is dependent upon a first electrical resistance (R1), which can be composed of the electrical resistance (R3a) of the first electrode (3a) and/or of the electrical resistance (R5a) of the first basic element (5a) and/or of the contact resistance (RK1) between the first electrode (3a) and the first basic element (5a) and/or of the electrical resistance of the solder element (6), and

    - in the event of the correct positioning of the solder element (6) in the plate assembly (4), the second voltage (U2) is dependent upon a second electrical resistance (R2), which can be composed of the electrical resistance (R3b) of the second electrode (3b) and/or of the electrical resistance (R5b) of the second basic element (5b) and/or of the contact resistance (RK2) between the second electrode (3b) and the second basic element (5b) and/or of the electrical resistance of the solder element (6).


     
    8. The resistance soldering method as claimed in one of the preceding claims, characterized in that

    - the control unit (9), by means of an output voltage measuring device, continuously measures an output voltage signal during the resistance soldering process (2); and

    - the control unit (9), from the output voltage signal, executes a read-off of the output voltage (U0) which correlates to a specified time point.


     
    9. The resistance soldering method as claimed in claim 8,
    characterized in that
    the control unit (9) integrates the output voltage signal prior to the read-off of the output voltage (U0), by means of an integrator.
     
    10. The resistance soldering method as claimed in claim 3 or 5,
    characterized in that

    - the control unit (9), by means of a first voltage measuring device, records a first voltage signal throughout the resistance soldering process (2) with no interruption; and

    - the control unit (9), from the first voltage signal, executes a read-off of the first voltage (U1) which correlates to a specified time point.


     
    11. The resistance soldering method as claimed in claim 10,
    characterized in that
    the control unit (9), by means of an integrator, integrates the first voltage signal prior to the read-off of the first voltage (U1).
     
    12. The resistance soldering method as claimed in claim 3 or 5,
    characterized in that

    - the control unit (9), by means of a second voltage measuring device, records a second voltage signal throughout the resistance soldering process (2) with no interruption; and

    - the control unit (9), from the second voltage signal, executes a read-off of the second voltage (U2) which correlates to a specified time point.


     
    13. The resistance soldering method as claimed in claim 12,
    characterized in that
    the control unit (9), by means of an integrator, integrates the second voltage signal prior to the read-off of the second voltage (U2).
     
    14. The resistance soldering method as claimed in claim 3 or 5,
    characterized in that
    the control unit (9) determines the output voltage (U0), the first voltage (U1) and the second voltage (U2) at the same specified time point.
     
    15. The resistance soldering method as claimed in one of the preceding claims, characterized in that

    - the first basic element (5a) is employed in the form of a first electrical conductor (7a) and/or the second basic element (5b) is employed in the form of a second electrical conductor (7b), and/or

    - the first basic element (5a) and/or the second basic element (5b) are employed in the form of a plurality of electrical conductors (7a, 7b) which are soldered together by the resistance soldering method.


     
    16. A soldering device (1) for the resistance soldering of two basic elements (5a, 5b) to constitute a plate assembly (4), specifically a winding of an electrical machine,

    - wherein the soldering device (1) comprises a first electrode (3a) and a second electrode (3b), between which the two basic elements (5a, 5b) can be compressed in the mounting direction (10), with the interposition of a solder element (6), and can be resistance soldered by the application of an output voltage (U0),

    characterized in that - the soldering device (1) comprises a control unit (9) for detecting the correct or incorrect position of the solder element (6) in the plate assembly (4), - the soldering device (1) is configured for the execution of the resistance soldering method (2) as claimed in one of the preceding claims.
     
    17. The soldering device as claimed in claim 16,
    characterized in that
    the soldering device (1) comprises a controlling system, which is configured to operate the soldering device (1) by the resistance soldering method (2) as claimed in one of claims 1 to 15.
     
    18. The soldering device as claimed in claim 16 or 17,
    characterized in that
    the control unit (9) comprises an output voltage measuring device for detecting an output voltage signal and/or a first voltage measuring device for detecting a first voltage signal between the first electrode (3a) or the first basic element (5a) and the solder element (6), and/or a second voltage measuring device for detecting a second voltage signal between the second electrode (3b) or the second basic element (5b) and the solder element (6).
     
