(19)
(11)EP 3 750 367 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.11.2022 Bulletin 2022/45

(21)Application number: 19707180.6

(22)Date of filing:  06.02.2019
(51)International Patent Classification (IPC): 
H04W 74/08(2009.01)
(52)Cooperative Patent Classification (CPC):
H04W 74/0833
(86)International application number:
PCT/US2019/016896
(87)International publication number:
WO 2019/157086 (15.08.2019 Gazette  2019/33)

(54)

PRACH CONFIGURATION ON NR-U

PRACH-KONFIGURATION FÜR NR-U

CONFIGURATION DE PRACH POUR DES RÉSEAUX NR-U


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 08.02.2018 US 201862628047 P
05.02.2019 US 201916268249

(43)Date of publication of application:
16.12.2020 Bulletin 2020/51

(73)Proprietor: QUALCOMM Incorporated
San Diego, CA 92121-1714 (US)

(72)Inventors:
  • ZHANG, Xiaoxia
    San Diego, California 92121-1714 (US)
  • SUN, Jing
    San Diego, California 92121-1714 (US)
  • KADOUS, Tamer
    San Diego, California 92131 (US)

(74)Representative: Dunlop, Hugh Christopher et al
Maucher Jenkins Seventh Floor Offices Artillery House 11-19 Artillery Row
London SW1P 1RT
London SW1P 1RT (GB)


(56)References cited: : 
WO-A1-2017/070055
  
  • QUALCOMM INCORPORATED: "Resource allocation for autonomous UL access", 3GPP DRAFT; R1-1720404 RESOURCE ALLOCATION FOR AUTONOMOUS UL ACCESS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FR , vol. RAN WG1, no. Reno, USA; 20171127 - 20171201 18 November 2017 (2017-11-18), XP051369967, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg%5Fran/WG1% 5FRL1/TSGR1%5F91/Docs/ [retrieved on 2017-11-18]
  • NOKIA ET AL: "Remaining details on PRACH procedure", 3GPP DRAFT; R1-1720006_REMAINING DETAILS ON RACH PROCEDURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE , vol. RAN WG1, no. Reno, Nevada, USA; 20171127 - 20171201 17 November 2017 (2017-11-17), XP051369213, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg%5Fran/WG1% 5FRL1/TSGR1%5F91/Docs/ [retrieved on 2017-11-17]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

CROSS-REFERENCE TO RELATED APPLICATIONS



[0001] This application claims the benefit of U.S. Provisional Patent Application No. 62/628,047, entitled, "PRACH CONFIGURATION ON NR-U," filed on February 8, 2018, and U.S. Non-Provisional Patent Application 16/268,249, entitled, "PRACH CONFIGURATION ON NR-U," filed on February 5, 2019.

BACKGROUND


Field



[0002] Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to physical random access channel (PRACH) configuration on new radio unlicensed (NR-U) networks.

Background



[0003] Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources. One example of such a network is the Universal Terrestrial Radio Access Network (UTRAN), The UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS), a third generation (3G) mobile phone technology supported by the 3rd Generation Partnership Project (3GPP). Examples of multiple-access network formats include Code Division Multiple Access (CDMA) networks. Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.

[0004] A wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs). A UE may communicate with a base station via downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.

[0005] A base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE. On the downlink, a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters. On the uplink, a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.

[0006] As the demand for mobile broadband access continues to increase, the possibilities of interference and congested networks grows with more UEs accessing the long-range wireless communication networks and more short-range wireless systems being deployed in communities. Research and development continue to advance wireless technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications. WO2017/070055 relates to scheduling uplink transmissions for a user equipment (UE) outside a transmission opportunity (TxOP). For example, the UE processes an uplink (UL) opportunity received from an eNodeB during a defined transmission opportunity (TxOP). The UL opportunity schedules UL information to be transmitted from the UE on one or more UL subframes that are outside the defined TxOP. The UE initiates a listen-before-talk (LBT) procedure to be performed before the UL information is transmitted from the UE on the one or more UL subframes that are outside the defined TxOP, and processes the UL information for transmission to the eNodeB on the one or more UL subframes located outside the defined TxOP.

SUMMARY



[0007] Aspects of the present invention are set out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS



[0008] A further understanding of the nature and advantages of the present disclosure may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.

FIG. 1 is a block diagram illustrating details of a wireless communication system.

FIG. 2 is a block diagram illustrating a design of a base station and a UE configured according to one aspect of the present disclosure.

FIG. 3 is a block diagram illustrating a wireless communication system including base stations that use directional wireless beams.

FIG. 4 is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure.

FIG. 5 is a block diagram illustrating a base station and UE configured according to one aspect of the present disclosure.

FIGs. 6A and 6B are block diagrams illustrating a base station and UE configured according to aspects of the present disclosure.

FIG. 7 is a block diagram illustrating a base station and UE configured according to one aspect of the present disclosure.

FIG. 8 is a block diagram illustrating a base station and UE configured according to one aspect of the present disclosure.

FIG. 9 is a block diagram illustrating detail of a UE configured according to aspects of the present disclosure.


DETAILED DESCRIPTION



[0009] The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to limit the scope of the disclosure. Rather, the detailed description includes specific details for the purpose of providing a thorough understanding of the inventive subject matter. It will be apparent to those skilled in the art that these specific details are not required in every case and that, in some instances, well-known structures and components are shown in block diagram form for clarity of presentation. In the following, each of the described methods, apparatuses, examples, and aspects which does not fully correspond to the invention as defined in the claims is thus not according to the invention and is, as well as the whole following description, present for illustration purposes only or to highlight specific aspects or features of the claims.

[0010] This disclosure relates generally to providing or participating in authorized shared access between two or more wireless communications systems, also referred to as wireless communications networks. In various embodiments, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5th Generation (5G) or new radio (NR) networks, as well as other communications networks. As described herein, the terms "networks" and "systems" may be used interchangeably.

[0011] An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA), IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA., and Global System for Mobile Communications (GSM) are part of universal mobile telecommunication system (UMTS). In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named "3rd Generation Partnership Project" (3GPP), and cdma2000 is described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2). These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.

[0012] In particular, 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. In order to achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ~1M nodes/km2), ultra-low complexity (e.g., ~10s of bits/sec), ultra-low energy (e.g., ~10+ years of battery life), and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ∼99.9999% reliability), ultra-low latency (e.g., ~ 1 ms), and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km2), extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates), and deep awareness with advanced discovery and optimizations.

[0013] The 5G NR, may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI); having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD)/frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO), robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth. For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.

[0014] The scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTl may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.

[0015] Various other aspects and features of the disclosure are further described below, It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative and not limiting. Based on the teachings herein one of an ordinary level of skill in the art should appreciate that an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. For example, a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer. Furthermore, an aspect may comprise at least one element of a claim.

[0016] FIG. 1 is a block diagram illustrating 5G network 100 including various base stations and UEs configured according to aspects of the present disclosure. The 5G network 100 includes a number of base stations 105 and other network entities. A base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB), a next generation eNB (gNB), an access point, and the like. Each base station 105 may provide communication coverage for a particular geographic area. In 3GPP, the term "cell" can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the context in which the term is used.

