(19)
(11)EP 3 783 837 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.07.2022 Bulletin 2022/30

(21)Application number: 20182779.7

(22)Date of filing:  20.06.2016
(51)International Patent Classification (IPC): 
H04L 41/0677(2022.01)
(52)Cooperative Patent Classification (CPC):
H04L 41/0677

(54)

SERVICE FAULT LOCATING METHOD AND APPARATUS

VERFAHREN UND VORRICHTUNG ZUR DIENSTFEHLERORTUNG

PROCÉDÉ ET APPAREIL DE LOCALISATION D'ANOMALIE DE SERVICE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 29.06.2015 CN 201510372320

(43)Date of publication of application:
24.02.2021 Bulletin 2021/08

(62)Application number of the earlier application in accordance with Art. 76 EPC:
16817166.8 / 3300301

(73)Proprietor: HUAWEI TECHNOLOGIES CO., LTD.
Shenzhen, Guangdong 518129 (CN)

(72)Inventors:
  • LI, Congjuan
    SHENZHEN, Guangdong 518129 (CN)
  • LI, Feng
    SHENZHEN, Guangdong 518129 (CN)

(74)Representative: Körber, Martin Hans 
Mitscherlich PartmbB Patent- und Rechtsanwälte Sonnenstrasse 33
80331 München
80331 München (DE)


(56)References cited: : 
WO-A2-2011/024187
US-A1- 2014 362 682
US-A1- 2011 219 111
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to the communications field, and in particular, to a service fault locating method and apparatus.

    BACKGROUND



    [0002] According to an actual requirement for operating a network by an operator, network management work is generally classified into three categories: operation (operation), administration (administration), and maintenance (maintenance), that is, OAM for short. In an existing OAM technology, many network technologies and network layers have respective OAM mechanisms and protocol tools for a same OAM function. For example, both for a continuity check (continuity check, CC for short) function, an Internet Protocol (Internet Protocol, IP for short) layer has Control Message Protocol (Internet Control Message Protocol, ICMP for short) ping, and a Multiprotocol Label Switching (Multi-Protocol Label Switching, MPLS for short) technology has label switched path (Label-Switched Path, LSP for short) ping.

    [0003] In an existing multi-layer OAM architecture network, an OAM packet at each layer has a specific encapsulation header/encapsulation value. OAM packets having different encapsulation headers/encapsulation values may be transmitted in a network along different forwarding paths, that is, OAM packets at different layers may have different forwarding paths. When a network fault is being located, to find a fault cause, different OAM packets generally need to be sent at multiple protocol layers, and an OAM packet at each protocol layer needs to have a same forwarding path as that of a service packet. However, an existing multi-layer OAM architecture does not have a service fault locating capability that ensures consistent forwarding paths of OAM packets at various protocol layers.

    [0004] To resolve the foregoing problem, a network virtualization over layer 3 (Network Virtualization Over Layer 3, NVO3 for short) working group in the Internet Engineering Task Force (Internet Engineering Task Force, IETF for short) proposes an OAM solution applied to a virtual extensible local area network (Virtual extensible Local Area Network, VxLAN for short). In this solution, a VxLAN OAM packet and a service packet use a same encapsulation form to ensure that the VxLAN OAM packet and the service packet have a same forwarding path. A time to live (Time To Live, TTL for short) field at an IP layer is used in the VxLAN OAM packet to complete a route tracking function of VxLAN OAM, so that a fault problem is located between two layer-3 devices. However, this solution can locate the problem only between two layer-3 devices, but cannot ensure that a layer-2 OAM packet and a service packet have a same forwarding path, and therefore, cannot precisely locate a layer-2 network problem.

    [0005] WO 2011/024187 discloses a protection of a Traffic Engineered Service Instance (TESI) via an Adjacent Segment Protection Domain without Forwarding Ambiguity using Segment Protection Groups.

    SUMMARY



    [0006] Embodiments of the present invention provide a service fault locating method and apparatus, so as to precisely locate a network fault problem in a multi-layer OAM architecture network.

    [0007] To achieve the foregoing objective, the embodiments of the present invention provide the following technical solutions:
    The present invention is defined by a service fault location method according to independent claim 1 and a service fault locating apparatus according to independent claim 12.

    [0008] Based on the service fault locating method and apparatus provided in the embodiments of the present invention, after it is determined that a service fault is between a first layer-3 device and a second layer-3 device, a first forwarding path of a service packet between the two layer-3 devices is further determined, and a forwarding entry is configured for a forwarding device in the first forwarding path, so that the forwarding device forwards an extended layer-2 OAM packet according to the first forwarding path. In this way, it is ensured that the extended layer-2 OAM packet and the service packet have a same forwarding path, and a layer-2 network fault problem can be precisely located.

    BRIEF DESCRIPTION OF DRAWINGS



    [0009] To describe the technical solutions in the embodiments of the present invention more clearly, the following briefly describes the accompanying drawings required for describing the embodiments.

    FIG. 1 is a first schematic flowchart of a service fault locating method according to an embodiment of the present invention;

    FIG. 2 is a schematic diagram of a format of an LTM packet according to an embodiment of the present invention;

    FIG. 3 is a schematic diagram of a format of a flag bit field in the LTM packet shown in FIG. 2;

    FIG. 4A and FIG. 4B are a second schematic flowchart of a service fault locating method according to an embodiment of the present invention;

    FIG. 5A and FIG. 5B are a schematic structural diagram of a VxLAN network according to an embodiment of the present invention;

    FIG. 6 is a schematic diagram of a format of an additional TLV field in the LTM packet shown in FIG. 2;

    FIG. 7 is a first schematic structural diagram of a service fault locating apparatus according to an embodiment of the present invention; and

    FIG. 8 is a second schematic structural diagram of a service fault locating apparatus according to an embodiment of the present invention.


    DESCRIPTION OF EMBODIMENTS



    [0010] The following clearly and completely describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Apparently, the described embodiments are merely some but not all of the embodiments of the present invention. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the protection scope of the present invention.

    [0011] It should be noted that, to help to clearly describe the technical solutions in the embodiments of the present invention, words such as "first" and "second" are used in the embodiments of the present invention to distinguish identical items or similar items having basically same functions or purposes. A person skilled in the art may understand that the words such as "first" and "second" do not limit a quantity and an execution order.

    First exemplary embodiment 1



    [0012] This embodiment of the present invention provides a service fault locating method. As shown in FIG. 1, the method includes the following steps.

    [0013] S101. Receive a service fault locating request message, where the service fault locating request message carries an IP address IPS of a source layer-3 device of a service packet, an IP address IPD of a destination layer-3 device of the service packet, and a characteristic parameter of the service packet.

    [0014] Specifically, in this embodiment of the present invention, the characteristic parameter of the service packet may specifically include a service quintuple (that is, a source IP address of a service, a destination IP address of the service, a source port number of the service, a destination port number of the service, and a protocol type). Certainly, the characteristic parameter of the service packet may further include another parameter, for example, a virtual local area network (Virtual Local Area Network, VLAN for short) configuration parameter. Details are not described in this embodiment of the present invention.

    [0015] S102. Determine, according to the characteristic parameter of the service packet, the IPS, and the IPD, that a service fault is between a first layer-3 device and a second layer-3 device, where the second layer-3 device is a next hop layer-3 device of the first layer-3 device.

    [0016] Specifically, an existing NVO3 VxLAN OAM solution may be used in this embodiment of the present invention. In a VxLAN OAM packet, a TTL field at an IP layer, the characteristic parameter of the service packet, the IPS, and the IPD are used to complete a route tracking function of VxLAN OAM, so that the service fault is located between two layer-3 devices. Certainly, the service fault may also be located between the two layer-3 devices in another manner. For details, refer to the following embodiment, and no description is provided herein.

    [0017] S103. Obtain a first network topology between the first layer-3 device and the second layer-3 device.

    [0018] Specifically, in this embodiment of the present invention, a service fault locating apparatus may request the first network topology between the first layer-3 device and the second layer-3 device from a software-defined networking (software-defined networking, SDN for short) controller or an element management system (element management system, EMS for short)/network management system (network management system, NMS for short) by using an IP address of the first layer-3 device and an IP address of the second layer-3 device as keywords. The first network topology may include a cascading relationship between devices, cascading port information such as a port number, a port Media Access Control (media access control, MAC for short) address, and a port IP address, a device type (a layer-3 device or a layer-2 device), and the like.

    [0019] In this embodiment of the present invention, "cascading" is specifically connecting, and "a cascaded device" is specifically a connected next hop device. For example, a cascaded device of A specifically refers to a next hop device connected to A.

    [0020] S104. Determine a first forwarding path of the service packet between the first layer-3 device and the second layer-3 device according to the first network topology and the characteristic parameter of the service packet.

    [0021] The first forwarding path is specifically a transmission path of the service packet between the first layer-3 device and the second layer-3 device. For example, the first forwarding path may be: first layer-3 device -> device A -> device B -> second layer-3 device.

    [0022] S105. Configure a forwarding entry for a forwarding device in the first forwarding path, and trigger the first layer-3 device to generate an extended layer-2 OAM packet, so that the forwarding device forwards the extended layer-2 OAM packet according to the first forwarding path.

    [0023] Specifically, in this embodiment of the present invention, the service fault locating apparatus may configure the forwarding entry for the forwarding device in the first forwarding path by using the SDN controller or the EMS/NMS.

    [0024] In this embodiment of the present invention, the forwarding device in the first forwarding path may specifically include the first layer-3 device and each layer-2 device between the first layer-3 device and the second layer-3 device. This embodiment of the present invention sets no specific limitation thereto.

