(19)
(11)EP 3 750 728 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.07.2022 Bulletin 2022/30

(21)Application number: 19179415.5

(22)Date of filing:  11.06.2019
(51)International Patent Classification (IPC): 
B60K 1/00(2006.01)
B60K 17/02(2006.01)
B60K 17/04(2006.01)
B60K 17/00(2006.01)
B60K 23/04(2006.01)
(52)Cooperative Patent Classification (CPC):
B60K 1/00; B60K 2001/001; B60K 17/00; B60K 17/02; B60K 23/04; B60Y 2400/73; B60K 17/046

(54)

VEHICLE POWERTRAIN SYSTEM

FAHRZEUGANTRIEBSSTRANGSYSTEM

SYSTÈME DE GROUPE MOTOPROPULSEUR DE VÉHICULE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
16.12.2020 Bulletin 2020/51

(73)Proprietor: Ningbo Geely Automobile Research & Development Co., Ltd.
Ningbo, Zhejiang 315336 (CN)

(72)Inventor:
  • LARSSON, Johannes
    41507 Göteborg (SE)

(74)Representative: Zacco Sweden AB 
P.O. Box 5581 Löjtnantsgatan 21
114 85 Stockholm
114 85 Stockholm (SE)


(56)References cited: : 
DE-A1-102010 049 550
US-B2- 9 033 839
DE-A1-102012 101 984
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a vehicle powertrain system comprising an electric motor, a planetary gear set and a coupling unit. The invention further relates to a vehicle comprising the vehicle powertrain system, and a method for operating the vehicle powertrain system.

    BACKGROUND



    [0002] In vehicle applications, powertrains are used for transferring torque from a power source via a transmission to one or more driving wheels of the vehicle, and there are many different powertrain layouts and designs available. Electric powertrains are becoming more popular and may be operated as fully electric powertrains with one or more electric motors or as hybrid powertrains where one or more electric motors are operated in combination with an internal combustion engine.

    [0003] Document DE 102012101984 A1 relates to a drive train of an electrically driven motor vehicle, where an electric machine is connected to a differential by a clutch and a transmission for driving two axle portions of an axle. The axle portions are connected with a left wheel and a right wheel of the axle. Conventional transmissions and powertrain systems are often complex in design and are having large volume constructions with high weight loads. Conventional transmissions are designed with a high complexity involving a high number of components, and are often expensive and time consuming to manufacture.

    [0004] There is thus a need for an improved powertrain system having a compact layout and low weight, where the powertrain system is optimized for low volume packing in modern electric and hybrid vehicle designs. Further, there is a need for compact powertrain systems that are cheap to manufacture and simple in construction with few components, where the powertrain system is operated with high efficiency.

    SUMMARY



    [0005] An object of the present invention is to provide a vehicle powertrain system, a vehicle comprising the vehicle powertrain system, and a method for operating the vehicle powertrain system, where the previously mentioned problems are avoided. This object is at least partly achieved by the features of the independent claims. The dependent claims contain further developments of the vehicle powertrain system, and the vehicle comprising the vehicle powertrain system.

    [0006] The invention concerns a vehicle powertrain system comprising an electric motor, a planetary gear set, a coupling unit, and a differential unit. The electric motor is drivingly connected to the planetary gear set via a motor shaft extending in an axial direction, and the planetary gear set is operably connectable to the differential unit via the coupling unit. The powertrain system further comprises an idle gear wheel and a differential drive gear wheel arranged on the differential unit, and the coupling unit is arranged for selectively transferring torque to the idle gear wheel. The idle gear wheel and the differential drive gear wheel are arranged to drivingly interact with each other for transferring torque from the electric motor to the differential unit, via the planetary gear set and the coupling unit. The differential unit comprises a first differential output shaft and a second differential output shaft. The first differential output shaft and the second differential output shaft are extending in the axial direction laterally on each side from the differential housing. The differential unit is configured for being positioned in a lateral centre section of a vehicle in which the vehicle powertrain system is arranged. The powertrain system further comprises a first drive shaft connected to and extending from the first differential output shaft and a second drive shaft connected to and extending from the second differential output shaft. The first drive shaft is having an axial length greater than an axial length of the first differential output shaft, and the second drive shaft is having an axial length greater than an axial length of the second differential output shaft. The first drive shaft is connected to the first differential output shaft via a first joint and the second drive shaft is connected to the second differential output shaft via a second joint, where the joints are allowing angular displacement of the drive shafts in relation to the differential output shafts.

    [0007] Advantages with these features are that the powertrain system is simple in construction with few components and possible to manufacture with a compact design. Further, the powertrain system can through the compact design be manufactured with low weight and optimized for low volume packing in modern electric and hybrid vehicle constructions. Since there are few components involved, the powertrain is cheap to manufacture and simple in construction. With the layout described, the powertrain system can be operated with high efficiency. The powertrain system can for example be used on a front or rear axle in hybrid vehicles, or on a front axle and/or a rear axle in electric vehicles, providing a flexible gear reducer arranged to balance torque and maximum speed on the wheels of the vehicle. With the compact design of the powertrain system, the differential unit can be placed in the centre of the vehicle to allow long directly mounted drive shafts. Benefits of having long drive shafts are lower angle variations when the suspension is moving, which is better for durability and efficiency, as well as for noise, vibration, and harshness (NVH). With the compact design of the powertrain system, the differential unit can be placed in the lateral centre section of the vehicle to allow long directly mounted drive shafts.

    [0008] According to an aspect of the invention, the planetary gear set comprises a sun gear, a ring gear, and two or more planet gears connected to a planet carrier. The coupling unit comprises a coupling shaft and an actuating member arranged on the coupling shaft. The motor shaft is drivingly connected to the sun gear, and the coupling shaft is drivingly connected to the planet carrier. The idle gearwheel is arranged on the coupling shaft. The powertrain system is a single planetary gear set system comprising only one planetary gear set. The single planetary gear set is providing a compact layout of the powertrain system and through the compact design, the powertrain system can be optimized for low volume packing.

    [0009] According to another aspect of the invention, the actuating member is arranged to selectively connect the idle gear wheel to and disconnect the idle gear wheel from the coupling shaft. The actuating member is used for connecting and disconnecting the idle gear wheel, and the idle gear wheel is when connected transferring torque to the differential unit.

    [0010] According to an aspect of the invention, the actuating member is a synchronizer slidingly arranged on the coupling shaft, and the idle gear wheel is journally connected to the coupling shaft via a second bearing. The synchronizer is providing an efficient shifting between the connected and disconnected positions of the idle gearwheel. The second bearing is providing an idle position for the idle gear wheel when disconnected.

    [0011] According to another aspect of the invention, the powertrain system further comprises a housing structure. The motor shaft is journaled against the housing structure via a first bearing, and the ring gear is non-rotatably attached to the housing structure. The housing structure is securing that axial and radial forces can be handled efficiently while providing a construction with a reduced tolerance chain from the electric motor to the planetary gear set. The construction is providing reduced risk for misalignment issues.

    [0012] According to a further aspect of the invention, the differential unit comprises a differential housing, where the housing structure is directly attached to the differential housing. The direct attachment of the housing structure and the differential housing is securing that forces can be handled efficiently while providing a construction with a reduced tolerance chain from the electric motor to the differential unit. The construction is providing reduced risk for misalignment problems.