[0017] A base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG), UEs for users in the home, and the like). A base station for a macro cell may be referred to as a macro base station. A base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG. 1, the base stations 105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D), full dimension (FD), or massive MIMO. Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. Base station 105f is a small cell base station which may be a home node or portable access point. A base station may support one or multiple (e.g., two, three, four, and the like) cells.

[0018] The 5G network 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.

[0019] The UEs 1 1 5 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like, A UE may be a cellular phone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like. In one aspect, a UE may be a device that includes a Universal Integrated Circuit Card (UICC). In another aspect, a UE may be a device that does not include a UICC. In some aspects, UEs that do not include VICCs may also be referred to as internet of everything (IoE) devices. UEs 115a-1 15d are examples of mobile smart phone-type devices accessing 5G network 100 A UE may also be a machine specifically configured for connected communication, including machine type communication (MTC), enhanced MTC (eMTC), narrowband IoT (NB-IoT) and the like. UEs 115e-115k are examples of various machines configured for communication that access 5G network 100, A UE may be able to communicate with any type of the base stations, whether macro base station, small cell, or the like. In FIG. 1, a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink and/or uplink, or desired transmission between base stations, and backhaul transmissions between base stations.

[0020] In operation at 5G network 100, base stations 105a-105c serve UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f. Macro base station 105d also transmits multicast services which are subscribed to and received by UEs 115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.

[0021] 5G network 100 also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from macro base stations 105d and 105e, as well as small cell base station 105f. Other machine type devices, such as UE 115f (thermometer), UE 115g (smart meter), and UE 115h (wearable device) may communicate through 5G network 100 either directly with base stations, such as small cell base station 105f, and macro base station 105e, or in multi-hop configurations by communicating with another user device which relays its information to the network, such as UE 115f communicating temperature measurement information to the smart meter, UE 115g, which is then reported to the network through small cell base station 105f. 5G network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.

[0022] FIG. 2 shows a block diagram of a design of a base station 105 and a UE 115, which may be one of the base station and one of the UEs in FIG. 1. At the base station 105, a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240. The control information may be for the PBCH, PCFICH, PHICH, PDCCH, EPDCCH, MPDCCH etc. The data may be for the PDSCH, etc. The transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The transmit processor 220 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal. A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc.) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via the antennas 234a through 234t, respectively.

[0023] At the UE 115, the antennas 252a through 252r may receive the downlink signals from the base station 105 and may provide received signals to the demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM, etc.) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all the demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 115 to a data sink 260, and provide decoded control information to a controller/processor 280.

[0024] On the uplink, at the UE 115, a transmit processor 264 may receive and process data (e.g., for the PUSCH) from a data source 262 and control information (e.g., for the PUCCH) from the controller/processor 280. The transmit processor 264 may also generate reference symbols for a reference signal. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators 254a through 254r (e.g., for SC-FDM, etc.), and transmitted to the base station 105. At the base station 105, the uplink signals from the UE 115 may be received by the antennas 234, processed by the demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 115. The processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.

[0025] The controllers/processors 240 and 280 may direct the operation at the base station 105 and the UE 115, respectively. The controller/processor 240 and/or other processors and modules at the base station 105 may perform or direct the execution of various processes for the techniques described herein. The controllers/processor 280 and/or other processors and modules at the UE 115 may also perform or direct the execution of the functional blocks illustrated in FIG. 4, and/or other processes for the techniques described herein. The memories 242 and 282 may store data and program codes for the base station 105 and the UE 115, respectively. A scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.

[0026] Wireless communications systems operated by different network operating entities (e.g., network operators) may share spectrum. In some instances, a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time. Thus, in order to allow network operating entities use of the full designated shared spectrum, and in order to mitigate interfering communications between the different network operating entities, certain resources (e.g., time) may be partitioned and allocated to the different network operating entities for certain types of communication.

[0027] For example, a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum. The network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum. These time resources, prioritized for use by the network operating entity, may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.

[0028] Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.

[0029] In some cases, UE 115 and base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum. In an unlicensed frequency portion of the shared radio frequency spectrum band, UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, UE 115 or base station 105 may perform a listen before talk (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available. A CCA may include an energy detection procedure to determine whether there are any other active transmissions. For example, a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied. Specifically, signal power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter. A CCA also may include detection of specific sequences that indicate use of the channel. For example, another device may transmit a specific preamble prior to transmitting a data sequence. In some cases, an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.

[0030] Use of a medium-sensing procedure to contend for access to an unlicensed shared spectrum may result in communication inefficiencies. This may be particularly evident when multiple network operating entities (e.g., network operators) are attempting to access a shared resource. In 5G network 100, base stations 105 and UEs 1 1 5 may be operated by the same or different network operating entities. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In other examples, each base station 105 and UE 1 15 may be operated by a single network operating entity. Requiring each base station 105 and UE 115 of different network operating entities to contend for shared resources may result in increased signaling overhead and communication latency.

[0031] FIG. 3 illustrates an example of a timing diagram 300 for coordinated resource partitioning. The timing diagram 300 includes a superframe 305, which may represent a fixed duration of time (e.g., 20 ms). Superframe 305 may be repeated for a given communication session and may be used by a wireless system such as 5G network 100 described with reference to FIG. 1. The superframe 305 may be divided into intervals such as an acquisition interval (A-INT) 310 and an arbitration interval 315. As described in more detail below, the A-INT 310 and arbitration interval 315 may be subdivided into sub-intervals, designated for certain resource types, and allocated to different network operating entities to facilitate coordinated communications between the different network operating entities. For example, the arbitration interval 315 may be divided into a plurality of sub-intervals 320. Also, the superframe 305 may be further divided into a plurality of subframes 325 with a fixed duration (e.g., 1 ms). While timing diagram 300 illustrates three different network operating entities (e.g., Operator A, Operator B, Operator C), the number of network operating entities using the superframe 305 for coordinated communications may be greater than or fewer than the number illustrated in timing diagram 300.

[0032] The A-INT 310 may be a dedicated interval of the superframe 305 that is reserved for exclusive communications by the network operating entities. In some examples, each network operating entity may be allocated certain resources within the A-INT 310 for exclusive communications. For example, resources 330-a may be reserved for exclusive communications by Operator A, such as through base station 105a, resources 330-b may be reserved for exclusive communications by Operator B, such as through base station 105b, and resources 330-c may be reserved for exclusive communications by Operator C, such as through base station 105c. Since the resources 330-a are reserved for exclusive communications by Operator A, neither Operator 13 nor Operator C can communicate during resources 330-a, even if Operator A chooses not to communicate during those resources. That is, access to exclusive resources is limited to the designated network operator. Similar restrictions apply to resources 330-b for Operator B and resources 330-c for Operator C. The wireless nodes of Operator A (e.g, UEs 115 or base stations 105) may communicate any information desired during their exclusive resources 330-a, such as control information or data.

