(19)
(11)EP 3 786 540 A1

(12)EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43)Date of publication:
03.03.2021 Bulletin 2021/09

(21)Application number: 18920383.9

(22)Date of filing:  26.06.2018
(51)Int. Cl.: 
F24F 11/00  (2018.01)
(86)International application number:
PCT/CN2018/092896
(87)International publication number:
WO 2019/227554 (05.12.2019 Gazette  2019/49)
(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30)Priority: 28.05.2018 CN 201810527362

(71)Applicant: GD Midea Air-Conditioning Equipment Co., Ltd.
Foshan, Guangdong 528311 (CN)

(72)Inventor:
  • HAN, Yuezheng
    Foshan, Guangdong 528311 (CN)

(74)Representative: RGTH 
Patentanwälte PartGmbB Neuer Wall 10
20354 Hamburg
20354 Hamburg (DE)

  


(54)AIR CONDITIONER ELECTRIC CONTROL ASSEMBLY AND AIR CONDITIONER


(57) An air conditioner electric control assembly and an air conditioner. The air conditioner electronic control assembly comprises an MCU (11), a drive circuit (14), a switch device (15), a rectifier circuit mounting position (12), a filter circuit mounting position (13), a first power supply interface (17), a second power supply interface (16), and a first alternating power supply input interface (18). Moreover, the connection to a switch power supply board (3) or a linear transformer (2) is implemented by the second power source interface (16) and the first alternating power supply input interface (18), so that a power supply module adapting to different power supply schemes is implemented. Therefore, when implementing dealing with the different power supply schemes, an electric control board can be universal and does not need to be redesigned, thereby simplifying the design of the electric control board, reducing the costs, and facilitating the management during the production of an air conditioner electric control assembly.




Description

TECHNICAL FIELD



[0001] The invention relates to the field of electric control board design, in particular to an air conditioner electric control assembly and an air conditioner.

BACKGROUND



[0002] At present, the electric control board of the home appliance controller will be applied with many types of power supply solutions, such as the linear transformer stabilized power supply solution and the switching power supply solution. Because these two power solutions have different costs and different standby power consumption, switching power solutions need to be applied to the low-power standby mode, while for low-cost applications, the linear transformer-regulated power supply scheme is used. For the same appliance controller, in order to cope with different market environments, the above-mentioned power supply solutions will need to be adopted. At this time, the electric control board needs to be redesigned. If there are many models of the same household appliance and the above-mentioned different solutions are required, the workload of the electric control board design will be doubled, and the types of electric control boards will also increase, which is not convenient for the production management of electric control boards.

[0003] The foregoing content is only used to assist in understanding the technical solution of the present invention, and does not mean that the foregoing content is recognized as prior art.

SUMMARY



[0004] The main purpose of the invention is to provide an electric control assembly for an air conditioner, aiming at solving the problems that when an existing electric control board adopts different power supply schemes, troubles of design of the electric control board is caused and the types of the electric control board are increased, which is not convenient for production management.

[0005] To realize the purpose above, the present invention provides an electric control assembly for an air conditioner including an electric control board, which further includes a MCU, a driving circuit, a switch device, a rectifier circuit mounting position, a wave-filtering circuit mounting position, a first power supply interface, a second power supply interface, and a first alternating current power supply input interface.

[0006] The electric control board is configured to input an external alternating current power supply from the first alternating current power supply input interface.

[0007] The first power supply interface is connected to the first alternating current power supply input interface to output high-voltage alternating current. The second power supply interface is connected to the rectifier circuit mounting position, the rectifier circuit mounting position is connected to the wave-filtering circuit mounting position, the wave-filtering circuit mounting position is connected to the driving circuit, and the second power supply interface is configured to connect a low-voltage alternating current power supply or a low-voltage direct current power supply.

[0008] The MCU is configured to control the driving circuit to drive the switch device to be switched on or off in order to drive a load to operate.

[0009] Preferably, the first power supply interface is a plug or a socket which is configured to be plugged in, and/or, the second power supply interface is a plug or a socket which is configured to be plugged in.

[0010] Preferably, the first power supply interface is arranged on the electric control board or connected to the electric control board through a connecting wire.

[0011] The second power supply interface is arranged on the electric control board or connected to the electric control board through a connecting wire.

[0012] Preferably, the air conditioner electric control assembly further includes a switch power supply board arranged discretely from the electric control board.

[0013] The switch power supply board includes a direct-current power supply output interface connected to the second power supply interface, and a second alternating current power supply input interface connected to the first power supply interface.

