(19)
(11)EP 3 786 757 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
21.09.2022 Bulletin 2022/38

(21)Application number: 18915941.1

(22)Date of filing:  25.04.2018
(51)International Patent Classification (IPC): 
G05D 1/00(2006.01)
G05D 1/02(2020.01)
(52)Cooperative Patent Classification (CPC):
G01C 21/16; G05D 1/0094; G05D 1/027
(86)International application number:
PCT/CN2018/084499
(87)International publication number:
WO 2019/205034 (31.10.2019 Gazette  2019/44)

(54)

CAMERA STABILIZER POSITION CORRECTION METHOD AND DEVICE

VERFAHREN UND VORRICHTUNG ZUR KORREKTUR DER KAMERASTABILISATORPOSITION

PROCÉDÉ ET DISPOSITIF DE CORRECTION DE POSITION DE STABILISATEUR DE CAMDÉRA


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
03.03.2021 Bulletin 2021/09

(73)Proprietor: SZ DJI Technology Co., Ltd.
Shenzhen, Guangdong 518057 (CN)

(72)Inventors:
  • ZHANG, Xiang
    Shenzhen, Guangdong 518057 (CN)
  • LI, Bing
    Shenzhen, Guangdong 518057 (CN)
  • ZHOU, You
    Shenzhen, Guangdong 518057 (CN)

(74)Representative: Appelt, Christian W. 
Boehmert & Boehmert Anwaltspartnerschaft mbB Pettenkoferstrasse 22
80336 München
80336 München (DE)


(56)References cited: : 
WO-A1-2017/011945
CN-A- 102 707 734
US-A1- 2014 267 778
US-B1- 6 965 397
CN-A- 102 355 574
CN-A- 107 278 246
US-A1- 2016 273 921
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates to the technical field of gimbal control and, more particularly, to a gimbal pose correction method and device.

    BACKGROUND



    [0002] Pose estimation is one of the key problems to be solved in robot control. A main work of the pose estimation is to obtain position, velocity, attitude, and heading information that satisfies requirements of control bandwidth, dynamic performance, stability, and accuracy according to data from various motion state sensors. A system providing instant pose information is called a navigation system. The navigation system generally includes an inertial navigation system, a global navigation satellite system (GNSS), a Doppler navigation system, a visual navigation system, and the like. Integrated navigation technology uses a plurality of different navigation systems to measure a same information source, extracts and corrects errors of each navigation system using measured values. Integrated navigation technology is one of the important applications in the field of multi-sensor information fusion state estimation.

    [0003] Inertial-GNSS integrated navigation is one of the commonly used integrated navigations. Conventional inertial-GNSS integrated navigations use the north-east-down (NED) coordinate system as a navigation coordinate system, and hence need a north-pointing heading observation and generally use a geomagnetic sensor to provide a reference heading. However, the geomagnetic sensor is susceptible to interference from electric current and magnetic field. In addition, the conventional inertial-GNSS integrated navigations use latitude and longitude to represent the position, such that the GNSS needs to provide position measurement in the form of latitude and longitude. Therefore, the GNSS navigation cannot work in an indoor environment. Conventional single-point GNSS's generally have position and velocity measurement errors at m-level, but in some applications, the velocity control accuracy is needed to be mm-level, and hence, the inertial-GNSS integrated navigations cannot satisfy the accuracy requirements.

    [0004] US 2016/273921 A1 describes systems, methods, and devices for collecting positional information for and controlling a movable object. A method for collecting positional information for a movable object includes: receiving data from a first sensing system coupled to the movable object; receiving data from a second sensing system coupled to the movable object; determining a weight value for the data from the second sensing system based on a strength of the signal received by the sensor of the second sensing system; and calculating the positional information of the movable object based on (i) the data from the first sensing system and (ii) data from the second system factoring in the weight value.

    [0005] US 2014/267778 A1 describes apparatuses and methods for controlling a gimbal and other displacement systems. A pointing angle of a camera attached to a gimbal may be controlled based, at least in part, on one or more control signals provided by a controller. The control signals may be used to compensate for displacement of the camera, to add perceived displacement of the camera, to selectively align a pointing angle of the camera and/or to allow a pointing angle to be manually determined.

    [0006] CN 107 278 246 A describes a vertical stabilisation mechanism used for supporting a load. The vertical stabilisation mechanism comprises parallelogram-shaped frames and an elastic piece. The adjacent edges of the frames are pivotally connected in such a way that included angles between the adjacent edges can vary. Two ends of the elastic piece are connected to two of the adjacent edges of the frames respectively. The frames support the load and balance the gravitational force of the load by the elastic force of the elastic piece. Further disclosed are a tripod head device and shooting equipment.

    [0007] In view of the above, a technical problem to be solved by the present invention is to provide a gimbal pose correction method and a gimbal pose correction device which have a high accuracy and which are suitable for various indoor and outdoor environments.

    SUMMARY



    [0008] The above-mentioned technical problem is solved by a gimbal pose correction method according to claim 1 and a gimbal pose correction device according to claim 5. Claims 2 to 4 refer to specifically advantageous realizations of the method according to claim 1. Claims 6 to 10 refer to specifically advantageous realizations of the device according to claim 5.

    [0009] First aspect of the present disclosure provides the gimbal pose correction method. A gimbal is connected to a vertical compensation device, and the vertical compensation device can compensate for a movement of the gimbal in a vertical direction. The vertical compensation device provides a vision module and an inertial measurement unit (IMU). The method includes obtaining a first pose of the gimbal based on the IMU, obtaining a second pose of the vertical compensation device based on the vision module, and correcting the first pose according to the second pose.

    [0010] Second aspect of the present disclosure provides the gimbal pose correction device including the vertical compensation device connected to the gimbal, the vision module arranged at the vertical compensation device, and the IMU arranged at the vertical compensation device. The vertical compensation device can compensate for the movement of the gimbal in the vertical direction. The vision module and the IMU are electrically coupled to the vertical compensation device.

    [0011] The vertical compensation device is configured to obtain the first pose of the gimbal based on the IMU, obtain the second pose of the vertical compensation device based on the vision module, and correct the first pose according to the second pose.