    [0013] According to an aspect of the invention, the coupling shaft is extending in the axial direction in a coaxial relationship to the motor shaft. The ring gear is coaxially arranged around the motor shaft and the sun gear is arranged to rotate with the motor shaft around an axis extending in the axial direction. With the coaxial relationships, the compact layout of the powertrain system is achieved.

    [0014] According to another aspect of the invention, in a drive mode the coupling unit is arranged to be drivingly connected to the idle gear wheel, where the idle gear wheel is prevented from rotating in relation to the coupling shaft. In the drive mode, the powertrain system is configured to transfer torque from the electric motor to the differential unit via the motor shaft, the sun gear, the two or more planet gears, the planet carrier, the coupling shaft, the actuating member, the idle gear wheel, and the differential drive gear wheel. The drive mode is used for transferring torque from the electric motor to the differential unit in different driving conditions.

    [0015] According to a further aspect of the invention, in an idle mode the coupling unit is arranged to be disconnected from the idle gear wheel, where the idle gear wheel is allowed to rotate in relation to the coupling shaft. In the idle mode, the powertrain system is configured to prevent torque transfer from the electric motor to the differential unit. The idle mode can for example be used when there is no need to transfer torque from the electric motor.

    [0016] According to a further aspect of the invention, the powertrain system further comprises an inverter unit. The electric motor and the inverter unit are laterally arranged on each side of the planetary gear set and differential unit. With the arrangement of the electric motor and the inverter unit on each side of the differential unit, the powertrain system fits well in the suspension sub-frame of the vehicle. When the powertrain system is arranged in a hybrid vehicle, this design allows an exhaust pipe to pass below the electric motor.

    [0017] According to an aspect of the invention, the powertrain system is a single planetary gear set system. The powertrain system thus comprises only one single planetary gear set for a compact and low-weight design.

    [0018] The invention further concerns a vehicle comprising a vehicle powertrain system, where the axial direction of the powertrain system is essentially perpendicular to a longitudinal vehicle direction, and where the powertrain system is arranged in connection to the vehicle for positioning the differential unit in a lateral centre section of the vehicle. With the compact design of the powertrain system, the differential unit can be placed in the lateral centre section of the vehicle to allow long directly mounted drive shafts. The long drive shafts are allowing lower angle variations when the suspension is moving, which is better for durability and efficiency, as well as for noise, vibration, and harshness (NVH).

    [0019] According to other aspects of the invention, the vehicle powertrain system is arranged in a front part or a rear part of the vehicle; or the vehicle comprises a first vehicle powertrain system arranged in a front part of the vehicle and a second vehicle powertrain system arranged in a rear part of the vehicle. The powertrain system can for example be used on a front or rear axle in hybrid vehicles or electric vehicles, and provides a flexible gear reducer arranged to balance torque and maximum speed on the wheels of the vehicle. The powertrain system can with this configuration as an alternative be arranged on both a front and rear axle in hybrid vehicles or electric vehicles, and provides a flexible gear reducer arranged to balance torque and maximum speed on the wheels of the vehicle.

    [0020] The invention further concerns a method for operating a vehicle powertrain system, as described above. The electric motor comprises a motor shaft. The planetary gear set comprises a sun gear, a ring gear, and two or more planet gears connected to a planet carrier. The coupling unit comprises a coupling shaft and an actuating member arranged on the coupling shaft. The motor shaft is connected to the sun gear, and the coupling shaft is connected to the planet carrier. The powertrain system further comprises an idle gear wheel arranged on the coupling shaft and a differential drive gear wheel arranged on the differential unit. The idle gear wheel and the differential drive gear wheel are arranged to interact with each other for transferring torque from the electric motor to the differential unit, via the planetary gear set and the coupling unit. The method comprises the steps: when receiving a command to operate the powertrain system in a drive mode, connecting the coupling unit to the idle gear wheel, wherein the idle gear wheel is rotating with the coupling shaft prevented from rotating in relation to the coupling shaft; and transferring torque from the electric motor to the differential unit via the motor shaft, the sun gear, the two or more planet gears, the planet carrier, the coupling shaft, the actuating member, the idle gear wheel, and the differential drive gear wheel; when receiving a command to operate the powertrain system in an idle mode, disconnecting the coupling unit from the idle gear wheel, wherein the idle gear wheel is allowed to rotate in relation to the coupling shaft, and wherein the powertrain system is prevented from transferring torque from the electric motor to the differential unit.

    BRIEF DESCRIPTION OF DRAWINGS



    [0021] The invention will be described in greater detail in the following, with reference to the attached drawings, in which
    Fig. 1
    shows schematically, a layout view of the vehicle powertrain system according to the invention,
    Fig. 2
    shows schematically, a cross-sectional view of the vehicle powertrain system according to the invention,
    Fig. 3
    show schematically, a front view of the vehicle powertrain system according to the invention,
    Fig. 4
    show schematically, a perspective view of the vehicle powertrain system according to the invention, and
    Fig. 5
    show schematically, a perspective view of a section of a vehicle comprising the vehicle powertrain system according to the invention.

    DESCRIPTION OF EXAMPLE EMBODIMENTS



    [0022] Various aspects of the invention will hereinafter be described in conjunction with the appended drawings to illustrate and not to limit the invention, wherein like designations denote like elements, and variations of the described aspects are not restricted to the specifically shown embodiments, but are applicable on other variations of the invention.

    [0023] Figures 1-5 show schematically a vehicle powertrain system 1 according to the invention, where the powertrain system 1 comprises an electric motor 2, a planetary gear set 3, a coupling unit 4, and a differential unit 5. The powertrain system may for example be arranged in connection to a rear axle or a front axle of a hybrid vehicle, or in connection to a front axle and/or a rear axle of an electric vehicle, providing a flexible gear reducer for balancing torque and maximum speed on the wheels of the vehicle. In figure 1, a layout of the powertrain system 1 is schematically illustrated, and in figures 2-5, the compact and flexible design of the powertrain system 1 is shown.

    [0024] As illustrated in figures 1 and 2, the electric motor 2 is drivingly connected to the planetary gear set 3 via a motor shaft 6. The motor shaft 6 is extending in an axial direction A of the powertrain system 1. The planetary gear set 3 is operably connectable to the differential unit 5 via the coupling unit 4. The powertrain system 1 further comprises an idle gear wheel 9 and a differential drive gear wheel 10, and the idle gear wheel 9 and the differential drive gear wheel 10 are arranged to drivingly interact with each other for transferring torque from the electric motor 2 to the differential unit 5, via the planetary gear set 3 and the coupling unit 4. The differential drive gear wheel 10 is, as shown in figures 1 and 2, arranged on the differential unit 5. The differential unit 5 may be any suitable type of conventional differential construction. The coupling unit 4 is arranged for selectively transferring torque to the idle gear wheel 9, as will be further described below.

