(19)
(11)EP 3 750 781 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.09.2023 Bulletin 2023/36

(21)Application number: 20164761.7

(22)Date of filing:  23.03.2020
(51)International Patent Classification (IPC): 
B62D 6/00(2006.01)
B62D 15/02(2006.01)
(52)Cooperative Patent Classification (CPC):
B62D 6/003; B62D 15/025

(54)

CONTROL METHOD AND APPARATUS FOR AUTONOMOUS VEHICLE AND STORAGE MEDIUM

REGELVERFAHREN UND -VORRICHTUNG FÜR EIN AUTONOMES FAHRZEUG UND SPEICHERMEDIUM

PROCÉDÉ ET APPAREIL DE COMMANDE POUR VÉHICULE AUTONOME ET SUPPORT D'ENREGISTREMENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.06.2019 CN 201910515869

(43)Date of publication of application:
16.12.2020 Bulletin 2020/51

(73)Proprietor: Apollo Intelligent Driving Technology (Beijing) Co., Ltd.
Haidian District Beijing 100085 (CN)

(72)Inventors:
  • QIN, Wenchuang
    Beijing 100085 (CN)
  • PENG, Xiapeng
    Beijing 100085 (CN)
  • HUANG, Jiayong
    Beijing 100085 (CN)
  • TANG, Ke
    Beijing 100085 (CN)
  • SHAO, Qiyang
    Beijing 100085 (CN)
  • LV, Xuguang
    Beijing 100085 (CN)

(74)Representative: Maiwald GmbH 
Elisenhof Elisenstraße 3
80335 München
80335 München (DE)


(56)References cited: : 
EP-A1- 3 459 820
US-B1- 6 256 561
DE-A1-102014 209 526
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to the field of autonomous driving technologies, and more particularly, to a control method for an autonomous vehicle, a control apparatus for an autonomous vehicle and a storage medium.

    BACKGROUND



    [0002] Generally, in autonomous driving, it is necessary to convert a desired yaw rate into a steering wheel angle to control the vehicle, and make the yaw rate generated by the vehicle close to the desired yaw rate, thereby ensuring the accuracy of vehicle control.

    [0003] In the related art, lateral dynamic modeling is performed to control the vehicle laterally based on the location of the mass center, tire data and steering ratio. However, the change in vehicle load will affect the location of the mass center, and characteristics of tires are different in different turning scenarios, and existing methods can only cover driving scenarios on flat roads, and cannot cover complex driving scenarios, resulting in inaccurate lateral control of the vehicle.

    [0004] US6256561 discloses a system for controlling steering of a vehicle, including an electric motor used for power-steering torque assist control. The system has a navigation system whose output is used to correct the detected steering angle input by the vehicle driver. A desired yaw rate is determined based on the corrected steering angle and the detected vehicle speed using a yaw rate model, thereby enabling to conduct the aforesaid lane-keeping-steering torque assist control in a more appropriate manner.

    SUMMARY



    [0005] According to the present invention, there is provided a control method for an autonomous vehicle, including: obtaining a current steering wheel angle, a current vehicle speed and a current yaw rate of the autonomous vehicle; correcting the current steering wheel angle based on a first correction deviation coefficient and a second correction deviation coefficient obtained in a previous cycle to generate a corrected steering wheel angle; inputting the corrected steering wheel angle and the current vehicle speed into a preset vehicle dynamic model to obtain an estimated yaw rate; obtaining a first yaw rate deviation value between the current yaw rate and the estimated yaw rate; processing the first yaw rate deviation value by a preset closed-loop algorithm to obtain a first correction deviation coefficient and a second correction deviation coefficient of a current cycle; and performing correction processing on a target steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain a corrected target steering wheel angle, and controlling the autonomous vehicle to drive based on the corrected target steering wheel angle.

    [0006] With the control method for an autonomous vehicle according to embodiments of the present invention, the current steering wheel angle, the current vehicle speed and the current yaw rate of the vehicle are obtained, the current steering wheel angle is corrected based on the first correction deviation coefficient and the second correction deviation coefficient obtained in the previous cycle to generate the corrected steering wheel angle, the corrected steering wheel angle and the current vehicle speed are input into the preset vehicle dynamic model to obtain the estimated yaw rate, the first yaw rate deviation value between the current yaw rate and the estimated yaw rate is obtained, and the first yaw rate deviation value is processed by the preset closed-loop algorithm to obtain the first correction deviation coefficient and the second correction deviation coefficient of the current cycle, and the target steering wheel angle is corrected based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain the corrected target steering wheel angle, and the vehicle is controlled to drive based on the corrected target steering wheel angle, such that the technical problem of inaccurate lateral control of the vehicle can be solved. In addition, the current steering wheel angle and the target steering wheel angle are corrected in real time, such that the yaw rate generated by the vehicle can be close to the desired yaw rate, and the accuracy of lateral control of the vehicle can be improved.

    [0007] According to a second aspect of the present invention, there is provided a control apparatus for an autonomous vehicle. The control apparatus includes a first obtaining module, a first correction module, a first correction module, a second obtaining module, a processing module, and a second correction module.

    [0008] The first obtaining module is configured to obtain a current steering wheel angle, a current vehicle speed and a current yaw rate of a vehicle. The first correction module is configured to correct the current steering wheel angle based on a first correction deviation coefficient and a second correction deviation coefficient obtained in a previous cycle to generate a corrected steering wheel angle. The first calculation module is configured to input the corrected steering wheel angle and the current vehicle speed into a preset vehicle dynamic model to obtain an estimated yaw rate. The second obtaining module is configured to obtain a first yaw rate deviation value between the current yaw rate and the estimated yaw rate. The processing module is configured to process the first yaw rate deviation value by a preset closed-loop algorithm to obtain a first correction deviation coefficient and a second correction deviation coefficient of a current cycle. The second correction module is configured to perform correction processing on a target steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain a corrected target steering wheel angle, and control the autonomous vehicle to drive based on the corrected target steering wheel angle.

    [0009] With the control apparatus for an autonomous vehicle according to embodiments of the present invention, the current steering wheel angle, the current vehicle speed and the current yaw rate of the vehicle are obtained, the current steering wheel angle is corrected based on the first correction deviation coefficient and the second correction deviation coefficient obtained in the previous cycle to generate the corrected steering wheel angle, the corrected steering wheel angle and the current vehicle speed are input into the preset vehicle dynamic model to obtain the estimated yaw rate, the first yaw rate deviation value between the current yaw rate and the estimated yaw rate is obtained, and the first yaw rate deviation value is processed by the preset closed-loop algorithm to obtain the first correction deviation coefficient and the second correction deviation coefficient of the current cycle, and the target steering wheel angle is corrected based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain the corrected target steering wheel angle, and the vehicle is controlled to drive based on the corrected target steering wheel angle, such that the technical problem of inaccurate lateral control of the vehicle can be solved. In addition, the current steering wheel angle and the target steering wheel angle are corrected in real time, such that the yaw rate generated by the vehicle can be close to the desired yaw rate, and the accuracy of lateral control of the vehicle can be improved.

    [0010] According to the present invention, there is furthermore provided a non-transitory computer readable storage medium having a computer program stored thereon. When the program is executed by a processor, causes the processor to implement the control method for an autonomous vehicle according to embodiments of the present invention.

    [0011] Additional aspects and advantages of the present invention will be given in the following description, some of which will become apparent from the following description.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0012] The foregoing and/or additional aspects and advantages of the present invention become obvious and easily understood in descriptions of the embodiments with reference to the following accompanying drawings, in which:

    FIG. 1 is a flowchart of a control method for an autonomous vehicle according to some embodiments of the present invention.

    FIG. 2 is a flowchart of a control method for an autonomous vehicle according to some embodiments of the present invention.

    FIG. 3 is a schematic diagram of a control method for an autonomous vehicle according to some embodiments of the present invention.

    FIG. 4 is a schematic diagram of a control apparatus for an autonomous driving vehicle according to some embodiments of the present invention.

    FIG. 5 is a schematic diagram of a control apparatus for an autonomous driving vehicle according to some other embodiments of the present invention.

