(19)
(11)EP 3 729 183 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.09.2023 Bulletin 2023/37

(21)Application number: 17935264.6

(22)Date of filing:  18.12.2017
(51)International Patent Classification (IPC): 
G02B 13/16(2006.01)
G02B 11/04(2006.01)
G03B 21/20(2006.01)
G02B 27/18(2006.01)
G02B 26/08(2006.01)
G02B 19/00(2006.01)
(52)Cooperative Patent Classification (CPC):
G02B 13/16; G03B 21/008; G02B 26/0833; G02B 19/0028; G02B 19/0047; G03B 21/2066; G03B 21/208
(86)International application number:
PCT/CA2017/051531
(87)International publication number:
WO 2019/119099 (27.06.2019 Gazette  2019/26)

(54)

ILLUMINATION SYSTEM FOR LIGHT PROJECTION

BELEUCHTUNGSSYSTEM FÜR LICHTPROJEKTION

SYSTÈME D'ÉCLAIRAGE POUR PROJECTION DE LUMIÈRE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
28.10.2020 Bulletin 2020/44

(73)Proprietor: Raytheon Canada Ltd.
Midland, Ontario L4R 5B8 (CA)

(72)Inventor:
  • SYVOKIN, Viktor
    Midland, Ontario L4R 5B8 (CA)

(74)Representative: Carpmaels & Ransford LLP 
One Southampton Row
London WC1B 5HA
London WC1B 5HA (GB)


(56)References cited: : 
WO-A1-2008/068257
JP-A- 2005 018 030
US-A1- 2012 212 841
US-B2- 7 033 032
JP-A- 2004 045 718
US-A1- 2006 139 730
US-A1- 2015 338 729
US-B2- 8 585 210
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] One or more aspects of embodiments according to the present invention relate to illumination sources, and more particularly to an optical system for delivering light to a digital micro-mirror device.

    BACKGROUND



    [0002] A digital micro-mirror device (DMD) is a micro electrical-mechanical device composed of an array of tiny micro-mirrors that can be individually addressed electronically. A digital micro-mirror device may be used in a projection system (e.g., for projecting images or video). An illumination system in a projection system may employ a light source including a light pipe having a rectangular source region, in an output plane of the light pipe, at which the irradiance is substantially constant, and a light delivery system that may convey the light to the digital micro-mirror device, so that its surface is substantially uniformly illuminated. The aspect ratio of the rectangular source region may be the same as that of the digital micro-mirror device.

    [0003] Because of the way the micro-mirrors are actuated, the digital micro-mirror device may be installed at an angle to a chief ray from the light source, and it may further be installed at a first surface of a prism, in which light travelling from the light source to the digital micro-mirror device is reflected, by total internal reflection, from a second surface of the prism, onto the digital micro-mirror device.

    [0004] The effect of the angle between the digital micro-mirror device and the chief ray, as well as the wedge of the prism, may introduce asymmetries into the system that may result in a degradation of the performance of the optical system, producing, for example, (i) a distorted illumination patch that is not rectangular, and (ii) imperfect focus that may result in a loss of sharpness at the edges of the illumination patch. Such imperfections may result in a loss of optical efficiency. For example, in some related art systems, the light delivery system may be designed to generate an oversized illumination patch that overfills the digital micro-mirror device considerably more than required by just manufacturing and assembly tolerances, so that the uniformity of illumination over the digital micro-mirror device is acceptable in spite of the imperfect rectangularity of the illumination patch or blurring at its edges, the regions affected by these imperfections falling off of the edges of the digital micro-mirror device.

    [0005] US 2006/139730 A1 discloses a projection system which uses an illumination system with a compact turning prism. An illumination unit directs light to a spatial light modulator, via light handling optics and a prism. Some of the illumination light enters a first side of the prism, is totally internally reflected at a second side and exits a third side of the prism to the spatial light modulator. The prism may introduce prism aberrations to the illumination light. The light handling optics compensate for the prism aberrations.

    [0006] US 2015/338729 A1 discloses an illumination optical system that includes a first optical system configured to shape a light flux from a light source such that a light flux cross-sectional shape is close to a rectangular shape of an illumination surface, a second optical system having an optical axis tilted with respect to a normal to the illumination surface and configured to introduce the light flux from the first optical system to the illumination surface, and a light-transmissive element having an entrance surface and an exit surface respectively forming mutually different angles with respect to the optical axis of the second optical system in a plane including the optical axis of the second optical system and the normal to the illumination surface.

    [0007] JP 2004/045718 A and JP 2005/018030 A disclose illumination optical systems and magnified projection display devices.

    [0008] Thus, there is a need for an improved light delivery system for use in an illumination system for a digital micro-mirror device.

    SUMMARY



    [0009] Aspects of embodiments of the present disclosure are directed toward a system for delivering light from a light source to a digital micro-mirror device. The system includes one or more lens groups. At least one lens within a first lens group is laterally displaced, so that its optical axis is not centered on the chief ray of the system.