    [0025] As shown in figures 1 and 2, the planetary gear set 3 comprises a sun gear 7a, a ring gear 7b, and two or more planet gears 7c connected to a planet carrier 7d. The coupling unit 4 comprises a coupling shaft 8a and an actuating member 8b arranged on the coupling shaft 8a. The motor shaft 6 is drivingly connected to the sun gear 7a, and when transferring torque from the electric motor 2 to the motor shaft 6, the sun gear 7a is rotating with the motor shaft 6. The coupling shaft 8a is drivingly connected to the planet carrier 7d. When torque is transferred to the planet carrier 7d from the sun gear 7a and the planet gears 7c, the coupling shaft 8a is rotating with the planet carrier 7d. As further illustrated in figures 1 and 2, the idle gear wheel 9 is arranged on the coupling shaft 8a. The coupling shaft 8a is extending in the axial direction A in a coaxial relationship to the motor shaft 6. The ring gear 7b is coaxially arranged around the motor shaft 6 and the sun gear 7a is arranged to rotate with the motor shaft 6 around an axis extending in the axial direction A. The powertrain system 1 is a single planetary gear set system comprising only one planetary gear set 3 providing a compact and low-weight design.

    [0026] The powertrain system 1 is configured to transfer torque from the electric motor 2 to the differential unit 5 via the motor shaft 6, the sun gear 7a, the two or more planet gears 7c, the planet carrier 7d, the coupling shaft 8a, the actuating member 8b, the idle gear wheel 9, and the differential drive gear wheel 10. With the disclosed construction of the powertrain system 1, the planetary gear set 3 is providing a compact layout and through the compact design the powertrain system 1 can be optimized for low volume packing. The gear ratio of the planetary gear set 3 can be changed for different vehicle applications with minimal changes of surrounding components.

    [0027] The powertrain system 1 further comprises a housing structure 11, as schematically shown in figures 1 and 2. The motor shaft 6 is journaled against the housing structure 11 via a first bearing 12, and the ring gear 7b of the planetary gear set 3 is non-rotatably attached to the housing structure 11. The motor shaft 6 is thus allowed to rotate in relation to the housing structure 11. The first bearing 12 may be any suitable type of bearing providing stability and low friction. The housing structure 11 is securing that axial and radial forces of the powertrain system 1 can be handled efficiently. The housing structure 11 is further providing a construction with a reduced tolerance chain from the electric motor 2 to the planetary gear set 3, where risks for misalignment issues in parts of the powertrain system 1 are reduced.

    [0028] The actuating member 8b is arranged to selectively connect the idle gear wheel 9 to and disconnect the idle gear wheel 9 from the coupling shaft 8a, which may be dependent of the driving mode of the vehicle. The actuating member 8b is thus used for selectively controlling the torque flow of the powertrain system 1 through the connecting and disconnecting function of the idle gear wheel 9 with the coupling shaft 8a. When the actuating member 8b is connected to and in engagement with the idle gear wheel 9, torque is transferred to the idle gear wheel 9 from the planet carrier 7d, via the coupling shaft 8a and the actuating member 8b. When the actuating member 8b is disconnected from the idle gear wheel 9, no torque is transferred to the idle gear wheel 9 from the planet carrier 7d. The actuating member 8b may be any type of suitable coupling unit used for vehicle transmission applications, such as for example a synchronizer, a dog clutch or similar arrangement. The coupling shaft 8a may be arranged with splines or other suitable means for holding the actuating member 8b in a rotating engagement with the coupling shaft 8a, where the actuating member 8b is allowed to slide axially in relation to the coupling shaft 8a for connecting and disconnecting the idle gear wheel 9.

    [0029] In the embodiment schematically illustrated in figures 1 and 2, the actuating member 8a is arranged as a synchronizer, where the synchronizer is slidingly arranged on the coupling shaft 8a. The idle gear wheel 9 is journally connected to the coupling shaft 8a via a second bearing 16. The second bearing is allowing the idle gear wheel 9 to rotate in relation to the coupling shaft 8a, when the idle gear wheel 9 is disconnected from the actuating member 8b. The second bearing 16 is thus providing an idle position for the idle gear wheel 9 when disconnected. The second bearing 16 may be any suitable type of bearing used in actuating or coupling arrangements. The synchronizer is providing an efficient shifting between the connected and disconnected positions of the idle gear wheel 9. The synchronizer may be any type of conventional synchronizer, and may comprise a synchronizer hub connected to the coupling shaft 8a. The coupling shaft 8a may be arranged with splines or other means for holding the synchronizer hub. The synchronizer may comprise, depending on the type of synchronizer, a sliding sleeve, synchronizer ring, blocker ring, friction elements, and/or other suitable components needed for connecting and disconnecting the idle gear wheel 9.

    [0030] The differential unit 5 comprises a differential housing 13, which is arranged as a housing structure encompassing parts of the differential unit 5. As illustrated in figure 2, the housing structure 11 is directly attached to the differential housing 13. The direct attachment of the housing structure 11 to the differential housing 13 is securing that forces occurring in the powertrain system 1 can be handled efficiently while providing a construction with a reduced tolerance chain from the electric motor 2 to the differential unit 5. The arrangement with the direct attachment of the housing structure 11 to the differential housing 13 is further providing reduced risk for misalignment problems. The differential unit 5 comprises a first differential output shaft 15a and a second differential output shaft 15b. As illustrated in figure 1, the first differential output shaft 15a and the second differential output shaft 15b are extending in the axial direction A laterally on each side from the differential housing 13.

    [0031] As shown in figure 1, the powertrain system 1 further comprises a first drive shaft 17a connected to and extending from the first differential output shaft 15a and a second drive shaft 17b connected to and extending from the second differential output shaft 15b. The drive shafts 17a,17b may suitably be connected to the respective differential output shafts 15a,15b in a conventional way with joints 18a,18b allowing angular displacement of the drive shafts 17a,17b in relation to the differential output shafts 15a,15b. The first drive shaft 17a is connected to the first differential output shaft 15a via a first joint 18a. The second drive shaft 17b is connected to the second differential output shaft 15b via a second joint 18b. As illustrated in figures 1 and 2, the first drive shaft 17a is having an axial length LDS1 greater than an axial length LOS1 of the first differential output shaft 15a. The second drive shaft 17b is having an axial length LDS2 greater than an axial length LOS2 of the second differential output shaft 15b. With this layout, the differential unit 5 can be placed in the centre of the vehicle to allow long directly mounted drive shafts 17a,17b, providing lower angle variations when the suspension of the vehicle is moving. Long drive shafts are better for durability and efficiency, as well as for noise, vibration, and harshness (NVH).

    [0032] The powertrain system 1 further comprises an inverter unit 14 arranged for operating the electric motor 2. The inverter unit 14 may also be used for other components. As shown in figures 1 and 5, the electric motor 2 and the inverter unit 14 are laterally arranged on each side of the planetary gear set 3 and differential unit 5. With the arrangement of the electric motor 2 and the inverter unit 14 laterally in the axial direction A on each side of the differential unit 5, the powertrain system 1 is designed to fit well in a suspension sub-frame of the vehicle. When the powertrain system 1 is arranged in a hybrid vehicle, this design allows an exhaust pipe to pass below the electric motor 2.