    FIG. 6 is a schematic diagram of a second calculation module according to some embodiments of the present invention.

    FIG. 7 is a schematic diagram of a computer device according to some embodiments of the present invention.


    DETAILED DESCRIPTION



    [0013] Embodiments of the present invention are described below in detail, examples of the embodiments are shown in accompanying drawings, and reference signs that are the same or similar from beginning to end represent the same or similar components or components that have the same or similar functions. The embodiments described below with reference to the accompanying drawings are exemplary, are merely used to explain the present invention, and cannot be construed as a limit to the present invention.

    [0014] A control method for an autonomous vehicle, a control method apparatus for an autonomous vehicle, a computer device and a storage medium according to embodiments of the present invention are described with reference to the accompanying drawings.

    [0015] FIG. 1 is a flowchart of a control method for an autonomous vehicle according to some embodiments of the present invention. As shown in FIG. 1, the control method for an autonomous vehicle includes the following acts.

    [0016] At block 101, a current steering wheel angle, a current vehicle speed and a current yaw rate of the vehicle are obtained.

    [0017] At block 102, the current steering wheel angle is corrected based on a first correction deviation coefficient and a second correction deviation coefficient obtained in a previous cycle to generate a corrected steering wheel angle.

    [0018] At block 103, the corrected steering wheel angle and the current vehicle speed are input into a preset vehicle dynamic model to obtain an estimated yaw rate.

    [0019] During driving of the autonomous vehicle, it is necessary to convert the desired yaw rate into the steering wheel angle to control the vehicle, and make the yaw rate generated by the vehicle close to the desired yaw rate, thereby ensuring the accuracy of vehicle control. However, in practical applications, the change in vehicle load will affect the location of the mass center, and characteristics of tires are different in different turning scenarios, and existing methods can only cover driving scenarios on flat roads, and cannot cover complex driving scenarios, resulting in insufficient lateral control of the vehicle. The present invention provides a control method for an autonomous vehicle, the current steering wheel angle and the target steering wheel angle are corrected in real time, the yaw rate generated by the vehicle is close to the desired yaw rate, such that the accuracy of lateral control of the vehicle can be improved.

    [0020] Under the driving state of the vehicle, the steering wheel angle, the vehicle speed and yaw rate generated at the current time point are the current steering wheel angle, the current vehicle speed and the current yaw rate.

    [0021] The control method for the autonomous vehicle according to the present invention can achieve real-time correction during the driving process of the vehicle. The first correction deviation coefficient and the second correction deviation coefficient acquired in the previous cycle are pre-stored, such that correction can be performed on the current steering wheel angle based on the pre-stored first correction deviation coefficient and the second correction deviation coefficient of the previous cycle to generate the corrected steering wheel angle.

    [0022] There are many ways to correct the current steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the previous cycle. In an example, the current steering wheel angle may be corrected based on the first correction deviation coefficient and the second correction deviation coefficient by a first formula, which may be expressed by:

    where δreal1 is the current steering wheel angle, δreal2 is the corrected steering wheel angle, slope is the first correction deviation coefficient of the previous cycle, and biase is the second correction deviation coefficient of the previous cycle.

    [0023] Further, the corrected steering wheel angle and the current vehicle speed may be input into the preset vehicle dynamic model to obtain the estimated yaw rate. The preset vehicle dynamic model may be a pre-established vehicle dynamic model that can generate the estimated yaw rate corresponding to the current steering wheel angle and the current vehicle speed. The preset vehicle dynamic model may refer to inputting the vehicle speed and steering wheel angle, and outputting the yaw rate, which are the same as the data stream of the real vehicle.

    [0024] At block 104, a first yaw rate deviation value between the current yaw rate and the estimated yaw rate is obtained.

    [0025] At block 105, the first yaw rate deviation value is processed by a preset closed-loop algorithm to obtain a first correction deviation coefficient and a second correction deviation coefficient of a current cycle.

    [0026] At block 106, a target steering wheel angle is corrected based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain a corrected target steering wheel angle, and the vehicle is controlled to drive based on the corrected target steering wheel angle.

    [0027] It may be understood that, the estimated yaw rate obtained through the preset vehicle dynamic model may be the same or different from the current yaw rate. When the first yaw rate deviation value between the current yaw rate and the estimated yaw rate is obtained, it indicates that the target steering wheel angle needs to be corrected. Then, the first yaw rate deviation value between the current yaw rate and the estimated yaw rate is processed by a preset closed-loop algorithm to obtain the first correction deviation coefficient and the second correction deviation coefficient of the current cycle, and correction processing is performed on the target steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle, such that the vehicle is driven based on the corrected target steering wheel angle. There are many types of the preset closed-loop algorithm, such as a PI (Proportional Integral) closed-loop algorithm, which may be selected according to actual application requirements.

    [0028] The target steering wheel angle may be generated based on the desired yaw rate and the current yaw rate, and there are many ways to correct the target steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle. In an example, the target steering wheel angle may be corrected based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle by second formula, which may be expressed by:

    where δcmd1 is the target steering wheel angle, δcmd2 is the target steering wheel angle obtained after the correction processing, slope is the first correction deviation coefficient of the current cycle, and biase is the second correction deviation coefficient of the current cycle.

    [0029] With the control method for an autonomous vehicle according to embodiments of the present invention, the current steering wheel angle, the current vehicle speed and the current yaw rate of the vehicle are obtained, the current steering wheel angle is corrected based on the first correction deviation coefficient and the second correction deviation coefficient obtained in the previous cycle to generate the corrected steering wheel angle, the corrected steering wheel angle and the current vehicle speed are input into the preset vehicle dynamic model to obtain the estimated yaw rate, the first yaw rate deviation value between the current yaw rate and the estimated yaw rate is obtained, and the first yaw rate deviation value is processed by the preset closed-loop algorithm to obtain the first correction deviation coefficient and the second correction deviation coefficient of the current cycle, and the target steering wheel angle is corrected based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain the corrected target steering wheel angle, and the vehicle is controlled to drive based on the corrected target steering wheel angle, such that the technical problem of inaccurate lateral control of the vehicle can be solved. In addition, the current steering wheel angle and the target steering wheel angle are corrected in real time, such that the yaw rate generated by the vehicle can be close to the desired yaw rate, and the accuracy of lateral control of the vehicle can be improved.

    [0030] FIG. 2 is a flowchart of a control method for an autonomous vehicle according to some embodiments of the present invention. As shown in FIG. 2, the control method for an autonomous vehicle may include the following acts.

    [0031] At block 201, a desired yaw rate is obtained, and the target steering wheel angle is generated based on the desired yaw rate and the current yaw rate.

    [0032] In an example, the desired yaw rate may refer to a yaw rate output by the vehicle under an ideal condition. Different desired yaw rates may be selected for different scenarios, and the target steering wheel angle may be generated based on the desired yaw rate and the current yaw rate.

    [0033] When the target steering wheel angle is calculated by using the vehicle dynamic inverse model, there is also a correlation with a roll angle of the road surface, in order to eliminate the influence of the roll angle of the road surface, the target steering wheel angle needs to be corrected.

    [0034] There are many ways to generate the target steering wheel angle based on the desired yaw rate and the current yaw rate. In an example, the desired yaw rate is transformed by a preset reference model to generate a reference yaw rate, a second yaw rate deviation value between the current yaw rate and the reference yaw rate is obtained, correction processing is performed on the desired yaw rate based on a preset model reference adaptive algorithm and the second yaw rate deviation value to obtain a target desired yaw rate, and the target desired yaw rate is input into the vehicle dynamic inverse model to obtain the target steering wheel angle.

    [0035] In order to eliminate the influence of hardware characteristics, the desired yaw acceleration may be converted into the reference yaw rate (theoretically, a yaw rate that the vehicle should respond to) by the preset reference model.