[0014] Two conductive wires are installed on the rectifier circuit mounting position of the electric control board to short-circuit an input and an output of the rectifier circuit.

[0015] Preferably, the direct-current power supply output interface is a plug or a socket for being plugged in, the alternating current power supply input interface is a plug or a socket for being plugged in.

[0016] Preferably, the air conditioner electric control assembly further includes a linear transformer, the linear transformer includes a third alternating current power supply input interface connected to the first power supply interface, and a low-voltage alternating current power supply output interface connected to the second power supply interface; a rectifier circuit element is installed on the rectifier circuit mounting position to form a rectifier circuit, and a wave-filtering element is installed on the wave-filtering circuit mounting position to form a wave-filtering circuit.

[0017] Preferably, an mounting area is arranged on the electric control board, the linear transformer is installed on the mounting area, or the second power supply interface and the first power supply interface are installed on the mounting area.

[0018] Preferably, the linear transformer is arranged discretely from to the electric control board.

[0019] The third alternating current power supply input interface is a plug or a socket configured to be plugged in, and the low-voltage alternating current power supply output interface is a plug or a socket configured to be plugged in.

[0020] The third alternating current power supply input interface and the low-voltage alternating current power supply output interface are connected to the linear transformer through connecting wires.

[0021] To realize the purpose above, the present invention further provides an air conditioner including the air conditioner electric control assembly.

[0022] The electric control assembly provided by the present invention includes an MCU, a driving circuit, a switch device, a rectifier circuit mounting position, a wave-filtering circuit mounting position, a first power supply interface, a second power supply interface and a first alternating current power supply input interface, and is connected to a switch power supply board or a linear transformer through the second power supply interface and the first alternating current power supply input interface, so as to adopt power supply modules of different power supply schemes. Therefore, for different power supply schemes, the electronic control board can be generalized without redesign, which simplifies the design of the electronic control board, reduces the cost, and facilitates the management of production of electronic control assemblies of air conditioners.

BRIEF DESCRIPTION OF THE DRAWINGS



[0023] 

Fig.1 is a schematic diagram of modules of an electric control board of a first embodiment of an electric control assembly for an air conditioner according to the present invention.

Fig.2 is a schematic diagram of modules of the air conditioner electric control assembly in Fig. 1 including a switch power supply board.

Fig.3 is a schematic diagram of modules in which the switch power supply board interface in FIG. 2 is a socket.

Fig.4 is a schematic diagram of modules of the air conditioner electric control assembly in FIG. 1 including a linear transformer.

Fig.5 is a schematic diagram of modules of a second embodiment of the electronic control assembly of the air conditioner according to the present invention, which shows the linear transformer being discretely configured.

Fig.6 is a schematic diagram of modules in which the linear transformer in Fig. 5 is replaced with a switch power supply board.

Fig.7 is a schematic diagram of modules in which the switch power supply board interface in Fig. 6 is a socket.


DETAILED DESCRIPTION OF THE EMBODIMENTS



[0024] Embodiments of the present invention are described in details below, examples of which are illustrated in the accompanying drawings. Consistent or similar marks denote consistent or similar devices or devices with a same or similar functionality. The embodiments described below with reference to the drawings are exemplary and are intended to be used to explain the invention and are not to be construed as limiting the invention.

[0025] The invention provides an electric control board, which can be used as a household appliance controller, such as for an air conditioner, a refrigerator, a washing machine and the like.

[0026] Referring to FIG.1, which is a schematic diagram of modules of an electric control board according to a first embodiment of the present invention. In order to facilitate description, only a part related to embodiments of the present invention is shown, and detailed descriptions are provided below:
an electric control assembly for an air conditioner includes an electric control board 1. The electric control board 1 includes an MCU 11, a driving circuit 14, a switch device 15, a rectifier circuit mounting position 12, a wave-filtering circuit mounting position 13, a first power supply interface 17, a second power supply interface 16 and a first alternating current power supply input interface 18.

[0027] External alternating current power supply is input by the electric control board 1 through the first alternating current power supply input interface 18.

[0028] The MCU 11 drives the switch device 15 to change a state of a switch to drive a load to operate through the driving circuit 14. In FIG.1, the switch device 15 specifically includes relays 151, 152 and 153. For the air conditioner, the load includes a compressor, an inner fan, an external fan, a four-way valve and the like.