    [0012] According to the technical solutions provided by the present disclosure, the present disclosure uses an inertial-visual integrated navigation mode. According to the second pose obtained by the vision module, the first pose obtained by the IMU can be corrected to obtain a pose satisfying requirements of control bandwidth and accuracy. The inertial-visual integrated navigation mode is not interfered by electric current and magnetic field, and can be suitable for various indoor and outdoor environments.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0013] In order to provide a clearer illustration of technical solutions of disclosed embodiments, the drawings used in the description of the disclosed embodiments are briefly described below. It will be appreciated that the disclosed drawings are merely examples and other drawings conceived by those having ordinary skills in the art on the basis of the described drawings without inventive efforts should fall within the scope of the present disclosure.

    FIG. 1 is a schematic structural diagram of a gimbal pose correction device according to an embodiment of the present disclosure.

    FIG. 2 is a schematic structural diagram of a gimbal pose correction device according to an embodiment of the present disclosure.

    FIG. 3 is a schematic structural diagram of another gimbal pose correction device according to another embodiment of the disclosure.

    FIG. 4 is a schematic flow chart of a gimbal pose correction method according to an embodiment of the disclosure.

    FIG. 5 is a schematic flow chart of a gimbal pose correction method according to an embodiment of the disclosure.

    Description of Reference Numerals
    1 Inertial measurement unit (IMU) 2 Vision module
    3 Main body 31 Body
    32 Base 33 Handheld member
    4 Axis arm 5 Motor
    6 Angular velocity sensor    

    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0014] In order to provide a clearer illustration of technical solutions of disclosed embodiments, example embodiments will be described with reference to the accompanying drawings. It will be appreciated that the described embodiments are some rather than all of the embodiments of the present disclosure. Other embodiments conceived by those having ordinary skills in the art on the basis of the described embodiments without inventive efforts should fall within the scope of the present disclosure.

    [0015] Hereinafter, the gimbal pose correction method and device consistent with the disclosure will be described in detail with reference to the accompanying drawings. Unless conflicting, the exemplary embodiments and features in the exemplary embodiments can be combined with each other.

    [0016] FIG. 1 shows a schematic structural diagram of a gimbal pose correction device consistent with the disclosure. A gimbal is connected to a vertical compensation device, and the vertical compensation device can compensate for a movement of the gimbal in a vertical direction. In this embodiment, the gimbal can be mounted on a movable object, e.g., a user, an unmanned aerial vehicle (UAV), or a robot, through the vertical compensation device. When the movable object moves, there is a movement in the vertical direction, and the movement in the vertical direction can result in unstable images of a camera on the gimbal. Therefore, consistent with the disclosure, the vertical compensation device can be used to compensate for the movement of the gimbal in the vertical direction, thereby reducing the vertical movement of the gimbal at a situation that the gimbal is directly mounted on the movable object and moves with the movable object, and ensuring the smooth images of the camera.

    [0017] The vertical compensation device includes a vision module 2 and an inertial measurement unit (IMU) 1. As shown in FIGs. 2 and 3, the vertical compensation device includes a main body 3 and an axis arm 4 connected to the gimbal. The axis arm 4 can rotate to compensate for the movement of the gimbal in the vertical direction. In some embodiments, a motor 5 is arranged at a main body 3, and the motor 5 can be configured to drive the axis arm 4 to rotate. In some other embodiments, the axis arm 4 can also be driven to rotate by other driving devices. The IMU 1 is arranged at the axis arm 4, and the IMU 1 can be arranged at an end of the axis arm 4 connected to the gimbal. In some embodiments, the IMU 1 can be arranged at any other position of the axis arm 4.

    [0018] The vision module 2 is arranged at the main body 3, and a detection direction of the vision module 2 can be upward or downward. For example, when a gimbal pose correction system is located in an outdoor environment, the vision module 2 can face downward, and when the gimbal pose correction system is located indoors, the vision module 2 can face upward or downward. In this embodiment, the detection direction of the vision module 2 can be approximately parallel to the vertical direction, and the detection direction of the vision module 2 can have a small tilt angle relative to the vertical direction (an angle range of the tilt angle can be set according to empirical values). In some embodiments, the vision module 2 can monitor vertically upwards or vertically downwards. As shown in FIGs. 2 and 3, the main body 3 includes a body 31 and a base 32 fixedly connected to the body 31, and the vision module 2 is arranged at the base 32.

    [0019] In some embodiments, the gimbal can be mounted at a UAV, a mobile robot, or another movable device through the base 32. During the movement of the UAV, mobile robot, or other movable devices, there is the movement in the vertical direction that affects the images of the camera (i.e., the camera on the gimbal). The vertical compensation device can compensate for the movement in the vertical direction to offset an influence of the movement in the vertical direction on the images of the camera.

    [0020] In some embodiments, as shown in FIGs. 2 and 3, the vertical compensation device may include a handheld device, and the compensation device includes a handheld member 33 fixedly connected to the body 31. The user can hold the handheld member 33 to drive the vertical compensation device to move as a whole. When the user is walking, the movement in the vertical direction along with a stride frequency can affect the images of the camera, and the vertical compensation device can compensate for the vertical movement to offset the influence of the movement in the vertical direction on the images of the camera.

    [0021] Hereinafter, a body coordinate system {b} - Obxbybzb can be defined as follows in this embodiment. An origin of the coordinate system Ob can be a geometric center of a plane at which the axis arm 4 is connected to an end of the gimbal corresponding to an axis. xb axis can be in a vertical symmetry plane of the body 31 and parallel to a bottom surface of the base 32, and can point forward, yb axis can be perpendicular to the vertical symmetry plane of the body 31 and can point to a right side of the body 31. zb axis can be in the vertical symmetry plane of the body 31 and perpendicular to the xb axis, and can point below the body 31.

    [0022] A base coordinate system {p}-Opxpypzp of the base 20 can be defined as follows. An origin of the coordinate system Op can be a center of the axis arm 4, i.e., an intersection of a rotation center line of the axis arm 4 and the vertical symmetry plane of the body 31. xp axis can be in the vertical symmetry plane of the body 31 and parallel to the bottom surface of the base 32, and can point forward. yp axis can be perpendicular to the vertical symmetry plane of the body 31 and can point to the right side of the body 31. zp axis can be in the vertical symmetry plane of the body 31 and perpendicular to the xp axis, and can point below the body 31.

    [0023] A camera coordinate system can be denoted by {c} - Ocxcyczc , and a navigation coordinate system can be denoted by {n} - Onxnynzn. An origin of the navigation coordinate system On can be determined by a vertical projection of an origin of the camera coordinate system Oc on the ground when the system starts to work. Coordinate axis of the navigation coordinate system can be determined by an output of the vision module 2. The vision module 2 can output a pose of the camera coordinate system {c} relative to the navigation coordinate system {n}. In some embodiments, the vision module 2 can output a reference position

    , a reference velocity

    , and a reference attitude

    of the vertical compensation device. In some other embodiments, the vision module 2 can output the reference position

    and the reference velocity

    of the vertical compensation device.