[0033] When communicating over an exclusive resource, a network operating entity does not need to perform any medium sensing procedures (e.g., listen-before-talk (LBT) or clear channel assessment (CCA)) because the network operating entity knows that the resources are reserved. Because only the designated network operating entity may communicate over exclusive resources, there may be a reduced likelihood of interfering communications as compared to relying on medium sensing techniques alone (e.g., no hidden node problem). In some examples, the A-INT 310 is used to transmit control information, such as synchronization signals (e.g., SYNC signals), system information (e.g., system information blocks (SIBs)), paging information (e.g., physical broadcast channel (PBCH) messages), or random access information (e.g., random access channel (RACH) signals). In some examples, all of the wireless nodes associated with a network operating entity may transmit at the same time during their exclusive resources.

[0034] In some examples, resources may be classified as prioritized for certain network operating entities. Resources that are assigned with priority for a certain network operating entity may be referred to as a guaranteed interval (G-INT) for that network operating entity. The interval of resources used by the network operating entity during the G-INT may be referred to as a prioritized sub-interval. For example, resources 335-a may be prioritized for use by Operator A and may therefore be referred to as a G-INT for Operator A (e.g., G-INT-OpA). Similarly, resources 335-b may be prioritized for Operator B, resources 335-c may be prioritized for Operator C, resources 335-d may be prioritized for Operator A, resources 335-e may be prioritized for Operator B, and resources 335-f may be prioritized for operator C.

[0035] The various G-INT resources illustrated in FIG. 3 appear to be staggered to illustrate their association with their respective network operating entities, but these resources may all be on the same frequency bandwidth. Thus, if viewed along a time-frequency grid, the G-INT resources may appear as a contiguous line within the superframe 305, This partitioning of data may be an example of time division multiplexing (TDM). Also, when resources appear in the same sub-interval (e.g., resources 340-a and resources 335-b), these resources represent the same time resources with respect to the superframe 305 (e.g., the resources occupy the same sub-interval 320), but the resources are separately designated to illustrate that the same time resources can be classified differently for different operators.

[0036] When resources are assigned with priority for a certain network operating entity (e.g., a G-INT), that network operating entity may communicate using those resources without having to wait or perform any medium sensing procedures (e.g., LBT or CCA). For example, the wireless nodes of Operator A are free to communicate any data or control information during resources 335-a without interference from the wireless nodes of Operator B or Operator C.

[0037] A network operating entity may additionally signal to another operator that it intends to use a particular G-INT. For example, referring to resources 335-a, Operator A may signal to Operator B and Operator C that it intends to use resources 335-a. Such signaling may be referred to as an activity indication. Moreover, since Operator A has priority over resources 335-a, Operator A may be considered as a higher priority operator than both Operator B and Operator C. However, as discussed above, Operator A does not have to send signaling to the other network operating entities to ensure interference-free transmission during resources 335-a because the resources 335-a are assigned with priority to Operator A.

[0038] Similarly, a network operating entity may signal to another network operating entity that it intends not to use a particular G-INT. This signaling may also be referred to as an activity indication. For example, referring to resources 335-b, Operator B may signal to Operator A and Operator C that it intends not to use the resources 335-b for communication, even though the resources are assigned with priority to Operator B. With reference to resources 335-b, Operator B may be considered a higher priority network operating entity than Operator A and Operator C. In such cases, Operators A and C may attempt to use resources of sub-interval 320 on an opportunistic basis. Thus, from the perspective of Operator A, the sub-interval 320 that contains resources 335-b may be considered an opportunistic interval (O-INT) for Operator A (e.g., O-INT-OpA). For illustrative purposes, resources 340-a may represent the O-INT for Operator A. Also, from the perspective of Operator C, the same sub-interval 320 may represent an O-INT for Operator C with corresponding resources 340-b. Resources 340-a, 335-b, and 340-b all represent the same time resources (e.g., a particular sub-interval 320), but are identified separately to signify that the same resources may be considered as a G-INT for some network operating entities and yet as an O-INT for others.

[0039] To utilize resources on an opportunistic basis, Operator A and Operator C may perform medium-sensing procedures to check for communications on a particular channel before transmitting data. For example, if Operator B decides not to use resources 335-b (e.g., G-INT-OpB), then Operator A may use those same resources (e.g., represented by resources 340-a) by first checking the channel for interference (e.g., LBT) and then transmitting data if the channel was determined to be clear. Similarly, if Operator C wanted to access resources on an opportunistic basis during sub-interval 320 (e.g., use an O-INT represented by resources 340-b) in response to an indication that Operator B was not going to use its G-INT, Operator C may [perform a medium sensing procedure and access the resources if available. In some cases, two operators (e.g., Operator A and Operator C) may attempt to access the same resources, in which case the operators may employ contention-based procedures to avoid interfering communications. The operators may also have sub-priorities assigned to them designed to determine which operator may gain access to resources if more than operator is attempting access simultaneously.

[0040] In some examples, a network operating entity may intend not to use a particular G-INT assigned to it, but may not send out an activity indication that conveys the intent not to use the resources. In such cases, for a particular sub-interval 320, lower priority operating entities may be configured to monitor the channel to determine whether a higher priority operating entity is using the resources. If a lower priority operating entity determines through LBT or similar method that a higher priority operating entity is not going to use its G-INT resources, then the lower priority operating entities may attempt to access the resources on an opportunistic basis as described above.

[0041] In some examples, access to a G-INT or O-INT may be preceded by a reservation signal (e.g., request-to-send (RTS)/clear-to-send (CTS)), and the contention window (CW) may be randomly chosen between one and the total number of operating entities.

[0042] In some examples, an operating entity may employ or be compatible with coordinated multipoint (CoMP) communications. For example an operating entity may employ CoMP and dynamic time division duplex (TDD) in a G-INT and opportunistic CoMP in an O-FNT as needed.

[0043] In the example illustrated in FIG. 3, each sub-interval 320 includes a G-INT for one of Operator A, B, or C. However, in some cases, one or more sub-intervals 320 may include resources that are neither reserved for exclusive use nor reserved for prioritized use (e.g., unassigned resources). Such unassigned resources may be considered an O-INT for any network operating entity, and may be accessed on an opportunistic basis as described above.

[0044] In some examples, each subframe 325 may contain 14 symbols (e.g., 250-µs for 60 kHz tone spacing). These subframes 325 may be standalone, self-contained Interval-Cs (ITCs) or the subframes 325 may be a part of a long ITC. An ITC may be a self-contained transmission starting with a downlink transmission and ending with a uplink transmission. In some embodiments, an ITC may contain one or more subframes 325 operating contiguously upon medium occupation. In some cases, there may be a maximum of eight network operators in an A-INT 310 (e.g., with duration of 2 ms) assuming a 250-µs transmission opportunity.