[0029] The first power supply interface 17 is connected to the first alternating current power supply input interface 18 to output a high-voltage alternating current. The second power supply interface 16 is connected to the rectifier circuit mounting position 12. The rectifier circuit mounting position 12 is connected to the wave-filtering circuit mounting position 13. The wave-filtering circuit mounting position 13 is connected to the driving circuit 14, and the second power supply interface 16 is configured for connecting a low-voltage alternating current power supply or a low-voltage direct current power supply.

[0030] The rectifier circuit mounting position 12 is configured to have two input IN1, IN2 and two output OUT1, OUT2. A device can be installed on the rectifier circuit mounting position 12 to form a rectifier circuit or the rectifier circuit mounting position 12 remains blank. When the rectifier circuit is formed, the two input IN1, IN2 input the low-voltage alternating current power, and a pulsating direct current is output from the two output OUT1, OUT2. A device can be installed on the wave-filtering circuit mounting position 13 to form a filtering circuit or to the wave-filtering circuit mounting position 13 remains blank, and the specific mounting scheme is dependent on a power supply module scheme by which the first alternating current power supply input interface 18 is connected to the first power supply interface 17.

[0031] The first power supply interface 17 is a plug or a socket which is configured to be plugged in, and/or the second power supply interface 16 is a plug or a socket which is configured to be plugged in. As shown in FIG.1, the first power supply interface 17 is a socket OUT, and the second power supply interface 16 is a socket IN.

[0032] Furthermore, the first power supply interface 17 and the second power supply interface 16 can be respectively and fixedly on the electric control board 1 or connected to the electric control board 1 through a connecting wire. In FIG. 1, the first power supply interface 17 and the second power supply interface 16 are all sockets which are fixed on the electric control board 1.

[0033] As shown in FIG.2, the air conditioner electric control assembly further includes a switch power supply board 3 which is discretely configured relative to the electric control board 1.

[0034] The switch power supply board 3 includes a direct-current power supply output interface DC_OUT connected to the second power supply interface 16, and a second alternating current power supply input interface AC_IN connected to the first power supply interface 17. namely, the switch power supply board 3 is a power supply module connected to the first alternating current power supply input interface 18 through the first power supply interface 17. The switch power supply board 3 inputs alternating current through the second alternating current power supply input interface AC_IN, and the alternating current is converted by a switch power supply circuit on the switch power supply board 3 to obtain low-voltage direct current output from the direct-current power supply output interface DC_OUT to the second power supply interface 16.

[0035] Since the switch power supply board 3 directly outputs the low-voltage direct current to the electric control board 1 to provide a direct current power supply for the operations of the driving circuit 14, the switch device 15 and the MCU 11, the rectifier circuit mounting position 12 and the wave-filtering circuit mounting position 13 do not need to be installed with devices. At this time, the rectifier circuit mounting position 12 is provided with two wires so as to short-connect the inputs and outputs of the rectifier circuit, so as to realize a direct connection of the low-voltage direct current from the second power supply interface 16 to the driving circuit 14, the MCU 11 and the switch device 15.

[0036] Since the switch power supply board 3 has a low standby power consumption, the switch power supply board 3 is connected to the electric control board 1 in a wire connection mode, so that the switch power supply board 3 can be directly connected to the electric control board when the low standby power consumption needs to be applied, and the electric control board does not need to be redesigned.

[0037] Further, the direct-current power supply output interface DC_OUT is a plug or a socket which is configured to be plugged in, and the alternating current power supply input interface AC IN is a plug or a socket which is configured to be plugged in. Specifically, as shown in FIG.3, the direct-current power supply output interface DC_OUT is a socket 31 configured on the switch power supply board 3. The alternating current power supply input interface AC IN is a socket 32 configured on the switch power supply board 3. At this time, the socket on the switch power supply board 3 and the socket on the electric control board 1 are connected through a connecting wire with plugs at two ends. In this way, assembly on the production line can be facilitated.

[0038] Further, the power supply module connected to the first power supply interface 17 and the first alternating current power supply input interface 18 may be a linear transformer, as shown in FIG.4, the air conditioner electric control assembly further includes a linear transformer 2. The linear transformer 2 includes a third alternating current power supply input interface AC IN connected to the first power supply interface 17, and a low-voltage alternating current power output interface AC_OUT connected to the second power supply interface 16. The rectifier circuit mounting position 12 is provided with a rectifier circuit device to form a rectifier circuit, and the wave-filtering circuit mounting position 13 is provided with a wave-filtering device to form a wave-filtering circuit.