    [0036] In an example, the preset reference model may be expressed by:

    where ξ is the damping ratio, ωn is the natural frequency, and K is the constant. The preset model reference adaptive algorithm may be used as a closed-loop algorithm to correct a tracking deviation. Based on characteristics of the vehicle, the damping ratio ξ and the natural frequency ωn are identified, the desired yaw rate is input to G(s) first to obtain the reference yaw rate, and the adaptive control algorithm is performed on the deviation between the reference yaw rate and the desired yaw rate to obtain the target desired yaw rate. By using the preset model reference adaptive algorithm to perform the close-loop operation on the desired yaw rate and the real yaw rate, the steady-state deviation can be eliminated, and adapting according to the characteristics of the steering wheel can be achieved.

    [0037] The preset vehicle dynamic inverse model may refer to inputting the yaw rate and the vehicle speed, and outputting the steering wheel angle, which are opposite to the data stream of the real vehicle.

    [0038] At block 202, the vehicle is driven according to the target steering wheel angle to generate the current steering wheel angle, the current vehicle speed, and the current yaw rate.

    [0039] At block 203, the current steering wheel angle, the current vehicle speed and the current yaw rate of the vehicle are obtained, and the current steering wheel angle is corrected based on a first correction deviation coefficient and a second correction deviation coefficient obtained in the previous cycle to generate a corrected steering wheel angle.

    [0040] At block 204, the corrected steering wheel angle and the current vehicle speed are input into a preset vehicle dynamic model to obtain an estimated yaw rate.

    [0041] There are many ways to correct the current steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the previous cycle to generate the corrected steering wheel angle. In an example, a first formula may be applied, to correct the current steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient acquired in the previous cycle to generate the corrected steering wheel angle, the first formula may be expressed by:

    where δreal1 is the current steering wheel angle, δreal2 is the corrected steering wheel angle, slope is the first correction deviation coefficient of the previous cycle, and biase is the second correction deviation coefficient of the previous cycle.

    [0042] Further, the corrected steering wheel angle and the current vehicle speed are input into the preset vehicle dynamic model to obtain the estimated yaw rate. The preset vehicle dynamic model may be a pre-established vehicle dynamic model that can generate the estimated yaw rate corresponding to the current steering wheel angle and the current vehicle speed.

    [0043] At block 205, a first yaw rate deviation value between the current yaw rate and the estimated yaw rate is obtained, and the first yaw rate deviation value is processed by a preset closed-loop algorithm to obtain a first correction deviation coefficient and a second correction deviation coefficient of a current cycle.

    [0044] At block 206, correction processing is performed on the target steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain a corrected target steering wheel angle, and the vehicle is driven based on the corrected target steering wheel angle to generate a new current steering wheel angle, a new current vehicle speed and a new current yaw rate.

    [0045] It may be understood that, the estimated yaw rate obtained through the preset vehicle dynamic model may be the same or different from the current yaw rate. When the first yaw rate deviation value between the current yaw rate and the estimated yaw rate is obtained, it indicates that the target steering wheel angle needs to be corrected. Thus, the first yaw rate deviation value between the current yaw rate and the estimated yaw rate is processed by the preset closed-loop algorithm to obtain the first correction deviation coefficient and the second correction deviation coefficient of the current cycle, and correction processing is performed on the target steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle, such that the vehicle is driven based on the target steering wheel angle obtained after the correction process.

    [0046] There are many types of the preset closed-loop algorithm, such as the PI closed-loop algorithm, which may be selected according to actual application requirements.

    [0047] There are many ways to correct the target steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle. In an example, a second formula may be applied, to correct the target steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle, the second formula may be expressed by:

    where δcmd1 is the target steering wheel angle, δcmd2 is the target steering wheel angle obtained after the correction processing, slope is the first correction deviation coefficient of the current cycle, and biase is the second correction deviation coefficient of the current cycle.

    [0048] By adding an on-line dynamic parameter correction module, the dynamic parameters are corrected in real time to improve the conversion accuracy of the target yaw rate to the target steering wheel angle. In addition, by using the preset model reference adaptive algorithm to perform the close-loop operation on the desired yaw rate and the real yaw rate, the steady-state deviation can be eliminated, and adapting according to the characteristics of the steering wheel can be achieved.

    [0049] For example, the lateral dynamic parameters of the vehicle include a sprung mass M, a distance lf from the mass center to the front axle, a lateral stiffness cαf of the left front wheel, a distance lr from the mass center to the rear wheel, a lateral stiffness cαr of the left rear wheel, and a wheelbase L. The vehicle speed V, the steering wheel angle δ, and the yaw rate ϕ̇ of the vehicle may be collected on high-speed and urban roads, the scenes of the collected data cover as large a steering wheel angle as possible, and the collected speed V and yaw rate ϕ̇ may be input to the preset vehicle dynamic model:



    [0050] Thus, the steering wheel angle δest output from the preset vehicle dynamic model can be obtained, δest may be compared with the collected steering wheel angle, such that accurate dynamic parameters can be estimated based on the yaw rate deviation between δest and the collected steering wheel angle.

    [0051] As shown in FIG. 3, the estimated yaw rate ϕ̇est is obtained according to the real steering wheel angle ϕ̇real (i.e., the current yaw rate of the vehicle), the PI closed-loop algorithm is added to the estimated yaw rate ϕ̇est and the real yaw rate ϕ̇real, and the following vehicle dynamic model are corrected online:







    where Islope (ϕ̇real) represents that Islope is a function of ϕ̇real.

    [0052] In addition, considering that the estimation of the yaw rate is not only related to vehicle dynamics, and also related to the road inclination and characteristics of the steering wheel, there may be a deviation between ϕ̇cmd and ϕ̇real. By selecting the model reference adaptive control algorithm, the response characteristics of the steering wheel can be adapted and the steady-state deviation can be corrected.

    [0053] For the response adaptation of the steering wheel, a second-order model

    may be selected as the reference model. ξ and ωn may be adjusted according to the response characteristics of the steering wheel. The reference yaw rate ϕ̇ref may be obtained by the second-order system model based on the desired yaw rate ϕ̇cmd, and the target steering wheel angle is obtained by the model reference adaptive algorithm and based on the deviation between ϕ̇ref and ϕ̇cmd.

    [0054] With the control method for an autonomous vehicle according to embodiments of the present invention, the current steering wheel angle, the current vehicle speed and the current yaw rate of the vehicle are obtained, the current steering wheel angle is corrected based on the first correction deviation coefficient and the second correction deviation coefficient obtained in the previous cycle to generate the corrected steering wheel angle, the corrected steering wheel angle and the current vehicle speed are input into the preset vehicle dynamic model to obtain the estimated yaw rate, the first yaw rate deviation value between the current yaw rate and the estimated yaw rate is obtained, and the first yaw rate deviation value is processed by the preset closed-loop algorithm to obtain the first correction deviation coefficient and the second correction deviation coefficient of the current cycle, and the target steering wheel angle is corrected based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain the corrected target steering wheel angle, and the vehicle is controlled to drive based on the corrected target steering wheel angle, such that the technical problem of inaccurate lateral control of the vehicle can be solved. In addition, the current steering wheel angle and the target steering wheel angle are corrected in real time, such that the yaw rate generated by the vehicle can be close to the desired yaw rate, and the accuracy of lateral control of the vehicle can be improved.

    [0055] Embodiments of the present invention further provide a control apparatus for an autonomous vehicle. FIG. 4 is a schematic diagram of a control apparatus for an autonomous driving vehicle according to some embodiments of the present invention.

    [0056] As shown in FIG. 4, the control apparatus may include a first obtaining module 401, a first correction module 402, a first calculation module 403, a second obtaining module 404, a processing module 405 and a second correction module 406.

    [0057] The first obtaining module 401 is configured to obtain the current steering wheel angle, the current vehicle speed and the current yaw rate of the vehicle.

    [0058] The first correction module 402 is configured to correct the current steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient obtained in the previous cycle to generate the corrected steering wheel angle.

    [0059] The first calculation module 403 is configured to input the corrected steering wheel angle and the current vehicle speed into the preset vehicle dynamic model to obtain the estimated yaw rate.

    [0060] The second obtaining module 404 is configured to obtain a first yaw rate deviation value between the current yaw rate and the estimated yaw rate.

    [0061] The processing module 405 is configured to process the first yaw rate deviation value by a preset closed-loop algorithm to obtain a first correction deviation coefficient and a second correction deviation coefficient of the current cycle.