[0045] Although three operators are illustrated in FIG. 3, it should be understood that fewer or more network operating entities may be configured to operate in a coordinated manner as described above. In some cases, the location of the G-INT, O-INT, or A-INT within superframe 305 for each operator is determined autonomously based on the number of network operating entities active in a system. For example, if there is only one network operating entity, each sub-interval 320 may be occupied by a G-INT for that single network operating entity, or the sub-intervals 320 may alternate between G-INTs for that network operating entity and O-INTs to allow other network operating entities to enter. If there are two network operating entities, the sub-intervals 320 may alternate between G-INTs for the first network operating entity and G-INTs for the second network operating entity. If there are three network operating entities, the G-INT and O-INTs for each network operating entity may be designed as illustrated in FIG. 3. If there are four network operating entities, the first four sub-intervals 320 may include consecutive G-INTs for the four network operating entities and the remaining two sub-intervals 320 may contain O-INTs. Similarly, if there are five network operating entities, the first five sub-intervals 320 may contain consecutive G-INTs for the five network operating entities and the remaining sub-interval 320 may contain an O-INT. If there are six network operating entities, all six sub-intervals 320 may include consecutive G-INTs for each network operating entity. It should be understood that these examples are for illustrative purposes only and that other autonomously determined interval allocations may be used.

[0046] It should be understood that the coordination framework described with reference to FIG. 3 is for illustration purposes only. For example, the duration of superframe 305 may be more or less than 20 ms. Also, the number, duration, and location of sub-intervals 320 and subframes 325 may differ from the configuration illustrated. Also, the types of resource designations (e.g., exclusive, prioritized, unassigned) may differ or include more or less sub-designations.

[0047] In new radio (NR) networks, the physical random access channel (PRACH) time instance may be configured via a PEACH configuration index contained in the remaining material system information (RMSI) transmission. For a given PRACH configuration index, a UE may obtain the following: the PRACH format; the configuration period and subframe number; the number of RACH slots within a subframe and number of RACH occasions within a RACH slot, and the start symbol index. In addition, the RMSI configures the SSB-to-RACH-resource mapping so that each SSB can map to a corresponding PRACH occasion.

[0048] In NR unlicensed (NR-U) networks, each transmitting node would generally perform a listen before talk (LBT) procedure before transmitting on the shared communication channel. Because of the unpredictability of LBT results, if a PRACH occasion follows the NR configuration, it is uncertain whether a UE would be able to transmit at the configured PRACH occasion. When a UE misses one configured PRACH occasion, it would generally wait until the next configured PRACH occasion corresponding to the detected SSB. PRACH latency is expected to be higher due to LBT operations. One proposed solution to reduce the latency may be to increase the PRACH occasions in time. However, this solution would result in a cost of increased network overhead.

[0049] PRACH transmission can happen either within a base station transmission opportunity (TXOP) or outside of the TXOP. The base station TXOP is the period in which the base station secures the shared medium for communications. PRACH configuration outside of base station TXOP can be referred to as autonomous PRACH occasions and can follow NR or similar to NR procedures. Additionally, because the communication channels are shared, there may be cause to leave a gap between each PRACH occasion in which an LBT procedure may be performed. In current NR configurations, when multiple PRACH instances are allocated within a RACH slot, they are scheduled back-to-back without a gap. If gap is needed, a base station may schedule an LBT gap between each RACH occasion or, alternatively, the UE may autonomously shorten the PRACH duration in order to create a gap for an LBT procedure, The PRACH configuration will serve as the intended base station reception with the corresponding beam. Additionally, an autonomous RACH window can be further added to reduce the system overhead. PRACH transmission within the TXOP can have a completely different configuration. If a UE detects a preamble or common control signal (e.g., CPDCCH), the UE could be triggered to send PRACH within the TXOP. RACH configuration within the TXOP can overwrite the autonomous RACH configuration.

[0050] FIG. 4 is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure. The example blocks will also be described with respect to UE 115 as illustrated in FIG. 9. FIG. 9 is a block diagram illustrating UE 115 configured according to one aspect of the present disclosure. UE 115 includes the structure, hardware, and components as illustrated for UE 115 of FIG. 2. For example, UE 115 includes controller/processor 280, which operates to execute logic or computer instructions stored in memory 282, as well as controlling the components of UE 115 that provide the features and functionality of UE 115. UE 115, under control of controller/processor 280, transmits and receives signals via wireless radios 900a-r and antennas 252a-r. Wireless radios 900a-r includes various components and hardware, as illustrated in FIG. 2 for UE 115, including modulator/demodulators 254a-r, MIMO detector 256, receive processor 258, transmit processor 264, and TX MIMO processor 266.

[0051] At block 400, a UE monitors for a control signal from a serving base station, wherein the control signal identifies a current TXOP of the serving base station. PRACH transmissions may occur either within or outside of the TXOP. UE 115 will monitor for signaling that identifies a current TXOP. For example, under control of controller/processor 280, UE 115 executes preamble detection logic 901, stored in memory 282. The execution environment of preamble detection logic 901 allows UE 115 to monitor for the control signal identifying the current TXOP. For example, signals received via antennas 252a-r and wireless radios 900a-r are decoded and check for preamble or CPDCCH.

[0052] At block 401, the UE obtains an autonomous random access configuration for communications outside of the current TXOP, wherein the autonomous random access configuration identifies a random access slot that includes a plurality of random access occasions. In order to participate in PRACH transmissions outside of a TXOP, UE 115 will obtain an autonomous RACH configuration. The autonomous RACH configuration may be signaled from the serving base station. UE 115 stores the configuration in memory 282 at autonomous RACH configuration 902. The RACH configuration includes a PRACH slot with multiple PRACH occasions available therein.

[0053] At block 402, the UE makes a determination whether the control signal is detected. If not, then, at block 403, the UE transmits an autonomous random access signal in a random access occasion of the plurality of random access occasions corresponding to a SSB identified by the UE for transmission. When a PRACH transmission is to occur from UE 115, the failure to detect a signal identifying the TXOP indicates that UE 115 will transmit an autonomous PRACH outside of the TXOP. UE 115, under control of controller/processor 280, executes PRACH generator 904, in memory 282. The execution environment of PRACH generator 904 provides for UE 115 to transmit a random access request via wireless radios 900a-r and antennas 252a-r.

[0054] At block 404, if the UE detects the control signal, the UE receives a downlink control signal that includes a trigger signal to send a random access signal. When UE 115 detects the control signal identifying the current TXOP, UE 115 will perform PRACH transmissions within the TXOP. A trigger signal is received at UE 115 via antennas 252a-r and wireless radios 900a-r triggering PRACH transmission. The in-TXOP PRACH may be made according to a different RACH configuration. UE 115 may receive the new TXOP RACH configuration for in-TXOP PRACH transmissions. UE 115 stores the configuration in memory 282 at TXOP RACH configuration 903.

[0055] At block 405, the UE transmits the random access signal in a TXOP random access occasion. Within the execution environment of PRACH generator 904, in response to the trigger signal, UE 115 generates and transmits the PRACH within the TXOP via wireless radios 900a-r and antennas 252a-r.

[0056] FIG. 5 is a block diagram illustrating a base station 105 and UE 115 configured according to one aspect of the present disclosure. For PRACH configuration outside of a TXOP, base station 105 will use the beam direction for PRACH reception corresponding to the configuration within an autonomous PRACH window 500 if base station 105 is not transmitting in downlink. In the illustrated example, base station 105 schedules one RACH slot, RACH slots 501 and 502, every subframe. Each such RACH slot further includes scheduling of three RACH occasions (e.g., RACH for SSB0, SSB1, SSB2 in RACH slot 501 RACH for SSB3, SSB4, SSB5 in RACH slot 502). Depending on the beam direction UE 115 is located from base station 105, UE 115 may perform PRACH transmission on the RACH occasion of the associated SSB.