    [0024] FIG. 4 is a schematic flow chart of an gimbal pose correction method consistent with the disclosure. An execution entity of the method may include a processor of the vertical compensation device, or an independent control device communicatively connected to the processor of the vertical compensation device.

    [0025] As shown in FIG. 4, the method can include the following steps.

    [0026] At step S401, a first pose of the gimbal is obtained based on the IMU 1. The first pose may include the velocity, position, and attitude of the gimbal.

    [0027] In this embodiment, the IMU 1 may include a gyroscope and an accelerometer. In some embodiments, the gyroscope can include a three-axis gyroscope, and the accelerometer can include a three-axis accelerometer. The process at S401 can include obtaining an angular velocity of the gimbal based on the gyroscope, obtaining a specific force of the gimbal based on the accelerometer, and then calculating the attitude, velocity, and position of the gimbal based on the angular velocity and the specific force.

    [0028] In some embodiments, updating the attitude of the gimbal can include designing an attitude update formula according to the angular velocity and the specific force, and updating the attitude of the gimbal according to the attitude update formula.

    [0029] In some embodiments, a design process for the attitude update formula can be as follows. An ideal output of the gyroscope, denoted as

    , can include a projection of a rotation angular rate of the body coordinate system {b} relative to an inertial system {i} in the {b} system, and an actual output of the gyroscope is denoted as

    . An ideal output of the accelerometer, denoted as fb, can include a projection of the specific force in the {b} system, and the actual output of the accelerometer can be denoted as b.

    [0030] A quaternion

    can be used as a representation of the attitude of the {n} system relative to the {b} system, and an error-free ideal quaternion differential formula can be determined by the following formula:



    [0031] The attitude angular rate in Formula (1) can be determined by the following formula:



    [0032] Formula (2) can be determined by a latest updated attitude value,

    and

    are the earth's rotation angular rate and position angular rate. The method consistent with the disclosure is suitable for a moving shoot at a low-velocity and short-distance, and near the ground, such that

    and

    can be approximately ignored, and thus,

    . In an actual system, due to an existence of a gyroscope measurement error and a navigation solution error, an actual solution of the quaternion differential formula can be performed by the following formula:



    [0033] An actual body coordinate system determined by

    can be denoted as {b'}. Discretize the quaternion differential formula shown in Formula (1) and use the first-order approximation, the quaternion update formula shown below can be obtained:



    [0034] According to Formula (4), an attitude matrix

    can be obtained by updating the attitude quaternion, which actually can establish a mathematical platform of strapdown inertial navigation.

    [0035] In some embodiments, updating the velocity of the gimbal can include designing a velocity update formula according to the angular velocity and the specific force, and updating the velocity of the gimbal according to the velocity update formula. For example, the following formula can be used as the approximate velocity update formula:



    [0036] In some embodiments, updating the position of the gimbal can include designing a position update formula according to the angular velocity and the specific force, and updating the position of the gimbal according to the position update formula. For example, the following formula can be used as the approximate position update formula:



    [0037] It can be appreciated that the attitude update formula, velocity update formula, and position update formula are not limited to the design manner in the embodiments described above.

    [0038] At step S402, a second pose of the vertical compensation device is obtained based on the vision module 2.

    [0039] The vision module 2 may include a visual odometer or a visual inertial odometer. For example, the vision module 2 can include the visual odometer, and the second pose can include the velocity and position of the vertical compensation device. As another example, as shown in FIG. 5, the vision module 2 includes the visual inertial odometer (VIO), and the second pose can include the velocity, position, and attitude of the vertical compensation device.

    [0040] In some embodiments, the vertical compensation device may further include a Time of Flight (TOF) measurement device. In this embodiment, a detection result of the vision module 2 can be corrected by a detection result of the TOF measurement device. For example, the vertical compensation device can obtain the position of the vertical compensation device through a detection of the TOF measurement device, and correct the position of the compensation device obtained by the vision module 2 to obtain an accurate position of the vertical compensation device.

    [0041] In some embodiments, an Ultra-Wideband (UWB) positioning device can be used instead of the vision module 2, and the pose of the vertical compensation device can be measured by the UWB positioning device. An inertial-UWB integrated navigation method consistent with the disclosure is not interfered by electric current and magnetic field, and can be suitable for various indoor and outdoor environments.

    [0042] Since the vision module 2 can be fixed on the base 32, the coordinate system of the reference velocity and position of the vertical compensation device directly output by the vision module 2 can be different from the coordinate system of the first pose. The reference velocity and reference position of the vertical compensation device directly output by the vision module 2 cannot be used as the reference of the first pose to correct the first pose. In this embodiment, coordinate conversion can be performed on the reference velocity and the reference position of the vertical compensation device directly output by the vision module 2 to obtain the second pose being in the same coordinate system as the first pose.

    [0043] In this embodiment, an angular velocity sensor 6 can be arranged at the axis arm 4 and can be configured to obtain a joint angle of the axis arm 4. Before the step S402, the method may further include obtaining the joint angle of the axis arm 4 based on the angular velocity sensor 6. In some other embodiments, the joint angle of the axis arm 4 can be determined based on a joint angle of the motor 5 that drives the axis arm 4 to rotate. A type of the angular velocity sensor 6 is not limited herein, and any suitable angular velocity sensor 6 can be selected.

    [0044] The step S402 can further include, according to the joint angle, performing the coordinate conversion on the reference velocity of the vertical compensation device output by the vision module 2, obtaining the conversed velocity of the vertical compensation device, and correcting the velocity of the gimbal according to the conversed velocity of the vertical compensation device. The step S402 can further include, according to the joint angle, performing the coordinate conversion on the reference position of the vertical compensation device output by the vision module 2, obtaining the conversed position of the vertical compensation device, and correcting the position of the gimbal according to the conversed position of the vertical compensation device.

    [0045] When the vision module 2 includes the visual inertial odometry, the step S402 can further include constructing a reference direction cosine matrix of the reference attitude based on the reference attitude output by the visual inertial odometer, and according to the reference direction cosine matrix, obtaining the attitude of the vertical compensation device. Obtaining the attitude of the vertical compensation device according to the direction cosine matrix can include obtaining an attitude correction value of the vertical compensation device according to the reference direction cosine matrix, and obtaining the attitude of the vertical compensation device according to the attitude correction value. Therefore, the attitude of the gimbal can be corrected by the attitude of the vertical compensation device.