    [0010] In particular, the present invention provides an optical system as recited in claim 1. Optional features are recited in the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0011] Features, aspects, and embodiments are described in conjunction with the attached drawings, in which:

    FIG. 1 is a side view of a system for producing spatially modulated light, according to an embodiment of the present invention;

    FIG. 2A is a side view of a system for producing spatially modulated light, according to an embodiment of the present invention;

    FIG. 2B is a top view of a system for producing spatially modulated light, according to an embodiment of the present invention;

    FIG. 3 is a simulated distortion grid for the embodiment of FIGs. 1-2B,

    FIG. 4 is a simulated spot size diagram for the embodiment of FIGs. 1-2B,

    FIG. 5 is an illustration of a reference design, according to an embodiment of the present invention;

    FIG. 6 is a simulated distortion grid for the reference design; and

    FIG. 7 is a simulated spot size diagram for the reference design.

    FIGs. 1-2B and 5 are drawn to scale, except for the light pipe 105 and the second prism 140 shown in one or more of these drawings.


    DETAILED DESCRIPTION



    [0012] The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary embodiments of an illumination system for light projection provided in accordance with the present invention and is not intended to represent the only forms in which the present invention may be constructed or utilized. The description sets forth the features of the present invention in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and structures may be accomplished by different embodiments that are also intended to be encompassed within the scope of the invention as defined by the claims. As denoted elsewhere herein, like element numbers are intended to indicate like elements or features.

    [0013] FIG. 1 shows a system for generating spatially modulated light in one embodiment. A light source generates light having substantially constant irradiance over a rectangular source region of an output plane 106. A light delivery system 120 delivers the light to a digital micro-mirror device 110. The light reflected from each micro-mirror of the digital micro-mirror device is either delivered to the output of the system for generating spatially modulated light or dissipated (e.g., absorbed in a beam dump) depending on whether the micro-mirror is in the on state or the off state. Pulse width modulation of a drive voltage signal applied to the micro-mirror, at a frequency exceeding the ability of a viewer's eyes to respond, may be used to give the viewer a subjective impression of an intermediate brightness being displayed.

    [0014] Each mirror, or pixel, is controllable to be in one of two states that may be referred to as "on" and "off" states. When the DMD is not energized there exists also a third "neutral" state when the surface of the micro-mirror may be aligned with the plane of the digital micro-mirror device (so that if all of the pixels are in the neutral position, the composite surface of the digital micro-mirror device, which includes an array of mirrors, is a substantially planar surface). In the on state, the micro-mirror is rotated from the neutral position through an angle A (with the angle A being 12 degrees, for example), and in the off state, the micro-mirror is rotated from the neutral position, in the opposite direction, through the angle A, so that in transitioning from the on state to the off state, the mirror rotates through an angle 2A. Light directed at the digital micro-mirror device surface and reflected by a pixel in the on state enters the pupil of a projection lens and reaches a screen. Light reflected by an off-state pixel is directed to an absorbing beam dump. The numerical aperture (NA) of the projection optics is defined by the pixel tilt angle as NA=sin(A) and, if A = 12 degrees, the corresponding F-number is then f/ = 0.5/NA = 2.41. To improve image contrast, the illumination optics may be designed to have slightly higher F-number, for example f/ = 2.45.

    [0015] For high flux efficiency, the digital micro-mirror device may be uniformly illuminated by light that has numerical aperture equal to that of the projection optics. In practice, to improve image contrast at the expense of flux efficiency, the illumination optics may have a numerical aperture slightly less than that of projection optics. Also, to achieve high screen image uniformity (more than 80-85%), the system may be configured so that the illumination light is telecentric. "Telecentricity", as used herein, refers to the degree to which the respective chief (central) rays of the converging light cones hitting different micro-mirrors are parallel to each other.

    [0016] The light source has an output plane over a rectangular region of which the irradiance may be substantially constant, i.e., the light source produces a substantially spatially uniform illumination within the rectangular region. The light source may include a non-uniform source, referred to herein as a "lamp", which may produce illumination that is not substantially uniform. For example, the lamp may be an arc lamp, or it may consist of one or more light emitting diodes. In this case the light source may further include an integrating device such as a light pipe, which may also be referred to as an integrator rod. The light pipe may be an element with a rectangular cross-section, and it may be either solid or hollow with a highly reflective coating on the interior surface. The ends of a light pipe may have different sizes; the output end may have the same aspect ratio as the digital micro-mirror device active area so that the output end of the light pipe may be conveniently re-imaged (with proper margin) onto the digital micro-mirror device using a relay lens, or "light delivery system".