[0057] FIGs. 6A and 6B are block diagrams illustrating base station 105 and UE 115 configured according to aspects of the present disclosure, When a gap will be used between each RACH instance, the PRACH configuration may be implemented to provide for the gap. In a first optional aspect, as illustrated in FIG. 6A, base station 105 configures RACH slots 601 and 602 within autonomous PRACH window 600. Base station 105 schedules three 4-symbol duration PRACH occasions in each of RACH slots 601 and 602 (e.g., RACH for SSB0, SSB1, SSB2 in RACH slot 601, RACH for SSB3, SSB4, SSB5 in RACH slot 602). In performance of PRACH transmissions, UE 115 may autonomously shorten the PRACH transmission to 3-symbols, leaving a 1-symbol gap for LBT procedures.

[0058] In a second optional aspect, as illustrated in FIG. 6B, base station 105 configures RACH slots 604 and 605 within autonomous PRACH window 603. Base station 105 schedules three 4-symbol duration PRACH occasions in each of RACH slots 604 and 605 (e.g., RACH for SSB0, SSB1, SSB2 in RACH slot 604, RACH for SSB3, SSB4, SSB5 in RACH slot 605). Each of the scheduled PRACH occasions are scheduled to include a 1-symbol gap between each occasion. Thus, base station 105 configures the gaps for any LBT procedure UE 115 may perform prior to PRACH transmissions.

[0059] FIG. 7 is a block diagram illustrating a base station 105 and UE 115 configured according to one aspect of the present disclosure. Within a TXOP 700, PRACH is meant for the UE which detects the control signal that identifies the TXOP (e.g., CPDCCH, preamble, and the like). For example, UE 115 detects a preamble or CPDCCH that identifies TXOP 700, Base station 105, at 701, sends a trigger signal to UE 115 for PRACH transmission within TXOP 700. The trigger signal may be included in a PDCCH signal, or the like. The RACH occasion within TXOP 700 can be configured semi-statically or dynamically, In detecting the control signal (e.g., preamble, CPDCCH), UE 115 can transmit PRACH on the allocated PRACH occasion in slot 702.

[0060] It should be noted that there may not need to be separate RACH resources between different SSBs, as in the outside TXOP PRACH configuration, because only the UEs with corresponding beams can detect the preamble, CPDCCH, etc.

[0061] FIG. 8 is a block diagram illustrating base station 105 and UE 115 configured according to one aspect of the present disclosure. In a sub-6GHz carrier frequency range, control signal identifying the TXOP (e.g., preamble, CPDCCH) can be designed to reach a majority of neighboring UEs. In such a scenario, base station 105 may want to configure a subset of UEs to transmit PRACH within a particular TXOP to reduce the system overhead on PRACH resources. For example, the PRACH occasion scheduled by base station 105 within slot 802 of TXOP 800 is configured for SSB0-3. Thus, when base station 105 sends the trigger for PRACH transmission along with the subset of SSBs-to-PRACH resource mapping within TXOP 800. UE 115 is located on a beam corresponding to SSB2, Therefore, when UE 115 receives the trigger signal at 801, it will transmit PRACH in slot 802. Note, other UEs located on beams associated with a different subset of SSBs can be triggered to transmit PRACH at different TXOPs.

[0062] Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.

[0063] The functional blocks and modules in FIG. 4 may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.

[0064] Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. Skilled artisans will also readily recognize that the order or combination of components, methods, or interactions that are described herein are merely examples and that the components, methods, or interactions of the various aspects of the present disclosure may be combined or performed in ways other than those illustrated and described herein.

[0065] The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.

[0066] The steps of a method or algorithm described in connection with the disclosure herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.

[0067] In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, a connection may be properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL), then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.

[0068] As used herein, including in the claims, the term "and/or," when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, "or" as used in a list of items prefaced by "at least one of" indicates a disjunctive list such that, for example, a list of "at least one of A, B, or C" means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) or any of these in any combination thereof.


Claims

1. A method of wireless communication, comprising:

monitoring (400), by a user equipment, UE, for a control signal from a serving base station, wherein the control signal identifies a current transmission opportunity, TXOP, of the serving base station;

characterised by:

obtaining (401), by the UE, an autonomous random access configuration for communications outside of the current TXOP, wherein the autonomous random access configuration identifies a random access slot that includes a plurality of random access occasions; and

transmitting (403), by the UE, in response to a failure to detect the control signal (402) an autonomous random access signal in a random access occasion of the plurality of random access occasions corresponding to a synchronization signal block, SSB, identified by the UE for transmission.


 
2. The method of claim 1, further including:
performing, by the UE, a listen before talk, LBT, procedure in a gap prior to the random access occasion, wherein each random access occasion of the plurality of random access occasions includes a corresponding gap before the each random access occasion.
 
3. The method of claim 2, wherein the corresponding gap is one of:

scheduled by the serving base station in the autonomous random access configuration, or

generated by the UE by reducing each of the plurality of random access occasions by one symbol.


 
4. The method of claim 1, further including:

detecting, by the UE, the control signal identifying the current TXOP;

receiving, by the UE, a downlink control signal including a trigger signal to send a random access signal; and

transmitting, by the UE, the random access signal in a TXOP random access occasion.


 
5. The method of claim 4, further including:
receiving, by the UE, a TXOP random access configuration identifying the TXOP random access occasion within the TXOP, wherein the TXOP random access configuration is received one of: dynamically or semi-statically.
 
6. The method of claim 5, wherein the TXOP random access configuration is different from the autonomous random access configuration and the TXOP random access configuration replaces the autonomous random access configuration for the UE.
 
7. The method of claim 4, wherein the downlink control signal further includes a subset of synchronization signal blocks, SSBs, scheduled for the TXOP random access occasion of the current TXOP.
 
8. The method of claim 7, wherein the transmitting of the random access signal includes one of:

transmitting the random access signal in the TXOP random access occasion of the current TXOP according to the SSB identified by the UE for transmission within the subset of SSBs; or

transmitting the random access signal in the TXOP random access occasion of a subsequent TXOP according the SSB identified by the UE for transmission with a subsequent subset of SSBs scheduled for the TXOP random access occasion of the subsequent TXOP.


 
9. An apparatus configured for wireless communication, the apparatus comprising:

at least one processor; and

a memory coupled to the at least one processor,

wherein the at least one processor is configured:
to monitor, by a user equipment, UE, for a control signal from a serving base station, wherein the control signal identifies a current transmission opportunity, TXOP of the serving base station;

characterised in that the at least one processor is configured:

to obtain, by the UE, an autonomous random access configuration for communications outside of the current TXOP, wherein the autonomous random access configuration identifies a random access slot that includes a plurality of random access occasions; and

to transmit, by the UE, in response to a failure to detect the control signal an autonomous random access signal in a random access occasion of the plurality of random access occasions corresponding to a synchronization signal block, SSB, identified by the UE for transmission.