    19. The soldering device as claimed in claim 18,
    characterized in that
    the control unit (9) comprises at least one integrator for integrating the output voltage signal and/or the first voltage signal and/or the second voltage signal.
     
    20. The soldering device as claimed in claim 18 or 19,
    characterized in that
    the output voltage (U0) correlates to the output voltage signal at a specified time point and/or the first voltage (U1) correlates to the first voltage signal at a specified time point and/or the second voltage (U2) correlates to the second voltage signal at a specified time point.
     
    21. The soldering device as claimed in claim 20,
    characterized in that
    the specified time point for the read-off of the output voltage (U0) and/or the first voltage (U1) and/or the second voltage (U2) is one and the same.
     


    Ansprüche

    1. Widerstandslötverfahren (2) zum Herstellen einer Plattenanordnung (4), welche aus zumindest zwei Grundelementen (5a, 5b) besteht, welche durch das Widerstandslötverfahren (2) mittels einer Lötvorrichtung (1) stoffschlüssig verbunden sind, spezifisch zum Herstellen einer Wicklung einer elektrischen Maschine,

    - wobei ein erstes Grundelement (5a) und ein zweites Grundelement (5b) beabstandet sind und in Bezug auf eine Montagerichtung (10) eines über dem anderen zwischen einer ersten Elektrode (3a) und einer zweiten Elektrode (3b) der Lötvorrichtung (1) angeordnet sind;

    - wobei zwischen dem ersten Grundelement (5a) und dem zweiten Grundelement (5b) ein Lötelement (6) in Kontakt mit den Grundelementen angeordnet ist;

    - wobei eine Ausgangsspannung (U0) an die Elektroden (3a, 3b) angelegt wird, woraufhin ein elektrischer Stromkreis gebildet wird, und die zwei Grundelemente (5a, 5b) mittels des Lötelements (6) zusammengelötet werden;

    dadurch gekennzeichnet, dass

    - die korrekte oder inkorrekte Position des Lötelements (6) in der Plattenanordnung (4) mittels einer Steuereinheit (9) erkannt wird;

    - die Steuereinheit (9) bei der Erkennung der korrekten oder inkorrekten Position des Lötelements (6) in der Plattenanordnung (4) eine Spannung zwischen dem Lötelement (6) und einem Punkt in dem elektrischen Stromkreis oder Spannungen zwischen dem Lötelement (6) und voneinander abweichenden Punkten in dem elektrischen Stromkreis bestimmt, und

    - die Steuereinheit (9) mit Bezug auf die dadurch bestimmte Spannung oder Spannungen mittels einer Bewertung und/oder eines Vergleichs die korrekte oder inkorrekte Position des Lötelements (6) in der Plattenanordnung (4) erkennt.


     
    2. Widerstandslötverfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Steuereinheit (9) die bestimmte Spannung mit einem gespeicherten Vergleichswert oder die bestimmen Spannungen mit gespeicherten Vergleichswerten vergleicht und somit die korrekte oder inkorrekte Position des Lötelements (6) in der Plattenanordnung (4) erkennt.
     
    3. Widerstandslötverfahren nach Anspruch 2,
    dadurch gekennzeichnet, dass
    bei der Erkennung der korrekten oder inkorrekten Position des Lötelements (6) in der Plattenanordnung (4) die Steuereinheit (9) eine erste Spannung (U1), welche zwischen der ersten Elektrode (3a) oder dem ersten Grundelement (5a) und dem Lötelement (6) gebildet wird, und/oder eine zweite Spannung (U2), welche zwischen der zweiten Elektrode (3b) oder dem zweiten Grundelement (5b) und dem Lötelement (6) gebildet wird, bestimmt.
     