    [0017] FIG. 1 shows one view (arbitrarily referred to herein as a side view) of an illumination system, in one embodiment, for a 0.7 inch (17.8mm) digital micro-mirror device 110 with 1024x768 active micro-mirrors (i.e., an "Extended Graphics Array" (XGA) device), a 13.68 micron mirror (pixel) size and a micro-mirror tilt angle A of 12 degrees. The digital micro-mirror device may be, for example, a DLP7000 Type-A digital micro-mirror device available from Texas Instruments (www.ti.com). In the embodiment of FIG. 1 the output of a light pipe 105 is delivered to the digital micro-mirror device 110 by the light delivery system 120. The rectangular illuminated region (or "source region") of the output plane of the light pipe has dimensions of 7.84 mm x 5.88 mm. The magnification of the light delivery system is M = 1.787, which converts the 14.008 mm x 10.506 mm digital micro-mirror device active area to the 7.84 mm x 5.88 mm opening of the light pipe output. The design wavelengths are 643.8 nanometers, 546.1 nanometers, and 480.0 nanometers with equal relative weightings. The f-number at the digital micro-mirror device side is set to f/2.45.

    [0018] The light delivery system 120 of FIG. 1 includes 6 lenses 111, 112, 113, 114, 115, 116. Light may travel from the light source through each of the lenses in turn, entering each lens through one surface (referred to herein as the "front" surface) and exiting through another surface (referred to herein as the "back" surface). Each of the lenses may have a shared axis of symmetry of the front surface and the back surface of the lens, which is referred to herein as the "optical axis" of the lens. For example, for a lens for which both the front surface and the back surface are spherical, the optical axis is a straight line passing through the centers of both spheres; for a lens for which one of the front surface and the back surface is spherical, and the other is planar, the optical axis is a straight line passing through the center of the sphere and perpendicular to the plane. For a lens which has an aspheric, rotationally symmetric front surface, the lens has an optical axis only if (i) the back surface is planar and the axis of symmetry of the front surface is perpendicular to the plane, (ii) the back surface is spherical and the axis of symmetry of the front surface passes through the center of the sphere, or (iii) the back surface is aspheric and rotationally symmetric and the axis of symmetry of the front surface is the same as the axis of symmetry of the back surface. As used herein, an "optical axis" is defined as explained above, and without regard to the edge or edges of the lens.

    [0019] As is apparent in FIG. 1, one or more of the lenses of the light delivery system 120 is offset or misaligned from one or more of the other lenses of the light delivery system 120. These offsets and misalignments are defined with respect to a "chief ray" 125, which is defined herein to refer to the ray that extends from the center of the rectangular source region of the output plane of the light source, through the center of an aperture stop 130, and to the center of the digital micro-mirror device 110. For example, in the embodiment of FIG. 1, the second lens 112 is offset from the chief ray 125, and a lens subgroup formed by the third lens 113, the fourth lens 114, and the fifth lens 115 is misaligned with respect to the chief ray 125.

    [0020] FIG. 2A shows the same view of the embodiment of FIG. 1 as does FIG. 1, with a larger number of optical rays drawn, and with coordinate axes shown. FIG. 2B shows a top view of the same embodiment. The optical prescription for the embodiment of FIGs. 1, 2A, and 2B is shown in Table 1, in units of millimeters and degrees. The axes of the system are as illustrated in FIGs. 2A and 2B. The decenter dY represents a shift of a surface along the Y axis (all surfaces are centered with respect to the X axis) and rotations are about the axis shown (e.g., X tilt is a rotation about the X axis, and Z tilt is a rotation about the Z axis). The digital micro-mirror device 110 is clocked (i.e., rotated about the Z axis) by 45 degrees because the axis of rotation of each micro-mirror is angled by 45 degrees with respect to the edges of the rectangular active area of the digital micro-mirror device, and the rectangular source region of the output plane of the light source is also clocked by 45 degrees so that the light from it is aligned with the active area of the digital micro-mirror device when it is delivered, by the light delivery system 120, to the digital micro-mirror device.