    [0046] At step S403, the first pose is corrected according to the second pose.

    [0047] According to the second pose obtained at step S402, the first pose obtained at step S401 can be corrected to obtain a pose estimation value of the gimbal. The pose of the gimbal can be controlled according to the pose estimation value to ensure the accuracy of the gimbal pose. In the embodiment of the present disclosure, for a three-axis (yaw axis, pitch axis, roll axis) gimbal, correcting the first pose or the gimbal pose can refer to correcting the pose of the gimbal in the direction of the yaw axis, pitch axis, and/or roll axis.

    [0048] A loop feedback, an optimal estimation, or another algorithm may be used at step S403 to fuse the first pose and the second pose to realize the inertial-visual integrated navigation. In this embodiment, a Kalman filter (an optimal estimation algorithm) can be used to fuse the first pose and the second pose. Hereinafter, an implementation process of fusing the first pose and the second pose using the Kalman filter will be described.

    [0049] In some embodiments, the step S401 can further include obtaining the angular velocity of the gimbal based on the gyroscope, obtaining the specific force of the gimbal based on the accelerometer, and calculating the error of the first pose according to the angular velocity and the specific force. For example, calculating the error of the first pose according to the angular velocity and the specific force can include, according to the angular velocity and the specific force, constructing an attitude error, a velocity error, and a position error of the first pose, and calculating the error of the first pose according to the attitude error, velocity error and position error.

    [0050] The step S403 can include approximating the error of the first pose to obtain the Kalman filter, obtaining a correction value through the Kalman filter by using the second pose as an observation value, and correcting the first pose according to the correction value to realize the correction of the pose of the gimbal in the vertical direction. In this embodiment, approximating the error of the first pose can refer to removing an error term that has a small impact in the error of the first pose.

    [0051] In one embodiment, as shown in FIG. 5, the gimbal consistent with the disclosure is suitable for the moving shooting at the low-velocity and short-distance, and near the ground. A measurement error model of the gyroscope can be:

    wherein nr denotes measurement noise of the gyroscope and is assumed to be a Gaussian white noise. b denotes a zero bias of the gyroscope and is assumed to be a random walk process in a form of = nw, and nw denotes Gaussian white noise. denotes a zero-bias estimation of the gyroscope. If is a constant zero-bias, then

    . According to the measurement error model of the gyroscope, it can be obtained that

    and

    .

    [0052] The zero bias error of the gyroscope can be defined as:



    [0053] Thus,

    .

    [0054] A state quantity of the attitude solution can be defined as

    . According to the quaternion differential formula and the measurement error model of the gyroscope, it can be obtained:



    [0055] For the state estimator:



    [0056] Combined with the above formula, a calculation process of an attitude error formula can be as follows. An error quaternion caused by

    can be denoted by

    , and according to the quaternion multiplication, it can be obtained:



    [0057] Perform a time derivative on Formula (9), and calculate a state equation of the system according to the attitude:



    [0058] Considering the measurement error model (7) of the gyroscope, Formula (10) can be written as:





    [0059] The attitude angle offset of the {b'} system relative to the {b} system is denoted as φ. Consider φ to be a small angle, the approximate expression of

    can be

    , which can be inserted into Formula (11) to obtain:



    [0060] The state equation of attitude error can be:



    [0061] A calculation process of the velocity error can be as follows. According to the specific force formula, an error-free ideal velocity value can be determined according to the following differential formula:

    where

    represents an acceleration of gravity in the navigation coordinate system. The gimbal consistent with the disclosure is suitable for the moving shooting at low-velocity and short-distance, and near the ground. Thus,

    and

    can be approximately ignored, such that the approximate velocity error calculation formula can be as follows:

    wherein n denotes a projection of an accelerometer zero offset in the navigation coordinate system.

    [0062] A calculation process of the position error can be as follows. Unlike conventional integrated navigation using the latitude and longitude to represent the position, the method consistent with the disclosure can use the visual navigation for position measurement, and is suitable for the moving shooting at low-velocity and short-distance, and near the ground. Therefore, a position error formula in the form of distance can be as Formula (15):



    [0063] Combining the calculation formulas of the attitude error, velocity error, and position error, the error of the first pose (i.e., the error formula of the integrated navigation system) can be obtained as:



    [0064] The system state quantity X can be:



    [0065] A state transition matrix F can be:

    where

    is anti-symmetric matrix of

    , └n ×┘ is anti-symmetric matrix of n.

    [0066] A system noise vector w can be:

    where nr denotes the noise of the gyroscope, nw denotes the random walk noise of the gyroscope, and na denotes noise of the accelerometer.

    [0067] A noise distribution matrix G can be:



    [0068] Perform discretization and first-order approximation on Formula (16) to obtain a discretized error calculation formula for the first pose, and design the Kalman filter using the discretized error calculation formula for the first pose.

    [0069] In this embodiment, the vision module 2 can include the visual inertial odometer. In this embodiment, the observation value of the Kalman filter described above can be designed according to an output result of the visual inertial odometer. The specific design process can be as follows.

    [0070] The reference attitude output by the visual inertial odometer is denoted as

    , and the cosine matrix of the reference direction is denoted as

    . In some embodiments, a heading reference output by the visual inertial odometer can be used as a heading observation of the integrated navigation system, and it is considered that the {b} series and the {c} series are completely aligned.

    [0071] Assume positive unit vectors of the three axes of the navigation coordinate system {n} are:



    [0072] The projection of a heading reference vector in the {b} system (e.g., a reference vector in x direction of the {b} system) can be:



    [0073] According to the specific force formula, a unit projection of the gravity reference vector in the {b} system (e.g., the reference vector in z direction of the {b} system), when the gimbal is completely still, can be:



    [0074] According to the orthogonal relationship of the coordinate system, the reference vector

    in y direction of the {b} system can be obtained from

    and

    . The direction cosine matrix of the reference attitude constructed by

    ,

    , and

    can be as follows:



    [0075] The reference attitude quaternion

    can be obtained from

    , and the attitude correction quaternion can be:



    in Formula (20) is a latest estimation of the attitude quaternion. Under the condition of small angle, according to the above formula, the observation of the attitude correction can be obtained as follows:

    where δq1, δq2, and δq3 are the error quaternion.