    4. Widerstandslötverfahren nach Anspruch 3,
    dadurch gekennzeichnet, dass

    - in dem Fall der korrekten Positionierung des Lötelements (6) in der Plattenanordnung (4) die erste Spannung (U1) von einem ersten elektrischen Widerstand (R1) abhängig ist, welcher aus dem elektrischen Widerstand (R3a) der ersten Elektrode (3a) und/oder aus dem elektrischen Widerstand (R5a) des ersten Grundelements (5a) und/oder aus dem Kontaktwiderstand (RK1) zwischen der ersten Elektrode (3a) und dem ersten Grundelement (5a) und/oder aus dem elektrischen Widerstand des Lötelements (6) bestehen kann, und/oder

    - in dem Fall der korrekten Positionierung des Lötelements (6) in der Plattenanordnung (4) die zweite Spannung (U2) von einem zweiten elektrischen Widerstand (R2) abhängig ist, welcher aus dem elektrischen Widerstand (R3b) der zweiten Elektrode (3b) und/oder aus dem elektrischen Widerstand (R5b) des zweiten Grundelements (5b) und/oder aus dem Kontaktwiderstand (RK2) zwischen der zweiten Elektrode (3b) und dem zweiten Grundelement (5b) und/oder aus dem elektrischen Widerstand des Lötelements (6) bestehen kann.


     
    5. Widerstandslötverfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass

    - bei der Erkennung der korrekten oder inkorrekten Position des Lötelements (6) in der Plattenanordnung (4) die Steuereinheit (9) die Ausgangsspannung (U0), eine zwischen der ersten Elektrode (3a) oder dem ersten Grundelement (5a) und dem Lötelement (6) gebildete erste Spannung (U1) und eine zwischen der zweiten Elektrode (3b) oder dem zweiten Grundelement (5b) und dem Lötelement (6) gebildete zweite Spannung (U2) bestimmt; und

    - die Steuereinheit (9) basierend auf der Ausgangsspannung (U0), der ersten Spannung (U1) und der zweiten Spannung (U2) die korrekte oder inkorrekte Position der Lötelements (6) in der Plattenanordnung (4) erkennt.


     
    6. Widerstandslötverfahren nach Anspruch 5,
    dadurch gekennzeichnet, dass

    - die Steuereinheit (9) ein erstes Verhältnis zwischen der ersten Spannung (U1) und der Ausgangsspannung (U0) und ein zweites Verhältnis zwischen der zweiten Spannung (U2) und der Ausgangsspannung (U0) berechnet; und

    - die Steuereinheit (9) durch eine Bewertung und/oder einen Vergleich des ersten Verhältnisses und des zweiten Verhältnisses die korrekte oder inkorrekte Position des Lötelements in der Plattenanordnung (4) erkennt.


     
    7. Widerstandslötverfahren nach Anspruch 5 oder 6,
    dadurch gekennzeichnet, dass

    - in dem Fall der korrekten Positionierung des Lötelements (6) in der Plattenanordnung (4) die erste Spannung (U1) von einem ersten elektrischen Widerstand (R1) abhängig ist, welcher aus dem elektrischen Widerstand (R3a) der ersten Elektrode (3a) und/oder aus dem elektrischen Widerstand (R5a) des ersten Grundelements (5a) und/oder aus dem Kontaktwiderstand (RK1) zwischen der ersten Elektrode (3a) und dem ersten Grundelement (5a) und/oder aus dem elektrischen Widerstand des Lötelements (6) bestehen kann, und

    - in dem Fall der korrekten Positionierung des Lötelements (6) in der Plattenanordnung (4) die zweite Spannung (U2) von einem zweiten elektrischen Widerstand (R2) abhängig ist, welcher aus dem elektrischen Widerstand (R3b) der zweiten Elektrode (3b) und/oder aus dem elektrischen Widerstand (R5b) des zweiten Grundelements (5b) und/oder aus dem Kontaktwiderstand (RK2) zwischen der zweiten Elektrode (3b) und dem zweiten Grundelement (5b) und/oder aus dem elektrischen Widerstand des Lötelements (6) bestehen kann.


     
    8. Widerstandslötverfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass

    - die Steuereinheit (9) mittels einer Messvorrichtung für die Ausgangsspannung fortwährend ein Ausgangsspannungssignal während des Widerstandslötvorgangs (2) misst; und

    - die Steuereinheit (9) aus dem Ausgangsspannungssignal eine Ablesung der Ausgangsspannung (U0) durchführt, welche mit einem angegebenen Zeitpunkt in Beziehung steht.


     
    9. Widerstandslötverfahren nach Anspruch 8,
    dadurch gekennzeichnet, dass
    die Steuereinheit (9) das Ausgangsspannungssignal vor der Ablesung der Ausgangsspannung (U0) mittels eines Integrators integriert.
     