    [0025] Preferably, the extended layer-2 OAM packet may be an extended link trace message (Link Trace Message, LTM for short). For example, as shown in FIG. 2, the extended layer-2 OAM packet is of an LTM format and includes a maintenance entity (Maintenance Entity, ME for short) group (ME Group, MEG for short) level (MEG Level, MEL for short) field, a version (version) field, an opcode (Opcode) field, a flag bit (flags) field, a type-length-value (Type-length-value, TLV for short) offset field, a transaction identifier (transaction ID) field, a TTL field, a source MAC address field, a destination MAC address field, an additional (additional) TLV field, and a TLV end field. The flag bit field is shown in FIG. 3, in which only a most significant bit is used. This means that the LTM packet is forwarded according to a MAC address obtained by learning from a forwarding table. By default, a value of the most significant bit is 1, and values of other seven bits are 0. In this embodiment of the present invention, one bit may be selected from the seven bits for extension. For example, the seventh bit is set to 1. This indicates that the layer-2 OAM packet is an extended layer-2 OAM packet, so that the extended layer-2 OAM packet may be distinguished from another layer-2 OAM packet unrelated to fault detection. Therefore, a forwarding path of the another layer-2 OAM packet unrelated to fault detection is prevented from being affected by configuration of a forwarding path of the extended layer-2 OAM packet.

    [0026] S106. Obtain a first path parameter that is of the first forwarding path and sent by the forwarding device, and determine a specific location of the service fault according to the first path parameter.

    [0027] Specifically, in this embodiment of the present invention, in a process in which the forwarding device in the first forwarding path forwards the extended layer-2 OAM packet according to the first forwarding path, the first path parameter of the first forwarding path may be detected, so that the forwarding device reports the first path parameter to the service fault locating apparatus. The service fault locating apparatus locates the specific location of the service fault according to the first path parameter.

    [0028] In this embodiment of the present invention, the service fault may be specifically a link fault, may be a port fault, or may be a device fault. This embodiment of the present invention sets no specific limitation thereto.

    [0029] In this embodiment of the present invention, a path parameter is specifically a parameter used to measure path quality, for example, a delay, a packet loss rate, or whether a path is connected.

    [0030] Specifically, as shown in FIG. 4A and FIG. 4B, the determining a first forwarding path of the service packet between the first layer-3 device and the second layer-3 device according to the first network topology and the characteristic parameter of the service packet (step S104) includes:

    [0031] S104a. Obtain an egress port of the first layer-3 device according to an ingress port of the first layer-3 device and the characteristic parameter of the service packet.

    [0032] S104b. Obtain a cascaded layer-2 device of the first layer-3 device according to the egress port of the first layer-3 device and the first network topology.

    [0033] S104c. For each layer-2 device between the first layer-3 device and the second layer-3 device, obtain an egress port of the layer-2 device according to an ingress port of the layer-2 device, the characteristic parameter of the service packet, and a layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device, where the ingress port of the layer-2 device is a port that is in the first network topology and that connects to an egress port of a previous cascaded device of the layer-2 device.

    [0034] Specifically, in this embodiment of the present invention, the layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device may specifically include a MAC address of the egress port of the first layer-3 device, a MAC address of an ingress port of the second layer-3 device, a VLAN value, and the like. This embodiment of the present invention sets no specific limitation thereto.

    [0035] S104d. Obtain a cascaded device of the layer-2 device according to the egress port of the layer-2 device and the first network topology.

    [0036] S104e. Determine the first forwarding path of the service packet between the first layer-3 device and the second layer-3 device according to the cascaded layer-2 device of the first layer-3 device and the cascaded device of each layer-2 device.

    [0037] In a possible implementation manner, the obtaining an egress port of the first layer-3 device according to an ingress port of the first layer-3 device and the characteristic parameter of the service packet (step S104a) may specifically include:

    obtaining a forwarding policy of the first layer-3 device that is opened to the outside by the first layer-3 device; and

    obtaining, by means of calculation, the egress port of the first layer-3 device according to the ingress port of the first layer-3 device, the characteristic parameter of the service packet, and the forwarding policy of the first layer-3 device.



    [0038] For each layer-2 device between the first layer-3 device and the second layer-3 device, the obtaining an egress port of the layer-2 device according to an ingress port of the layer-2 device, the characteristic parameter of the service packet, and a layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device (step S104c) may specifically include:

    obtaining a forwarding policy of the layer-2 device that is opened to the outside by the layer-2 device; and

    obtaining, by means of calculation, the egress port of the layer-2 device according to the ingress port of the layer-2 device, the characteristic parameter of the service packet, the layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device, and the forwarding policy of the layer-2 device.



    [0039] In another possible implementation manner, the obtaining an egress port of the first layer-3 device according to an ingress port of the first layer-3 device and the characteristic parameter of the service packet (step S104a) may specifically include:

    invoking an application programming interface (application programming interface, API for short) of the first layer-3 device, where the first layer-3 device opens a forwarding policy of the first layer-3 device to the outside in a form of the API; and

    querying the forwarding policy of the first layer-3 device by using the ingress port of the first layer-3 device and the characteristic parameter of the service packet as keywords, to obtain the egress port of the first layer-3 device that is sent by the first layer-3 device.



    [0040] The obtaining an egress port of the layer-2 device according to an ingress port of the layer-2 device, the characteristic parameter of the service packet, and a layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device (step S104c) may specifically include:

    invoking an API of the layer-2 device, where the layer-2 device opens a forwarding policy of the layer-2 device to the outside in a form of the API; and

    querying the forwarding policy of the layer-2 device by using the ingress port of the layer-2 device, the characteristic parameter of the service packet, and the layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device as keywords, to obtain the egress port of the layer-2 device that is sent by the layer-2 device.



    [0041] The forwarding policy in this embodiment of the present invention may include a multi-path selection algorithm, a forwarding entry, and the like. This embodiment of the present invention sets no specific limitation thereto.

    [0042] The following uses a specific example to briefly describe the service fault locating method provided in this embodiment of the present invention.

    [0043] As shown in FIG. 5A and FIG. 5B, FIG. 5A and FIG. 5B are a schematic diagram of a VxLAN network. A source network virtualization endpoint (source Network Virtualization Endpoint, S-NVE for short) is a VxLAN gateway, and may be considered as a source layer-3 device. A destination network virtualization endpoint (destination Network Virtualization Endpoint, D-NVE for short) is a VxLAN gateway at another end, and may be considered as a destination layer-3 device. When a user finds that quality of service deteriorates and a fault location needs to be located, a service fault locating request message that carries an IP address IPS of the S-NVE, an IP address IPD of the D-NVE, and a service quintuple (that is, a source IP address of a service, a destination IP address of the service, a source port number of the service, a destination port number of the service, and a protocol type) is sent to the service fault locating apparatus, to request to locate a service fault location. The service fault locating apparatus locates the service fault according to the following steps (it is assumed that a service forwarding path is shown by an arrow in FIG. 5A and FIG. 5B, and the service fault occurs between N5 and N6):

    Step 1: Use the IP address IPS of the source layer-3 device S-NVE, an IP address IPD of a destination layer-3 device D-NVE1, and the service quintuple (that is, the source IP address of the service, the destination IP address of the service, the source port number of the service, the destination port number of the service, and the protocol type) as keywords, to locate the service fault between a first layer-3 device N4 and the second layer-3 device D-NVE1 by using the NVO3 VxLAN OAM solution.

    Step 2: Use an IP address IPN4 of the first layer-3 device N4 and the IP address IPD of the second layer-3 device D-NVE1 as keywords, to request a network topology between N4 and the D-NVE1 from the SDN controller or the EMS/NMS. The network topology includes a cascading relationship between devices, cascading port information (a port number, a port MAC address, a port IP address, and the like), and a device type (a layer-3 forwarding device or a layer-2 forwarding device). For details, refer to a network topology between N4 and the D-NVE1 in FIG. 5A and FIG. 5B.

    Step 3: Determine a first forwarding path of a service packet between N4 and the D-NVE1. Specific steps are as follows:

    1. (a). Invoke an API of N4, query a forwarding policy of N4 by using a characteristic parameter (for example, the service quintuple) of the service packet and an ingress port IN1 of N4 as keywords, to obtain an egress port OUT1 of N4, and match the egress port OUT1 with the network topology obtained in step 2, to learn that a cascaded device is N5, an ingress port is IN1, and N5 is a layer-2 device.
    2. (b). Invoke an API of N5, use a MAC address of the egress port OUT1 of N4 as a source MAC address, use a MAC address of an ingress port IN1 of the next hop layer-3 device D-NVE1 as a destination MAC address, query a forwarding policy of N5 by using the ingress port IN1 that is obtained from N4 by means of query in (a), the characteristic parameter (for example, the service quintuple) of the service packet, the source MAC address, and the destination MAC address as keywords, to obtain an egress port OUT1 of N5, and match the egress port OUT1 with the network topology obtained in step 2, to learn that a cascaded device is N6, an ingress port is IN1, and N6 is a layer-2 device.
    3. (c). Invoke an API of N6, query a forwarding policy of N6 by using the ingress port IN1 that is obtained from N5 by means of query in (b), the source MAC address, the destination address, and the characteristic parameter (for example, the service quintuple) of the service packet as keywords, to obtain an egress port OUT1 of N6, match the egress port OUT1 with the network topology obtained in step 2, to learn that a cascaded device is the D-NVE1, that is, the second layer-3 device, and terminate querying.



    [0044] Therefore, the obtained first forwarding path of the service packet between N4 and the D-NVE1 is: (IN1) N4 (OUT1) -> (IN1) N5 (OUT1) -> (IN1) N6 (OUT1) -> (IN1) D-NVE1.