    [0076] The observation formula for attitude correction can be:

    where vφ denotes attitude observation noise. Hφ = [I3×3 03×12] and νφ = [νφx νφy νφz]T·

    [0077] Using Formula (22) as the attitude observation formula of the Kalman filter, the attitude correction value φ̂ output by the Kalman filter can be used to correct the updated attitude value of the gimbal obtained by Formula (4), and the corrected attitude output can be obtained to realize the correction of the attitude of the gimbal.

    [0078] A velocity and position vector

    output by the visual inertial odometer can include the velocity and position of the camera coordinate system {c} relative to the {n} system, and a velocity observation and a position observation of the {b} system are needed to be obtained. Mechanical errors are not considered herein. During the rotation of the axis arm 4, a parallelogram mechanism of the axis arm 4 can ensure that an end plane of the axis is always parallel to the bottom surface of the base 32. Therefore, there is only translational motion between the {b} system and the {p} system.

    [0079] According to the output of the visual inertial odometer and a geometric and dynamic transmission relationship of the mechanical structure, the reference velocity

    and reference position

    of the axis arm 4 can be solved as follows:



    where

    denotes the direction cosine matrix from the {p} system to the {n} system, ΔPp is a projection of a relative position vector from Ob to Oc in the {p} system, and ΔVp is a projection of a relative velocity vector from Ob to Oc in the {p} system.

    [0080] Denote [Ox Oy Oz]T as a position offset vector from Oc to Op in the {p} system. Denote the joint angle of the axis arm 4 as α , when the axis arm 4 is parallel to the base 32, α =0, and define the counterclockwise direction as the positive direction. Define the length L of the axis arm 4 as the length from the rotation center line of the axis arm 4 to the end of the axis (i.e., the end of the axis arm 4 connected to the gimbal). ΔPp can be calculated according to the following formula:



    [0081] ΔVp is calculated according to the following formula:



    [0082] According to Formulas (23) and (24), the reference velocity vector

    and reference position vector

    can be obtained, the velocity observation formula and position observation formula of the integrated navigation system can be obtained as:



    where

    νP = [νPx νPy νPz]T , νV is the velocity observation noise, and HP is the position observation noise.

    [0083] Formula (27) can be used as the velocity observation formula of the Kalman filter, a velocity correction value can be output through the Kalman filter, and the updated speed value obtained by the velocity correction value and Formula (5) can be corrected to obtain a corrected velocity output, thereby realizing the correction of the velocity of the gimbal. Formula (28) can be used as the position observation formula of the Kalman filter, the position correction value can be output through the Kalman filter, and the updated position value obtained by the position correction value and Formula (6) can be corrected to obtain a corrected position output, thereby realizing the correction of the position of the gimbal.

    [0084] The embodiment of the present disclosure can adopt the inertial-vision integrated navigation mode, and correct the second pose obtained by the vision module 2 based on the first pose obtained by the IMU 1 to obtain the pose satisfying the requirements of the control bandwidth and accuracy. An inertial-visual integrated navigation mode consistent with the present disclosure is not interfered by electric current and magnetic field, and can be suitable for various indoor and outdoor environments.

    [0085] Referring again to FIGs. 1 to 3, the present disclosure further provides the gimbal pose correction device. The device may include the vertical compensation device connected to the gimbal, the vision module 2 arranged at the vertical compensation device, and the IMU 1 arranged at the vertical compensation device. The vertical compensation device can be configured to compensate for the movement of the gimbal in the vertical direction, and the vision module 2 and the IMU 1 can be electrically coupled to the vertical compensation device.

    [0086] The vertical compensation device can be configured to obtain the first pose of the gimbal based on the IMU 1, obtain the second pose of the vertical compensation device based on the vision module 2, and correct the first pose according to the second pose.

    [0087] Furthermore, the vertical compensation device further includes the main body 3 and the axis arm 4 connected to the gimbal. The axis arm 4 can rotate to compensate for the movement of the gimbal in the vertical direction. The IMU 1 is arranged at the axis arm 4, and the vision module 2 is arranged at the main body 3.

    [0088] Furthermore, the vision module 2 can include the visual odometer, and the second pose can include the velocity and position of the vertical compensation device. Furthermore, the vision module 2 can includes the visual inertial odometer, and the second pose can include the velocity, position, and attitude of the vertical compensation device.

    [0089] Furthermore, the vertical compensation device can include the axis arm 4 connected to the gimbal. The axis arm 4 can rotate to compensate for the movement of the gimbal in the vertical direction. The angular velocity sensor 6 can be arranged at the axis arm 4. The vertical compensation device can be configured to obtain the joint angle of the axis arm 4 based on the angular velocity sensor 6.

    [0090] Furthermore, the first pose can include the velocity of the gimbal. The vertical compensation device can be configured to perform the coordinate conversion on the reference velocity of the vertical compensation device output by the vision module 2 according to the joint angle, and obtain the velocity of the vertical compensation device.

    [0091] Furthermore, the first pose can include the position of the gimbal. The vertical compensation device can be configured to perform the coordinate conversion on the reference position of the vertical compensation device output by the vision module 2 according to the joint angle, and obtain the position of the vertical compensation device.

    [0092] Furthermore, the vertical compensation device can be configured to construct the reference direction cosine matrix of the reference attitude based on the reference attitude output by the visual inertial odometer, and obtain the attitude of the vertical compensation device according to the reference direction cosine matrix.

    [0093] Furthermore, the vertical compensation device can be configured to obtain the attitude correction value of the vertical compensation device according to the reference direction cosine matrix, and obtain the attitude of the vertical compensation device according to the attitude correction value.

    [0094] Furthermore, the first pose can include the velocity, position, and attitude of the gimbal.

    [0095] Furthermore, the IMU 1 can include the gyroscope and the accelerometer. The vertical compensation device can be configured to obtain the angular velocity of the gimbal based on the gyroscope, obtain the specific force of the gimbal based on the accelerometer, and calculate the attitude, velocity, and position of the gimbal according to the angular velocity and the specific force.

    [0096] Furthermore, the vertical compensation device can be configured to design the attitude update formula according to the angular velocity and the specific force, and update the attitude of the gimbal according to the attitude update formula.

    [0097] Furthermore, the vertical compensation device can be configured to design the velocity update formula according to the angular velocity and the specific force, and update the velocity of the gimbal according to the velocity update formula.

    [0098] Furthermore, the vertical compensation device can be configured to design the position update formula according to the angular velocity and the specific force and update the position of the gimbal according to the position update formula.