    [0021] In the notation convention of Table 1 (and of Table 2, discussed below), the coordinate system used for each surface has an origin offset along the Z-axis of the coordinate system of the preceding surface by the thickness of the preceding surface, and offset along the X-axis or Y-axis of the coordinate system of the preceding surface, by any offsets of the preceding surface along these axes. The coordinate system used for each surface is also rotated relative to the coordinate system of the preceding surface by any tilts of the preceding surface. As such, the changes in coordinate system have cumulative effect. Notations of the changes in coordinate systems (which may be referred to as "coordinate system breaks" or "coordinate changes") are given according to the CodeV optical design program available from Synopsys (https://www.synopsys.com/optical-solutions/codev.html). A decenter type of "Basic" means that any offsets are applied to the surface before any tilts are applied. "Decenter & Bend" is a type of coordinate break used in CodeV. For reflective surfaces (mirrors) it sets the coordinate system to follow the reflected chief ray. For example, surfaces S14 to S16 in Table 1 (and 2) define a prism with angles between its pairs of adjacent surfaces equal to 50 degrees, 33.2 degrees, and 96.8 degrees, respectively.
    Table 1
    SurfaceY radius of curvatureThicknessGlass codeSemi-diaDecenter Data
    dYX-tilt degZ-tilt degType
    0 - Object INF 0            
    1 INF 2.691   4.9     45 Basic
    2- L1 -11.268 8.649 893.204 5.5        
    3 -16.417 0.5   9        
    4- L2 389.208 5.774 852.408 15.5 5.409     Basic
    5 -43.634 40.631   15.75        
    6- L3 -85.119 3.0 847.238 14.2 0.552 3.412   Basic
    7-L4 40.224 9.5 743.493 14.8        
    8 -44.708 0.5   15.35        
    9- L5 87.582 4.445 852.408 15.15        
    10 -169.427 0.1   15        
    11 - Stop INF 68.203   14.6        
    12 - L6 60.763 5.006 852.408 17.1 2.733 1.279   Basic
    13 INF 1.0   17        
    14 Prism-in INF 21.737 517.642 21        
    15 Prism-diagonal INF (TIR reflect) -18.622 517.642 26.5   50.0   Decenter & Bend
    16 Prism-out INF -1.5   23   -16.8   Basic
    17 Window INF -2.6 487.704 15 0.475   -45 Basic
    18 INF -0.7   15        
    19 - Image INF 0            


    [0022] The lenses of the light delivery system 120 are grouped into two groups, referred to herein as lens group 1 and lens group 2, and lens group 1 is further grouped into two subgroups, referred to herein as lens subgroup 1a and lens subgroup 1b, as illustrated in FIG. 1. Each lens group and each lens subgroup consists of one or more lenses. Gaps, or "air gaps" may be present between lens subgroup 1a and lens subgroup 1b, and are present between lens group 1b and lens group 2. These gaps may be employed to insert fold mirrors into the light delivery system 120, to achieve a more compact arrangement of the illumination optics.

    [0023] At least one of the lenses of lens group 1 is decentered (e.g., the second lens 112, as illustrated in FIGs. 1 and 2a). In the embodiment of FIGs. 1-2B, the second lens 112 causes the chief ray to bend by certain angle. The lenses in lens subgroup 1b may also be decentered and are tilted relative to the incoming chief ray direction. All lenses in lens subgroup 1b are aligned to each other but the entire lens group is tilted by a small angle (about 2-5 degrees). The lenses in lens subgroup 1b are aligned to each other to an extent readily achievable by a suitable manufacturing process, e.g., the optical axes (or the respective optical axes) may be (i) parallel to within 3-10 arc minutes, e.g., to within 5 arcminutes, and (ii) collinear to within 0.1-0.5 mm, e.g., to within 0.2 mm. This may be a relatively low cost design, and the lenses in lens subgroup 1b help to correct image aberrations but have little effect on the chief ray direction. The lens or lenses in lens group 2 may also be tilted and decentered slightly relative to the chief ray direction, to further correct aberrations. In some embodiments, instead of the second lens 112, the first lens 111 is offset, or both lenses of lens subgroup 1a (in a system in which lens subgroup 1a consists of two lenses) are offset, or lens subgroup 1a consists of only one lens, which is offset.

    [0024] Lens group 1 and lens group 2 may perform qualitatively different functions. For example, lens group 1 may be a group of lenses that are closest to the light pipe 105, and lens group 1 may have the effect that after passing through lens group 1, light becomes either collimated or converging toward lens group 2. Lens group 1 is separated from lens group 2 by an air space the thickness of which (i.e., the length of which, along the chief ray) is larger than the effective focal length (EFL) of lens group 1. In the embodiment of FIGs. 1-2B the effective focal length EFL of lens group 1 is 37.4 mm and the air gap between lens group 1 and lens group 2 is 67-68 mm. After passing through lens group 2, light enters the total internal reflection prism cluster which includes a first prism 135 and a second prism 140. In particular, the converging cone of light enters the first prism 135 through a first surface of the first prism 135, experiences total internal reflection at a second (diagonal) surface of the first prism 135, and exits the first prism 135 through a third surface of the first prism 135, to hit the digital micro-mirror device 110 at an angle range that is 2A to (2A + 2 degrees) degrees from the normal of the digital micro-mirror device 110. Here A is the tilt angle of the micro-mirror and for A = 12 degrees the angle range is 24 degrees - 26 degrees. If a micro-mirror of the digital micro-mirror device 110 pixel is in the on state then after reflection from the micro-mirror the rays are directed through the second prism 140, toward the projection optics (not shown) and finally reach the screen (not shown). The material and angles of the first prism 110 are chosen in such a way that the cone of light reflected from the micro-mirrors in the on state hits the diagonal surface of the first prism 110 at angles less than the critical angle for total internal reflection, and thus does not reflect but passes through to the second prism 140 and further to the projection lens.