    [0045] Step 4: Configure a forwarding entry for a forwarding device in the first forwarding path according to the first forwarding path. Specific settings may be as follows:

    N4: Destination MAC is a D-NVE, a service fault locating identifier is carried, and an egress port is OUT1.

    N5: The service packet enters from an IN1 port, destination MAC is the D-NVE, a service fault locating identifier is carried, and an egress port is OUT1.

    N6: The service packet enters from an IN1 port, destination MAC is the D-NVE, a service fault locating identifier is carried, and an egress port is OUT1.



    [0046] Step 5: Trigger the first layer-3 device N4 to generate an extended layer-2 OAM packet, so that the forwarding device forwards the extended layer-2 OAM packet according to the first forwarding path.

    [0047] Specifically, for a packet format of the extended layer-2 OAM packet, refer to the description in the foregoing embodiment. Details are not described herein.

    [0048] Step 6: Obtain a first path parameter that is of the first forwarding path and sent by the forwarding device, and determine a specific location of the service fault according to the first path parameter.

    [0049] For example, assuming that path parameters sent by N5 and N6 are excessively large or small, it represents that a location of a cross-layer service fault is between N5 and N6.

    [0050] Hereto, execution of the entire service fault locating method is finished.

    [0051] It should be noted that step 3 in this example is merely described by using one manner for obtaining the first forwarding path in the foregoing embodiment as an example, and certainly, the first forwarding path may also be obtained in another manner for obtaining the first forwarding path in the foregoing embodiment. Details are not described herein.

    [0052] Further, in the service fault locating method provided in this embodiment of the present invention, the obtaining an egress port of the first layer-3 device according to an ingress port of the first layer-3 device and the characteristic parameter of the service packet (step S104a) may specifically include:

    determining a quantity of cascaded layer-2 devices of the first layer-3 device according to the first network topology; and

    if the quantity of cascaded layer-2 devices of the first layer-3 device is not 1, obtaining the egress port of the first layer-3 device according to the ingress port of the first layer-3 device and the characteristic parameter of the service packet.



    [0053] The obtaining an egress port of the layer-2 device according to an ingress port of the layer-2 device, the characteristic parameter of the service packet, and a layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device (step S104c) may specifically include:

    determining a quantity of cascaded devices of the layer-2 device according to the first network topology; and

    if the quantity of cascaded devices of any layer-2 device is not 1, obtaining the egress port of the layer-2 device according to the ingress port of the layer-2 device, the characteristic parameter of the service packet, and the layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device.



    [0054] Further, after the determining a quantity of cascaded layer-2 devices of the first layer-3 device according to the first network topology, the method further includes:

    if the quantity of cascaded layer-2 devices of the first layer-3 device is 1, determining that the cascaded layer-2 device of the first layer-3 device is the cascaded layer-2 device of the first layer-3 device in the first network topology; and

    after the determining a quantity of cascaded devices of the layer-2 device according to the first network topology, the method further includes:
    if the quantity of cascaded devices of the any layer-2 device is 1, determining that the cascaded device of the layer-2 device is the cascaded device of the layer-2 device in the first network topology.



    [0055] That is, in this embodiment of the present invention, according to the first network topology, when the device has multiple egress ports, that is, the device has multiple paths, the foregoing path search manner is used. If a device has only one egress port, that is, the device does not have multiple paths, the foregoing path search manner may not be used, and a cascading sequence is directly determined according to the first network topology. In this way, a path search time can be reduced, and execution efficiency of the service fault locating method can be improved.

    [0056] Optionally, in the service fault locating method provided in this embodiment of the present invention, the extended layer-2 OAM packet may further include at least one TLV field, and the TLV field is used to identify extended layer-2 OAM packets of different services.

    [0057] As described above, the extended layer-2 OAM packet may be specifically an extended LTM packet. In the LTM packet shown in FIG. 2, the LTM packet may include no TLV field or multiple TLV fields. However, the field is not mandatory, and is decided by the user according to a need. A TLV offset field is used to indicate a byte offset of the first TLV field relative to the TLV offset field. For example, if a TLV offset value is 0, it indicates that the first TLV field exactly follows the TLV offset field. In addition, each LTM packet necessarily carries a TLV end field, that is, there are only TLV fields between an offset location specified by the TLV offset field and a location in which the TLV end field is located. There may be multiple TLV fields, or there may be no TLV field. A format of a TLV field may be shown in FIG. 6, lengths of a type field and a length field in each TLV field are fixed, and a length of a value is specified by the length field. Therefore, when a start location of a TLV field is learned, an end location of the TLV field may be obtained by means of calculation. If there is no TLV end field at an end location, the end location is a start location of another TLV field.

    [0058] Specifically, packets of multiple services may be forwarded between N4 and the D-NVE1, and forwarding paths of the packets are different. For example, some packets are forwarded along an N4-N5-N6-D-NVE1 path, and some packets are forwarded along an N4-N8-N6-D-NVE1 path. However, different extended layer-2 OAM packets may have a same destination MAC address and a same Ethernet type, and all include a first field. In this case, different services cannot be distinguished. Therefore, in this embodiment of the present invention, the extended layer-2 OAM packet may further include at least one TLV field, and the TLV field is used to identify extended layer-2 OAM packets of different services.

    [0059] In this way, the extended layer-2 OAM packets of different services may be distinguished by using the TLV field, so that multiple service faults may be located at the same time.

    [0060] It should be noted that the TLV field needs to be redefined according to a TLV format in this embodiment of the present invention. For example, when a type field value is specified as 200, it represents that the TLV field is a TLV field of a service identifier. A value of the service identifier may be read from a value field of the TLV field according to a length field of the TLV field.

    [0061] Further, as described above, the existing NVO3 VxLAN OAM solution may be used in step S102. In a VxLAN OAM packet, a TTL field at an IP layer, the characteristic parameter of the service packet, the IPS, and the IPD are used to complete a route tracking function of VxLAN OAM, so that the service fault is located between two layer-3 devices. Certainly, a cross-layer service fault problem may also be located between two layer-3 devices in another manner.

    [0062] For example, the determining, according to the characteristic parameter of the service packet, the IPS, and the IPD, that a service fault is between a first layer-3 device and a second layer-3 device (step S102) may specifically include:

    obtaining a second network topology between the source layer-3 device and the destination layer-3 device according to the IPS and the IPD;

    determining a second forwarding path of the service packet between the source layer-3 device and the destination layer-3 device according to the second network topology and the characteristic parameter of the service packet; and

    after a layer-3 OAM packet is forwarded according to the second forwarding path, and a second path parameter of the second forwarding path is obtained, determining, according to the second path parameter, that the service fault is between the first layer-3 device and the second layer-3 device.



    [0063] That is, in this embodiment of the present invention, a fault at a layer above layer 2 may be located by using a layer-2 service fault locating idea that a forwarding path of a service packet is first determined, and then a forwarding path of an OAM packet is set according to the determined forwarding path. For example, when a layer-3 service fault is being located, a second forwarding path between a source layer-3 device and a destination layer-3 device may be first found according to the foregoing method, a forwarding entry of a forwarding device along the second forwarding path is then set according to the second forwarding path, and a layer-3 OAM packet is forwarded according to the second forwarding path, so as to detect a second path parameter between layer-3 devices through which a service packet passes, thereby determining, according to the second path parameter, that the service fault is between a first layer-3 device and a second layer-3 device.

    [0064] This embodiment of the present invention provides the service fault locating method, including: receiving a service fault locating request message, where the service fault locating request message carries an IP address IPS of a source layer-3 device of a service packet, an IP address IPD of a destination layer-3 device of the service packet, and a characteristic parameter of the service packet; determining, according to the characteristic parameter of the service packet, the IPS, and the IPD, that a service fault is between a first layer-3 device and a second layer-3 device; obtaining a first network topology between the first layer-3 device and the second layer-3 device; determining a first forwarding path of the service packet between the first layer-3 device and the second layer-3 device according to the first network topology and the characteristic parameter of the service packet; configuring a forwarding entry for a forwarding device in the first forwarding path, and triggering the first layer-3 device to generate an extended layer-2 OAM packet, so that the forwarding device forwards the extended layer-2 OAM packet according to the first forwarding path; and obtaining a first path parameter that is of the first forwarding path and sent by the forwarding device, and determining a specific location of the service fault according to the first path parameter. In this embodiment of the present invention, after it is determined that the service fault is between the first layer-3 device and the second layer-3 device, the first forwarding path of the service packet between the two layer-3 devices is further determined, and the forwarding entry is configured for the forwarding device in the first forwarding path, so that the forwarding device forwards the extended layer-2 OAM packet according to the first forwarding path. Therefore, it is ensured that the extended layer-2 OAM packet and the service packet have a same forwarding path, and a layer-2 network fault problem can be precisely located.

    Second exemplary embodiment



    [0065] This embodiment of the present invention provides a service fault locating apparatus 700. Specifically, as shown in FIG. 7, the service fault locating apparatus 700 includes: a receiving unit 701, a determining unit 702, an obtaining unit 703, a configuration unit 704, and a trigger unit 705.

    [0066] The receiving unit 701 is configured to receive a service fault locating request message, where the service fault locating request message carries an IP address IPS of a source layer-3 device of a service packet, an IP address IPD of a destination layer-3 device of the service packet, and a characteristic parameter of the service packet.

    [0067] The determining unit 702 is configured to determine, according to the characteristic parameter of the service packet, the IPS, and the IPD, that a service fault is between a first layer-3 device and a second layer-3 device, where the second layer-3 device is a next hop layer-3 device of the first layer-3 device.