 
10. The apparatus of claim 9, further including configuration of the at least one processor:

i) to perform, by the UE, a listen before talk, LBT, procedure in a gap prior to the random access occasion, wherein each random access occasion of the plurality of random access occasions includes a corresponding gap before the each random access occasion; or

ii) to detect, by the UE, the control signal identifying the current TXOP;

to receive, by the UE, a downlink control signal including a trigger signal to send a random access signal; and

to transmit, by the UE, the random access signal in a TXOP random access occasion.


 
11. The apparatus of claim 10, option i), wherein the corresponding gap is one of:

scheduled by the serving base station in the autonomous random access configuration, or

generated by the UE by reducing each of the plurality of random access occasions by one symbol.


 
12. The apparatus of claim 10, option ii), comprising one of the following:

i) further including configuration of the at least one processor to receive, by the UE, a TXOP random access configuration identifying the TXOP random access occasion within the TXOP, wherein the TXOP random access configuration is received one of: dynamically or semi-statically; or

ii) wherein the downlink control signal further includes a subset of synchronization signal blocks (SSBs) scheduled for the TXOP random access occasion of the current TXOP.


 
13. The apparatus of claim 12, option i), wherein the TXOP random access configuration is different from the autonomous random access configuration and the TXOP random access configuration replaces the autonomous random access configuration for the UE.
 
14. The apparatus of claim 12, option ii), wherein the configuration of the at least one processor to transmit includes configuration of the at least one processor to one of:

transmit the random access signal in the TXOP random access occasion of the current TXOP according to the SSB identified by the UE for transmission within the subset of SSBs; or

transmit the random access signal in the TXOP random access occasion of a subsequent TXOP according the SSB identified by the UE for transmission with a subsequent subset of SSBs scheduled for the TXOP random access occasion of the subsequent TXOP.


 
15. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:

program code executable by a computer for causing the computer to monitor, by a user equipment, UE, for a control signal from a serving base station, wherein the control signal identifies a current transmission opportunity, TXOP, of the serving base station;

characterised by:

program code executable by the computer for causing the computer to obtain, by the UE, an autonomous random access configuration for communications outside of the current TXOP, wherein the autonomous random access configuration identifies a random access slot that includes a plurality of random access occasions; and

program code executable by the computer for causing the computer to transmit, by the UE, in response to a failure to detect the control signal an autonomous random access signal in a random access occasion of the plurality of random access occasions corresponding to a synchronization signal block, SSB, identified by the UE for transmission.


 


Ansprüche

1. Ein Verfahren für Drahtloskommunikation, das Folgendes aufweist:

Überwachen (400), durch eine Nutzereinrichtung bzw. UE (UE = user equipment), hinsichtlich eines Steuersignals von einer versorgenden Basisstation, wobei das Steuersignal eine aktuelle Sendegelegenheit bzw. TXOP (TXOP = transmission opportunity) der versorgenden Basisstation identifiziert;

das gekennzeichnet ist durch:

Erlangen (401), durch die UE, einer Konfiguration für autonomen Random-Access bzw. Konfiguration für einen autonomen wahlfreien Zugriff für Kommunikationen außerhalb der aktuellen TXOP, wobei die Konfiguration für autonomen Random-Access einen Random-Access-Schlitz identifiziert, der eine Vielzahl von Random-Access-Gelegenheiten aufweist; und

Senden (403), durch die UE, ansprechend auf ein Fehlschlagen das Steuersignal (402) zu detektieren, eines Signals für autonomen Random-Access in einer Random-Access-Gelegenheit der Vielzahl von Random-Access-Gelegenheiten, die einem Synchronisationssignalblock bzw. SSB (SSB = synchronization signal block) entsprechen, der durch die UE zur Sendung identifiziert wird.


 
2. Verfahren nach Anspruch 1, das weiter Folgendes beinhaltet:
Durchführen, durch die UE, einer Horchen-vor-Sprechen- bzw. LBT-Prozedur (LBT = listen before talk) in einer Lücke vor der Random-Access-Gelegenheit, wobei jede Random-Access-Gelegenheit der Vielzahl von Random-Access-Gelegenheiten eine entsprechende Lücke vor jeder Random-Access-Gelegenheit beinhaltet.
 
3. Verfahren nach Anspruch 2, wobei die entsprechende Lücke eines von Folgendem ist:

eingeteilt durch die versorgende Basisstation in der Konfiguration für autonomen Random-Access, oder

generiert durch die UE durch Verringern jeder der Vielzahl von Random-Access-Gelegenheiten um ein Symbol.


 
4. Verfahren nach Anspruch 1, das weiter Folgendes beinhaltet:

Detektieren, durch die UE, des Steuersignals, das die aktuelle TXOP identifiziert;

Empfangen, durch die UE, eines Abwärtsstreckensteuersignals, das ein Auslösersignal zum Senden eines Random-Access-Signals beinhaltet; und

Senden, durch die UE, des Random-Access-Signals in einer TXOP-Random-Access-Gelegenheit.


 
5. Verfahren nach Anspruch 4, das weiter Folgendes beinhaltet:
Empfangen, durch die UE, einer TXOP-Random-Access-Konfiguration, die die TXOP-Random-Access-Gelegenheit innerhalb der TXOP identifiziert, wobei die TXOP-Random-Access-Konfiguration dynamisch oder semi-statisch empfangen wird.
 
6. Verfahren nach Anspruch 5, wobei sich die TXOP-Random-Access-Konfiguration von der Konfiguration für autonomen Random-Access unterscheidet und die TXOP-Random-Access-Konfiguration die Konfiguration für autonomen Random-Access für die UE ersetzt.
 
7. Verfahren nach Anspruch 4, wobei das Abwärtsstreckensteuersignal weiter einen Subsatz von Synchronisationssignalblöcken bzw. SSBs (SSB = synchronization signal block) beinhaltet, die für die TXOP-Random-Access-Gelegenheit der aktuellen TXOP eingeteilt sind.
 
8. Verfahren nach Anspruch 7, wobei das Senden des Random-Access-Signals eines von Folgendem beinhaltet:

Senden des Random-Access-Signals in der TXOP-Random-Access-Gelegenheit der aktuellen TXOP gemäß dem SSB, der durch die UE für eine Sendung innerhalb des Subsatzes von SSBs identifiziert wird; oder

Senden des Random-Access-Signals in der TXOP-Random-Access-Gelegenheit einer nachfolgenden TXOP gemäß dem SSB, der durch die UE identifiziert wird für eine Sendung mit einem nachfolgenden Subsatz von SSBs, die für die TXOP-Random-Access-Gelegenheit der nachfolgenden TXOP eingeteilt sind.