    [0062] The second correction module 406 is configured to perform correction processing on the target steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain a corrected target steering wheel angle, and control the vehicle to drive based on the corrected target steering wheel angle.

    [0063] FIG. 5 is a schematic diagram of a control apparatus for an autonomous driving vehicle according to some other embodiments of the present invention. As shown in FIG. 5, and on the basis of FIG. 4, the control apparatus further includes a third obtaining module 407 and a second calculation module 408.

    [0064] The third obtaining module 407 is configured to obtain a desired yaw rate.

    [0065] The second calculation module 408 is configured to generate the target steering wheel angle based on the desired yaw rate and the current yaw rate.

    [0066] FIG. 6 is a schematic diagram of a second calculation module according to some embodiments of the present invention, as shown in FIG. 6, the second calculation module 408 includes a generation unit 4071, an obtaining unit 4072, a processing unit 4073 and a calculation unit 4074.

    [0067] The generation unit 4071 is configured to transform the desired yaw rate by a preset reference model to generate a reference yaw rate.

    [0068] The obtaining unit 4072 is configured to obtain a second yaw rate deviation value between the current yaw rate and the reference yaw rate.

    [0069] The processing unit 4073 is configured to perform the correction processing on the desired yaw rate based on preset model reference adaptive algorithm and the second yaw rate deviation value to obtain a target desired yaw rate.

    [0070] The calculation unit 4074 is configured to input the target desired yaw rate into a vehicle dynamic inverse model to obtain the target steering wheel angle.

    [0071] In an example, the first correction module 402 is configured to correct the current steering wheel angle, by using a first formula, based on the first correction deviation coefficient and the second correction deviation coefficient obtained in the previous cycle to generate the corrected steering wheel angle. In an example, the first formula is expressed by:

    where δreal1 is the current steering wheel angle, δreal2 is the corrected steering wheel angle, slope is the first correction deviation coefficient of the previous cycle, and biase is the second correction deviation coefficient of the previous cycle.

    [0072] In an example, the second correction module 406 is configured to correct the target steering wheel angle, by using a second formula, based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain the corrected target steering wheel angle. In example, the second formula is expressed by:

    where δcmd1 is the target steering wheel angle, δcmd2 is the target steering wheel angle obtained after the correction processing, slope is the first correction deviation coefficient of the current cycle, and biase is the second correction deviation coefficient of the current cycle.

    [0073] It should be noted that, the explanation of the control method for an autonomous vehicle according to the foregoing embodiments is also applicable to the control apparatus for an autonomous vehicle according to this embodiment. The implementation principles of the control method and the control apparatus are similar, and thus will not be repeated here.

    [0074] With the control apparatus for an autonomous vehicle according to embodiments of the present invention, the current steering wheel angle, the current vehicle speed and the current yaw rate of the vehicle are obtained, the current steering wheel angle is corrected based on the first correction deviation coefficient and the second correction deviation coefficient obtained in the previous cycle to generate the corrected steering wheel angle, the corrected steering wheel angle and the current vehicle speed are input into the preset vehicle dynamic model to obtain the estimated yaw rate, the first yaw rate deviation value between the current yaw rate and the estimated yaw rate is obtained, and the first yaw rate deviation value is processed by the preset closed-loop algorithm to obtain the first correction deviation coefficient and the second correction deviation coefficient of the current cycle, and the target steering wheel angle is corrected based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain the corrected target steering wheel angle, and the vehicle is controlled to drive based on the corrected target steering wheel angle, such that the technical problem of inaccurate lateral control of the vehicle can be solved. In addition, the current steering wheel angle and the target steering wheel angle are corrected in real time, such that the yaw rate generated by the vehicle can be close to the desired yaw rate, and the accuracy of lateral control of the vehicle can be improved.

    [0075] To realize the above embodiments, the present invention further provides a computer device. The computer device includes a processor and a memory. The memory is configured to store executable program codes, the processor is configured to run a program corresponding to the executable program codes by reading the executable program codes stored in the memory, to perform the control method for an autonomous vehicle according to embodiments of the present invention.

    [0076] FIG. 7 is a schematic diagram of a computer device according to some embodiments of the present invention. The computer device 90 illustrated in FIG. 7 is only illustrated as an example, and should not be considered as any restriction on the function and the usage range of embodiments of the present invention.

    [0077] As illustrated in FIG. 7, the computer device 90 is in the form of a general-purpose computing apparatus. The computer device 90 may include, but is not limited to, one or more processors or processing units 906, a system memory 910, and a bus 908 connecting different system components (including the system memory 910 and the processing unit 906).

    [0078] The bus 908 represents one or more of several types of bus architectures, including a memory bus or a memory control bus, a peripheral bus, a graphic acceleration port (GAP) bus, a processor bus, or a local bus using any bus architecture in a variety of bus architectures. For example, these architectures include, but are not limited to, an industry standard architecture (ISA) bus, a microchannel architecture (MCA) bus, an enhanced ISA bus, a video electronic standards association (VESA) local bus, and a peripheral component interconnect (PCI) bus.

    [0079] Typically, the computer device 90 may include multiple kinds of computer-readable media. These media may be any storage media accessible by the computer device 90, including transitory or non-transitory storage medium and movable or unmovable storage medium.

    [0080] The system memory 910 may include a computer-readable medium in a form of volatile memory, such as a random-access memory (RAM) 911 and/or a high-speed cache memory 912. The computer device 90 may further include other transitory/non-transitory storage media and movable/unmovable storage media. In way of example only, the storage system 913 may be used to read and write non-removable, non-volatile magnetic media (not shown in the figure, commonly referred to as "hard disk drives"). Although not illustrated in FIG. 7, it may be provided a disk driver for reading and writing movable non-volatile magnetic disks (e.g. "floppy disks"), as well as an optical driver for reading and writing movable non-volatile optical disks (e.g. a compact disc read only memory (CD-ROM, a digital video disc read only memory (DVD-ROM), or other optical media). In these cases, each driver may be connected to the bus 908 via one or more data medium interfaces. The system memory 910 may include at least one program product, which has a set of (for example at least one) program modules configured to perform the functions of embodiments of the present invention.

    [0081] The computer readable signal medium may include a data signal propagating in baseband or as part of carrier which carries a computer readable program code. Such propagated data signal may be in many forms, including but not limited to an electromagnetic signal, an optical signal, or any suitable combination thereof. The computer readable signal medium may also be any computer readable medium other than the computer readable storage medium, which may send, propagate, or transport programs used by an instruction executed system, apparatus or device, or a connection thereof.

    [0082] The program code stored on the computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, or any suitable combination thereof.

    [0083] The computer program code for carrying out operations of embodiments of the present invention may be written in one or more programming languages. The programming language includes an object-oriented programming language, such as Java, Smalltalk, C ++, as well as conventional procedural programming language, such as "C" language or similar programming language. The program code may be executed entirely on a user's computer, partly on the user's computer, as a separate software package, partly on the user's computer, partly on a remote computer, or entirely on the remote computer or server.

    [0084] A program/application 914 with a set of (at least one) program modules 9140 may be stored in system memory 910, the program modules 9140 may include, but not limit to, an operating system, one or more application programs, other program modules and program data, and any one or combination of above examples may include an implementation in a network environment. The program modules 9140 are generally configured to implement functions and/or methods described in embodiments of the present invention.

    [0085] The computer device 90 may also communicate with one or more external devices 10 (e.g., a keyboard, a pointing device, a display 100, and etc.) and may also communicate with one or more devices that enables a user to interact with the terminal device 90, and/or any device (e.g., a network card, a modem, and etc.) that enables the terminal device 90 to communicate with one or more other computing devices. This kind of communication can be achieved by the input/output (I/O) interface 902. In addition, the computer device 90 may be connected to and communicate with one or more networks such as a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet through a network adapter 900. As shown in FIG. 7, the network adapter 900 communicates with other modules of the computer device 90 over bus 908. It should be understood that although not shown in the figure, other hardware and/or software modules may be used in combination with the computer device 90, which including, but not limited to, microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, as well as data backup storage systems and the like.