    [0033] As schematically illustrated in figures 1, 2, 4 and 5, the axial direction A of the powertrain system 1 is essentially perpendicular to a longitudinal vehicle direction Lo, and essentially parallel to a lateral vehicle direction La. The powertrain system 1 is arranged in connection to the vehicle for positioning the differential unit 5 in a lateral centre section CS of the vehicle. The lateral centre section CS is defined as a plane perpendicular to the lateral vehicle direction La arranged at a lateral mid-section of the vehicle in the lateral vehicle direction La. The arrangement of the differential unit 5 in the lateral centre section CS of the vehicle is allowing long directly mounted drive shafts. Benefits of long drive shafts are lower angle variations on the shafts as the suspension is moving, which is better for durability, efficiency and NVH. The electric motor 2 and the inverter 14 are arranged on each side of the differential to fit well in the suspension sub-frame of the vehicle, as shown in figure 5. The electric motor 2 may if desired be arranged to allow an exhaust pipe of a hybrid vehicle to pass below the electric motor. In figures 3 and 5, it is schematically illustrated that the differential unit 5 is positioned in the lateral centre section CS, and that the electric motor 2 and the inverter unit 14 are arranged laterally on opposite sides of the lateral centre section CS, and thus the differential unit 5, in the axial direction A.

    [0034] The vehicle powertrain system 1 may be arranged in a front part or a rear part of the vehicle. In an alternative embodiment, the vehicle comprises a first vehicle powertrain system arranged in a front part of the vehicle and a second vehicle powertrain system arranged in a rear part of the vehicle, and with this arrangement of the powertrain systems the vehicle may be driven on both front and rear drive shafts in a fully electric four wheel-drive configuration.

    [0035] The powertrain system 1 is arranged to operate in a drive mode and in an idle mode. In the drive mode of the powertrain system 1, the coupling unit 4 is arranged to be drivingly connected to the idle gear wheel 9. The idle gear wheel 9 is in the drive mode prevented from rotating in relation to the coupling shaft 8a and is instead rotating with the coupling shaft 8a. In the drive mode, the actuating member 8b is in engagement with the idle gear wheel 9, and the powertrain system 1 is configured to transfer torque from the electric motor 2 to the differential unit 5 via the motor shaft 6, the sun gear 7a, the two or more planet gears 7c, the planet carrier 7d, the coupling shaft 8a, the actuating member 8b, the idle gear wheel 9, and the differential drive gear wheel 10. In the idle mode of the powertrain system 1, the coupling unit 4 is arranged to be disconnected from the idle gear wheel 9. The idle gear wheel 9 is in the idle mode allowed to rotate in relation to the coupling shaft 8a. In the idle mode, the actuating member 8b is disengaged from the idle gear wheel 9, and the powertrain system 1 is configured to prevent torque transfer from the electric motor 2 to the differential unit 5. In the idle drive mode, the idle gear wheel 9 can rotate freely around the coupling shaft 8a, and since the actuating member 8b is disconnected from the idle gear wheel 9 no torque can be transferred from the electric motor 2 to the differential unit 5.

    [0036] The powertrain system may further comprise a control unit 19 for controlling the operation of the powertrain system. The control unit 19 may for example control the electric motor 2, the actuating member 8b, and other components of the powertrain system 1. The control unit 19 may be integrated in or arranged in connection to the inverter unit 14 for a compact design of the powertrain system 1.

    [0037] When receiving a command to operate the powertrain system 1 in the drive mode, the coupling unit 4 is being connected to the idle gear wheel 9. The idle gear wheel 9 is then rotating with the coupling shaft 8a and the idle gear wheel is through the engagement with the actuating member 8b prevented from rotating in relation to the coupling shaft 8a. Torque is in the drive mode being transferred from the electric motor 2 to the differential unit 5 via the motor shaft 6, the sun gear 7a, the two or more planet gears 7c, the planet carrier 7d, the coupling shaft 8a, the actuating member 8b, the idle gear wheel 9, and the differential drive gear wheel 10, as described above.

    [0038] When receiving a command to operate the powertrain system 1 in the idle mode, the coupling unit 4 is being disconnected from the idle gear wheel 9. The idle gear wheel 9 is then allowed to rotate in relation to the coupling shaft 8a, and the powertrain system 1 is prevented from transferring torque from the electric motor 2 to the differential unit 5, as described above. The powertrain system 1 may for example be operated in the idle mode on higher traction speeds, and the synchronizer can disconnect the idle gear wheel 9 from the coupling shaft 8a for fuel-efficient driving.

    REFERENCE SIGNS



    [0039] 
    1:
    Powertrain system
    2:
    Electric motor
    3:
    Planetary gear set
    4:
    Coupling unit
    5:
    Differential unit
    6:
    Motor shaft
    7a:
    Sun gear
    7b:
    Ring gear
    7c:
    Planet gears
    7d:
    Planet carrier
    8a:
    Coupling shaft
    8b:
    Actuating member
    9:
    Idle gear wheel
    10:
    Differential drive gear wheel
    11:
    Housing structure
    12:
    First bearing
    13:
    Differential housing
    14:
    Inverter unit
    15a:
    First differential output shaft
    15b:
    Second differential output shaft
    16:
    Second bearing
    17a:
    First drive shaft
    17b:
    Second drive shaft
    18a:
    First joint
    18b:
    Second joint
    19:
    Control unit



    Claims

    1. A vehicle powertrain system (1) comprising an electric motor (2), a planetary gear set (3), a coupling unit (4), and a differential unit (5),

    wherein the electric motor (2) is drivingly connected to the planetary gear set (3) via a motor shaft (6) extending in an axial direction (A), and wherein the planetary gear set (3) is operably connectable to the differential unit (5) via the coupling unit (4),

    wherein the powertrain system (1) further comprises an idle gear wheel (9) and a differential drive gear wheel (10) arranged on the differential unit (5), wherein the coupling unit (4) is arranged for selectively transferring torque to the idle gear wheel (9), and wherein the idle gear wheel (9) and the differential drive gear wheel (10) are arranged to drivingly interact with each other for transferring torque from the electric motor (2) to the differential unit (5), via the planetary gear set (3) and the coupling unit (4),

    wherein the differential unit (5) comprises a first differential output shaft (15a) and a second differential output shaft (15b), wherein the first differential output shaft (15a) and the second differential output shaft (15b) are extending in the axial direction (A) laterally on each side from the differential housing (13),

    characterized in that the differential unit (5) is configured for being positioned in a lateral centre section (CS) of a vehicle in which the vehicle powertrain system (1) is arranged,

    wherein the powertrain system (1) further comprises a first drive shaft (17a) connected to and extending from the first differential output shaft (15a) and a second drive shaft (17b) connected to and extending from the second differential output shaft (15b), wherein the first drive shaft (17a) is having an axial length (LDS1) greater than an axial length (LOS1) of the first differential output shaft (15a) and wherein the second drive shaft (17b) is having an axial length (LDS2) greater than an axial length (LDS2) of the second differential output shaft (15b),

    wherein the first drive shaft (17a) is connected to the first differential output shaft (15a) via a first joint (18a) and the second drive shaft (17b) is connected to the second differential output shaft (15b) via a second joint (18b), wherein the joints (18a,18b) are allowing angular displacement of the drive shafts (17a,17b) in relation to the differential output shafts (15a,15b).