    [0068] The obtaining unit 703 is configured to obtain a first network topology between the first layer-3 device and the second layer-3 device.

    [0069] The determining unit 702 is further configured to determine a first forwarding path of the service packet between the first layer-3 device and the second layer-3 device according to the first network topology and the characteristic parameter of the service packet.

    [0070] The configuration unit 704 is configured to configure a forwarding entry for a forwarding device in the first forwarding path.

    [0071] The trigger unit 705 is configured to trigger the first layer-3 device to generate an extended layer-2 OAM packet, so that the forwarding device forwards the extended layer-2 OAM packet according to the first forwarding path.

    [0072] The obtaining unit 703 is further configured to obtain a first path parameter that is of the first forwarding path and sent by the forwarding device.

    [0073] The determining unit 702 is further configured to determine a specific location of the service fault according to the first path parameter.

    [0074] Further, the determining unit 702 is specifically configured to:

    obtain an egress port of the first layer-3 device according to an ingress port of the first layer-3 device and the characteristic parameter of the service packet;

    obtain a cascaded layer-2 device of the first layer-3 device according to the egress port of the first layer-3 device and the first network topology;

    for each layer-2 device between the first layer-3 device and the second layer-3 device, obtain an egress port of the layer-2 device according to an ingress port of the layer-2 device, the characteristic parameter of the service packet, and a layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device, where the ingress port of the layer-2 device is a port that is in the first network topology and that connects to an egress port of a previous cascaded device of the layer-2 device;

    obtain a cascaded device of the layer-2 device according to the egress port of the layer-2 device and the first network topology; and

    determine the first forwarding path of the service packet between the first layer-3 device and the second layer-3 device according to the cascaded layer-2 device of the first layer-3 device and the cascaded device of each layer-2 device.



    [0075] Further, in a possible implementation manner, the determining unit 702 is specifically configured to:

    obtain a forwarding policy of the first layer-3 device that is opened to the outside by the first layer-3 device; and

    obtain, by means of calculation, the egress port of the first layer-3 device according to the ingress port of the first layer-3 device, the characteristic parameter of the service packet, and the forwarding policy of the first layer-3 device; and

    the determining unit 702 is specifically configured to:

    obtain a forwarding policy of the layer-2 device that is opened to the outside by the layer-2 device; and

    obtain, by means of calculation, the egress port of the layer-2 device according to the ingress port of the layer-2 device, the characteristic parameter of the service packet, the layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device, and the forwarding policy of the layer-2 device.



    [0076] In another possible implementation manner, the determining unit 702 is specifically configured to:

    invoke an API of the first layer-3 device, where the first layer-3 device opens a forwarding policy of the first layer-3 device to the outside in a form of the API; and

    query the forwarding policy of the first layer-3 device by using the ingress port of the first layer-3 device and the characteristic parameter of the service packet as keywords, to obtain the egress port of the first layer-3 device that is sent by the first layer-3 device; and

    the determining unit 702 is specifically configured to:

    invoke an API of the layer-2 device, where the layer-2 device opens a forwarding policy of the layer-2 device to the outside in a form of the API; and

    query the forwarding policy of the layer-2 device by using the ingress port of the layer-2 device, the characteristic parameter of the service packet, and the layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device as keywords, to obtain the egress port of the layer-2 device that is sent by the layer-2 device.



    [0077] Further, the determining unit 702 is specifically configured to:

    determine a quantity of cascaded layer-2 devices of the first layer-3 device according to the first network topology; and

    if the quantity of cascaded layer-2 devices of the first layer-3 device is not 1, obtain the egress port of the first layer-3 device according to the ingress port of the first layer-3 device and the characteristic parameter of the service packet; and

    the determining unit 702 is specifically configured to:

    determine a quantity of cascaded devices of the layer-2 device according to the first network topology; and

    if the quantity of cascaded devices of the layer-2 device is not 1, obtain the egress port of the layer-2 device according to the ingress port of the layer-2 device, the characteristic parameter of the service packet, and the layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device.



    [0078] Further, the determining unit 702 is further specifically configured to:
    after determining the quantity of cascaded layer-2 devices of the first layer-3 device according to the first network topology, if the quantity of cascaded layer-2 devices of the first layer-3 device is 1, determine that the cascaded layer-2 device of the first layer-3 device is the cascaded layer-2 device of the first layer-3 device in the first network topology.

    [0079] The determining unit 702 is further specifically configured to:
    after determining the quantity of cascaded devices of the layer-2 device according to the first network topology, if the quantity of cascaded devices of the any layer-2 device is 1, determine that the cascaded device of the layer-2 device is the cascaded device of the layer-2 device in the first network topology.

    [0080] Preferably, the extended layer-2 OAM packet further includes at least one type-length-value TLV field, and the TLV field is used to identify extended layer-2 OAM packets of different services.

    [0081] Further, the determining unit 702 is specifically configured to:

    obtain a second network topology between the source layer-3 device and the destination layer-3 device according to the IPS and the IPD;

    determine a second forwarding path of the service packet between the source layer-3 device and the destination layer-3 device according to the second network topology and the characteristic parameter of the service packet; and

    after a layer-3 OAM packet is forwarded according to the second forwarding path, and a second path parameter of the second forwarding path is obtained, determine, according to the second path parameter, that the service fault is between the first layer-3 device and the second layer-3 device.



    [0082] Specifically, for a service fault locating method performed by the service fault locating apparatus 700 provided in this embodiment of the present invention, refer to the description in Embodiment 1. Details are not described in this embodiment of the present invention.

    [0083] This embodiment of the present invention provides the service fault locating apparatus, including: a receiving unit, a determining unit, an obtaining unit, a configuration unit, and a trigger unit. The receiving unit receives a service fault locating request message, where the service fault locating request message carries an IP address IPS of a source layer-3 device of a service packet, an IP address IPD of a destination layer-3 device of the service packet, and a characteristic parameter of the service packet. The determining unit determines, according to the characteristic parameter of the service packet, the IPS, and the IPD, that a service fault is between a first layer-3 device and a second layer-3 device. The obtaining unit obtains a first network topology between the first layer-3 device and the second layer-3 device. The determining unit determines a first forwarding path of the service packet between the first layer-3 device and the second layer-3 device according to the first network topology and the characteristic parameter of the service packet. The configuration unit configures a forwarding entry for a forwarding device in the first forwarding path. The trigger unit triggers the first layer-3 device to generate an extended layer-2 OAM packet, so that the forwarding device forwards the extended layer-2 OAM packet according to the first forwarding path. The obtaining unit obtains a first path parameter that is of the first forwarding path and sent by the forwarding device. The determining unit determines a specific location of the service fault according to the first path parameter. After determining that the service fault is between the first layer-3 device and the second layer-3 device, an OAM apparatus provided in this embodiment of the present invention further determines the first forwarding path of the service packet between the two layer-3 devices, and configures the forwarding entry for the forwarding device in the first forwarding path, so that the forwarding device forwards the extended layer-2 OAM packet according to the first forwarding path. Therefore, it is ensured that the extended layer-2 OAM packet and the service packet have a same forwarding path, and a layer-2 network fault problem can be precisely located.

    Third exemplary embodiment



    [0084] This embodiment of the present invention provides a service fault locating apparatus 80. Specifically, as shown in FIG. 8, the service fault locating apparatus 80 includes: a processor 81, a communications interface 82, a memory 83, and a bus 84.

    [0085] The processor 81 may be specifically a central processing unit (central processing unit, CPU for short), an application-specific integrated circuit (applications-specific integrated circuit, ASIC for short), or the like. This embodiment of the present invention sets no specific limitation thereto.

    [0086] The memory 83 may specifically include a high-speed random access memory (random access memory, RAM for short), or may include a non-volatile memory (non-volatile memory), for example, at least one magnetic disk memory. This embodiment of the present invention sets no specific limitation thereto.

    [0087] The bus 84 may be specifically an industry standard architecture (Industry Standard Architecture, ISA for short) bus, a peripheral component interconnect (Peripheral Component Interconnect, PCI for short) bus, an extended industry standard architecture (Extended Industry Standard Architecture, EISA for short) bus, or the like. The bus may be classified into an address bus, a data bus, a control bus, or the like. For ease of representation, the bus is represented in FIG. 8 by using only one line, but it does not indicate that there is only one bus or only one type of bus.

    [0088] The bus 84 is configured to implement connection and communication between the processor 81, the communications interface 82, and the memory 83.

    [0089] The communications interface 82 is configured to implement communication between the service fault locating apparatus 80 and the outside.

    [0090] The processor 81 is configured to invoke program code 831 stored in the memory 83, to implement the method shown in FIG. 1, FIG. 4A, and FIG. 4B.

    [0091] Specifically, for a service fault locating method performed by the service fault locating apparatus 80 provided in this embodiment of the present invention, refer to the description in Embodiment 1. Details are not described in this embodiment of the present invention.

    [0092] After determining that a service fault is between a first layer-3 device and a second layer-3 device, an OAM apparatus provided in this embodiment of the present invention further determines a first forwarding path of a service packet between the two layer-3 devices, and configures a forwarding entry for a forwarding device in the first forwarding path, so that the forwarding device forwards an extended layer-2 OAM packet according to the first forwarding path. Therefore, it is ensured that the extended layer-2 OAM packet and the service packet have a same forwarding path, and a layer-2 network fault problem can be precisely located.