    10. Widerstandslötverfahren nach Anspruch 3 oder 5,
    dadurch gekennzeichnet, dass

    - die Steuereinheit (9) mittels einer Messvorrichtung für die erste Spannung ein erstes Spannungssignal über den Widerstandslötvorgang (2) hinweg ohne Unterbrechung misst; und

    - die Steuereinheit (9) aus dem ersten Spannungssignal eine Ablesung der ersten Spannung (U1) durchführt, welche mit einem angegebenen Zeitpunkt in Beziehung steht.


     
    11. Widerstandslötverfahren nach Anspruch 10,
    dadurch gekennzeichnet, dass
    die Steuereinheit (9) mittels eines Integrators das erste Spannungssignal vor der Ablesung der ersten Spannung (U1) integriert.
     
    12. Widerstandslötverfahren nach Anspruch 3 oder 5,
    dadurch gekennzeichnet, dass

    - die Steuereinheit (9) mittels einer Messvorrichtung für die zweite Spannung ein zweites Spannungssignal über den Widerstandslötvorgangs (2) hinweg ohne Unterbrechung misst; und

    - die Steuereinheit (9) aus dem zweiten Spannungssignal eine Ablesung der zweiten Spannung (U2) durchführt, welche mit einem angegebenen Zeitpunkt in Beziehung steht.


     
    13. Widerstandslötverfahren nach Anspruch 12,
    dadurch gekennzeichnet, dass
    die Steuereinheit (9) mittels eines Integrators das zweite Spannungssignal vor der Ablesung der zweiten Spannung (U2) integriert.
     
    14. Widerstandslötverfahren nach Anspruch 3 oder 5,
    dadurch gekennzeichnet, dass
    die Steuereinheit (9) die Ausgangsspannung (U0), die erste Spannung (U1) und die zweite Spannung (U2) zu demselben angegebenen Zeitpunkt bestimmt.
     
    15. Widerstandslötverfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass

    - das erste Grundelement (5a) in der Form eines ersten elektrischen Leiters (7a) verwendet wird und/oder das zweite Grundelement (5b) in der Form eines zweiten elektrischen Leiters (7b) verwendet wird, und/oder

    - das erste Grundelement (5a) und/oder das zweite Grundelement (5b) in der Form einer Vielzahl von elektrischen Leitern (7a, 7b) verwendet werden, welche durch das Widerstandslötverfahren zusammengelötet werden.


     
    16. Lötvorrichtung (1) für das Widerstandslöten von zwei Grundelementen (5a, 5b), um eine Plattenanordnung (4) zu bilden, spezifisch eine Wicklung einer elektrischen Maschine,

    - wobei die Lötvorrichtung (1) eine erste Elektrode (3a) und eine zweite Elektrode (3b) umfasst, zwischen welchen die zwei Grundelemente (5a, 5b) in der Montagerichtung (10) mit einem dazwischen angeordneten Lötelements (6) verpresst und durch das Anlegen einer Ausgangsspannung (U0) widerstandsgelötet werden können, dadurch gekennzeichnet, dass

    die Lötvorrichtung (1) eine Steuereinheit (9) zum Erkennen der korrekten oder inkorrekten Position des Lötelements (6) in der Plattenanordnung (4) umfasst, wobei die Lötvorrichtung (1) für die Ausführung des Widerstandslötverfahrens (2) nach einem der vorstehenden Ansprüche konfiguriert ist.
     
    17. Lötvorrichtung nach Anspruch 16,
    dadurch gekennzeichnet, dass
    die Lötvorrichtung (1) ein Steuerungssystem umfasst, welches konfiguriert ist, die Lötvorrichtung (1) durch das Widerstandslötverfahren (2) nach einem der Ansprüche 1 bis 15 zu betreiben.
     
    18. Lötvorrichtung nach Anspruch 16 oder 17,
    dadurch gekennzeichnet, dass
    die Steuereinheit (9) eine Messvorrichtung für die Ausgangsspannung zum Erkennen eines Ausgangsspannungssignals und/oder eine Messvorrichtung für die erste Spannung zum Erkennen eines ersten Spannungssignals zwischen der ersten Elektrode (3a) oder dem ersten Grundelement (5a) und dem Lötelement (6) und/oder eine Messvorrichtung für die zweite Spannung zum Erkennen eines zweiten Spannungssignals zwischen der zweiten Elektrode (3b) oder dem zweiten Grundelement (5b) und dem Lötelement (6) umfasst.
     