[0039] At this time, the rectifier circuit is specifically a rectifying bridge stack BR1. The wave-filtering circuit is specifically an electrolytic capacitor E1, The low-voltage alternating current output by the linear transformer 2 is rectified into a pulsating direct current through the rectifying bridge stack BR1, and a smooth direct current is output to the driving circuit 14, the MCU 11 and the switch device 15 through the filtering of the electrolytic capacitor E1. Due to the fact that the cost of the linear transformer 2 is relatively lower than the cost of the switch power supply 3, the linear transformer scheme can be adopted to replace the switch power supply board scheme in an application where low cost is needed and low standby power consumption is not required, so that the cost of the whole electric control scheme is reduced.

[0040] Moreover, the electric control board 1 is further provided with an mounting area 19 which can be used for installing the linear transformer 2, or the first power supply interface 17 and the second power supply interface 16. In FIG. 4, the linear transformer 2 is installed in a mounting area 19 presented as a dashed box, and the first power supply interface 17 and the second power supply interface 16 are not visible by the shielding of the linear transformer 2. When the linear transformer 2 is not installed, the first power supply interface 17 and the second power supply interface 16 can be sockets as shown in FIG.3, and are connected to the switch power supply board 3 in a socket plug-in manner.

[0041] The first power supply interface 17 and the second power supply interface 16 are configured in the mounting area 19 which is a transformer mounting position, so that other positions of the electric control board 1 is not occupied by the first power supply interface 17 and the second power supply interface 16, and a PCB layout of the electric control board 1 can be facilitated, so that the electric control board 1 connecting to power supply modules of different power supply schemes with low-cost and simple design is realized.

[0042] The air conditioner electric control assembly of the present invention includes an MCU 11, a driving circuit 14, a switch device 15, a rectifier circuit mounting position 12, a wave-filtering circuit mounting position 13, a first power supply interface 17, a second power supply interface 16 and a first alternating current power supply input interface 18, and is connected to a switch power supply board 3 or a linear transformer 2 through the second power supply interface 16 and the first alternating current power supply input interface 18, so as to adopt power supply modules of different power supply schemes. Therefore, for different power supply schemes, the electronic control board 1 can be generalized without redesign, which simplifies the design of the electronic control board 1, reduces the cost, and facilitates the management of production of electronic control assemblies of air conditioners.

[0043] Further, as a second embodiment of the air conditioner electric control assembly of the invention, based on the first embodiment, as shown in FIG.5, unlike the first embodiment, in the second embodiment the linear transformer 2 is separated from the electric control board 1.

[0044] At this time, the third alternating current power supply input interface AC_IN is a plug or socket which is configured to be plugged in, the low-voltage alternating current power supply output interface AC_OUT is a plug or socket which is configured to be plugged in, and the third alternating current power supply input interface AC IN and the low-voltage alternating current power supply output interface AC_OUT are connected to the linear transformer through connecting wires. Specifically, in FIG.5, the third alternating current power supply input interface AC IN and the low-voltage alternating current power supply output interface AC_OUT are plugs (not shown) connected to the connecting wires. The second power supply interface 16 and the first power supply interface 17 are sockets, and the two plugs are respectively connected to the second power supply interface 16 and the first power supply interface 17 to realize electric connections. At this time, a distance between the two sockets of the second power supply interface 16 and the first power supply interface 17 is larger than a distance between the sockets of the second power supply interface 16 and the first power supply interface 17 when the second power supply interface 16 and the first power supply interface 17 are arranged in the installation area 19 in FIG. 3, so that other members can be configured between the two sockets, for example, as shown in FIG. 5, a relay RY4 for controlling the load is further configured between the two sockets to realize the full utilization of the PCB wiring area of the electric control board 1.

[0045] Since the electric control board 1 is connected to the discrete linear transformer 2 by a connecting wire plugging mode, when the linear transformer 5 is replaced by the switch power supply scheme, the sockets of the second power supply interface 16 and the first power supply interface 17 can be directly used for being connected to the switch power supply board 3. As shown in FIG. 6, one end each of the connecting wires of the direct-current power supply output interface DC_OUT and the second alternating-current power supply input interface AC IN of the switch power supply board 3 is provided with a plug which is connected to a socket on the electric control board 1 in a plug-in mode, and at this time, the wave-filtering circuit and the rectifier circuit 2 adopt the same processing as the first embodiment.

[0046] Further, liking the scheme of FIG.3 in the first embodiment, a socket can also be configured on the switch power supply board 3, as shown in FIG.7, the direct-current power supply output interface DC_OUT on the switch power supply board is a socket 31, the alternating current power supply input interface AC IN is a socket 32, and at this time, the socket on the switch power supply board 3 and the socket on the electric control board 1 are respectively connected through connecting wires with plugs at two ends. Therefore, assembly on the production line can be facilitated.