    [0093] It may be clearly understood by a person skilled in the art that, for the purpose of convenient and brief description, in the apparatus described above, division of the foregoing function modules is taken as an example for illustration. In actual application, the foregoing functions can be allocated to different modules and implemented according to a requirement, that is, an inner structure of an apparatus is divided into different function modules to implement all or part of the functions described above. For a detailed working process of the foregoing system, apparatus, and unit, reference may be made to a corresponding process in the foregoing method embodiments, and details are not described herein again.

    [0094] In the several embodiments provided in this application, it should be understood that the disclosed system, apparatus, and method may be implemented in other manners. For example, the described apparatus embodiment is merely an example. For example, the module or unit division is merely logical function division and may be other division in actual implementation. For example, a plurality of units or components may be combined or integrated into another system, or some features may be ignored or not performed. In addition, the displayed or discussed mutual couplings or direct couplings or communication connections may be implemented by using some interfaces. The indirect couplings or communication connections between the apparatuses or units may be implemented in electronic, mechanical, or other forms.

    [0095] The units described as separate parts may or may not be physically separate, and parts displayed as units may or may not be physical units, may be located in one position, or may be distributed on a plurality of network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.

    [0096] In addition, functional units in the embodiments of the present invention may be integrated into one processing unit, or each of the units may exist alone physically, or two or more units are integrated into one unit. The integrated unit may be implemented in a form of hardware, or may be implemented in a form of a software functional unit.

    [0097] When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, the integrated unit may be stored in a computer-readable storage medium. Based on such an understanding, the technical solutions of the present invention essentially, or the part contributing to the prior art, or all or a part of the technical solutions may be implemented in the form of a software product. The software product is stored in a storage medium and includes several instructions for instructing a computer device (which may be a personal computer, a server, or a network device) or a processor to perform all or a part of the steps of the methods described in the embodiments of the present invention. The foregoing storage medium includes: any medium that can store program code, such as a USB flash drive, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disc.

    [0098] -- [0132] (excised)


    Claims

    1. A service fault locating method, comprising:

    determining (S102), that a service fault exists between a first layer-3 device and a second layer-3 device, wherein the second layer-3 device is a next hop layer-3 device of the first layer-3 device and wherein the service fault comprises a link fault, port fault or device fault;

    obtaining (S103) a first network topology between the first layer-3 device and the second layer-3 device; determining (S104) a first forwarding path of a service packet between the first layer-3 device and the second layer-3 device according to the first network topology and a characteristic parameter of the service packet;

    configuring (S105) a forwarding entry for a forwarding device in the first forwarding path, and triggering (S105) the first layer-3 device to generate an extended layer-2 OAM packet, so that the extended layer-2 OAM packet and the service packet have a same forwarding path and the forwarding device forwards the extended layer-2 OAM packet according to the first forwarding path; and

    obtaining (S106) a first path parameter that is of the first forwarding path and sent by the forwarding device, and determining a specific location of the service fault according to the first path parameter, wherein a path parameter is a parameter used to measure path quality.


     
    2. The method according to claim 1, wherein before the determining (S102), that the service fault exists between the first layer-3 device and the second layer-3 device, further comprising:
    receiving (S101) a service fault locating request message, wherein the service fault locating request message comprises the characteristic parameter of the service packet.
     
    3. The method according to claim 2, wherein the service fault locating request message further comprises a Network Protocol, IP, address IPS of a source layer-3 device of the service packet, an IP address IPD of a destination layer-3 device of the service packet;
    the determining (S102), that the service fault exists between the first layer-3 device and the second layer-3 device comprises:
    determining according to the characteristic parameter of the service packet, the IPS, and the IPD, that the service fault exists between the first layer-3 device and the second layer-3 device.
     
    4. The method according to any one of claims 1 to 3, wherein the determining a first forwarding path of the service packet between the first layer-3 device and the second layer-3 device according to the first network topology and the characteristic parameter of the service packet comprises:

    obtaining (S104a) an egress port of the first layer-3 device according to an ingress port of the first layer-3 device and the characteristic parameter of the service packet;

    obtaining (SI04b) a cascaded layer-2 device of the first layer-3 device according to the egress port of the first layer-3 device and the first network topology;

    for each layer-2 device between the first layer-3 device and the second layer-3 device, obtaining (S104c) an egress port of the layer-2 device according to an ingress port of the layer-2 device, the characteristic parameter of the service packet, and a layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device, wherein the ingress port of the layer-2 device is a port that is in the first network topology and that connects to an egress port of a previous cascaded device of the layer-2 device;

    obtaining (S104d) a cascaded device of the layer-2 device according to the egress port of the layer-2 device and the first network topology; and

    determining (S104e) the first forwarding path of the service packet between the first layer-3 device and the second layer-3 device according to the cascaded layer-2 device of the first layer-3 device and the cascaded device of each layer-2 device.


     
    5. The method according to claim 4, wherein the obtaining an egress port of the first layer-3 device according to an ingress port of the first layer-3 device and the characteristic parameter of the service packet comprises:

    obtaining a forwarding policy of the first layer-3 device that is opened to the outside by the first layer-3 device; and

    obtaining, by means of calculation, the egress port of the first layer-3 device according to the ingress port of the first layer-3 device, the characteristic parameter of the service packet, and the forwarding policy of the first layer-3 device; and

    the obtaining an egress port of the layer-2 device according to an ingress port of the layer-2 device, the characteristic parameter of the service packet, and a layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device comprises:

    obtaining a forwarding policy of the layer-2 device that is opened to the outside by the layer-2 device; and

    obtaining, by means of calculation, the egress port of the layer-2 device according to the ingress port of the layer-2 device, the characteristic parameter of the service packet, the layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device, and the forwarding policy of the layer-2 device.


     
    6. The method according to claim 4, wherein the obtaining an egress port of the first layer-3 device according to an ingress port of the first layer-3 device and the characteristic parameter of the service packet comprises:

    invoking an application programming interface, API, of the first layer-3 device, wherein the first layer-3 device opens a forwarding policy of the first layer-3 device to the outside in a form of the API; and

    querying the forwarding policy of the first layer-3 device by using the ingress port of the first layer-3 device and the characteristic parameter of the service packet as keywords, to obtain the egress port of the first layer-3 device that is sent by the first layer-3 device; and

    the obtaining an egress port of the layer-2 device according to an ingress port of the layer-2 device, the characteristic parameter of the service packet, and a layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device comprises:

    invoking an API of the layer-2 device, wherein the layer-2 device opens a forwarding policy of the layer-2 device to the outside in a form of the API; and

    querying the forwarding policy of the layer-2 device by using the ingress port of the layer-2 device, the characteristic parameter of the service packet, and the layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device as keywords, to obtain the egress port of the layer-2 device that is sent by the layer-2 device.


     
    7. The method according to claim 4, wherein the obtaining an egress port of the first layer-3 device according to an ingress port of the first layer-3 device and the characteristic parameter of the service packet comprises:

    determining a quantity of cascaded layer-2 devices of the first layer-3 device according to the first network topology; and

    if the quantity of cascaded layer-2 devices of the first layer-3 device is not 1, obtaining the egress port of the first layer-3 device according to the ingress port of the first layer-3 device and the characteristic parameter of the service packet; and

    the obtaining an egress port of the layer-2 device according to an ingress port of the layer-2 device, the characteristic parameter of the service packet, and a layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device comprises:

    determining a quantity of cascaded devices of the layer-2 device according to the first network topology; and

    if the quantity of cascaded devices of the layer-2 device is not 1, obtaining the egress port of the layer-2 device according to the ingress port of the layer-2 device, the characteristic parameter of the service packet, and the layer-2 characteristic parameter between the first layer-3 device and the second layer-3 device.


     
    8. The method according to claim 7, after the determining a quantity of cascaded layer-2 devices of the first layer-3 device according to the first network topology, further comprising:

    if the quantity of cascaded layer-2 devices of the first layer-3 device is 1, determining that the cascaded layer-2 device of the first layer-3 device is the cascaded layer-2 device of the first layer-3 device in the first network topology; and

    after the determining a quantity of cascaded devices of the layer-2 device according to the first network topology, further comprising:
    if the quantity of cascaded devices of the any layer-2 device is 1, determining that the cascaded device of the layer-2 device is the cascaded device of the layer-2 device in the first network topology.


     
    9. The method according to any one of claims 1 to 8, wherein the extended layer-2 OAM packet further comprises at least one type-length-value TLV field, and the TLV field is used to identify extended layer-2 OAM packets of different services.
     
    10. The method according to claim 3, wherein the determining, according to the characteristic parameter of the service packet, the IPS, and the IPD, that a service fault is between a first layer-3 device and a second layer-3 device comprises:

    obtaining a second network topology between the source layer-3 device and the destination layer-3 device according to the IPS and the IPD;

    determining a second forwarding path of the service packet between the source layer-3 device and the destination layer-3 device according to the second network topology and the characteristic parameter of the service packet; and

    after a layer-3 OAM packet is forwarded according to the second forwarding path, and a second path parameter of the second forwarding path is obtained, determining, according to the second path parameter, that the service fault is between the first layer-3 device and the second layer-3 device.


     
    11. A service fault locating apparatus (700), wherein the service fault locating apparatus comprises: a determining unit (702), an obtaining unit (703), a configuration unit (704), and a trigger unit (705), wherein

    the determining unit (702) is configured to determine, that a service fault exists between a first layer-3 device and a second layer-3 device, and determine a first forwarding path of the service packet between the first layer-3 device and the second layer-3 device, wherein the second layer-3 device is a next hop layer-3 device of the first layer-3 device and the service fault comprises a link fault, port fault or device fault;

    the configuration unit (704) is configured to configure a forwarding entry for a forwarding device in the first forwarding path;

    the trigger unit (705) is configured to trigger the first layer-3 device to generate an extended layer-2 OAM packet, so that the extended layer-2 OAM packet and the service packet have a same forwarding path and the forwarding device forwards the extended layer-2 OAM packet according to the first forwarding path;

    the obtaining unit (703) is configured to obtain a first network topology between the first layer-3 device and the second layer-3 device and to obtain a first path parameter that is of the first forwarding path and sent by the forwarding device; and

    the determining unit (702) is further configured to determine the first forwarding path of the service packet between the first layer-3 device and the second layer-3 device according to the first network topology and a characteristic parameter of the service packet and to determine a specific location of the service fault according to the first path parameter.