    [0025] FIG. 3 shows a simulated distortion grid for the embodiment of FIGs. 1-2B. As may be seen from FIG. 3, distortion is reasonably well controlled in three of the four corners of the digital micro-mirror device 110. Specifically, distortion values are: 1.96% in the left-top corner, 0.46% in the right-top corner, 0.40% in the left-bottom corner and 5.1% in the right-bottom corner. The grid of points labeled "Paraxial FOV" in FIG. 3 shows the beam footprint in the case of ideal illumination optics and corresponds to the outline of the digital micro-mirror device active area. Minimizing image distortion may be beneficial in that it may allow the illumination system to have smaller overfill margin at the digital micro-mirror device 110, and thus have higher light utilization efficiency than a system with larger distortion.

    [0026] Light utilization efficiency also depends on how tightly the light from the light source is focused on the digital micro-mirror device 110. Systems with tighter focus have sharper edge transitions and may therefore have smaller overfill margin. The root mean square (RMS) spot size is a metric that may be used to estimate the quality of lens focus, with a smaller root mean square (RMS) spot size generally resulting in higher light utilization efficiency. FIG. 4 shows root mean square spot sizes (in mm) at nine points on the digital micro-mirror device plane, the nine points being the center, four corners and four side-centers. FIG. 4 includes a scale bar (on which "MM" identifies millimeters as the unit of measure) for the spots (their separations are not drawn to scale). These root mean square spot size values are close to each other and quite small, showing that light is reasonably well focused over the entire digital micro-mirror device area.

    [0027] Moreover, the degree of telecentricity in the embodiment of FIGs. 1-2B is relatively high: a simulation of this embodiment shows that the chief rays of the converging light cones hitting different micro-mirrors of the digital micro-mirror device are parallel to each other (telecentric) to within +/-0.15 degrees.

    [0028] A similar design in which the lenses of lens group 1 were neither decentered nor tilted was also analyzed, to assess the extent to which the decentering of the second lens 112 and the tilting of lens subgroup 2 in the embodiment of FIGs. 1-2B contributed to the performance of that embodiment. This reference design is illustrated in FIG. 5, and the optical prescription for the reference design is presented in Table 2.

    [0029] FIG. 6 shows a simulated distortion grid for the reference design. Distortion values are 5.1% in the left-top and right-bottom corners and 1.1% in the right-top and left-bottom corners. FIG. 7 shows root mean square spot sizes (in mm), for the reference design, at nine points on the digital micro-mirror device plane, the nine points being the center, four corners and four side-centers. FIG. 7 includes a scale bar (on which "MM" identifies millimeters as the unit of measure) for the spots (their separations are not drawn to scale).
    Table 2
    SurfaceY radius of curvatureThicknessGlass codeSemi-diaDecenter Data
    dYX-tilt degZ-tilt degType
    0 - Object INF 0            
    1 INF 2.728   4.9     45 Basic
    2- L1 -10.987 8.703 893.204 5.5        
    3 -17.296 0.5   9.1        
    4- L2 1383.190 5.305 852.408 10.2        
    5 -33.469 41.306   10.9        
    6- L3 -90.052 3.444 847.238 13.2        
    7- L4 38.489 9.5 743.493 13.9        
    8 -46.528 0.5   14.5        
    9-L5 88.650 4.981 852.408 14.5        
    10 -166.009 0.1   14.2        
    11 - Stop INF 67.034   13.97        
    12 - L6 59.018 4.899 852.408 15.9 0.120 - 0.937   Basic
    13 INF 1.0   15.6        
    14 Prism-in INF 21.737 517.642 21 -1.747     Basic
    15 Prism-diagonal INF (TIR reflect) -18.622 517.642 26.5   50.0   Decenter & Bend
    16 Prism-out INF -1.5   23   -16.8   Basic
    17 Window INF -2.6 487.704 15 0.472   -45 Basic
    18 INF -0.7   15        
    19 - Image INF 0            


    [0030] The prescription of a system such as that of the embodiment of FIGs. 1-2B may be developed using analysis and design software, such as Code V (available from Synopsis, www.synopsys.com). Such software may be employed both to trace optical rays through an optical system (defined, for example, by a prescription such as those of Table 1 and Table 2), and to produce measures of performance, or "performance metrics", such as distortion grids and spot size diagrams, which may be used to assess the performance of a design, and to determine whether any given candidate design change results in a performance improvement. Such software may also be capable of using an optimization procedure to automatically adjust certain parameters of the design (e.g., lens positions (including transverse offsets, for decentered lenses), radii of curvature, and tilts) toward a local or global maximum or minimum in a performance metric. In some embodiments a weighted average of spot sizes and amounts of distortion at various positions on the digital micro-mirror device is used as a performance metric to be optimized.

    [0031] It will be understood that, although the terms "first", "second", "third", etc., may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section, without departing from the scope of the inventive concept.

    [0032] Although limited embodiments of an illumination system for light projection have been specifically described and illustrated herein, many modifications and variations will be apparent to those skilled in the art. Accordingly, it is to be understood that an illumination system for light projection employed according to principles of this invention may be embodied other than as specifically described herein. The invention is defined in the following claims.