    [0086] The processing unit 906 can perform various functional applications and control of an autonomous vehicle based on vehicle-mounted scenarios by running programs stored in the system memory 910, for example, to perform the control method for an autonomous vehicle according to embodiments of the present invention.

    [0087] To achieve the above objectives, embodiments of the present invention further provide a non-transitory computer readable storage medium having a computer program stored thereon. When the program is executed by a processor, causes the processor to implement the control method for an autonomous vehicle according to embodiments of the present invention.

    [0088] To achieve the above objectives, embodiments of the present invention further provide a computer program product. When instructions stored in the computer program product are executed by a processor, causes the control method for an autonomous vehicle according to embodiments of the present invention to be implemented.

    [0089] Reference throughout this specification to "an embodiment", "some embodiments", "an example", "a specific example", or "some examples" means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present invention. In this specification, exemplary descriptions of aforesaid terms are not necessarily referring to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples. In addition, without conflicting, various embodiments or examples or features of various embodiments or examples described in the present specification may be combined by those skilled in the art.

    [0090] In addition, terms such as "first" and "second" are used herein for purposes of description and are not intended to indicate or imply relative importance or significance. Thus, the feature defined with "first" and "second" may comprise one or more this feature. In the description of the present invention, "a plurality of" means at least two, for example, two or three, unless specified otherwise.

    [0091] Any process or method described in a flow chart or described herein in other ways may be understood to include one or more modules, segments or portions of codes of executable instructions for achieving specific logical functions or steps in the process.

    [0092] The logic and/or step described in other manners herein or shown in the flow chart, for example, a particular sequence table of executable instructions for realizing the logical function, may be specifically achieved in any computer readable medium to be used by the instruction execution system, device or equipment (such as the system based on computers, the system comprising processors or other systems capable of obtaining the instruction from the instruction execution system, device and equipment and executing the instruction), or to be used in combination with the instruction execution system, device and equipment. As to the specification, "the computer readable medium" may be any device adaptive for including, storing, communicating, propagating or transferring programs to be used by or in combination with the instruction execution system, device or equipment. More specific examples of the computer readable medium comprise but are not limited to: an electronic connection (an electronic device) with one or more wires, a portable computer enclosure (a magnetic device), a random access memory (RAM), a read only memory (ROM), an erasable programmable read-only memory (EPROM or a flash memory), an optical fiber device and a portable compact disk read-only memory (CDROM). In addition, the computer readable medium may even be a paper or other appropriate medium capable of printing programs thereon, this is because, for example, the paper or other appropriate medium may be optically scanned and then edited, decrypted or processed with other appropriate methods when necessary to obtain the programs in an electric manner, and then the programs may be stored in the computer memories.

    [0093] It should be understood that each part of the present invention may be realized by the hardware, software, firmware or their combination. In the above embodiments, a plurality of steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instruction execution system. For example, if it is realized by the hardware, likewise in another embodiment, the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA), a field programmable gate array (FPGA), etc.

    [0094] It would be understood by those skilled in the art that all or a part of the steps carried by the method in the above-described embodiments may be completed by relevant hardware instructed by a program. The program may be stored in a computer readable storage medium. When the program is executed, one or a combination of the steps of the method in the above-described embodiments may be completed.

    [0095] In addition, individual functional units in the embodiments of the present invention may be integrated in one processing module or may be separately physically present, or two or more units may be integrated in one module. The integrated module as described above may be achieved in the form of hardware, or may be achieved in the form of a software functional module. If the integrated module is achieved in the form of a software functional module and sold or used as a separate product, the integrated module may also be stored in a computer readable storage medium.

    [0096] The storage medium mentioned above may be read-only memories, magnetic disks or CD, etc.


    Claims

    1. A control method for an autonomous vehicle, comprising:

    obtaining a current steering wheel angle, a current vehicle speed and a current yaw rate of the autonomous vehicle (101);

    correcting the current steering wheel angle based on a first correction deviation coefficient and a second correction deviation coefficient obtained in a previous cycle to generate a corrected steering wheel angle (102);

    inputting the corrected steering wheel angle and the current vehicle speed into a preset vehicle dynamic model to obtain an estimated yaw rate (103);

    obtaining a first yaw rate deviation value between the current yaw rate and the estimated yaw rate (104);

    processing the first yaw rate deviation value by a preset closed-loop algorithm to obtain a first correction deviation coefficient and a second correction deviation coefficient of a current cycle (105); and

    performing correction processing on a target steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain a corrected target steering wheel angle, and controlling the autonomous vehicle to drive based on the corrected target steering wheel angle (106).


     
    2. The control method of claim 1, further comprising:

    selecting a desired yaw rate based on a scenario; and

    generating the target steering wheel angle based on the desired yaw rate and the current yaw rate.


     
    3. The control method of claim 2, wherein generating the target steering wheel angle based on the desired yaw rate and the current yaw rate comprises:

    transforming the desired yaw rate by a preset reference model to generate a reference yaw rate;

    obtaining a second yaw rate deviation value between the current yaw rate and the reference yaw rate;

    performing correction processing on the desired yaw rate based on a preset model reference adaptive algorithm and the second yaw rate deviation value to obtain a target desired yaw rate; and

    inputting the target desired yaw rate into a vehicle dynamic inverse model to obtain the target steering wheel angle.


     
    4. The control method of any one of claims 1 to 3, wherein correcting the current steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient obtained in the previous cycle to generate the corrected steering wheel angle comprises:

    correcting the current steering wheel angle, by using a first formula, based on the first correction deviation coefficient and the second correction deviation coefficient obtained in the previous cycle to generate the corrected steering wheel angle, wherein the first formula is expressed by:

    where δreal1 is the current steering wheel angle, δreal2 is the corrected steering wheel angle, slope is the first correction deviation coefficient of the previous cycle, and biase is the second correction deviation coefficient of the previous cycle.


     
    5. The control method of any one of claims 1 to 4, wherein performing the correction processing on the target steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle comprises:

    correcting the target steering wheel angle, by using a second formula, based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain the corrected target steering wheel angle, wherein second formula is expressed by:

    where δcmd1 is the target steering wheel angle, δcmd2 is the corrected target steering wheel angle, slope is the first correction deviation coefficient of the current cycle, and biase is the second correction deviation coefficient of the current cycle.


     
    6. The control method of claim 1, wherein the first correction deviation coefficient slope is obtained by a formal of slope = Islope (ϕ̇real)∫(ϕ̇est-ϕ̇real)dt, where ϕ̇est represents an estimated yaw rate in the previous cycle, ϕ̇real represents a current steering wheel angle in the previous cycle, and Islope (ϕ̇real) represents that Islope is a function of ϕ̇real; and
    the second correction deviation coefficient biase is obtained by a formal of biase = Ibiase (ϕ̇real)∫(ϕ̇est-ϕ̇real)dt, wherein Ibiase (ϕ̇real) represents that Ibiase is a function of ϕ̇real.
     
    7. A control apparatus for an autonomous vehicle, comprising:

    a first obtaining module (401), configured to obtain a current steering wheel angle, a current vehicle speed and a current yaw rate of a vehicle;

    a first correction module (402), configured to correct the current steering wheel angle based on a first correction deviation coefficient and a second correction deviation coefficient obtained in a previous cycle to generate a corrected steering wheel angle;

    a first calculation module (403), configured to input the corrected steering wheel angle and the current vehicle speed into a preset vehicle dynamic model to obtain an estimated yaw rate;

    a second obtaining module (404), configured to obtain a first yaw rate deviation value between the current yaw rate and the estimated yaw rate;

    a processing module (405), configured to process the first yaw rate deviation value by a preset closed-loop algorithm to obtain a first correction deviation coefficient and a second correction deviation coefficient of a current cycle; and

    a second correction module (406), configured to perform correction processing on a target steering wheel angle based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain a corrected target steering wheel angle, and control the autonomous vehicle to drive based on the corrected target steering wheel angle.


     
    8. The control apparatus of claim 7, further comprising:

    a third obtaining module (407), configured to select a desired yaw rate based on a scenario; and

    a second calculation module (408), configured to generate the target steering wheel angle based on the desired yaw rate and the current yaw rate.