     
    12. The service fault locating apparatus according to claim 11, wherein the service fault locating apparatus further comprises a receiving unit (701) configured to receive a service fault locating request message, wherein the service fault locating request message comprises the characteristic parameter of the service packet.
     


    Ansprüche

    1. Dienstfehlerlokalisierungsverfahren, das Folgendes umfasst:

    Bestimmen (S102), dass ein Dienstfehler zwischen einer ersten Schicht-3-Vorrichtung und einer zweiten Schicht-3-Vorrichtung vorliegt, wobei die zweite Schicht-3-Vorrichtung eine Next-Hop-Schicht-3-Vorrichtung der ersten Schicht-3-Vorrichtung ist und wobei ein Dienstfehler einen Verknüpfungsfehler, einen Portfehler oder einen Vorrichtungsfehler umfasst;

    Erhalten (S103) einer ersten Netzwerktopologie zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung;

    Bestimmen (S104) eines ersten Weiterleitungspfads eines Dienstpakets zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung gemäß der ersten Netzwerktopologie und einem charakteristischen Parameter des Dienstpakets;

    Konfigurieren (S105) eines Weiterleitungseintrags für eine Weiterleitungsvorrichtung in dem ersten Weiterleitungspfad und Auslösen (S105) der ersten Schicht-3-Vorrichtung, um ein erweitertes Schicht-2-OAM-Paket zu generieren, sodass das erweiterte Schicht-2-OAM-Paket und das Dienstpaket einen gleichen Weiterleitungspfad aufweisen und die Weiterleitungsvorrichtung das erweiterte Schicht-2-OAM-Paket gemäß dem ersten Weiterleitungspfad weiterleitet; und

    Erhalten (S106) eines ersten Pfadparameters, der zu dem ersten Weiterleitungspfad gehört und durch die Weiterleitungsvorrichtung gesendet wird, und Bestimmen eines spezifischen Orts des Dienstfehlers gemäß dem ersten Pfadparameter, wobei ein Pfadparameter ein Parameter ist, der verwendet wird, um Pfadqualität zu messen.


     
    2. Verfahren nach Anspruch 1, wobei vor dem Bestimmen (S102), dass der Dienstfehler zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung vorliegt, ferner Folgendes umfasst:
    Empfangen (S101) einer Dienstfehlerlokalisierungsanforderungsnachricht, wobei die Dienstfehlerlokalisierungsanforderungsnachricht den charakteristischen Parameter des Dienstpakets umfasst.
     
    3. Verfahren nach Anspruch 2, wobei die Dienstfehlerlokalisierungsanforderungsnachricht ferner eine Netzwerkprotokoll(network protocol - IP)-Adresse IPQ einer Quell-Schicht-3-Vorrichtung des Dienstpakets, eine IP-Adresse IPZ einer Ziel-Schicht-3-Vorrichtung des Dienstpakets umfasst;
    das Bestimmen (S102), dass der Dienstfehler zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung vorliegt, Folgendes umfasst:
    Bestimmen, gemäß dem charakteristischen Parameter des Dienstpakets, der IPQ und der IPz, dass der Dienstfehler zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung vorliegt.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Bestimmen eines ersten Weiterleitungspfads des Dienstpakets zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung gemäß der ersten Netzwerktopologie und dem charakteristischen Parameter des Dienstpakets Folgendes umfasst:

    Erhalten (S104a) eines Ausgangsports der ersten Schicht-3-Vorrichtung gemäß einem Eingangsport der ersten Schicht-3-Vorrichtung und dem charakteristischen Parameter des Dienstpakets;

    Erhalten (S104b) einer kaskadierten Schicht-2-Vorrichtung der ersten Schicht-3-Vorrichtung gemäß dem Ausgangsport der ersten Schicht-3-Vorrichtung und der ersten Netzwerktopologie;

    für jede Schicht-2-Vorrichtung zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung, Erhalten (S104c) eines Ausgangsports der Schicht-2-Vorrichtung gemäß einem Eingangsport der Schicht-2-Vorrichtung, dem charakteristischen Parameter des Dienstpakets und einem charakteristischen Schicht-2-Parameter zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung, wobei der Eingangsport der Schicht-2-Vorrichtung ein Port ist, der sich in der ersten Netzwerktopologie befindet und der sich mit einem Ausgangsport einer vorherigen kaskadierten Vorrichtung der Schicht-2-Vorrichtung verbindet;

    Erhalten (S104d) einer kaskadierten Vorrichtung der ersten Schicht-2-Vorrichtung gemäß dem Ausgangsport der Schicht-2-Vorrichtung und der ersten Netzwerktopologie; und

    Bestimmen (S104e) des ersten Weiterleitungspfads des Dienstpakets zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung gemäß der kaskadierten Schicht-2-Vorrichtung der ersten Schicht-3-Vorrichtung und der kaskadierten Vorrichtung jeder Schicht-2-Vorrichtung.


     
    5. Verfahren nach Anspruch 4, wobei das Erhalten eines Ausgangsports der ersten Schicht-3-Vorrichtung gemäß einem Eingangsport der ersten Schicht-3-Vorrichtung und dem charakteristischen Parameter des Dienstpakets Folgendes umfasst:

    Erhalten einer Weiterleitungsrichtlinie der ersten Schicht-3-Vorrichtung, die durch die erste Schicht-3-Vorrichtung nach außen geöffnet wird; und

    Erhalten, mittels Berechnung, des Ausgangsports der ersten Schicht-3-Vorrichtung gemäß dem Eingangsport der ersten Schicht-3-Vorrichtung, dem charakteristischen Parameter des Dienstpakets und der Weiterleitungsrichtlinie der ersten Schicht-3-Vorrichtung; und

    das Erhalten eines Ausgangsports der Schicht-2-Vorrichtung gemäß einem Eingangsport der Schicht-2-Vorrichtung, dem charakteristischen Parameter des Dienstpakets und einem charakteristischen Schicht-2-Parameter zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung Folgendes umfasst:

    Erhalten einer Weiterleitungsrichtlinie der Schicht-2-Vorrichtung, die durch die Schicht-2-Vorrichtung nach außen geöffnet wird; und

    Erhalten, mittels Berechnung, des Ausgangsports der Schicht-2-Vorrichtung gemäß dem Eingangsport der Schicht-2-Vorrichtung, dem charakteristischen Parameter des Dienstpakets, dem charakteristischen Schicht-2-Parameter zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung und der Weiterleitungsrichtlinie der Schicht-2-Vorrichtung.


     
    6. Verfahren nach Anspruch 4, wobei das Erhalten eines Ausgangsports der ersten Schicht-3-Vorrichtung gemäß einem Eingangsport der ersten Schicht-3-Vorrichtung und dem charakteristischen Parameter des Dienstpakets Folgendes umfasst:

    Aufrufen einer Anwendungsprogrammierschnittstelle (application programming interface - API) der ersten Schicht-3-Vorrichtung, wobei die erste Schicht-3-Vorrichtung eine Weiterleitungsrichtlinie der ersten Schicht-3-Vorrichtung in einer Form der API nach außen öffnet; und

    Abfragen der Weiterleitungsrichtlinie der ersten Schicht-3-Vorrichtung durch Verwenden des Eingangsports der ersten Schicht-3-Vorrichtung und des charakteristischen Parameters des Dienstpakets als Schlüsselwörter, um den Ausgangsport der ersten Schicht-3-Vorrichtung zu erhalten, der durch die erste Schicht-3-Vorrichtung gesendet wird; und

    das Erhalten eines Ausgangsports der Schicht-2-Vorrichtung gemäß einem Eingangsport der Schicht-2-Vorrichtung, dem charakteristischen Parameter des Dienstpakets und einem charakteristischen Schicht-2-Parameter zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung Folgendes umfasst:

    Aufrufen einer API der Schicht-2-Vorrichtung, wobei die Schicht-2-Vorrichtung eine Weiterleitungsrichtlinie der Schicht-2-Vorrichtung in einer Form der API nach außen öffnet; und

    Abfragen der Weiterleitungsrichtlinie der Schicht-2-Vorrichtung durch Verwenden des Eingangsports der Schicht-2-Vorrichtung, des charakteristischen Parameters des Dienstpakets und des charakteristischen Schicht-2-Parameters zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung als Schlüsselwörter, um den Ausgangsport der Schicht-2-Vorrichtung zu erhalten, der durch die Schicht-2-Vorrichtung gesendet wird.