    Claims

    1. An optical system comprising:

    a light source having an output plane (106) having a rectangular source region;

    a digital micro-mirror device (110);

    a light delivery system (120) for receiving light from the source region of the output plane (106) of the light source, delivering light to the digital micro-mirror device (110), and producing spatially modulated light, the light delivery system (120) comprising:

    a first lens group (group 1), comprising a first plurality of lenses (111, 112, 113, 114, 115) arranged in a first lens subgroup (group 1a) and a second lens subgroup (group 1b), wherein the first lens group (group 1) has an effective focal length;

    a second lens group (group 2), comprising one or more lenses (116);

    an aperture stop (130) positioned between the first lens group (group 1) and the second lens group (group 2); and

    a prism (135) having:

    a first planar surface;

    a second planar surface; and

    a third planar surface,

    the prism (135) being composed of a transparent material having a first index of refraction; wherein:

    the optical system comprises a gap between the first lens group (group 1) and the second lens group (group 2) of at least 1.4 times the effective focal length of the first lens group (group 1).

    the optical system has a chief ray (125) that:

    extends from the center of the rectangular source region of the output plane (106) of the light source, through the first lens group (group 1), through the center of the aperture stop (130), through the second lens group (group 2), through the first planar surface of the prism (135),

    strikes the second planar surface from the interior of the prism (135) at a first angle relative to an internal normal vector of the second planar surface, and

    extends to the center of the digital micro-mirror device (110); wherein

    the first angle is greater than the inverse sine of the reciprocal of the first index of refraction; wherein

    a first lens (112) of the first lens subgroup (group 1a) of the first lens group (group 1) has:

    a rotationally symmetrical front surface;

    a rotationally symmetrical back surface;

    an effective focal length; and

    an optical axis defined by the rotationally symmetrical front surface and the rotationally symmetrical back surface; wherein

    the midpoint of the portion of the optical axis between the front surface and the back surface being offset from the chief ray (125) by at least 5% of the effective focal length of the first lens (112); wherein

    the second lens subgroup (group 1b) comprises a plurality of lenses including a second lens (114) and a third lens (115), the second lens (114) and the third lens (115) being axially separated by less than 2 mm, each lens of the plurality of lenses of the second lens subgroup (group 1b) having:

    a rotationally symmetrical front surface;

    a rotationally symmetrical back surface; and

    an optical axis defined by the rotationally symmetrical front surface and the rotationally symmetrical back surface, wherein:

    each of the optical axes of the second lens subgroup (group 1b) is tilted, with respect to the chief ray (125), by at least 2 degrees;

    wherein the optical axes of the lenses of the second lens subgroup (group 1b) are aligned to each other to within 0.2 degrees;

    wherein a midpoint, of the portion of the optical axis between the front surface and the back surface of a lens of the plurality of lenses of the second lens subgroup (group 1b), is offset from the chief ray by at most 1 mm.


     
    2. The optical system of claim 1, wherein the first lens subgroup (group 1a) comprises the first lens (112) and a fourth lens (111), wherein the fourth lens (111) is positioned between the first lens (112) and the output plane (106) of the light source, the first lens (111) and the fourth lens (111) being axially separated by less than 2 mm.
     
    3. The optical system of claim 1 or 2, wherein, within the gap, rays originating from a midpoint of the source region:

    are parallel, or

    converge, with a convergence cone half-angle less than 10 degrees.


     
    4. The optical system of claim 1, wherein the digital micro-mirror device is at, and parallel to, the third planar surface of the prism, wherein the chief ray:

    reflects from the second planar surface,

    exits the prism through the third planar surface,

    reflects from the digital micro-mirror device,

    re-enters the prism through the third planar surface, and

    exits the prism through the second planar surface.


     


    Ansprüche

    1. Optisches System, umfassend:

    eine Lichtquelle mit einer Ausgangsebene (106) mit einem rechteckigen Quellgebiet;

    eine digitale Mikrospiegeleinrichtung (110);

    ein Lichtliefersystem (120) zum Empfangen von Licht von dem Quellgebiet der Ausgangsebene (106) der Lichtquelle, Liefern von Licht an die digitale Mikrospiegeleinrichtung (110) und Erzeugen von räumlich moduliertem Licht, wobei das Lichtliefersystem (120) umfasst:

    eine erste Linsengruppe (Gruppe 1), umfassend mehrere erste Linsen (111, 112, 113, 114, 115), angeordnet in einer ersten Linsenteilgruppe (Gruppe 1a), und einer zweiten Linsenteilgruppe (Gruppe 1b), wobei die erste Linsengruppe (Gruppe 1) eine effektive Brennweite aufweist;

    eine zweite Linsengruppe (Gruppe 2) umfassend eine oder mehrere Linsen (116);

    eine Blendenöffnung (130), die zwischen der ersten Linsengruppe (Gruppe 1) und der zweiten Linsengruppe (Gruppe 2) positioniert ist; und