    19. Lötvorrichtung nach Anspruch 18,
    dadurch gekennzeichnet, dass
    die Steuereinheit (9) zumindest einen Integrator zum Integrieren des Ausgangsspannungssignals und/oder des ersten Spannungssignals und/oder des zweiten Spannungssignals umfasst.
     
    20. Lötvorrichtung nach Anspruch 18 oder 19,
    dadurch gekennzeichnet, dass
    die Ausgangsspannung (U0) mit dem Ausgangsspannungssignal zu einem angegebenen Zeitpunkt in Beziehung steht und/oder die erste Spannung (U1) mit dem ersten Spannungssignal zu einem angegebenen Zeitpunkt in Beziehung steht und/oder die zweite Spannung (U2) mit dem zweiten Spannungssignal zu einem angegebenen Zeitpunkt in Beziehung steht.
     
    21. Lötvorrichtung nach Anspruch 20,
    dadurch gekennzeichnet, dass
    der angegebene Zeitpunkt für die Ablesung der Ausgangsspannung (U0) und/oder der ersten Spannung (U1) und/oder der zweiten Spannung (U2) ein und derselbe ist.
     


    Revendications

    1. Procédé de soudure par résistance (2) pour produire un ensemble de plaques (4) composé d'au moins deux éléments de base (5a, 5b) qui sont reliés matériellement par ledit procédé de soudure par résistance (2), au moyen d'un dispositif de soudure (1), spécifiquement pour produire un enroulement d'une machine électrique,

    - dans lequel un premier élément de base (5a) et un second élément de base (5b) sont espacés et, par rapport à une direction de montage (10), sont agencés l'un au-dessus de l'autre entre une première électrode (3a) et une seconde électrode (3b) du dispositif de soudure (1) ;

    - dans lequel, entre le premier élément de base (5a) et le second élément de base (5b), un élément de soudure (6) est agencé en contact avec lesdits éléments de base ;

    - dans lequel une tension de sortie (U0) est appliquée aux électrodes (3a, 3b), à la suite de laquelle un circuit électrique est constitué, et les deux éléments de base (5a, 5b) sont soudés ensemble au moyen de l'élément de soudure (6) ;

    caractérisé en ce que

    - la position correcte ou incorrecte de l'élément de soudure (6) dans l'ensemble de plaques (4) est détectée au moyen d'une unité de commande (9) ;

    - l'unité de commande (9), lors de la détection de la position correcte ou incorrecte de l'élément de soudure (6) dans l'ensemble de plaques (4), détermine une tension entre l'élément de soudure (6) et un point sur le circuit électrique, ou des tensions entre l'élément de soudure (6) et des points mutuellement divergents sur le circuit électrique, et

    - l'unité de commande (9), en référence à la tension ou aux tensions ainsi déterminées, au moyen d'une évaluation et/ou d'une comparaison, détecte la position correcte ou incorrecte de l'élément de soudure (6) dans l'ensemble de plaques (4).


     
    2. Procédé de soudure par résistance selon la revendication 1,
    caractérisé en ce que
    l'unité de commande (9) compare la tension déterminée avec une valeur comparative sauvegardée ou les tensions déterminées avec des valeurs comparatives sauvegardées, et détecte ainsi la position correcte ou incorrecte de l'élément de soudure (6) dans l'ensemble de plaques (4).
     
    3. Procédé de soudure par résistance selon la revendication 2,
    caractérisé en ce que
    lors de la détection de la position correcte ou incorrecte de l'élément de soudure (6) dans l'ensemble de plaques (4), l'unité de commande (9) détermine une première tension (U1) qui est constituée entre la première électrode (3a) ou le premier élément de base (5a) et l'élément de soudure (6) et/ou une seconde tension (U2) qui est constituée entre la seconde électrode (3b) ou le second élément de base (5b) et l'élément de soudure (6).
     