     
    2. A vehicle powertrain system (1) according to claim 1,
    characterized in that the planetary gear set (3) comprises a sun gear (7a), a ring gear (7b), and two or more planet gears (7c) connected to a planet carrier (7d), and wherein the coupling unit (4) comprises a coupling shaft (8a) and an actuating member (8b) arranged on the coupling shaft (8a), wherein the motor shaft (6) is drivingly connected to the sun gear (7a), the coupling shaft (8a) is drivingly connected to the planet carrier (7d), and wherein the idle gear wheel (9) is arranged on the coupling shaft (8a).
     
    3. A vehicle powertrain system (1) according to claim 2,
    characterized in that the actuating member (8b) is arranged to selectively connect the idle gear wheel (9) to and disconnect the idle gear wheel (9) from the coupling shaft (8a).
     
    4. A vehicle powertrain system (1) according to any of claims 2-3,
    characterized in that the actuating member (8a) is a synchronizer slidingly arranged on the coupling shaft (8a), and wherein the idle gear wheel (9) is journally connected to the coupling shaft (8a) via a second bearing (16).
     
    5. A vehicle powertrain system (1) according to any of claims 2-4,
    characterized in that the powertrain system (1) further comprises a housing structure (11), wherein the motor shaft (6) is journaled against the housing structure (11) via a first bearing (12), and wherein the ring gear (7b) is non-rotatably attached to the housing structure (11).
     
    6. A vehicle powertrain system (1) according to claim 5,
    characterized in that the differential unit (5) comprises a differential housing (13), wherein the housing structure (11) is directly attached to the differential housing (13).
     
    7. A vehicle powertrain system (1) according to any of claims 2-6,
    characterized in that the coupling shaft (8a) is extending in the axial direction (A) in a coaxial relationship to the motor shaft (6), wherein the ring gear (7b) is coaxially arranged around the motor shaft (6) and wherein the sun gear (7a) is arranged to rotate with the motor shaft (6) around an axis extending in the axial direction (A).
     
    8. A vehicle powertrain system (1) according to any of claims 2-7,
    characterized in that in a drive mode the coupling unit (4) is arranged to be drivingly connected to the idle gear wheel (9), wherein the idle gear wheel (9) is prevented from rotating in relation to the coupling shaft (8a), wherein in the drive mode the powertrain system (1) is configured to transfer torque from the electric motor (2) to the differential unit (5) via the motor shaft (6), the sun gear (7a), the two or more planet gears (7c), the planet carrier (7d), the coupling shaft (8a), the actuating member (8b), the idle gear wheel (9), and the differential drive gear wheel (10).
     
    9. A vehicle powertrain system (1) according to any of claims 2-8,
    characterized in that in an idle mode the coupling unit (4) is arranged to be disconnected from the idle gear wheel (9), wherein the idle gearwheel (9) is allowed to rotate in relation to the coupling shaft (8a), and wherein in the idle mode the powertrain system (1) is configured to prevent torque transfer from the electric motor (2) to the differential unit (5).
     
    10. A vehicle powertrain system (1) according to any of the preceding claims,
    characterized in that the powertrain system (1) further comprises an inverter unit (14), wherein the electric motor (2) and the inverter unit (14) are laterally arranged on each side of the planetary gear set (3) and differential unit (5).
     
    11. A vehicle powertrain system (1) according to any of the preceding claims,
    characterized in that the powertrain system (1) is a single planetary gear set system.
     
    12. A vehicle comprising a vehicle powertrain system (1) according to any of claims 1-11,
    characterized in that the axial direction (A) of the powertrain system (1) is essentially perpendicular to a longitudinal vehicle direction (Lo), and wherein the powertrain system (1) is arranged in connection to the vehicle for positioning the differential unit (5) in the lateral centre section (CS) of the vehicle.
     
    13. A vehicle according to claim 12,
    characterized in that the vehicle powertrain system (1) is arranged in a front part or a rear part of the vehicle; or wherein the vehicle comprises a first vehicle powertrain system arranged in a front part of the vehicle and a second vehicle powertrain system arranged in a rear part of the vehicle.
     
    14. A method for operating the vehicle powertrain system (1) according to any of claims 1-11,

    wherein the electric motor (2) comprises a motor shaft (6), wherein the planetary gear set (3) comprises a sun gear (7a), a ring gear (7b), and two or more planet gears (7c) connected to a planet carrier (7d), and wherein the coupling unit (4) comprises a coupling shaft (8a) and an actuating member (8b) arranged on the coupling shaft (8a),

    wherein the motor shaft (6) is connected to the sun gear (7a), and the coupling shaft (8a) is connected to the planet carrier (7d),

    wherein the powertrain system (1) further comprises an idle gear wheel (9) arranged on the coupling shaft (8a) and a differential drive gear wheel (10) arranged on the differential unit (5), wherein the idle gear wheel (9) and the differential drive gear wheel (10) are arranged to interact with each other for transferring torque from the electric motor (2) to the differential unit (5), via the planetary gear set (3) and the coupling unit (4), wherein the method comprises the steps:

    when receiving a command to operate the powertrain system (1) in a drive mode, connecting the coupling unit (4) to the idle gear wheel (9), wherein the idle gear wheel (9) is rotating with the coupling shaft (8a) prevented from rotating in relation to the coupling shaft (8a); and transferring torque from the electric motor (2) to the differential unit (5) via the motor shaft (6), the sun gear (7a), the two or more planet gears (7c), the planet carrier (7d), the coupling shaft (8a), the actuating member (8b), the idle gear wheel (9), and the differential drive gear wheel (10),

    when receiving a command to operate the powertrain system (1) in an idle mode, disconnecting the coupling unit (4) from the idle gear wheel (9), wherein the idle gear wheel (9) is allowed to rotate in relation to the coupling shaft (8a), and wherein the powertrain system (1) is prevented from transferring torque from the electric motor (2) to the differential unit (5).


     


    Ansprüche

    1. Fahrzeugantriebsstrangsystem (1) umfassend einen Elektromotor (2), einen Planetengetriebesatz (3), eine Kopplungseinheit (4) und eine Differentialeinheit (5),

    wobei der Elektromotor (2) über eine Motorwelle (6), die sich in einer axialen Richtung (A) erstreckt, mit dem Planetengetriebesatz (3) antriebsverbunden ist, und wobei der Planetengetriebesatz (3) über die Kopplungseinheit (4) mit der Differentialeinheit (5) operativ verbindbar ist,

    wobei das Antriebsstrangsystem (1) weiter ein Leergangrad (9) und ein Differentialantriebsrad (10) umfasst, angeordnet auf der Differentialeinheit (5), wobei die Kopplungseinheit (4) zur selektiven Übertragung von Drehmoment an das Leergangrad (9) eingerichtet ist, und wobei das Leergangrad (9) und das Differentialantriebsrad (10) zum antreibenden Zusammenwirken miteinander zum Übertragen von Drehmoment vom Elektromotor (2) an die Differentialeinheit (5) eingerichtet sind, über den Planetengetriebesatz (3) und die Kopplungseinheit (4),