    [0099] Furthermore, the IMU 1 can include the gyroscope and the accelerometer. The vertical compensation device can be configured to obtain the angular velocity of the gimbal based on the gyroscope, obtain the specific force of the gimbal based on the accelerometer, and calculate the error of the first pose according to the angular velocity and the specific force.

    [0100] Furthermore, the vertical compensation device can be configured to construct the attitude error, velocity error, and position error of the first pose according to the angular velocity and the specific force, and calculate the error of the first pose according to the attitude error, velocity error, and position error.

    [0101] Furthermore, the vertical compensation device can be configured to approximate the error of the first pose to obtain the Kalman filter, obtain the correction value through the Kalman filter by using the second pose as the observation value, and correct the first pose according to the correction value.

    [0102] The example devices basically correspond to the example methods, and references can be made to the relevant part of the descriptions of the example methods. The device embodiments described above are merely exemplary. The units described as separate components may or may not be physically separate, and a component shown as a unit may or may not be a physical unit. That is, the units may be located in one place or may be distributed over a plurality of network elements. Some or all of the components may be selected according to the actual needs to achieve the object of the present disclosure. Those skilled in the art can understand and implement without creative work.

    [0103] The terms "first," "second," or the like in the specification, claims, and the drawings of the present disclosure are merely used to distinguish similar elements, and are not intended to describe a specified order or a sequence. In addition, the terms "including," "comprising," and variations thereof herein are open, non-limiting terminologies, which are meant to encompass a series of steps of processes and methods, or a series of units of systems, apparatuses, or devices listed thereafter and equivalents thereof as well as additional steps of the processes and methods or units of the systems, apparatuses, or devices.

    [0104] The gimbal pose correction method and device consistent with the disclosure are described in detail above. Specific examples are used in the specification to illustrate the principle and implementation of the present disclosure. The description of the above examples is merely for helping understand the method and core idea of the present disclosure. Changes of the implementation and scope above-described embodiments may be made by those skilled in the art according to the ideas of the present disclosure. Therefore, the content of the specification is not intended to limit the present disclosure.


    Claims

    1. A gimbal pose correction method, wherein a gimbal is connected to a vertical compensation device configured to compensate for a movement of the gimbal in a vertical direction, a vision module (2) and an inertial measurement unit, IMU (1), are provided at the vertical compensation device, the method comprising:

    obtaining a first pose of the gimbal based on the IMU (1);

    obtaining a second pose of the vertical compensation device based on the vision module (2); and

    correcting the first pose according to the second pose,

    characterized in that:

    the vertical compensation device includes a main body (3) and an axis arm (4) configured to be connected to the gimbal and compensate for the movement of the gimbal in the vertical direction via rotation;

    the IMU (1) is arranged at the axis arm (4); and

    the vision module (2) is arranged at the main body (3).


     
    2. The method according to claim 1, wherein

    the vision module (2) includes a visual odometer; and

    the second pose includes a velocity and a position of the vertical compensation device.


     
    3. The method according to claim 1, wherein

    the vision device includes a visual inertial odometer; and

    the second pose includes a velocity, a position, and an attitude of the vertical compensation device.


     
    4. The method according to claim 1, wherein the first pose includes a velocity, a position, and an attitude of the gimbal.
     
    5. A gimbal pose correction device, comprising:

    a vertical compensation device configured to be connected to a gimbal;

    a vision module (2) arranged at the vertical compensation device; and

    an Inertial Measurement Unit, IMU (1), arranged at the vertical compensation device, wherein:

    the vertical compensation device is configured to compensate for a movement of the gimbal in a vertical direction;

    the vision module (2) and the IMU (1) are electrically coupled to the vertical compensation device; and

    the vertical compensation device is further configured to:

    obtain a first pose of the gimbal based on the IMU (1);

    obtain a second pose of the vertical compensation device based on the vision module (2); and

    correct the first pose according to the second pose,

    characterized in that:

    the vertical compensation device includes a main body (3) and an axis arm (4) configured to be connected to the gimbal and compensate for the movement of the gimbal in the vertical direction via rotation;

    the IMU (1) is arranged at the axis arm (4); and

    the vision module (2) is arranged at the main body (3).


     
    6. The device according to claim 5, wherein

    the vision module (2) includes a visual odometer; and

    the second pose includes a velocity and a position of the vertical compensation device.


     
    7. The device according to claim 6, wherein

    the vertical compensation device includes an axis arm (4) configured to be connected to the gimbal and compensate for the movement of the gimbal in the vertical direction via rotation;

    an angular velocity sensor (6) is arranged at the axis arm (4); and

    the vertical compensation device is configured to obtain a joint angle of the axis arm (4) based on the angular velocity sensor (6),

    further preferably characterized in that,

    the first pose includes a velocity of the gimbal; and

    the vertical compensation device is further configured to perform coordinate conversion on a reference velocity of the vertical compensation device output by the vision module (2) according to the joint angle to obtain a velocity of the vertical compensation device,

    or further preferably

    characterized in that,

    the first pose includes a position of the gimbal; and

    the vertical compensation device is further configured to perform coordinate conversion on a reference position of the vertical compensation device output by the vision module (2) according to the joint angle to obtain a position of the vertical compensation device.


     
    8. The device according to claim 5, wherein the first pose includes a velocity, a position, and an attitude of the gimbal.
     
    9. The device according to claim 8, wherein

    the IMU (1) includes a gyroscope and an accelerometer; and

    the vertical compensation device is further configured to:

    obtain an angular velocity of the gimbal based on the gyroscope;

    obtain a specific force of the gimbal based on the accelerometer; and

    calculate the attitude, the velocity, and the position of the gimbal according to the angular velocity and the specific force.


     
    10. The device according to claim 9, wherein the vertical compensation device is further configured to:

    design an attitude update formula according to the angular velocity and the specific force; and

    update the attitude of the gimbal according to the attitude update formula, or characterized in that, the vertical compensation device is further configured to:

    design a velocity update formula according to the angular velocity and the specific force; and

    update the velocity of the gimbal according to the velocity update formula, or characterized in that, the vertical compensation device is further configured to:

    design a position update formula according to the angular velocity and the specific force; and

    update the position of the gimbal according to the position update formula.