    ein Prisma (135) mit:

    einer ersten planaren Oberfläche;

    einer zweiten planaren Oberfläche; und

    einer dritten planaren Oberfläche,

    wobei das Prisma (135) aus einem transparenten Material mit einem ersten Brechungsindex besteht; wobei:

    das optische System einen Spalt zwischen der ersten Linsengruppe (Gruppe 1) und der zweiten Linsengruppe (Gruppe 2) von mindestens dem 1,4-fachen der effektiven Brennweite der ersten Linsengruppe (Gruppe 1) umfasst,

    wobei das optische System einen Hauptstrahl (125) aufweist, der:

    sich von der Mitte des rechteckigen Quellgebiets der Ausgangsebene (106) der Lichtquelle durch die erste Linsengruppe (Gruppe 1), durch die Mitte der Blendenöffnung (130), durch die zweite Linsengruppe (Gruppe 2), durch die erste planare Oberfläche des Prismas (135) erstreckt,

    auf die zweite planare Oberfläche von dem Inneren des Prismas (135) unter einem ersten Winkel relativ zu einem internen Normalvektor der zweiten planaren Oberfläche auftrifft, und

    sich zu der Mitte der digitalen Mikrospiegeleinrichtung (110) erstreckt; wobei

    der erste Winkel größer ist als der inverse Sinus des Kehrwerts des ersten Brechungsindexes; wobei

    eine erste Linse (112) der ersten Linsenteilgruppe (Gruppe 1a) der ersten Linsengruppe (Gruppe 1) aufweist:

    eine rotationssymmetrische vordere Oberfläche;

    eine rotationssymmetrische hintere Oberfläche;

    eine effektive Brennweite; und

    eine optische Achse, definiert durch die rotationssymmetrische vordere Oberfläche und die rotationssymmetrische hintere Oberfläche; wobei

    der Mittelpunkt des Abschnitts der optischen Achse zwischen der vorderen Oberfläche und der hinteren Oberfläche gegenüber dem Hauptstrahl (125) um mindestens 5% der effektiven Brennweite der ersten Linse (112) versetzt ist; wobei

    die zweite Linsenteilgruppe (Gruppe 1b) mehrere Linsen einschließlich einer zweiten Linse (114) und einer dritten Linse (115) umfasst, die zweite Linse (114) und die dritte Linse (115) um weniger als 2 mm axial voneinander getrennt sind, jede Linse der mehreren Linsen der zweiten Linsenteilgruppe (Gruppe 1b) aufweist:

    eine rotationssymmetrische vordere Oberfläche;

    eine rotationssymmetrische hintere Oberfläche; und

    eine optische Achse, definiert durch die rotationssymmetrische vordere Oberfläche und die rotationssymmetrische hintere Oberfläche, wobei:

    jede der optischen Achsen der zweiten Linsenteilgruppe (1b) bezüglich des Hauptstrahls (125) um mindestens 2 Grad geneigt ist;

    wobei die optischen Achsen der Linsen der zweiten Linsenteilgruppe (Gruppe 1b) auf innerhalb 0,2 Grad aufeinander ausgerichtet sind;

    wobei ein Mittelpunkt des Abschnitts der optischen Achse zwischen der vorderen Oberfläche und der hinteren Oberfläche einer Linse der mehreren Linsen der zweiten Linsenteilgruppe (Gruppe 1b) um höchstens 1 mm gegenüber dem Hauptstrahl versetzt ist.


     
    2. Optisches System nach Anspruch 1, wobei die erste Linsenteilgruppe (Gruppe 1a) die erste Linse (112) und eine vierte Linse (111) umfasst, wobei die vierte Linse (111) zwischen der ersten Linse (112) und der Ausgangsebene (106) der Lichtquelle positioniert ist, die erste Linse (111) und die vierte Linse (111) um weniger als 2 mm axial voneinander getrennt sind.
     
    3. Optisches System nach Anspruch 1 oder 2, wobei innerhalb des Spalts von einem Mittelpunkt des Quellgebiets kommende Strahlen:

    parallel verlaufen, oder

    mit einem Konvergenzkegel-Halbwinkel kleiner als 10 Grad konvergieren.


     
    4. Optisches System nach Anspruch 1, wobei die digitale Mikrospiegeleinrichtung sich an und parallel zu der dritten planaren Oberfläche des Prismas befindet, wobei der Hauptstrahl:

    von der zweiten planaren Oberfläche reflektiert wird,

    das Prisma durch die dritte planare Oberfläche verlässt,

    von der digitalen Mikrospiegeleinrichtung reflektiert wird,

    in das Prisma durch die dritte planare Oberfläche wiedereintritt, und

    das Prisma durch die zweite planare Oberfläche verlässt.