    wobei die Differentialeinheit (5) eine erste Differentialausgangswelle (15a) und eine zweite Differentialausgangswelle (15b) umfasst, wobei die erste Differentialausgangswelle (15a) und die zweite Differentialausgangswelle (15b) sich in der axialen Richtung (A) seitlich auf jeder Seite vom Differentialgehäuse (13) erstrecken,

    dadurch gekennzeichnet, dass die Differentialeinheit (5) dafür ausgelegt ist, in einem lateralen Mittelabschnitt (CS) eines Fahrzeugs, in dem das Fahrzeugantriebsstrangsystem (1) angeordnet ist, positioniert zu werden,

    wobei das Antriebsstrangsystem (1) weiter eine erste Antriebswelle (17a), die mit der ersten Differentialausgangswelle (15a) verbunden ist und sich davon erstreckt, und eine zweite Antriebswelle (17b), die mit der zweiten Differentialausgangswelle (15b) verbunden ist und sich davon erstreckt, umfasst, wobei die erste Antriebswelle (17a) eine axiale Länge (LDS1) aufweist, die länger als eine axiale Länge (LOS1) der ersten Differentialausgangswelle (15a) ist, und wobei die zweite Antriebswelle (17b) eine axiale Länge (LDS2) aufweist, die länger als eine axiale Länge (LDS2) der zweiten Differentialausgangswelle (15b) ist,

    wobei die erste Antriebswelle (17a) über ein erstes Gelenk (18a) mit der ersten Differentialausgangswelle (15a) verbunden ist, und die zweite Antriebswelle (17b) über ein zweites Gelenk (18b) mit der zweiten Differentialausgangswelle (15b) verbunden ist, wobei die Gelenke (18a,18b) eine Winkelverschiebung der Antriebswellen (17a,17b) im Verhältnis zu den Differentialausgangswellen (15a,15b) ermöglichen.


     
    2. Fahrzeugantriebsstrangsystem (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass der Planetengetriebesatz (3) ein Sonnenrad (7a), ein Hohlrad (7b) und zwei oder mehrere Planetengetriebe (7c), die mit einem Planetenträger (7d) verbunden sind, umfasst, und wobei die Kopplungseinheit (4) eine Kopplungswelle (8a) und ein Betätigungselement (8b), das auf der Kopplungswelle (8a) angeordnet ist, umfasst, wobei die Motorwelle (6) mit dem Sonnenrad (7a) antriebsverbunden ist, die Kopplungswelle (8a) mit dem Planetenträger (7d) antriebsverbunden ist, und wobei das Leergangrad (9) auf der Kopplungswelle (8a) angeordnet ist.
     
    3. Fahrzeugantriebsstrangsystem (1) nach Anspruch 2,
    dadurch gekennzeichnet, dass das Betätigungselement (8b) dafür eingerichtet ist, das Leergangrad (9) mit der Kopplungswelle (8a) selektiv zu verbinden und das Leergangrad (9) davon zu trennen.
     
    4. Fahrzeugantriebsstrangsystem (1) nach einem der Ansprüche 2-3, dadurch gekennzeichnet, dass das Betätigungselement (8a) eine Synchronisierungsvorrichtung ist, die auf der Kopplungswelle (8a) gleitend angeordnet ist, und wobei das Leergangrad (9) über ein zweites Lager (16) mit der Kopplungswelle (8a) durch Zapfen verbunden ist.
     
    5. Fahrzeugantriebsstrangsystem (1) nach einem der Ansprüche 2-4, dadurch gekennzeichnet, dass das Antriebsstrangsystem (1) weiter eine Gehäusestruktur (11) aufweist, wobei die Motorwelle (6) über ein erstes Lager (12) gegen die Gehäusestruktur (11) durch Zapfen befestigt ist, und wobei das Hohlrad (7b) an der Gehäusestruktur (11) nicht-drehbar befestigt ist.
     
    6. Fahrzeugantriebsstrangsystem (1) nach Anspruch 5,
    dadurch gekennzeichnet, dass die Differentialeinheit (5) ein Differentialgehäuse (13) umfasst, wobei die Gehäusestruktur (11) an dem Differentialgehäuse (13) direkt befestigt ist.
     
    7. Fahrzeugantriebsstrangsystem (1) nach einem der Ansprüche 2-6, dadurch gekennzeichnet, dass die Kopplungswelle (8a) sich in der axialen Richtung (A) in einem koaxialen Verhältnis mit der Motorwelle (6) erstreckt, wobei das Hohlrad (7b) um die Motorwelle (6) herum koaxial angeordnet ist, und wobei das Sonnenrad (7a) dafür eingerichtet ist, mit der Motorwelle (6) um eine Achse herum zu drehen, die sich in der axialen Richtung (A) erstreckt.
     
    8. Fahrzeugantriebsstrangsystem (1) nach einem der Ansprüche 2-7, dadurch gekennzeichnet, dass die Kopplungseinheit (4) in einem Antriebsmodus dafür eingerichtet ist, mit dem Leergangrad (9) antriebsverbunden zu sein, wobei das Leergangrad (9) darin gehindert wird, im Verhältnis zur Kopplungswelle (8a) zu drehen, wobei das Antriebsstrangsystem (1) im Antriebsmodus dafür ausgelegt ist, Drehmoment vom Elektromotor (2) an die Differentialeinheit (5) über die Motorwelle (6), das Sonnenrad (7a), die zwei oder mehrere Planetengetriebe (7c), den Planetenträger (7d), die Kopplungswelle (8a), das Betätigungselement (8b), das Leergangrad (9) und das Differentialantriebsrad (10) zu übertragen.
     
    9. Fahrzeugantriebsstrangsystem (1) nach einem der Ansprüche 2-8, dadurch gekennzeichnet, dass die Kopplungseinheit (4) in einem Leerlaufmodus dafür ausgelegt ist, vom Leergangrad (9) getrennt zu werden, wobei das Leergangrad (9) im Verhältnis zur Kopplungswelle (8a) drehen kann, und wobei das Antriebsstrangsystem (1) im Leerlaufmodus dafür ausgelegt ist, die Übertragung von Drehmoment vom Elektromotor (2) an die Differentialeinheit (5) zu verhindern.
     
    10. Fahrzeugantriebsstrangsystem (1) nach einem der vorgehenden Ansprüche,
    dadurch gekennzeichnet, dass das Antriebsstrangsystem (1) weiter eine Wechselrichtereinheit (14) umfasst, wobei der Elektromotor (2) und die Wechselrichtereinheit (14) auf jeder Seite des Planetengetriebesatzes (3) und der Differentialeinheit (5) seitlich angeordnet sind.
     
    11. Fahrzeugantriebsstrangsystem (1) nach einem der vorgehenden Ansprüche,
    dadurch gekennzeichnet, dass das Antriebsstrangsystem (1) ein Einzelplanetengetriebesatzsystem ist.
     
    12. Fahrzeug umfassend ein Fahrzeugantriebsstrangsystem (1) nach einem der Ansprüche 1-11,
    dadurch gekennzeichnet, dass die axiale Richtung (A) des Antriebsstrangsystems (1) zu einer längslaufenden Fahrzeugrichtung (Lo) im Wesentlichen senkrecht ist, und wobei das Antriebsstrangsystem (1) zur Positionierung der Differentialeinheit (5) im lateralen Mittelabschnitt (CS) des Fahrzeugs in Verbindung mit dem Fahrzeug angeordnet ist.
     