     


    Ansprüche

    1. Kardanaufhängungsposenkorrekturverfahren, wobei eine Kardanaufhängung mit einer vertikalen Kompensationsvorrichtung verbunden ist, die dazu ausgelegt ist, eine Bewegung der Kardanaufhängung in eine vertikale Richtung zu kompensieren, wobei ein optisches Modul (2) und eine Trägheitsmesseinheit, IMU (1), an der vertikalen Kompensationsvorrichtung bereitgestellt sind, wobei das Verfahren Folgendes umfasst:

    Erhalten einer ersten Pose der Kardanaufhängung auf Basis der IMU (1);

    Erhalten einer zweiten Pose der vertikalen Kompensationsvorrichtung auf Basis des optischen Moduls (2) und

    Korrigieren der ersten Pose gemäß der zweiten Pose,

    dadurch gekennzeichnet, dass:

    die vertikale Kompensationsvorrichtung einen Hauptkörper (3) und einen Achsenarm (4) beinhaltet, die dazu ausgelegt sind, mit der Kardanaufhängung verbunden zu sein und die Bewegung der Kardanaufhängung in die vertikale Richtung via Rotation zu kompensieren;

    die IMU (1) am Achsenarm (4) angeordnet ist und

    das optische Modul (2) am Hauptkörper (3) angeordnet ist.


     
    2. Verfahren nach Anspruch 1, wobei
    das optische Modul (2) ein visuelles Odometer beinhaltet und die zweite Pose eine Geschwindigkeit und eine Position der vertikalen Kompensationsvorrichtung beinhaltet.
     
    3. Verfahren nach Anspruch 1, wobei

    die optische Vorrichtung ein visuelles Trägheitsodometer beinhaltet und

    die zweite Pose eine Geschwindigkeit, eine Position und eine Lage der vertikalen Kompensationsvorrichtung beinhaltet.


     
    4. Verfahren nach Anspruch 1, wobei die erste Pose eine Geschwindigkeit, eine Position und eine Lage der Kardanaufhängung beinhaltet.
     
    5. Kardanaufhängungsposenkorrekturvorrichtung, die Folgendes umfasst:

    eine vertikale Kompensationsvorrichtung, die dazu ausgelegt ist, mit einer Kardanaufhängung verbunden zu sein;

    ein optisches Modul (2), das an der vertikalen Kompensationsvorrichtung angeordnet ist; und

    eine Trägheitsmesseinheit, IMU (1), die an der vertikalen Kompensationsvorrichtung angeordnet ist, wobei:

    de vertikale Kompensationsvorrichtung dazu ausgelegt ist, eine Bewegung der Kardanaufhängung in eine vertikale Richtung zu kompensieren;

    das optische Modul (2) und die IMU (1) elektrisch an die vertikale Kompensationsvorrichtung gekoppelt sind und

    die vertikale Kompensationsvorrichtung ferner zu Folgendem ausgelegt ist:

    Erhalten einer ersten Pose der Kardanaufhängung auf Basis der IMU (1);

    Erhalten einer zweiten Pose der vertikalen Kompensationsvorrichtung auf Basis des optischen Moduls (2) und

    Korrigieren der ersten Pose gemäß der zweiten Pose,

    dadurch gekennzeichnet, dass:

    die vertikale Kompensationsvorrichtung einen Hauptkörper (3) und einen Achsenarm (4) beinhaltet, der dazu ausgelegt ist, mit der Kardanaufhängung verbunden zu sein und die Bewegung der Kardanaufhängung in die vertikale Richtung via Rotation zu kompensieren;

    die IMU (1) am Achsenarm (4) angeordnet ist und

    das optische Modul (2) am Hauptkörper (3) angeordnet ist.


     
    6. Vorrichtung nach Anspruch 5, wobei
    das optische Modul (2) ein visuelles Odometer beinhaltet und die zweite Pose eine Geschwindigkeit und eine Position der vertikalen Kompensationsvorrichtung beinhaltet.
     
    7. Vorrichtung nach Anspruch 6, wobei

    die vertikale Kompensationsvorrichtung einen Achsenarm (4) beinhaltet, der dazu ausgelegt ist, mit der Kardanaufhängung verbunden zu sein und die Bewegung der Kardanaufhängung in die vertikale Richtung via Rotation zu kompensieren;

    am Achsenarm (4) ein Winkelgeschwindigkeitssensor (6) angeordnet ist und

    die vertikale Kompensationsvorrichtung dazu ausgelegt ist, einen Gelenkwinkel des Achsenarms (4) auf Basis des Winkelgeschwindigkeitssensors (6) zu erhalten,

    ferner vorzugsweise dadurch gekennzeichnet, dass die erste Pose eine Geschwindigkeit der Kardanaufhängung beinhaltet und

    die vertikale Kompensationsvorrichtung ferner dazu ausgelegt ist, an einer Referenzgeschwindigkeit der vertikalen Kompensationsvorrichtung, die vom optischen Modul (2) ausgegeben wird, gemäß dem Gelenkwinkel eine Koordinatenumwandlung durchzuführen, um eine Geschwindigkeit der vertikalen Kompensationsvorrichtung zu erhalten, oder ferner vorzugsweise

    dadurch gekennzeichnet, dass

    die erste Pose eine Position der Kardanaufhängung beinhaltet und

    die vertikale Kompensationsvorrichtung ferner dazu ausgelegt ist, an einer Referenzposition der vertikalen Kompensationsvorrichtung, die vom optischen Modul (2) ausgegeben wird, gemäß dem Gelenkwinkel eine Koordinatenumwandlung durchzuführen, um eine Position der vertikalen Kompensationsvorrichtung zu erhalten.


     
    8. Vorrichtung nach Anspruch 5, wobei die erste Pose eine Geschwindigkeit, eine Position und eine Lage der Kardanaufhängung beinhaltet.
     
    9. Vorrichtung nach Anspruch 8, wobei

    die IMU (1) ein Gyroskop und einen Beschleunigungsmesser beinhaltet und

    die vertikale Kompensationsvorrichtung ferner zu Folgendem ausgelegt ist:

    Erhalten einer Winkelgeschwindigkeit der Kardanaufhängung auf Basis des Gyroskops;

    Erhalten einer spezifischen Kraft der Kardanaufhängung auf Basis des Beschleunigungsmessers und

    Berechnen der Lage, der Geschwindigkeit und der Position der Kardanaufhängung gemäß der Winkelgeschwindigkeit und der spezifischen Kraft.