[0047] The invention further provides an air conditioner including the electric control assembly described above.

[0048] In the description of the present invention, reference terms "first embodiment", "second embodiment", "example" and the like mean that a particular method, apparatus, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present invention. In this invention, a schematic representation of the above term is not necessarily intended to be the same embodiment or example. Furthermore, particular features, methods, apparatus, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. In addition, various embodiments or examples described in this specification, as well as features of different embodiments or examples, may be combined without conflict with each other.

[0049] The above is only an exemplary embodiment of the present invention, and is not intended to limit the scope of the present invention. Any equivalent structure or equivalent process transformation made by using the description and the drawings of the present invention, or any direct or indirect application to other related technical fields are all included in the patent protection scope of the present invention.


Claims

1. An electric control assembly for an air conditioner, comprising:
an electric control board , comprising:

a MCU;

a driving circuit;

a switch device;

a rectifier circuit mounting position ;

a wave-filtering circuit mounting position ;

a first power supply interface ;

a second power supply interface ; and

a first alternating current power supply input interface ;

wherein, the electric control board inputs an external alternating current power supply from the first alternating current power supply input interface ;

the first power supply interface is connected to the first alternating current power supply input interface to output a high-voltage alternating current, the second power supply interface is connected to the rectifier circuit mounting position, the rectifier circuit mounting position is connected to the wave-filtering circuit mounting position , the wave-filtering circuit mounting position is connected to the driving circuit , and the second power supply interface is configured to be connected to a low-voltage alternating current power supply or a low-voltage direct-current power supply;

the MCU is configured to control the driving circuit to drive the switch device to be switched on or off in order to drive a load to operate.


 
2. The electric control assembly of claim 1, wherein the first power supply interface is a plug or a socket which is configured to be plugged in, and/or, the second power supply interface is a plug or a socket which is configured to be plugged in.
 
3. The electric control assembly of claim 1, wherein the first power supply interface is arranged on the electric control board or is connected to the electric control board through a connecting wire;
the second power supply interface is arranged on the electric control board or is connected to the electric control board through a connecting wire.
 
4. The electric control assembly of claim 2, wherein the first power supply interface is configured on the electric control board or connected to the electric control board through a connecting wire;
the second power supply interface is configured on the electric control board or connected to the electric control board through a connecting wire.
 
5. The electric control assembly of claim 1, further comprising a switch power supply board arranged discretely from the electric control board ; wherein:

the switch power supply board comprising a direct-current power supply output interface connected to the second power supply interface, and a second alternating current power supply input interface connected to the first power supply interface ;

two conductive wires are installed on the rectifier circuit mounting position of the electric control board to short-circuit an input and an output of a rectifier circuit.


 
6. The electric control assembly of claim 5, wherein the direct-current power supply output interface is a plug or a socket to be plugged in, the alternating current power supply input interface is a plug or a socket to be plugged in.
 
7. The electric control assembly of claim 1, further comprising a linear transformer; the linear transformer comprises a third alternating current power supply input interface connected to the first power supply interface , and a low-voltage alternating current power supply output interface connected to the second power supply interface ; a rectifier circuit element is installed on the rectifier circuit mounting position to form a rectifier circuit, and a wave-filtering element is installed on the wave-filtering circuit mounting position to form a wave-filtering circuit.
 
8. The electric control assembly of claim 7, wherein a mounting area is arranged on the electric control board , the linear transformer is installed on the mounting area, or, the second power supply interface and the first power supply interface are installed on the mounting area .
 
9. The electric control assembly of claim 7, wherein the linear transformer is arranged discretely from the electric control board ;
the third alternating current power supply input interface is a plug or a socket configured to be plugged in, and the low-voltage alternating current power supply output interface is a plug or a socket configured to be plugged in;
the third alternating current power supply input interface and the low-voltage alternating current power supply output interface are connected to the linear transformer through a connecting wire.
 
10. An air conditioner comprising an electric control assembly of claim 1.
 
11. An air conditioner comprising the electric control assembly of claim 2.
 
12. An air conditioner comprising the electric control assembly of claim 3.
 
13. An air conditioner comprising the electric control assembly of claim 4.
 
14. An air conditioner comprising the electric control assembly of claim 5.
 
15. An air conditioner comprising the electric control assembly of claim 7.
 




Drawing