     
    9. The control apparatus of claim 8, wherein the second calculation module (408) comprises:

    a generation unit (4071), configured to transform the desired yaw rate by a preset reference model to generate a reference yaw rate;

    an obtaining unit (4072), configured to obtain a second yaw rate deviation value between the current yaw rate and the reference yaw rate;

    a processing unit (4073), configured to perform correction processing on the desired yaw rate based on a preset model reference adaptive algorithm and the second yaw rate deviation value to obtain a target desired yaw rate; and

    a calculation unit (4074), configured to input the target desired yaw rate into a vehicle dynamic inverse model to obtain the target steering wheel angle.


     
    10. The control apparatus of any one of claims 7 to 9, wherein the first correction module (402) is configured to:

    correct the current steering wheel angle, by using a first formula, based on the first correction deviation coefficient and the second correction deviation coefficient obtained in the previous cycle to generate the corrected steering wheel angle, wherein the first formula is expressed by:

    where δreal1 is the current steering wheel angle, δreal2 is the corrected steering wheel angle, slope is the first correction deviation coefficient of the previous cycle, and biase is the second correction deviation coefficient of the previous cycle.


     
    11. The control apparatus of any one of claims 7 to 10, wherein the second correction module (406) is configured to:

    correct the target steering wheel angle, by using a second formula, based on the first correction deviation coefficient and the second correction deviation coefficient of the current cycle to obtain the corrected target steering wheel angle, wherein second formula is expressed by:

    where δcmd1 is the target steering wheel angle, δcmd2 is the target steering wheel angle obtained after the correction processing, slope is the first correction deviation coefficient of the current cycle, and biase is the second correction deviation coefficient of the current cycle.


     
    12. The control apparatus of claim 7, wherein the first correction deviation coefficient slope is obtained by a formal of slope = Islope (ϕ̇real)∫(ϕ̇est-ϕ̇real)dt, where ϕ̇est represents an estimated yaw rate in the previous cycle, ϕ̇real represents a current steering wheel angle in the previous cycle, and Islope (ϕ̇real) represents that Islope is a function of ϕ̇real ; and
    the second correction deviation coefficient biase is obtained by a formal of biase = Ibiase (ϕ̇real)∫(ϕ̇est-ϕ̇real)dt, wherein Ibiase (ϕ̇real) represents that Ibiase is a function of ϕ̇real.
     
    13. A non-transitory computer readable storage medium having stored thereon a computer program that, when executed by a processor, causes the processor to implement the control method for an autonomous vehicle of any one of claims 1 to 6.
     


    Ansprüche

    1. Regelverfahren für ein autonomes Fahrzeug, umfassend:

    Erhalten eines aktuellen Lenkradwinkels, einer aktuellen Fahrzeuggeschwindigkeit und einer aktuellen Gierrate des autonomen Fahrzeugs (101);

    Korrigieren des aktuellen Lenkradwinkels basierend auf einem ersten Korrekturabweichungskoeffizienten und einem zweiten Korrekturabweichungskoeffizienten, die in einem vorherigen Zyklus erhalten wurden, um einen korrigierten Lenkradwinkel zu erzeugen (102);

    Eingeben des korrigierten Lenkradwinkels und der aktuellen Fahrzeuggeschwindigkeit in ein vorab festgelegtes Fahrzeugdynamikmodell, um eine geschätzte Gierrate zu erhalten (103);

    Erhalten eines ersten Gierratenabweichungswerts zwischen der aktuellen Gierrate und der geschätzten Gierrate (104);

    Verarbeiten des ersten Gierratenabweichungswerts durch einen vorab festgelegten Algorithmus mit geschlossenem Regelkreis, um einen ersten Korrekturabweichungskoeffizienten und einen zweiten Korrekturabweichungskoeffizienten eines aktuellen Zyklus zu erhalten (105); und

    Durchführen einer Korrekturverarbeitung bei einem Ziellenkradwinkel basierend auf dem ersten Korrekturabweichungskoeffizienten und dem zweiten Korrekturabweichungskoeffizienten des aktuellen Zyklus, um einen korrigierten Ziellenkradwinkel zu erhalten, und Steuern des autonomen Fahrzeugs, um basierend auf dem korrigierten Ziellenkradwinkel zu fahren (106).


     
    2. Regelverfahren nach Anspruch 1, ferner umfassend:

    Auswählen einer gewünschten Gierrate basierend auf einem Szenario; und

    Erzeugen des Ziellenkradwinkels basierend auf der gewünschten Gierrate und der aktuellen Gierrate.


     
    3. Regelverfahren nach Anspruch 2, wobei das Erzeugen des Ziellenkradwinkels basierend auf der gewünschten Gierrate und der aktuellen Gierrate Folgendes umfasst:

    Umwandeln der gewünschten Gierrate durch ein vorab festgelegtes Referenzmodell, um eine Referenzgierrate zu erzeugen;

    Erhalten eines zweiten Gierratenabweichungswerts zwischen der aktuellen Gierrate und der Referenzgierrate;

    Durchführen einer Korrekturverarbeitung bei der gewünschten Gierrate basierend auf einem vorab festgelegten Modellreferenzanpassungsalgorithmus und dem zweiten Gierratenabweichungswert, um eine gewünschte Zielgierrate zu erhalten; und

    Eingeben der gewünschten Zielgierrate in ein Fahrzeugdynamikumkehrmodell, um den Ziellenkradwinkel zu erhalten.


     
    4. Regelverfahren nach einem der Ansprüche 1 bis 3, wobei das Korrigieren des aktuellen Lenkradwinkels basierend auf dem ersten Korrekturabweichungskoeffizienten und dem zweiten Korrekturabweichungskoeffizienten, die in dem vorherigen Zyklus erhalten wurden, um den korrigierten Lenkradwinkel zu erzeugen, Folgendes umfasst:

    Korrigieren des aktuellen Lenkradwinkels durch Verwenden einer ersten Formel basierend auf dem ersten Korrekturabweichungskoeffizienten und dem zweiten Korrekturabweichungskoeffizienten, die in dem vorherigen Zyklus erhalten wurden, um den korrigierten Lenkradwinkel zu erzeugen, wobei die erste Formel ausgedrückt wird durch:

    wobei δreal1 der aktuelle Lenkradwinkel ist, δreal2 der korrigierte Lenkradwinkel ist, slope der erste Korrekturabweichungskoeffizient des vorherigen Zyklus ist, und biase der zweite Korrekturabweichungskoeffizient des vorherigen Zyklus ist.


     
    5. Regelverfahren nach einem der Ansprüche 1 bis 4, wobei das Durchführen der Korrekturverarbeitung bei dem Ziellenkradwinkel basierend auf dem ersten Korrekturabweichungskoeffizienten und dem zweiten Korrekturabweichungskoeffizienten des aktuellen Zyklus Folgendes umfasst:

    Korrigieren des Ziellenkradwinkels durch Verwenden einer zweiten Formel basierend auf dem ersten Korrekturabweichungskoeffizienten und dem zweiten Korrekturabweichungskoeffizienten des aktuellen Zyklus, um den korrigierten Ziellenkradwinkel zu erhalten, wobei die zweite Formel ausgedrückt wird durch:

    wobei δcmd1 der Ziellenkradwinkel ist, δcmd2 der korrigierte Ziellenkradwinkel ist, slope der erste Korrekturabweichungskoeffizient des aktuellen Zyklus ist, und biase der zweite Korrekturabweichungskoeffizient des aktuellen Zyklus ist.


     
    6. Regelverfahren nach Anspruch 1, wobei der erste Korrekturabweichungskoeffizient slope durch eine Formel slope =Islope(ϕ̇real)∫(ϕ̇est-ϕ̇real)dt erhalten wird, wobei ϕ̇est eine geschätzte Gierrate in dem vorherigen Zyklus darstellt, ϕ̇real einen aktuellen Lenkradwinkel in dem vorherigen Zyklus darstellt, und Islope(ϕ̇real) darstellt, dass Islope eine Funktion von (ϕ̇real) ist; und
    der zweite Korrekturabweichungskoeffizient biase durch eine Formel biase = Ibiase(ϕ̇real)∫(ϕ̇est-ϕ̇real)dt erhalten wird, wobei Ibiase(ϕ̇real) darstellt, dass Ibiase eine Funktion von (ϕ̇real) ist.
     