 
9. Eine Vorrichtung, die für Drahtloskommunikation konfiguriert ist, wobei die Vorrichtung Folgendes aufweist:

wenigstens einen Prozessor; und

einen Speicher, der an den wenigstens einen Prozessor gekoppelt ist,

wobei der wenigstens eine Prozessor konfiguriert ist:
zum Überwachen, durch eine Nutzereinrichtung bzw. UE (UE = user equipment), hinsichtlich eines Steuersignals von einer versorgenden Basisstation, wobei das Steuersignal eine aktuelle Sendegelegenheit bzw. TXOP (TXOP = transmission opportunity) der versorgenden Basisstation identifiziert;

dadurch gekennzeichnet, dass der wenigstens eine Prozessor konfiguriert ist:

zum Erlangen, durch die UE, einer Konfiguration für autonomen Random-Access bzw. Konfiguration für autonomen wahlfreien Zugriff für Kommunikationen außerhalb der aktuellen TXOP, wobei die Konfiguration für autonomen Random-Access einen Random-Access-Schlitz identifiziert, der eine Vielzahl von Random-Access-Gelegenheiten beinhaltet; und

zum Senden, durch die UE, ansprechend auf ein Fehlschlagen,das Steuersignal zu detektieren, eines Signals für autonomen Random-Access in einer Random-Access-Gelegenheit der Vielzahl von Random-Access-Gelegenheiten entsprechend einem Synchronisationsblock bzw. SSB (SSB = synchronization signal block), der durch die UE für eine Sendung identifiziert wird.


 
10. Vorrichtung nach Anspruch 9, die weiter eine Konfiguration des wenigstens einen Prozessors beinhaltet:

i) zum Durchführen, durch die UE, einer Horchen-vor-Sprechen- bzw. LBT-Prozedur (LBT = listen before talk) in einer Lücke vor der Random-Access-Gelegenheit, wobei jede Random-Access-Gelegenheit der Vielzahl von Random-Access-Gelegenheiten eine entsprechende Lücke vor der jeweiligen Random-Access-Gelegenheit beinhaltet; oder

ii) zum Detektieren, durch die UE, des Steuersignals, das die aktuelle TXOP identifiziert;

zum Empfangen, durch die UE, eines Abwärtsstreckensteuersignals, das ein Auslösersignal zum Senden eines Random-Access-Signals beinhaltet; und zum Senden, durch die UE, des Random-Access-Signals in einer TXOP-Random-Access-Gelegenheit.
 
11. Vorrichtung nach Anspruch 10, Option i), wobei die entsprechende Lücke eines von Folgendem ist:

eingeteilt durch die versorgende Basisstation in der Konfiguration für autonomen Random-Access, oder

generiert durch die UE durch Verringern von jeder der Vielzahl von Random-Access-Gelegenheiten um ein Symbol.


 
12. Vorrichtung nach Anspruch 10, Option ii), die eines von Folgendem aufweist:

i) die weiter eine Konfiguration des wenigstens einen Prozessors beinhaltet zum Empfangen, durch die UE, einer TXOP-Random-Access-Konfiguration, die die TXOP-Random-Access-Gelegenheit innerhalb der TXOP identifiziert, wobei die TXOP dynamisch oder semi-statisch empfangen wird; oder

ii) wobei das Abwärtsstreckensteuersignal weiter einen Subsatz von Synchronisationssignalblöcken bzw. SSBs (SSB = synchronization signal block), die für die TXOP-Random-Access-Gelegenheit der aktuellen TXOP eingeteilt sind, beinhaltet.


 
13. Vorrichtung nach Anspruch 12, Option i), wobei die TXOP-Random-Access,-Konfiguration sich von der Konfiguration für autonomen Random-Access unterscheidet und die TXOP-Random-Access-Konfiguration die Konfiguration für autonomen Random-Access für die UE ersetzt.
 
14. Vorrichtung nach Anspruch 12, Option ii), wobei die Konfiguration des wenigstens einen Prozessors zum Senden eine Konfiguration des wenigstens einen Prozessors beinhaltet für eines von:

Senden des Random-Access-Signals in der TXOP-Random-Access-Gelegenheit der aktuellen TXOP gemäß dem SSB, das durch die UE identifiziert wird, für eine Sendung innerhalb des Subsatzes von SSBs; oder

Senden des Random-Access-Signals in der TXOP-Random-Access-Gelegenheit einer nachfolgenden TXOP gemäß dem SSB, der durch die UE identifiziert wird für eine Sendung innerhalb eines nachfolgenden Subsatzes von SSBs, die für die TXOP-Random-Access-Gelegenheit der nachfolgenden TXOP eingeteilt sind.


 
15. Ein nicht transitorisches computerlesbares Medium mit darauf aufgezeichnetem Programmcode, wobei der Programmcode Folgendes aufweist:

Programmcode, der durch einen Computer ausgeführt werden kann, um den Computer zu veranlassen hinsichtlich eines Steuersignals von einer versorgenden Basisstation, durch eine Nutzereinrichtung bzw. UE (UE = user equipment), zu überwachen, wobei das Steuersignal eine aktuelle Sendegelegenheit bzw. TXOP (TXOP = transmission opportunity) der versorgenden Basisstation identifiziert;

gekennzeichnet durch:

Programmcode, der durch den Computer ausführbar ist, um den Computer zu veranlassen zum Erlangen, durch die UE, einer Konfiguration für autonomen Random-Access für Kommunikationen außerhalb der aktuellen TXOP, wobei die Konfiguration für autonomen Random-Access einen Random-Access-Schlitz identifiziert, der eine Vielzahl von Random-Access-Gelegenheiten beinhaltet; und

Programmcode, der durch den Computer ausführbar ist, um den Computer zu veranlassen zum Senden, durch die UE, ansprechend auf ein Fehlschlagen das Steuersignal zu detektieren, eines Signals für autonomen Random-Access in einer Random-Access-Gelegenheit der Vielzahl von Random-Access-Gelegenheiten entsprechend einem Synchronisationssignalblock bzw. SSB (SSB = synchronization signal block), der durch die UE für eine Sendung identifiziert wird.


 


Revendications

1. Un procédé de communication sans fil, comprenant :

une opération de surveillance (400), par un équipement d'utilisateur, UE, à la recherche d'un signal de commande à partir d'une station de base de desserte, où le signal de commande identifie une opportunité de transmission, TXOP, courante de la station de base de desserte,

caractérisé par :

l'obtention (401), par l'UE, d'une configuration d'accès aléatoire autonome destinée à des communications à l'extérieur de la TXOP courante, où la configuration d'accès aléatoire autonome identifie un intervalle de temps d'accès aléatoire qui comprend une pluralité d'occasions d'accès aléatoire, et

la transmission (403), par l'UE, en réponse à un échec de détection du signal de commande (402) d'un signal d'accès aléatoire autonome dans une occasion d'accès aléatoire de la pluralité d'occasions d'accès aléatoire correspondant à un bloc de signaux de synchronisation, SSB, identifié par l'UE pour transmission.


 
2. Le procédé selon la Revendication 1, comprenant en outre :
l'exécution, par l'UE, d'une procédure écouter avant de parler, LBT, dans un espace qui précède l'occasion d'accès aléatoire, où chaque occasion d'accès aléatoire de la pluralité d'occasions d'accès aléatoire comprend un espace correspondant avant ladite chaque occasion d'accès aléatoire.
 