     
    7. Verfahren nach Anspruch 4, wobei das Erhalten eines Ausgangsports der ersten Schicht-3-Vorrichtung gemäß einem Eingangsport der ersten Schicht-3-Vorrichtung und dem charakteristischen Parameter des Dienstpakets Folgendes umfasst:

    Bestimmen einer Anzahl von kaskadierten Schicht-2-Vorrichtungen der ersten Schicht-3-Vorrichtung gemäß der ersten Netzwerktopologie; und

    falls die Anzahl der kaskadierten Schicht-2-Vorrichtungen der ersten Schicht-3-Vorrichtung nicht 1 ist, Erhalten des Ausgangsports der ersten Schicht-3-Vorrichtung gemäß dem Eingangsport der ersten Schicht-3-Vorrichtung und dem charakteristischen Parameter des Dienstpakets; und

    das Erhalten eines Ausgangsports der Schicht-2-Vorrichtung gemäß einem Eingangsport der Schicht-2-Vorrichtung, dem charakteristischen Parameter des Dienstpakets und einem charakteristischen Schicht-2-Parameter zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung Folgendes umfasst:

    Bestimmen einer Anzahl von kaskadierten Vorrichtungen der Schicht-2-Vorrichtung gemäß der ersten Netzwerktopologie; und

    falls die Anzahl von kaskadierten Vorrichtungen der Schicht-2-Vorrichtung nicht 1 ist, Erhalten des Ausgangsports der Schicht-2-Vorrichtung gemäß dem Eingangsport der Schicht-2-Vorrichtung, dem charakteristischen Parameter des Dienstpakets und dem charakteristischen Schicht-2-Parameter zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung.


     
    8. Verfahren nach Anspruch 7, das nach dem Bestimmen einer Anzahl von kaskadierten Schicht-2-Vorrichtungen der ersten Schicht-3-Vorrichtung gemäß der ersten Netzwerktopologie ferner Folgendes umfasst:

    falls die Anzahl von kaskadierten Schicht-2-Vorrichtungen der ersten Schicht-3-Vorrichtung 1 ist, Bestimmen, dass die kaskadierte Schicht-2-Vorrichtung der ersten Schicht-3-Vorrichtung die kaskadierte Schicht-2-Vorrichtung der ersten Schicht-3-Vorrichtung in der ersten Netzwerktopologie ist; und

    das nach dem Bestimmen einer Anzahl von kaskadierten Vorrichtungen der Schicht-2-Vorrichtung gemäß der ersten Netzwerktopologie ferner Folgendes umfasst:
    falls die Anzahl von kaskadierten Vorrichtungen der beliebigen Schicht-2-Vorrichtung 1 ist, Bestimmen, dass die kaskadierte Vorrichtung der Schicht-2-Vorrichtung die kaskadierte Vorrichtung der Schicht-2-Vorrichtung in der ersten Netzwerktopologie ist.


     
    9. Verfahren nach einem der Ansprüche 1 bis 8, wobei das erweiterte Schicht-2-OAM-Paket ferner wenigstens ein Typ-Länge-Wert(type-length-value - TLV)-Feld umfasst und das TLV-Feld verwendet wird, um erweiterte Schicht-2-OAM-Pakete von verschiedenen Diensten zu identifizieren.
     
    10. Verfahren nach Anspruch 3, wobei das Bestimmen gemäß dem charakteristischen Parameter des Dienstpakets, der IPQ und der IPZ, dass sich ein Dienstfehler zwischen einer ersten Schicht-3-Vorrichtung und einer zweiten Schicht-3-Vorrichtung befindet, Folgendes umfasst:

    Erhalten einer zweiten Netzwerktopologie zwischen der Quell-Schicht-3-Vorrichtung und der Ziel-Schicht-3-Vorrichtung gemäß der IPQ und der IPZ;

    Bestimmen eines zweiten Weiterleitungspfads des Dienstpakets zwischen der Quell-Schicht-3-Vorrichtung und der Ziel-Schicht-3-Vorrichtung gemäß der zweiten Netzwerktopologie und dem charakteristischen Parameter des Dienstpakets; und

    nachdem ein Schicht-3-OAM-Paket gemäß dem zweiten Weiterleitungspfad weitergeleitet worden ist und ein zweiter Pfadparameter des zweiten Weiterleitungspfads erhalten worden ist, Bestimmen, gemäß dem zweiten Pfadparameter, dass sich der Dienstfehler zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung befindet.


     
    11. Dienstfehlerlokalisierungseinrichtung (700), wobei die Dienstfehlerlokalisierungseinrichtung Folgendes umfasst: eine Bestimmungseinheit (702), eine Erhaltungseinheit (703), eine Konfigurationseinheit (704) und eine Auslöseeinheit (705), wobei

    die Bestimmungseinheit (702) konfiguriert ist, um zu bestimmen, dass ein Dienstfehler zwischen einer ersten Schicht-3-Vorrichtung und einer zweiten Schicht-3-Vorrichtung vorliegt, und einen ersten Weiterleitungspfad des Dienstpakets zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung zu bestimmen, wobei die zweite Schicht-3-Vorrichtung eine Next-Hop-Schicht-3-Vorrichtung der ersten Schicht-3-Vorrichtung ist und der Dienstfehler einen Verknüpfungsfehler, einen Portfehler oder einen Vorrichtungsfehler umfasst;

    die Konfigurationseinheit (704) konfiguriert ist, um einen Weiterleitungseintrag für eine Weiterleitungsvorrichtung in dem ersten Weiterleitungspfad zu konfigurieren;

    die Auslöseeinheit (705) konfiguriert ist, um die erste Schicht-3-Vorrichtung auszulösen, um ein erweitertes Schicht-2-OAM-Paket zu generieren, sodass das erweiterte Schicht-2-OAM-Paket und das Dienstpaket einen gleichen Weiterleitungspfad aufweisen und die Weiterleitungsvorrichtung das erweiterte Schicht-2-OAM-Paket gemäß dem ersten Weiterleitungspfad weiterleitet;

    die Erhaltungseinheit (703) konfiguriert ist, um eine erste Netzwerktopologie zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung zu erhalten und um einen ersten Pfadparameter zu erhalten, der zu dem ersten Weiterleitungspfad gehört und durch die Weiterleitungsvorrichtung gesendet wird; und

    die Bestimmungseinheit (702) ferner konfiguriert ist, um den ersten Weiterleitungspfad des Dienstpakets zwischen der ersten Schicht-3-Vorrichtung und der zweiten Schicht-3-Vorrichtung gemäß der ersten Netzwerktopologie und einem charakteristischen Parameter des Dienstpakets zu bestimmen und um einen spezifischen Ort des Dienstfehlers gemäß dem ersten Pfadparameter zu bestimmen.


     
    12. Dienstfehlerlokalisierungseinrichtung nach Anspruch 11, wobei die Dienstfehlerlokalisierungseinrichtung ferner eine Empfangseinheit (701) umfasst, die konfiguriert ist, um eine Dienstfehlerlokalisierungsanforderungsnachricht zu empfangen, wobei die Dienstfehlerlokalisierungsanforderungsnachricht den charakteristischen Parameter des Dienstpakets umfasst.
     


    Revendications

    1. Procédé de localisation d'anomalies de service, comprenant :

    la détermination (S102) du fait qu'une anomalie de service existe entre un premier dispositif de couche 3 et un second dispositif de couche 3, le second dispositif de couche 3 étant un dispositif de couche 3 de saut suivant du premier dispositif de couche 3 et dans lequel l'anomalie de service comprend une anomalie de liaison, une anomalie de port ou une anomalie de dispositif ;

    l'obtention (S103) d'une première topologie de réseau entre le premier dispositif de couche 3 et le second dispositif de couche 3 ;

    la détermination (S104) d'un premier trajet de transmission du paquet de service entre le premier dispositif de couche 3 et le second dispositif de couche 3 selon la première topologie de réseau et le paramètre caractéristique du paquet de service ;

    la configuration (S105) d'une entrée de transmission pour un dispositif de transmission dans le premier trajet de transmission, et le déclenchement (S105) du premier dispositif de couche 3 pour générer un paquet OAM de couche 2 étendu, de sorte que le paquet OAM de couche 2 étendu et le paquet de service aient un même trajet de transmission et que le dispositif de transmission transmette le paquet OAM de couche 2 étendu selon le premier trajet de transmission ; et

    l'obtention (S106) d'un premier paramètre de trajet qui est du premier trajet de transmission et envoyé par le dispositif de transmission, et la détermination d'un emplacement spécifique de l'anomalie de service selon le premier paramètre de trajet, le paramètre de trajet étant utilisé pour mesurer la qualité de trajet.


     
    2. Procédé selon la revendication 1, dans lequel avant la détermination (S102), du fait que l'anomalie de service existe entre le premier dispositif de couche 3 et le second dispositif de couche 3, comprenant en outre :
    la réception (S101) d'un message de demande de localisation d'anomalies de service, le message de demande de localisation d'anomalies de service comprenant le paramètre caractéristique du paquet de service.
     
    3. Procédé selon la revendication 2, dans lequel le message de demande de localisation d'anomalies de service comprend en outre une adresse de protocole réseau, IP, IPs d'un dispositif de couche 3 source d'un paquet de service, une adresse IP, IPD d'un dispositif de couche 3 de destination du paquet de service ;
    la détermination (S102) du fait que l'anomalie de service existe entre le premier dispositif de couche 3 et le second dispositif de couche 3 comprend :
    la détermination, selon le paramètre caractéristique du paquet de service, l'IPS et le IPD, du fait que l'anomalie de service existe entre le premier dispositif de couche 3 et le second dispositif de couche 3.
     