    7. Regelvorrichtung für ein autonomes Fahrzeug, umfassend:

    ein erstes Erhaltungsmodul (401), das konfiguriert ist, um einen aktuellen Lenkradwinkel, eine aktuelle Fahrzeuggeschwindigkeit und eine aktuelle Gierrate eines Fahrzeugs zu erhalten;

    ein erstes Korrekturmodul (402), das konfiguriert ist, um den aktuellen Lenkradwinkel basierend auf einem ersten Korrekturabweichungskoeffizienten und einem zweiten Korrekturabweichungskoeffizienten, die in einem vorherigen Zyklus erhalten wurden, zu korrigieren, um einen korrigierten Lenkradwinkel zu erzeugen;

    ein erstes Berechnungsmodul (403), das konfiguriert ist, um den korrigierten Lenkradwinkel und die aktuelle Fahrzeuggeschwindigkeit in ein vorab festgelegtes Fahrzeugdynamikmodell einzugeben, um eine geschätzte Gierrate zu erhalten;

    ein zweites Erhaltungsmodul (404), das konfiguriert ist, um einen ersten Gierratenabweichungswert zwischen der aktuellen Gierrate und der geschätzten Gierrate zu erhalten;

    ein Verarbeitungsmodul (405), das konfiguriert ist, um den ersten Gierratenabweichungswert durch einen vorab festgelegten Algorithmus mit geschlossenem Regelkreis zu verarbeiten, um einen ersten Korrekturabweichungskoeffizienten und einen zweiten Korrekturabweichungskoeffizienten eines aktuellen Zyklus zu erhalten; und

    ein zweites Korrekturmodul (406), das konfiguriert ist, um eine Korrekturverarbeitung bei einem Ziellenkradwinkel basierend auf dem ersten Korrekturabweichungskoeffizienten und dem zweiten Korrekturabweichungskoeffizienten des aktuellen Zyklus durchzuführen, um einen korrigierten Ziellenkradwinkel zu erhalten, und das autonome Fahrzeug zum Fahren basierend auf dem korrigierten Ziellenkradwinkel zu steuern.


     
    8. Regelvorrichtung nach Anspruch 7, ferner umfassend:

    ein drittes Erhaltungsmodul (407), das konfiguriert ist, um eine gewünschte Gierrate basierend auf einem Szenario auszuwählen; und

    ein zweites Berechnungsmodul (408), das konfiguriert ist, um den Ziellenkradwinkel basierend auf der gewünschten Gierrate und der aktuellen Gierrate zu erzeugen.


     
    9. Regelvorrichtung nach Anspruch 8, wobei das zweite Berechnungsmodul (408) Folgendes umfasst:

    eine Erzeugungseinheit (4071), die konfiguriert ist, um die gewünschte Gierrate durch ein vorab festgelegtes Referenzmodell umzuwandeln, um eine Referenzgierrate zu erzeugen;

    eine Erhaltungseinheit (4072), die konfiguriert ist, um einen zweiten Gierratenabweichungswert zwischen der aktuellen Gierrate und der Referenzgierrate zu erhalten;

    eine Verarbeitungseinheit (4073), die konfiguriert ist, um eine Korrekturverarbeitung bei der gewünschten Gierrate basierend auf einem vorab festgelegten Modellreferenzanpassungsalgorithmus und dem zweiten Gierratenabweichungswert durchzuführen, um eine gewünschte Zielgierrate zu erhalten; und

    eine Berechnungseinheit (4074), die konfiguriert ist, um die gewünschte Zielgierrate in ein Fahrzeugdynamikumkehrmodell einzugeben, um den Ziellenkradwinkel zu erhalten.


     
    10. Regelvorrichtung nach einem der Ansprüche 7 bis 9, wobei das erste Korrekturmodul (402) konfiguriert ist, um:

    den aktuellen Lenkradwinkel durch Verwenden einer ersten Formel basierend auf dem ersten Korrekturabweichungskoeffizienten und dem zweiten Korrekturabweichungskoeffizienten, die in dem vorherigen Zyklus erhalten wurden, zu korrigieren, um den korrigierten Lenkradwinkel zu erzeugen, wobei die erste Formel ausgedrückt wird durch:

    wobei δreal1 der aktuelle Lenkradwinkel ist, δreal2 der korrigierte Lenkradwinkel ist, slope der erste Korrekturabweichungskoeffizient des vorherigen Zyklus ist und biase der zweite Korrekturabweichungskoeffizient des vorherigen Zyklus ist.


     
    11. Regelvorrichtung nach einem der Ansprüche 7 bis 10, wobei das zweite Korrekturmodul (406) konfiguriert ist, um:

    den Ziellenkradwinkel durch Verwenden einer zweiten Formel basierend auf dem ersten Korrekturabweichungskoeffizienten und dem zweiten Korrekturabweichungskoeffizienten des aktuellen Zyklus zu korrigieren, um den korrigierten Ziellenkradwinkel zu erhalten, wobei die zweite Formel ausgedrückt wird durch:

    wobei δcmd1 der Ziellenkradwinkel ist, der δcmd2 Ziellenkradwinkel ist, der nach der Korrekturverarbeitung erhalten wird, slope der erste Korrekturabweichungskoeffizient des aktuellen Zyklus ist und biase der zweite Korrekturabweichungskoeffizient des aktuellen Zyklus ist.


     
    12. Regelvorrichtung nach Anspruch 7, wobei der erste Korrekturabweichungskoeffizient durch eine Formel slope = Islope(ϕ̇real)∫(ϕ̇est-ϕ̇real)dt erhalten wird, wobei ϕ̇est eine geschätzte Gierrate in dem vorherigen Zyklus darstellt, ϕ̇real einen aktuellen Lenkradwinkel in dem vorherigen Zyklus darstellt und Islope(ϕ̇real) darstellt, dass Islope eine Funktion von ϕ̇real ist; und
    der zweite Korrekturabweichungskoeffizient biase durch eine Formel biase = Ibiase(ϕ̇real)∫(ϕ̇est-ϕ̇real)dt erhalten wird, wobei Ibiase(ϕ̇real) darstellt, dass Ibiase eine Funktion von ϕ̇real ist.
     
    13. Nichtflüchtiges computerlesbares Speichermedium, auf dem ein Computerprogramm gespeichert ist, das, wenn es von einem Prozessor ausgeführt wird, bewirkt, dass der Prozessor das Regelverfahren für ein autonomes Fahrzeug nach einem der Ansprüche 1 bis 6 implementiert.
     


    Revendications

    1. Procédé de commande pour un véhicule autonome, comprenant :

    l'obtention d'un angle de volant courant, d'une vitesse de véhicule courante et d'un taux de lacet courant du véhicule autonome (101) ;

    la correction de l'angle de volant courant sur la base d'un premier coefficient d'écart de correction et d'un deuxième coefficient d'écart de correction obtenus dans un cycle précédent pour générer un angle de volant corrigé (102) ;

    l'entrée de l'angle de volant corrigé et de la vitesse de véhicule courante dans un modèle dynamique de véhicule préréglé pour obtenir un taux de lacet estimé (103) ;

    l'obtention d'une première valeur d'écart de taux de lacet entre le taux de lacet courant et le taux de lacet estimé (104) ;

    le traitement de la première valeur d'écart de taux de lacet par un algorithme de boucle fermée préréglé pour obtenir un premier coefficient d'écart de correction et un deuxième coefficient d'écart de correction d'un cycle courant (105) ; et

    la réalisation d'un traitement de correction sur un angle de volant cible sur la base du premier coefficient d'écart de correction et du deuxième coefficient d'écart de correction du cycle courant pour obtenir un angle de volant cible corrigé, et la commande au véhicule autonome de conduire sur la base de l'angle de volant cible corrigé (106).


     
    2. Procédé de commande selon la revendication 1, comprenant en outre :

    la sélection d'un taux de lacet souhaité sur la base d'un scénario ; et

    la génération de l'angle de volant cible sur la base du taux de lacet souhaité et du taux de lacet courant.