    4. Procédé de soudure par résistance selon la revendication 3,
    caractérisé en ce que

    - dans le cas du positionnement correct de l'élément de soudure (6) dans l'ensemble de plaques (4), la première tension (U1) est dépendante d'une première résistance électrique (R1), qui peut être composée de la résistance électrique (R3a) de la première électrode (3a) et/ou de la résistance électrique (R5a) du premier élément de base (5a) et/ou de la résistance de contact (RK1) entre la première électrode (3a) et le premier élément de base (5a) et/ou de la résistance électrique de l'élément de soudure (6), et/ou

    - dans le cas du positionnement correct de l'élément de soudure (6) dans l'ensemble de plaques (4), la seconde tension (U2) est dépendante d'une seconde résistance électrique (R2), qui peut être composée de la résistance électrique (R3b) de la seconde électrode (3b) et/ou de la résistance électrique (R5b) du second élément de base (5b) et/ou de la résistance de contact (RK2) entre la seconde électrode (3b) et le second élément de base (5b) et/ou de la résistance électrique de l'élément de soudure (6).


     
    5. Procédé de soudure par résistance selon la revendication 1,
    caractérisé en ce que

    - lors de la détection de la position correcte ou incorrecte de l'élément de soudure (6) dans l'ensemble de plaques (4), l'unité de commande (9) détermine la tension de sortie (U0), une première tension (U1) constituée entre la première électrode (3a) ou le premier élément de base (5a) et l'élément de soudure (6), et une seconde tension (U2) constituée entre la seconde électrode (3b) ou le second élément de base (5b) et l'élément de soudure (6) ; et

    - l'unité de commande (9), en fonction de la tension de sortie (U0), de la première tension (U1) et de la seconde tension (U2), détecte la position correcte ou incorrecte de l'élément de soudure (6) dans l'ensemble de plaques (4).


     
    6. Procédé de soudure par résistance selon la revendication 5,
    caractérisé en ce que

    - l'unité de commande (9) calcule un premier rapport entre la première tension (U1) et la tension de sortie (U0), et un second rapport entre la seconde tension (U2) et la tension de sortie (U0) ; et

    - l'unité de commande (9), par une évaluation et/ou une comparaison du premier rapport et du second rapport, détecte la position correcte ou incorrecte de l'élément de soudure dans l'ensemble de plaques (4).


     
    7. Procédé de soudure par résistance selon la revendication 5 ou 6,
    caractérisé en ce que

    - dans le cas du positionnement correct de l'élément de soudure (6) dans l'ensemble de plaques (4), la première tension (U1) est dépendante d'une première résistance électrique (R1), qui peut être composée de la résistance électrique (R3a) de la première électrode (3a) et/ou de la résistance électrique (R5a) du premier élément de base (5a) et/ou de la résistance de contact (RK1) entre la première électrode (3a) et le premier élément de base (5a) et/ou de la résistance électrique de l'élément de soudure (6), et

    - dans le cas du positionnement correct de l'élément de soudure (6) dans l'ensemble de plaques (4), la seconde tension (U2) est dépendante d'une seconde résistance électrique (R2), qui peut être composée de la résistance électrique (R3b) de la seconde électrode (3b) et/ou de la résistance électrique (R5b) du second élément de base (5b) et/ou de la résistance de contact (RK2) entre la seconde électrode (3b) et le second élément de base (5b) et/ou de la résistance électrique de l'élément de soudure (6).


     
    8. Procédé de soudure par résistance selon l'une des revendications précédentes, caractérisé en ce que

    - l'unité de commande (9), au moyen d'un dispositif de mesure de tension de sortie, mesure en continu un signal de tension de sortie pendant le processus de soudage par résistance (2) ; et

    - l'unité de commande (9), à partir du signal de tension de sortie, exécute une lecture de la tension de sortie (U0) qui correspond à un instant spécifié.


     
    9. Procédé de soudure par résistance selon la revendication 8,
    caractérisé en ce que
    l'unité de commande (9) intègre le signal de tension de sortie avant la lecture de la tension de sortie (U0), au moyen d'un intégrateur.
     
    10. Procédé de soudure par résistance selon la revendication 3 ou 5,
    caractérisé en ce que

    - l'unité de commande (9), au moyen d'un premier dispositif de mesure de tension, enregistre un premier signal de tension tout au long du processus de soudage par résistance (2) sans interruption ; et

    - l'unité de commande (9), à partir du premier signal de tension, exécute une lecture de la première tension (U1) qui correspond à un instant spécifié.