    13. Fahrzeug nach Anspruch 12,
    dadurch gekennzeichnet, dass das Fahrzeugantriebsstrangsystem (1) in einem vorderen Teil oder einem hinteren Teil des Fahrzeugs angeordnet ist; oder wobei das Fahrzeug ein erstes Fahrzeugantriebsstrangsystem, das in einem vorderen Teil des Fahrzeugs angeordnet ist, und ein zweites Fahrzeugantriebsstrangsystem, das in einem hinteren Teil des Fahrzeugs angeordnet ist, umfasst.
     
    14. Verfahren zum Betreiben des Fahrzeugantriebsstrangsystems (1) nach einem der Ansprüche 1-11,

    wobei der Elektromotor (2) eine Motorwelle (6) umfasst, wobei der Planetengetriebesatz (3) ein Sonnenrad (7a), ein Hohlrad (7b) und zwei oder mehrere Planetengetriebe (7c), die mit einem Planetenträger (7d) verbunden sind, umfasst, und wobei die Kopplungseinheit (4) eine Kopplungswelle (8a) und ein Betätigungselement (8b), das auf der Kopplungswelle (8a) angeordnet ist, umfasst,

    wobei die Motorwelle (6) mit dem Sonnenrad (7a) verbunden ist, und die Kopplungswelle (8a) mit dem Planetenträger (7d) verbunden ist,

    wobei das Antriebsstrangsystem (1) weiter ein Leergangrad (9), das auf der Kopplungswelle (8a) angeordnet ist, und ein Differentialantriebsrad (10), das auf der Differentialeinheit (5) angeordnet ist, umfasst, wobei das Leergangrad (9) und das Differentialantriebsrad (10) dafür eingerichtet sind, miteinander zusammenzuwirken zum Übertragen von Drehmoment vom Elektromotor (2) an die Differentialeinheit (5), über den Planetengetriebesatz (3) und die Kopplungseinheit (4), wobei das Verfahren die folgenden Schritte umfasst:

    beim Empfangen eines Befehls zum Betreiben des Antriebsstrangsystems (1) in einem Antriebsmodus, Verbinden der Kopplungseinheit (4) mit dem Leergangrad (9), wobei das Leergangrad (9) mit der Kopplungswelle (8a) dreht, die darin gehindert ist, im Verhältnis zur Kopplungswelle (8a) zu drehen; und

    Übertragen von Drehmoment vom Elektromotor (2) an die Differentialeinheit (5) über die Motorwelle (6), das Sonnenrad (7a), die zwei oder mehrere Planetengetriebe (7c), den Planetenträger (7d), die Kopplungswelle (8a), das Betätigungselement (8b), das Leergangrad (9) und das Differentialantriebsrad (10),

    beim Empfangen eines Befehls zum Betreiben des Antriebsstrangsystems (1) in einem Leerlaufmodus, Trennen der Kopplungseinheit (4) vom Leergangrad (9), wobei das Leergangrad (9) im Verhältnis zur Kopplungswelle (8a) drehen kann, und wobei das Antriebsstrangsystem (1) darin gehindert ist, Drehmoment vom Elektromotor (2) an die Differentialeinheit (5) zu übertragen.


     


    Revendications

    1. Système de groupe motopropulseur de véhicule (1) comprenant un moteur électrique (2), un ensemble d'engrenages planétaires (3), une unité d'accouplement (4) et une unité différentielle (5),

    dans lequel le moteur électrique (2) est relié en entraînement à l'ensemble d'engrenages planétaires (3) via un arbre de moteur (6) s'étendant dans une direction axiale (A), et dans lequel l'ensemble d'engrenages planétaires (3) peut être raccordé de manière fonctionnelle à l'unité différentielle (5) via l'unité d'accouplement (4),

    dans lequel le système de groupe motopropulseur (1) comprend en outre une roue dentée en mode repos (9) et une roue dentée d'entraînement différentiel (10) arrangée sur l'unité différentielle (5), l'unité d'accouplement (4) étant agencée pour transférer sélectivement le couple à la roue dentée en mode repos (9), et dans lequel la roue dentée en mode repos (9) et la roue dentée d'entraînement différentiel (10) sont agencées pour interagir par entraînement l'une avec l'autre afin de transférer le couple du moteur électrique (2) à l'unité différentielle (5), via l'ensemble d'engrenages planétaires (3) et l'unité d'accouplement (4),

    l'unité différentielle (5) comprenant un premier arbre de sortie différentiel (15a) et un deuxième arbre de sortie différentiel (15b), le premier arbre de sortie différentiel (15a) et le deuxième arbre de sortie différentiel (15b) s'étendant dans la direction axiale (A) latéralement de chaque côté du boîtier différentiel (13),

    caractérisé en ce que l'unité différentielle (5) est configurée pour être positionnée dans une section centrale latérale (CS) d'un véhicule dans lequel le système de groupe motopropulseur de véhicule (1) est arrangé,

    dans lequel le système de groupe motopropulseur (1) comprend en outre un premier arbre d'entraînement (17a) relié au et s'étendant depuis le premier arbre de sortie différentiel (15a) et un deuxième arbre d'entraînement (17b) relié au et s'étendant depuis le deuxième arbre de sortie différentiel (15b), dans lequel le premier arbre d'entraînement (17a) a une longueur axiale (LDS1) supérieure à une longueur axiale (LOS1) du premier arbre de sortie différentiel (15a), et dans lequel le deuxième l'arbre d'entraînement (17b) a une longueur axiale (LDS2) supérieure à une longueur axiale (LDS2) du deuxième arbre de sortie différentiel (15b),

    dans lequel le premier arbre d'entraînement (17a) est relié au premier arbre de sortie différentiel (15a) par l'intermédiaire d'un premier joint (18a) et le deuxième arbre d'entraînement (17b) est relié au deuxième arbre de sortie différentiel (15b) par l'intermédiaire d'un deuxième joint (18b), les joints (18a, 18b) permettant un déplacement angulaire des arbres d'entraînement (17a, 17b) par rapport aux arbres de sortie différentiels (15a, 15b).


     
    2. Système de groupe motopropulseur de véhicule (1) selon la revendication 1,
    caractérisé en ce que l'ensemble d'engrenages planétaires (3) comprend une roue solaire (7a), une couronne dentée (7b) et deux engrenages planétaires ou plus (7c) reliés à un porte-satellites (7d), et dans lequel l'unité d'accouplement (4) comprend un arbre d'accouplement (8a) et un élément d'actionnement (8b) arrangé sur l'arbre d'accouplement (8a), dans lequel l'arbre de moteur (6) est relié par entraînement à la roue solaire (7a), l'arbre d'accouplement (8a) est relié en entraînement au porte-satellites (7d), et dans lequel la roue dentée en mode repos (9) est arrangée sur l'arbre d'accouplement (8a).
     
    3. Système de groupe motopropulseur de véhicule (1) selon la revendication 2,
    caractérisé en ce que l'élément d'actionnement (8b) est agencé pour raccorder sélectivement la roue dentée en mode repos (9) à l'arbre d'accouplement (8a) et déconnecter la roue dentée en mode repos (9) de celui-ci.
     