3. Le procédé selon la Revendication 2, où l'espace correspondant possède une caractéristique parmi :

planifié par la station de base de desserte dans la configuration d'accès aléatoire autonome, ou

généré par l'UE par la réduction de chaque occasion d'accès aléatoire de la pluralité d'occasions d'accès aléatoire d'un symbole.


 
4. Le procédé selon la Revendication 1, comprenant en outre :

la détection, par l'UE, du signal de commande identifiant la TXOP courante,

la réception, par l'UE, d'un signal de commande en liaison descendante comprenant un signal de déclenchement d'envoi d'un signal d'accès aléatoire, et

la transmission, par l'UE, du signal d'accès aléatoire dans une occasion d'accès aléatoire TXOP.


 
5. Le procédé selon la Revendication 4, comprenant en outre :
la réception, par l'UE, d'une configuration d'accès aléatoire TXOP identifiant l'occasion d'accès aléatoire TXOP à l'intérieur de la TXOP, où la configuration d'accès aléatoire TXOP est reçue selon un mode parmi : dynamique ou semi-statique.
 
6. Le procédé selon la Revendication 5, où la configuration d'accès aléatoire TXOP est différente de la configuration d'accès aléatoire autonome et la configuration d'accès aléatoire TXOP remplace la configuration d'accès aléatoire autonome destinée à l'UE.
 
7. Le procédé selon la Revendication 4, où le signal de commande en liaison descendante comprend en outre un sous-ensemble de blocs de signaux de synchronisation, SSB, planifié pour l'occasion d'accès aléatoire TXOP de la TXOP courante.
 
8. Le procédé selon la Revendication 7, où la transmission du signal d'accès aléatoire comprend une opération parmi :

la transmission du signal d'accès aléatoire dans l'occasion d'accès aléatoire TXOP de la TXOP courante en fonction du SSB identifié par l'UE pour une transmission à l'intérieur du sous-ensemble de SSB, ou

la transmission du signal d'accès aléatoire dans l'occasion d'accès aléatoire TXOP d'une TXOP subséquente en fonction du SSB identifié par l'UE pour une transmission avec un sous-ensemble subséquent de SSB planifié pour l'occasion d'accès aléatoire TXOP de la TXOP subséquente.


 
9. Un appareil configuré pour une communication sans fil, l'appareil comprenant :

au moins un processeur, et

une mémoire couplée au au moins un processeur,

où le au moins un processeur est configuré de façon à :
exécuter une opération de surveillance, par un équipement d'utilisateur, UE, à la recherche d'un signal de commande à partir d'une station de base de desserte, où le signal de commande identifie un opportunité de transmission, TXOP, courante de la station de base de desserte,

caractérisé en ce que le au moins un processeur est configuré de façon à :

obtenir, par l'UE, une configuration d'accès aléatoire autonome destinée à des communications à l'extérieur de la TXOP courante, où la configuration d'accès aléatoire autonome identifie un intervalle de temps d'accès aléatoire qui comprend une pluralité d'occasions d'accès aléatoire, et

transmettre, par l'UE, en réponse à un échec de détection du signal de commande, un signal d'accès aléatoire autonome dans une occasion d'accès aléatoire de la pluralité d'occasions d'accès aléatoire correspondant à un bloc de signaux de synchronisation, SSB, identifié par l'UE pour transmission.


 
10. L'appareil selon la Revendication 9, comprenant en outre la configuration du au moins un processeur de façon à :

i) exécuter, par l'UE, une procédure écouter avant de parler, LBT, dans un espace qui précède l'occasion d'accès aléatoire, où chaque occasion d'accès aléatoire de la pluralité d'occasions d'accès aléatoire comprend un espace correspondant avant ladite chaque occasion d'accès aléatoire, ou

ii) détecter, par l'UE, le signal de commande identifiant la TXOP courante,

recevoir, par l'UE, un signal de commande en liaison descendante comprenant un signal de déclenchement d'envoi d'un signal d'accès aléatoire, et

transmettre, par l'UE, le signal d'accès aléatoire dans une occasion d'accès aléatoire TXOP.


 
11. L'appareil selon la Revendication 10, option i), où l'espace correspondant possède une caractéristique parmi :

planifié par la station de base de desserte dans la configuration d'accès aléatoire autonome, ou

généré par l'UE par la réduction de chaque occasion d'accès aléatoire de la pluralité d'occasions d'accès aléatoire d'un symbole.


 
12. L'appareil selon la Revendication 10, option ii), comprenant une des caractéristiques suivantes :

i) comprenant en outre la configuration du au moins un processeur de façon à recevoir, par l'UE, une configuration d'accès aléatoire TXOP identifiant l'occasion d'accès aléatoire TXOP à l'intérieur de la TXOP, où la configuration d'accès aléatoire TXOP est reçue selon un mode parmi : dynamique ou semi-statique, ou

ii) où le signal de commande en liaison descendante comprend en outre un sous-ensemble de blocs de signaux de synchronisation (SSB) planifié pour l'occasion d'accès aléatoire TXOP de la TXOP courante.


 
13. L'appareil selon la Revendication 12, option i), où la configuration d'accès aléatoire TXOP est différente de la configuration d'accès aléatoire autonome et la configuration d'accès aléatoire TXOP remplace la configuration d'accès aléatoire autonome pour l'UE.
 
14. L'appareil selon la Revendication 12, option ii), où la configuration du au moins un processeur de façon à transmettre comprend la configuration du au moins un processeur de façon à exécuter une opération parmi :

transmettre le signal d'accès aléatoire dans l'occasion d'accès aléatoire TXOP de la TXOP courante en fonction du SSB identifié par l'UE pour une transmission à l'intérieur du sous-ensemble de SSB, ou

transmettre le signal d'accès aléatoire dans l'occasion d'accès aléatoire TXOP d'une TXOP subséquente en fonction du SSB identifié par l'UE pour une transmission avec un sous-ensemble subséquent de SSB planifié pour l'occasion d'accès aléatoire TXOP de la TXOP subséquente.


 
15. Un support lisible par ordinateur non transitoire possédant du code de programme enregistré sur celui-ci, le code de programme comprenant :

du code de programme exécutable par un ordinateur de façon à amener l'ordinateur à exécuter une opération de surveillance, par un équipement d'utilisateur, UE, à la recherche d'un signal de commande provenant d'une station de base de desserte, où le signal de commande identifie une opportunité de transmission, TXOP, courante de la station de base de desserte,

caractérisé par :

du code de programme exécutable par l'ordinateur de façon à amener l'ordinateur à obtenir, par l'UE, une configuration d'accès aléatoire autonome destinée à des communications à l'extérieur de la TXOP courante, où la configuration d'accès aléatoire autonome identifie un intervalle de temps d'accès aléatoire qui comprend une pluralité d'occasions d'accès aléatoire, et

du code de programme exécutable par l'ordinateur de façon à amener l'ordinateur à transmettre, par l'UE, en réponse à un échec de détection du signal de commande, un signal d'accès aléatoire autonome dans une occasion d'accès aléatoire de la pluralité d'occasions d'accès aléatoire correspondant à un bloc de signaux de synchronisation, SSB, identifié par l'UE pour transmission.


 




Drawing
































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description