    4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel la détermination d'un premier trajet de transmission du paquet de service entre le premier dispositif de couche 3 et le second dispositif de couche 3 selon la première topologie de réseau et le paramètre caractéristique du paquet de service comprend :

    l'obtention (S104a) d'un port de sortie du premier dispositif de couche 3 selon un port d'entrée du premier dispositif de couche 3 et le paramètre caractéristique du paquet de service ;

    l'obtention (S104b) d'un dispositif de couche 2 en cascade du premier dispositif de couche 3 selon le port de sortie du premier dispositif de couche 3 et la première topologie de réseau ;

    pour chaque dispositif de couche 2 entre le premier dispositif de couche 3 et le second dispositif de couche 3, l'obtention (S104c) d'un port de sortie du dispositif de couche 2 selon un port d'entrée du dispositif de couche 2, le paramètre caractéristique du paquet de service et un paramètre caractéristique de couche 2 entre le premier dispositif de couche 3 et le second dispositif de couche 3, le port d'entrée du dispositif de couche 2 étant un port qui se trouve dans la première topologie de réseau et qui se connecte à un port de sortie d'un dispositif en cascade précédent du dispositif de couche 2 ;

    l'obtention (S104d) d'un dispositif en cascade du dispositif de couche 2 selon le port de sortie du dispositif de couche 2 et la première topologie de réseau ; et

    la détermination (S104e) du premier trajet de transmission du paquet de service entre le premier dispositif de couche 3 et le second dispositif de couche 3 selon le dispositif de couche 2 en cascade du premier dispositif de couche 3 et le dispositif en cascade de chaque dispositif de couche 2.


     
    5. Procédé selon la revendication 4, dans lequel l'obtention d'un port de sortie du premier dispositif de couche 3 selon un port d'entrée du premier dispositif de couche 3 et le paramètre caractéristique du paquet de service comprend :

    l'obtention d'une politique de transmission du premier dispositif de couche 3 qui est ouverte vers l'extérieur par le premier dispositif de couche 3 ; et

    l'obtention, au moyen d'un calcul, du port de sortie du premier dispositif de couche 3 selon le port d'entrée du premier dispositif de couche 3, le paramètre caractéristique du paquet de service et la politique de transmission du premier dispositif de couche 3 ; et

    l'obtention d'un port de sortie du dispositif de couche 2 selon un port d'entrée du dispositif de couche 2, le paramètre caractéristique du paquet de service et un paramètre caractéristique de couche 2 entre le premier dispositif de couche 3 et le second dispositif de couche 3 comprend :

    l'obtention d'une politique de transmission du dispositif de couche 2 qui est ouverte vers l'extérieur par le dispositif de couche 2 ; et

    l'obtention, au moyen d'un calcul, du port de sortie du dispositif de couche 2 selon le port d'entrée du dispositif de couche 2, le paramètre caractéristique du paquet de service, le paramètre caractéristique de couche 2 entre le premier dispositif de couche 3 et le second dispositif de couche 3, et la politique de transmission du dispositif de couche 2.


     
    6. Procédé selon la revendication 4, dans lequel l'obtention d'un port de sortie du premier dispositif de couche 3 selon un port d'entrée du premier dispositif de couche 3 et le paramètre caractéristique du paquet de service comprend :

    l'appel à une interface de programmation d'application, API, du premier dispositif de couche 3, le premier dispositif de couche 3 ouvrant une politique de transmission du premier dispositif de couche 3 vers l'extérieur sous une forme d'API ; et

    l'interrogation de la politique de transmission du premier dispositif de couche 3 en utilisant le port d'entrée du premier dispositif de couche 3 et le paramètre caractéristique du paquet de service comme mots-clés, pour obtenir le port de sortie du premier dispositif de couche 3 qui est envoyé par le premier dispositif de couche 3 ; et

    l'obtention d'un port de sortie du dispositif de couche 2 selon un port d'entrée du dispositif de couche 2, le paramètre caractéristique du paquet de service et un paramètre caractéristique de couche 2 entre le premier dispositif de couche 3 et le second dispositif de couche 3 comprend :

    l'appel d'une API du dispositif de couche 2, le dispositif de couche 2 ouvrant une politique de transmission du dispositif de couche 2 vers l'extérieur sous forme d'API ; et

    l'interrogation de la politique de transmission du dispositif de couche 2 en utilisant le port d'entrée du dispositif de couche 2, le paramètre caractéristique du paquet de service et le paramètre caractéristique de couche 2 entre le premier dispositif de couche 3 et le second dispositif de couche 3 comme mots-clés, pour obtenir le port de sortie du dispositif de couche 2 envoyé par le dispositif de couche 2.


     
    7. Procédé selon la revendication 4, dans lequel l'obtention d'un port de sortie du premier dispositif de couche 3 selon un port d'entrée du premier dispositif de couche 3 et le paramètre caractéristique du paquet de service comprend :

    la détermination d'une quantité de dispositifs de couche 2 en cascade du premier dispositif de couche 3 selon la première topologie de réseau ; et

    si la quantité de dispositifs de couche 2 en cascade du premier dispositif de couche 3 n'est pas 1, l'obtention du port de sortie du premier dispositif de couche 3 selon le port d'entrée du premier dispositif de couche 3 et le paramètre caractéristique du paquet de service ; et

    l'obtention d'un port de sortie du dispositif de couche 2 selon un port d'entrée du dispositif de couche 2, le paramètre caractéristique du paquet de service et un paramètre caractéristique de couche 2 entre le premier dispositif de couche 3 et le second dispositif de couche 3 comprend :

    la détermination d'une quantité de dispositifs en cascade du dispositif de couche 2 selon la première topologie de réseau ; et

    si la quantité de dispositifs en cascade du dispositif de couche 2 n'est pas 1, l'obtention du port de sortie du dispositif de couche 2 selon le port d'entrée du dispositif de couche 2, le paramètre caractéristique du paquet de service et du paramètre caractéristique de couche 2 entre le premier dispositif de couche 3 et le second dispositif de couche 3.


     
    8. Procédé selon la revendication 7, à la suite de la détermination d'une quantité de dispositifs de couche 2 en cascade du premier dispositif de couche 3 selon la première topologie de réseau, comprenant en outre :

    si la quantité de dispositifs de couche 2 en cascade du premier dispositif de couche 3 est 1, la détermination du fait que le dispositif de couche 2 en cascade du premier dispositif de couche 3 est le dispositif de couche 2 en cascade du premier dispositif de couche 3 dans la première topologie de réseau ; et

    à la suite de la détermination d'une quantité de dispositifs en cascade du dispositif de couche 2 selon la première topologie de réseau, comprenant en outre :
    si la quantité de dispositifs en cascade d'un quelconque dispositif de couche 2 est 1, la détermination du fait que le dispositif en cascade du dispositif de couche 2 est le dispositif en cascade du dispositif de couche 2 dans la première topologie de réseau.


     
    9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel le paquet OAM de couche 2 étendu comprend en outre au moins un champ type-longueur-valeur TLV, et le champ TLV est utilisé pour identifier des paquets OAM de couche 2 étendus de différents services.
     
    10. Procédé selon la revendication 3, dans lequel la détermination, selon le paramètre caractéristique du paquet de service, de l'IPS et de IPD, du fait qu'une anomalie de service se trouve entre un premier dispositif de couche 3 et un second dispositif de couche 3 comprend :

    l'obtention d'une seconde topologie de réseau entre le dispositif de couche 3 source et le dispositif de couche 3 de destination selon l'IPS et L'IPD ;

    la détermination d'un second trajet de transmission du paquet de service entre le dispositif de couche 3 source et le dispositif de couche 3 de destination selon la seconde topologie de réseau et le paramètre caractéristique du paquet de service ; et

    à la suite de la transmission d'un paquet OAM de couche 3 selon le second trajet de transmission, et de l'obtention d'un second paramètre de trajet du second trajet de transmission, la détermination, selon le second paramètre de trajet, du fait que l'anomalie de service se trouve entre le premier dispositif de couche 3 et le second dispositif de couche 3.


     
    11. Appareil de localisation d'anomalies de service (700), l'appareil de localisation d'anomalies de service comprenant : une unité de détermination (702), une unité d'obtention (703), une unité de configuration (704) et une unité de déclenchement (705), dans lequel

    l'unité de détermination (702) est configurée pour déterminer qu'une anomalie de service existe entre un premier dispositif de couche 3 et un second dispositif de couche 3, et pour déterminer un premier trajet de transmission du paquet de service entre le premier dispositif de couche 3 et le second dispositif de couche 3, le second dispositif de couche 3 étant un dispositif de couche 3 de saut suivant du premier dispositif de couche 3 et l'anomalie de service comprend une anomalie de liaison, une anomalie de port ou une anomalie de dispositif ;

    l'unité de configuration (704) est configurée pour configurer une entrée de transmission pour un dispositif de transmission dans le premier trajet de transmission ;

    l'unité de déclenchement (705) est configurée pour déclencher le premier dispositif de couche 3 pour générer un paquet OAM de couche 2 étendu, de sorte que le paquet OAM de couche 2 étendu et le paquet de service aient un même trajet de transmission et que le dispositif de transmission transmette le paquet OAM de couche 2 étendu selon le premier trajet de transmission ;

    l'unité d'obtention (703) est configurée pour obtenir une première topologie de réseau entre le premier dispositif de couche 3 et le second dispositif de couche 3 et pour obtenir un premier paramètre de trajet qui est du premier trajet de transmission et envoyé par le dispositif de transmission ; et

    l'unité de détermination (702) est en outre configurée pour déterminer un premier trajet de transmission du paquet de service entre le premier dispositif de couche 3 et le second dispositif de couche 3 selon la première topologie de réseau et le paramètre caractéristique du paquet de service et pour déterminer un emplacement spécifique de l'anomalie de service selon le premier paramètre de trajet.


     
    12. Appareil de localisation d'anomalies de service selon la revendication 11, dans lequel l'appareil de localisation d'anomalies de service comprend en outre une unité de réception (701) configurée pour recevoir un message de demande de localisation d'anomalies de service, le message de demande de localisation d'anomalies de service comprenant le paramètre caractéristique du paquet de service.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description