     
    10. Vorrichtung nach Anspruch 9, wobei die vertikale Kompensationsvorrichtung ferner zu Folgendem ausgelegt ist:

    Aufstellen einer Lageaktualisierungsformel gemäß der Winkelgeschwindigkeit und der spezifischen Kraft und

    Aktualisieren der Lage der Kardanaufhängung gemäß der Lageaktualisierungsformel oder dadurch gekennzeichnet, dass die vertikale Kompensationsvorrichtung ferner zu Folgendem ausgelegt ist:

    Aufstellen einer Geschwindigkeitsaktualisierungsformel gemäß der Winkelgeschwindigkeit und der spezifischen Kraft und

    Aktualisieren der Geschwindigkeit der Kardanaufhängung gemäß der Geschwindigkeitsaktualisierungsformel oder dadurch gekennzeichnet, dass die vertikale Kompensationsvorrichtung ferner zu Folgendem ausgelegt ist:

    Aufstellen einer Positionsaktualisierungsformel gemäß der Winkelgeschwindigkeit und der spezifischen Kraft und

    Aktualisieren der Position der Kardanaufhängung gemäß der Positionsaktualisierungsformel.


     


    Revendications

    1. Procédé de correction de pose de cadran, dans lequel un cardan est connecté à un dispositif de compensation conçu pour compenser un mouvement du cardan dans une direction verticale, un module de vision (2) et une unité de mesure inertielle, IMU (1) sont prévus sur le dispositif de compensation verticale, ce procédé comprenant :

    l'obtention d'une première pose du cardan sur la base de l'IMU (1) ;

    l'obtention d'une deuxième pose de dispositif de compensation verticale sur la base du module de vision (2) ; et

    la correction de la première pose en fonction de la deuxième pose,

    caractérisé en ce que :

    le dispositif de compensation verticale comprend un corps principal (3) et un bras axial (4) conçus pour être connectés au cardan et pour compenser le mouvement du cardan dans la direction verticale à l'aide d'une rotation ;

    l'IMU (1) est disposée au niveau du bras axial (4) ; et

    le module de vision (2) est disposé au niveau du corps principal (3).


     
    2. Procédé selon la revendication 1, dans lequel

    le module de vision (2) comprend un odomètre visuel ; et

    la deuxième pose comprend une vitesse et une position du dispositif de compensation verticale.


     
    3. Procédé selon la revendication 1, dans lequel

    le dispositif de vision comprend un odomètre inertiel visuel ; et

    la deuxième pose comprend une vitesse, une position et une attitude du dispositif de compensation verticale.


     
    4. Procédé selon la revendication 1, dans lequel la première pose comprend une vitesse, une position et une attitude du cardan.
     
    5. Dispositif de correction de pose de cardan, comprenant :

    un dispositif de compensation verticale conçu pour être connecté à un cardan ;

    un module de vision (2) disposé au niveau du dispositif de compensation verticale ; et

    une Unité de Mesure Inertielle IMU (1), disposée au niveau du dispositif de compensation verticale, dans lequel :

    le dispositif de compensation verticale est conçu pour compenser un mouvement du cardan dans une direction verticale ;

    le module de vision (2) et l'IMU (1) sont couplés électriquement au dispositif de compensation verticale ; et

    le dispositif de compensation verticale est en outre conçu pour :

    obtenir une première pose du cardan sur la base de l'IMU (1) ;

    obtenir une deuxième pose du dispositif de compensation verticale sur la base du module de vision (2) ; et

    corriger la première pose en fonction de la deuxième pose,

    caractérisé en ce que :

    le dispositif de compensation verticale comprend un corps principal (3) et un bras axial (4) conçus pour être connectés au cardan et compenser le mouvement du cardan dans la direction verticale à l'aide d'une rotation ;

    l'IMU (1) est disposée au niveau du bras axial (4) ; et

    le module de vision (2) est disposé au niveau du corps principal (3).


     
    6. Dispositif selon la revendication 5, dans lequel

    le module de vision (2) comprend un odomètre visuel ; et

    la deuxième pose comprend une vitesse et une position du dispositif de compensation verticale.


     
    7. Dispositif selon la revendication 6, dans lequel

    le dispositif de compensation verticale comprend un bras axial (4) conçu pour être connecté au cardan et pour compenser le mouvement du cardan dans la direction verticale à l'aide d'une rotation ;

    un capteur de vitesse angulaire (6) est disposé au niveau du bras axial (4) ; et

    le dispositif de compensation verticale est conçu pour obtenir un angle d'articulation du bras axiale (4) sur la base du capteur de vitesse angulaire (6),

    de préférence caractérisé en ce que

    la première pose comprend une vitesse du cardan ; et

    le dispositif de compensation verticale est en outre conçu pour effectuer une conversion de coordonnées sur une vitesse de référence de la sortie du dispositif de compensation verticale par le module de vision (2) en fonction de l'angle d'articulation afin d'obtenir une vitesse du dispositif de compensation verticale,

    ou de préférence

    caractérisé en ce que

    la première pose comprend une position du cardan ; et

    le dispositif de compensation verticale est en outre conçu pour effectuer une conversion de coordonnées sur une position de référence de la sortie du dispositif de compensation verticale par le module de vision (2) en fonction de l'angle d'articulation afin d'obtenir une position du dispositif de compensation verticale.


     
    8. Dispositif selon la revendication 5, dans lequel la première pose comprend une vitesse, une position et une attitude du cardan.
     
    9. Dispositif selon la revendication 8, dans lequel

    l'IMU (1) comprend un gyroscope et un accéléromètre ; et

    le dispositif de compensation verticale est en outre conçu pour :

    obtenir une vitesse angulaire du cardan sur la base du gyroscope ;

    obtenir une force spécifique du cardan sur la base de l'accéléromètre ; et

    calculer l'attitude, la vitesse et la position du cardan en fonction de la vitesse angulaire et de la force spécifique.


     
    10. Dispositif selon la revendication 9, dans lequel le dispositif de compensation verticale est en outre conçu pour :

    concevoir une formule de mise à jour de l'attitude en fonction de la vitesse angulaire et de la force spécifique ; et

    mettre à jour l'attitude du cardan selon la formule de mise à jour de l'attitude ou

    caractérisé en ce que le dispositif de compensation verticale est en outre conçu pour :

    concevoir une formule de mise à jour de la vitesse en fonction de la vitesse angulaire et de la force spécifique ; et

    mettre à jour la vitesse du cardan selon la formule de mise à jour de la vitesse ou

    caractérisé en ce que le dispositif de compensation verticale est en outre conçu pour :

    concevoir une formule de mise à jour de la position en fonction de la vitesse angulaire et de la force spécifique ; et

    mettre à jour la position du cardan selon la formule de mise à jour de la position.


     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description