     


    Revendications

    1. Système optique comprenant :

    une source de lumière ayant un plan de sortie (106) ayant une région source rectangulaire ;

    un dispositif de micromiroirs numériques (110) ;

    un système de distribution de lumière (120) destiné à recevoir de la lumière provenant de la région source du plan de sortie (106) de la source de lumière, distribuer de la lumière au dispositif de micromiroirs numériques (110), et produire de la lumière modulée spatialement, le système de distribution de lumière (120) comprenant :

    un premier groupe de lentilles (groupe 1), comprenant une première pluralité de lentilles (111, 112, 113, 114, 115) disposées dans un premier sous-groupe de lentilles (groupe 1a) et un deuxième sous-groupe de lentilles (groupe 1b), le premier groupe de lentilles (groupe 1) ayant une longueur focale effective ;

    un deuxième groupe de lentilles (groupe 2), comprenant une ou plusieurs lentilles (116) ;

    un diaphragme d'ouverture (130) positionné entre le premier groupe de lentilles (groupe 1) et le deuxième groupe de lentilles (groupe 2) ; et

    un prisme (135) ayant :

    une première surface plane ;

    une deuxième surface plane ; et

    une troisième surface plane,

    le prisme (135) étant composé d'un matériau transparent ayant un premier indice de réfraction ; dans lequel :

    le système optique comprend un espace entre le premier groupe de lentilles (groupe 1) et le deuxième groupe de lentilles (groupe 2) d'au moins 1,4 fois la longueur focale effective du premier groupe de lentilles (groupe 1),

    le système optique a un rayon principal (125) qui :

    s'étend depuis le centre de la région source rectangulaire du plan de sortie (106) de la source de lumière, à travers le premier groupe de lentilles (groupe 1), par le centre du diaphragme d'ouverture (130), à travers le deuxième groupe de lentilles (groupe 2), à travers la première surface plane du prisme (130),

    frappe la deuxième surface plane depuis l'intérieur du prisme (135) à un premier angle par rapport à un vecteur normal interne de la deuxième surface plane, et

    s'étend jusqu'au centre du dispositif de micromiroirs numériques (110) ; dans lequel

    le premier angle est supérieur au sinus inverse de la réciproque du premier indice de réfraction ; dans lequel

    une première lentille (112) du premier sous-groupe de lentilles (groupe 1a) du premier groupe de lentilles (groupe 1) a :

    une surface avant symétrique en rotation ;

    une surface arrière symétrique en rotation ;

    une longueur focale effective ; et

    un axe optique défini par la surface avant symétrique en rotation et la surface arrière symétrique en rotation ; dans lequel

    le point médian de la partie de l'axe optique entre la surface avant et la surface arrière est décalé du rayon principal (125) d'au moins 5 % de la longueur focale effective de la première lentille (112) ; dans lequel

    le deuxième sous-groupe de lentilles (groupe 1b) comprend une pluralité de lentilles incluant une deuxième lentille (114) et une troisième lentille (115), la deuxième lentille (114) et la troisième lentille (115) étant séparées axialement par moins de 2 mm, chaque lentille de la pluralité de lentilles du deuxième sous-groupe de lentilles (groupe 1b) ayant :

    une surface avant symétrique en rotation ;

    une surface arrière symétrique en rotation ; et

    un axe optique défini par la surface avant symétrique en rotation et la surface arrière symétrique en rotation ; dans lequel :

    chacun des axes optiques du deuxième sous-groupe de lentilles (groupe 1b) est incliné, par rapport au rayon principal (125), d'au moins 2 degrés ;

    dans lequel les axes optiques des lentilles du deuxième sous-groupe de lentilles (groupe 1b) sont alignés les uns avec les autres au maximum à 0,2 degré près ;

    dans lequel un point médian de la partie de l'axe optique entre la surface avant et la surface arrière d'une lentille de la pluralité de lentilles du deuxième sous-groupe de lentilles (groupe 1b) est décalé du rayon principal de 1 mm maximum.


     
    2. Système optique de la revendication 1, dans lequel le premier sous-groupe de lentilles (groupe 1a) comprend la première lentille (112) et une quatrième lentille (111), dans lequel la quatrième lentille (111) est positionnée entre la première lentille (112) et le plan de sortie (106) de la source de lumière, la première lentille (111) et la quatrième lentille (111) étant séparées axialement par moins de 2 mm.
     
    3. Système optique de la revendication 1 ou 2, dans lequel, à l'intérieur de l'espace, les rayons provenant d'un point médian de la région source :

    sont parallèles, ou

    convergent, avec un demi-angle de cône de convergence inférieur à 10 degrés.


     
    4. Système optique de la revendication 1, dans lequel le dispositif de micromiroirs numériques est au niveau de, et parallèle à, la troisième surface plane du prisme, dans lequel le rayon principal :

    se réfléchit sur la deuxième surface plane,

    sort du prisme par la troisième surface plane,

    se réfléchit sur le dispositif de micromiroirs numériques,

    pénètre à nouveau dans le prisme par la troisième surface plane, et

    sort du prisme par la deuxième surface plane.


     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description