    4. Système de groupe motopropulseur de véhicule (1) selon l'une quelconque des revendications 2 à 3,
    caractérisé en ce que l'élément d'actionnement (8a) est un synchroniseur agencé de manière coulissante sur l'arbre d'accouplement (8a), et dans lequel la roue dentée en mode repos (9) est reliée à palier à l'arbre d'accouplement (8a) par l'intermédiaire d'un deuxième palier (16).
     
    5. Système de groupe motopropulseur de véhicule (1) selon l'une quelconque des revendications 2 à 4,
    caractérisé en ce que le système de groupe motopropulseur (1) comprend en outre une structure de boîtier (11), dans laquelle l'arbre de moteur (6) est tourillonné contre la structure de boîtier (11) via un premier palier (12), et dans lequel la couronne dentée (7b) est fixée de façon non rotative à la structure de boîtier (11).
     
    6. Système de groupe motopropulseur de véhicule (1) selon la revendication 5,
    caractérisé en ce que l'unité différentielle (5) comprend un boîtier de différentiel (13), dans lequel la structure de boîtier (11) est directement fixée au boîtier de différentiel (13).
     
    7. Système de groupe motopropulseur de véhicule (1) selon l'une quelconque des revendications 2 à 6,
    caractérisé en ce que l'arbre d'accouplement (8a) s'étend dans la direction axiale (A) dans une relation coaxiale à l'arbre de moteur (6), dans lequel la couronne dentée (7b) est disposé coaxialement autour de l'arbre de moteur (6), et dans lequel la roue solaire (7a) est agencée pour tourner avec l'arbre de moteur (6) autour d'un axe s'étendant dans la direction axiale (A).
     
    8. Système de groupe motopropulseur de véhicule (1) selon l'une quelconque des revendications 2 à 7,
    caractérisé en ce que dans un mode d'entraînement, l'unité d'accouplement (4) est agencée pour être raccordée en entraînement à la roue dentée en mode repos (9), dans lequel la roue dentée en mode repos (9) est empêchée de tourner par rapport à l'arbre d'accouplement (8a), dans lequel, en mode d'entraînement, le système de groupe motopropulseur (1) est configuré pour transférer le couple du moteur électrique (2) à l'unité différentielle (5) via l'arbre moteur (6), la roue solaire (7a), les deux engrenages planétaires ou plus (7c), le porte-satellites (7d), l'arbre d'accouplement (8a), l'élément d'actionnement (8b), la roue dentée en mode repos (9) et la roue dentée d'entraînement différentiel (10).
     
    9. Système de groupe motopropulseur de véhicule (1) selon l'une quelconque des revendications 2 à 8,
    caractérisé en ce que dans un mode veille, l'unité d'accouplement (4) est agencée pour être déconnectée de la roue dentée en mode repos (9), dans lequel la roue dentée en mode repos (9) est autorisé à tourner par rapport à l'arbre d'accouplement (8a), et dans lequel, en mode veille, le système de groupe motopropulseur (1) est configuré pour empêcher le transfert de couple du moteur électrique (2) à l'unité différentielle (5).
     
    10. Système de groupe motopropulseur de véhicule (1) selon l'une quelconque des revendications précédentes,
    caractérisé en ce que le système de groupe motopropulseur (1) comprend en outre une unité d'onduleur (14), dans lequel le moteur électrique (2) et l'unité d'onduleur (14) sont arrangés latéralement sur chaque côté de l'ensemble d'engrenages planétaires (3) et de l'unité différentielle (5).
     
    11. Système de groupe motopropulseur de véhicule (1) selon l'une quelconque des revendications précédentes,
    caractérisé en ce que le système de groupe motopropulseur (1) est un système unique d'ensemble d'engrenages planétaires.
     
    12. Véhicule comprenant un système de groupe motopropulseur (1) selon l'une quelconque des revendications 1 à 11,
    caractérisé en ce que la direction axiale (A) du système de groupe motopropulseur (1) est essentiellement perpendiculaire à une direction longitudinale de véhicule (Lo), et dans lequel le système de groupe motopropulseur (1) est arrangé en liaison avec le véhicule pour positionner l'unité différentielle (5) dans une section centrale latérale (CS) du véhicule.
     
    13. Véhicule selon la revendication 12,
    caractérisé en ce que le système de groupe motopropulseur de véhicule (1) est arrangé dans une partie avant ou une partie arrière du véhicule ; ou dans lequel le véhicule comprend un premier système de groupe motopropulseur de véhicule arrangé dans une partie avant du véhicule et un deuxième système de groupe motopropulseur de véhicule arrangé dans une partie arrière du véhicule.
     
    14. Procédé pour faire fonctionner un système de groupe motopropulseur de véhicule (1) selon l'une quelconque des revendications 1 à 11,

    dans lequel le moteur électrique (2) comprend un arbre de moteur (6), dans lequel l'ensemble d'engrenages planétaires (3) comprend une roue solaire (7a), une couronne dentée (7b) et deux engrenages planétaires ou plus (7c) reliés à un porte-satellites (7d), et dans lequel l'unité d'accouplement (4) comprend un arbre d'accouplement (8a) et un élément d'actionnement (8b) arrangé sur l'arbre d'accouplement (8a),

    dans lequel l'arbre de moteur (6) est relié à la roue solaire (7a), et l'arbre d'accouplement (8a) est relié au porte-satellites (7d),

    dans lequel le système de groupe motopropulseur (1) comprend en outre une roue dentée en mode repos (9) arrangée sur l'arbre d'accouplement (8a) et une roue dentée d'entraînement différentiel (10) arrangée sur l'unité différentielle (5), dans lequel la roue dentée en mode repos (9) et la roue dentée d'entraînement différentiel (10) sont agencées pour interagir l'une avec l'autre afin de transférer le couple du moteur électrique (2) à l'unité différentielle (5), via l'ensemble d'engrenages planétaires (3) et l'unité d'accouplement (4), dans lequel le procédé comprend les étapes consistant à :
    lors de la réception d'une commande pour faire fonctionner le système de groupe motopropulseur (1) dans un mode d'entraînement, raccorder l'unité d'accouplement (4) à la roue dentée en mode repos (9), dans lequel la roue dentée en mode repos (9) tourne avec l'arbre d'accouplement (8a) empêché de tourner par rapport à l'arbre d'accouplement (8a) ; et transférer le couple du moteur électrique (2) à l'unité différentielle (5) via l'arbre de moteur (6), la roue solaire (7a), les deux engrenages planétaires ou plus (7c), le porte-satellites (7d), l'arbre d'accouplement (8a), l'élément d'actionnement (8b), la roue dentée en mode repos (9) et la roue dentée d'entraînement différentiel (10), lors de la réception d'une commande pour faire fonctionner le système de groupe motopropulseur (1) dans un mode veille, déconnecter l'unité d'accouplement (4) de la roue dentée en mode repos (9), dans lequel la roue dentée en mode repos (9) est autorisé à tourner par rapport à l'arbre d'accouplement (8a), et dans lequel le système de groupe motopropulseur (1) est empêché de transférer le couple du moteur électrique (2) à l'unité différentielle (5).


     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description