     
    3. Procédé de commande selon la revendication 2, dans lequel la génération de l'angle de volant cible sur la base du taux de lacet souhaité et du taux de lacet courant comprend :

    la transformation du taux de lacet souhaité par un modèle de référence préréglé pour générer un taux de lacet de référence ;

    l'obtention d'une deuxième valeur d'écart de taux de lacet entre le taux de lacet courant et le taux de lacet de référence ;

    la réalisation d'un traitement de correction sur le taux de lacet souhaité sur la base d'un algorithme adaptatif de référence de modèle préréglé et de la deuxième valeur d'écart de taux de lacet pour obtenir un taux de lacet souhaité cible ; et

    l'entrée du taux de lacet souhaité cible dans un modèle inverse dynamique de véhicule pour obtenir l'angle de volant cible.


     
    4. Procédé de commande selon l'une quelconque des revendications 1 à 3, dans lequel la correction de l'angle de volant courant sur la base du premier coefficient d'écart de correction et du deuxième coefficient d'écart de correction obtenus dans le cycle précédent pour générer l'angle de volant corrigé comprend :

    la correction de l'angle de volant courant, par l'utilisation d'une première formule, sur la base du premier coefficient d'écart de correction et du deuxième coefficient d'écart de correction obtenus dans le cycle précédent pour générer l'angle de volant corrigé, dans lequel la première formule est exprimée par :

    δréel1 est l'angle de volant courant, δréel2 est l'angle de volant corrigé, pente est le premier coefficient d'écart de correction du cycle précédent, et biase est le deuxième coefficient d'écart de correction du cycle précédent.


     
    5. Procédé de commande selon l'une quelconque des revendications 1 à 4, dans lequel la réalisation du traitement de correction sur l'angle de volant cible sur la base du premier coefficient d'écart de correction et du deuxième coefficient d'écart de correction du cycle courant comprend :

    la correction de l'angle de volant cible, par l'utilisation d'une deuxième formule, sur la base du premier coefficient d'écart de correction et du deuxième coefficient d'écart de correction du cycle courant pour obtenir l'angle de volant cible corrigé, dans lequel la deuxième formule est exprimée par :

    δcmd1 est l'angle de volant cible, δcmd2 est l'angle de volant cible corrigé, pente est le premier coefficient d'écart de correction du cycle courant, et biase est le deuxième coefficient d'écart de correction du cycle courant.


     
    6. Procédé de commande selon la revendication 1, dans lequel le premier coefficient d'écart de correction, pente, est obtenu par un formel de pente = Ipente(ϕ̇réel) ∗ ∫(ϕ̇est - ϕ̇réel)dt,ϕ̇est représente un taux de lacet estimé dans le cycle précédent, ϕ̇réel représente un angle de volant courant dans le cycle précédent, et Ipente(ϕ̇réel) représente que Ipente est une fonction de ϕ̇réel ; et
    le deuxième coefficient d'écart de correction, biase, est obtenu par un formel de biase = Ibiase(ϕ̇réel) ∗ ∫(ϕ̇est - ϕ̇réel) dt,Ibiase(ϕ̇réel) représente que Ibiase est une fonction de ϕ̇réel.
     
    7. Appareil de commande pour un véhicule autonome, comprenant :

    un premier module d'obtention (401), configuré pour obtenir un angle de volant courant, une vitesse de véhicule courante et un taux de lacet courant d'un véhicule ;

    un premier module de correction (402), configuré pour corriger l'angle de volant courant sur la base d'un premier coefficient d'écart de correction et d'un deuxième coefficient d'écart de correction obtenus dans un cycle précédent pour générer un angle de volant corrigé ;

    un premier module de calcul (403), configuré pour entrer l'angle de volant corrigé et la vitesse de véhicule courante dans un modèle dynamique de véhicule préréglé pour obtenir un taux de lacet estimé ;

    un deuxième module d'obtention (404), configuré pour obtenir une première valeur d'écart de taux de lacet entre le taux de lacet courant et le taux de lacet estimé ;

    un module de traitement (405), configuré pour traiter la première valeur d'écart de taux de lacet par un algorithme de boucle fermée préréglé pour obtenir un premier coefficient d'écart de correction et un deuxième coefficient d'écart de correction d'un cycle courant ; et

    un deuxième module de correction (406), configuré pour réaliser un traitement de correction sur un angle de volant cible sur la base du premier coefficient d'écart de correction et du deuxième coefficient d'écart de correction du cycle courant pour obtenir un angle de volant cible corrigé, et commander au véhicule autonome de conduire sur la base de l'angle de volant cible corrigé.


     
    8. Appareil de commande selon la revendication 7, comprenant en outre :

    un troisième module d'obtention (407), configuré pour sélectionner un taux de lacet souhaité sur la base d'un scénario ; et

    un deuxième module de calcul (408), configuré pour générer l'angle de volant cible sur la base du taux de lacet souhaité et du taux de lacet courant.


     
    9. Appareil de commande selon la revendication 8, dans lequel le deuxième module de calcul (408) comprend :

    une unité de génération (4071), configurée pour transformer le taux de lacet souhaité par un modèle de référence préréglé pour générer un taux de lacet de référence ;

    une unité d'obtention (4072), configurée pour obtenir une deuxième valeur d'écart de taux de lacet entre le taux de lacet courant et le taux de lacet de référence ;

    une unité de traitement (4073), configurée pour réaliser un traitement de correction sur le taux de lacet souhaité sur la base d'un algorithme adaptatif de référence de modèle préréglé et de la deuxième valeur d'écart de taux de lacet pour obtenir un taux de lacet souhaité cible ; et

    une unité de calcul (4074), configurée pour entrer le taux de lacet souhaité cible dans un modèle inverse dynamique de véhicule pour obtenir l'angle de volant cible.


     
    10. Appareil de commande selon l'une quelconque des revendications 7 à 9, dans lequel le premier module de correction (402) est configuré pour :

    corriger l'angle de volant courant, par l'utilisation d'une première formule, sur la base du premier coefficient d'écart de correction et du deuxième coefficient d'écart de correction obtenus dans le cycle précédent pour générer l'angle de volant corrigé, dans lequel la première formule est exprimée par :

    δréel1 est l'angle de volant courant, δréel2 est l'angle de volant corrigé, pente est le premier coefficient d'écart de correction du cycle précédent, et biase est le deuxième coefficient d'écart de correction du cycle précédent.


     
    11. Appareil de commande selon l'une quelconque des revendications 7 à 10, dans lequel le deuxième module de correction (406) est configuré pour :

    corriger l'angle de volant cible, par l'utilisation d'une deuxième formule, sur la base du premier coefficient d'écart de correction et du deuxième coefficient d'écart de correction du cycle courant pour obtenir l'angle de volant cible corrigé, dans lequel la deuxième formule est exprimée par :

    δcmd1 est l'angle de volant cible, δcmd2 est l'angle de volant cible obtenu après le traitement de correction, pente est le premier coefficient d'écart de correction du cycle courant, et biase est le deuxième coefficient d'écart de correction du cycle courant.


     
    12. Appareil de commande selon la revendication 7, dans lequel le premier coefficient d'écart de correction, pente, est obtenu par un formel de pente = Ipente(ϕ̇réel) ∗ ∫(ϕ̇est-ϕ̇réel)dt, où ϕ̇est représente un taux de lacet estimé dans le cycle précédent, ϕ̇réel représente un angle de volant courant dans le cycle précédent, et Ipente(ϕ̇réel) représente que Ipente est une fonction de ϕ̇réel ; et
    le deuxième coefficient d'écart de correction, biase, est obtenu par un formel de biase = Ibiase(ϕ̇réel) ∗ ∫(ϕ̇est - ϕ̇réel) dt,Ibiase(ϕ̇réel) représente que Ibiase est une fonction de ϕ̇réel.
     
    13. Support de stockage non transitoire lisible par ordinateur sur lequel est stocké un programme informatique qui, lorsqu'il est exécuté par un processeur, amène le processeur à mettre en œuvre le procédé de commande pour un véhicule autonome selon l'une quelconque des revendications 1 à 6.
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description