     
    11. Procédé de soudure par résistance selon la revendication 10,
    caractérisé en ce que
    l'unité de commande (9), au moyen d'un intégrateur, intègre le premier signal de tension avant la lecture de la première tension (U1).
     
    12. Procédé de soudure par résistance selon la revendication 3 ou 5,
    caractérisé en ce que

    - l'unité de commande (9), au moyen d'un second dispositif de mesure de tension, enregistre un second signal de tension tout au long du procédé de soudure par résistance (2) sans interruption ; et

    - l'unité de commande (9), à partir du second signal de tension, exécute une lecture de la seconde tension (U2) qui correspond à un instant spécifié.


     
    13. Procédé de soudure par résistance selon la revendication 12,
    caractérisé en ce que
    l'unité de commande (9), au moyen d'un intégrateur, intègre le second signal de tension avant la lecture de la seconde tension (U2).
     
    14. Procédé de soudure par résistance selon la revendication 3 ou 5,
    caractérisé en ce que
    l'unité de commande (9) détermine la tension de sortie (U0), la première tension (U1) et la seconde tension (U2) au même instant spécifié.
     
    15. Procédé de soudure par résistance selon l'une des revendications précédentes, caractérisé en ce que

    - le premier élément de base (5a) est utilisé sous la forme d'un premier conducteur électrique (7a) et/ou le second élément de base (5b) est utilisé sous la forme d'un second conducteur électrique (7b), et/ou

    - le premier élément de base (5a) et/ou le second élément de base (5b) sont utilisés sous la forme d'une pluralité de conducteurs électriques (7a, 7b) qui sont soudés ensemble par le procédé de soudure par résistance.


     
    16. Dispositif de soudure (1) pour la soudure par résistance de deux éléments de base (5a, 5b) afin de constituer un ensemble de plaques (4), en particulier un enroulement d'une machine électrique,

    - dans lequel le dispositif de soudure (1) comprend une première électrode (3a) et une seconde électrode (3b), entre lesquelles les deux éléments de base (5a, 5b) peuvent être comprimés dans la direction de montage (10), avec l'interposition d'un élément de soudure (6), et peuvent être soudés par résistance par l'application d'une tension de sortie (U0),

    caractérisé en ce que le dispositif de soudure (1) comprend une unité de commande (9) pour détecter la position correcte ou incorrecte de l'élément de soudure (6) dans l'ensemble de plaques (4), le dispositif de soudure (1) est configuré pour l'exécution du procédé de soudure par résistance (2) selon l'une des revendications précédentes.
     
    17. Dispositif de soudure selon la revendication 16,
    caractérisé en ce que
    le dispositif de soudure (1) comprend un système de commande, qui est configuré pour faire fonctionner le dispositif de soudure (1) par le procédé de soudure par résistance (2) selon l'une des revendications 1 à 15.
     
    18. Dispositif de soudure selon la revendication 16 ou 17,
    caractérisé en ce que
    l'unité de commande (9) comprend un dispositif de mesure de tension de sortie pour détecter un signal de tension de sortie et/ou un premier dispositif de mesure de tension pour détecter un premier signal de tension entre la première électrode (3a) ou le premier élément de base (5a) et l'élément de soudure (6) et/ou un second dispositif de mesure de tension pour détecter un second signal de tension entre la seconde électrode (3b) ou le second élément de base (5b) et l'élément de soudure (6).
     
    19. Dispositif de soudure selon la revendication 18,
    caractérisé en ce que
    l'unité de commande (9) comprend au moins un intégrateur pour intégrer le signal de tension de sortie et/ou le premier signal de tension et/ou le second signal de tension.
     
    20. Dispositif de soudure selon la revendication 18 ou 19,
    caractérisé en ce que
    la tension de sortie (U0) correspond au signal de tension de sortie à un instant spécifié et/ou la première tension (U1) correspond au premier signal de tension à un instant spécifié et/ou la seconde tension (U2) correspond au second signal de tension à un instant donné.
     
    21. Dispositif de soudure selon la revendication 20,
    caractérisé en ce que
    l'instant spécifié pour la lecture de la tension de sortie (U0) et/ou de la première tension (U1) et/ou de la seconde tension (U2) est le même.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description