TECHNICAL FIELD
[0001] Examples of VTOL aircraft are described. A VTOL aircraft is an aircraft having vertical take-off and landing (VTOL) functionality.
BACKGROUND
[0002] VTOL aircraft are known as such. A helicopter is one example. Another example is an aircraft, such as the Kitty Hawk
® Cora° or the Boeing° Passenger Air Vehicle (PAV), which has fixed wings for providing lift in forward flight, propulsors for providing lift during take-off, landing and hovering, and a propulsor for providing forward thrust. In the case of a helicopter, the rotor of the helicopter must be driven continuously during forward flight because there is no other means of providing lift. In the case of an aircraft such as the Cora or PAV, the propulsors providing lift are switched off during forward flight since the fixed wings provide lift once the aircraft has sufficient air speed. However, once these propulsors are switched off they provide no useful function and are sources of weight and drag, reducing the efficiency of the aircraft in forward flight. In order for the fixed wings to provide sufficient lift in forward flight, their length can be considerable which may be inconvenient on the ground and may result in an undesirable contribution to the overall weight of the aircraft.
[0003] European patent application
EP3290334 discloses an aircraft for vertical take-off and landing. In various embodiments, an aircraft assembly includes at least one first wing portion providing a lift force during a horizontal flight, at least one wing opening disposed on a vertical axis of the at least one first wing portion and at least one thruster positioned inside the at least one wing opening to provide vertical thrust during a vertical flight. The aircraft assembly can further include air vents positioned inside at least one of the wing openings. The air vents can further include louvres positioned over or under the air vents to open and close the wing openings. The thruster can further be used to provide flight control for the aircraft.
[0004] United States patent application
US2010001120 discloses an aircraft which includes a fuselage; a cockpit formed in the fuselage; a coaxial rotor assembly mounted to the top of fuselage, containing an upper rotor and a lower rotor, drivable by a first motor inside the fuselage. The aircraft also comprises: a couple of fixed wings mounted to the opposite sides of the aircraft respectively; and a rear propeller mounted to the tail end of fuselage, driven by a second motor inside the fuselage.
[0005] United States patent application
US2016052626 discloses an aircraft which includes at least one propulsion engine coupled to a fuselage, and configured to provide forward thrust to propel the aircraft along a first vector during forward flight. Each of at least two of multiple rotors coupled to the fuselage is coupled to a motor configured to supply power to that rotor and/or to draw power from that rotor. At least two of the rotors are configured to operate during forward flight to provide at least some lift to the aircraft along a second vector. A flight control system is configured to control the rotors that are configured to operate during forward flight in a power managed regime in which a net electrical power, consisting of the sum of the power being supplied to or drawn from each rotor by its motor, is maintained within a range determined by a feedback control system of the flight control system.
[0006] United States patent application
US2012119016 discloses a modular vehicle having an air vehicle that can be coupled to cargo containers, land vehicles, sea vehicles, medical transport modules, etc. The air vehicle has a plurality of propellers positioned around a main airframe, which can provide vertical thrust and/or horizontal thrust. The propellers are mounted on supports which have an airfoil shape to generate additional lift. One or more of the propellers may be configured to tilt forward, backward, and/or side-to-side with respect to the airframe.
[0007] European patent application
EP3098161 discloses an aircraft comprising a support structure and at least four lift rotors. Each of the lift rotors is attached to the support structure and comprises at least one propeller. The lift rotors are constituted such that a rotational plane, in which the at least one propeller of the lift rotor rotates, is tilted with respect to a plane formed by the support structure.
BRIEF SUMMARY
[0008] According to an example, a VTOL aircraft comprises a pair of fixed wings each wing being located on a respective lateral side of the aircraft, a propeller for providing forward thrust when driven by a power system of the aircraft and rotor blade system for providing lift in active and passive modes thereof, the rotor blade system comprising first and second sets of rotor blades, each of which is mounted by a respective fixed wing, wherein operation of the rotor blade system may be switched between the active mode in which the rotor blade system is driven by a power system of the aircraft and the passive mode in which the rotor blade system is not driven by the power system of the aircraft, the rotor blade system being configurable to provide lift in the passive mode during forward flight of the aircraft, wherein the first and second sets of rotor blades are comprised in first and second rotor units respectively, each rotor unit being rotatably mounted to a respective fixed wing of the aircraft such that the rotation axis of any given set of the first and second sets of rotor blades may be rotated in a plane which is orthogonal to the horizontal plane of the aircraft and parallel to the central longitudinal axis of the aircraft between a first orientation in which the rotation axis of the set is substantially normal to the horizontal plane of the aircraft and the rotor blade system is in the active mode thereof and a second orientation in which the rotation axis of the set is inclined rearwardly to the horizontal plane of the aircraft and the rotor blade system is in the passive mode thereof and the first and second rotor units each comprise a respective rudder for influencing the yaw of the aircraft.
[0009] Since the rotor blade system provides lift in forward flight, the fixed wings may be shorter than in the case of a similar aircraft in which the rotor blade system is inoperative in forward flight, thus providing a lighter and more compact aircraft. The aircraft also provides an improvement in efficiency compared to aircraft such as the Cora or PAV since the rotor blade system in the passive mode produces lower drag compared to a similar aircraft in which a rotor blade system for providing lift during take-off and landing is static in forward flight.
[0010] In order to provide a convenient scheme whereby the rotor blade system is configurable to provide lift in the active and passive modes thereof, the first and second sets of rotor blades are comprised in first and second rotor units respectively, each rotor unit being rotatably mounted to a respective fixed wing of the aircraft such that the rotation axis of any given set of the first and second sets of rotor blades may be rotated in a plane which is orthogonal to the horizontal plane of the aircraft and parallel to the central longitudinal axis of the aircraft between a first orientation in which the rotation axis of the set is substantially normal to the horizontal plane of the aircraft and the rotor blade system is in the active mode thereof and a second orientation in which the rotation axis of the set is inclined to the horizontal plane of the aircraft and the rotor blade system is in the passive mode thereof.
[0011] The first and second rotor units each comprise a respective rudder for influencing the yaw of the aircraft.
[0012] Each of the first and second sets of rotor blades may comprise respective first and second sub-sets of rotor blades, the sub-sets of a given set being arranged for rotation about a common rotation axis and mutually displaced along said axis.
[0013] The aircraft may further comprise a second pair of fixed wings each of which is located on a respective lateral side of the aircraft, the second pair of fixed wings being located forward of the first pair of fixed wings.
[0014] The rotor blade system may further comprise third and fourth sets of rotor blades, each of which is mounted by a respective fixed wing of the second pair of fixed wings.
[0015] The third and fourth sets of rotor blades may be comprised in third and fourth rotor units respectively, each of the third and fourth rotor units being mounted to a respective fixed wing of the second pair of fixed wings such that the rotation axis of any given set of the third and fourth sets of rotor blades may be rotated in a plane which is orthogonal to the horizontal plane of the aircraft and parallel to the central longitudinal axis of the aircraft between a first orientation in which the rotation axis of the set is substantially normal to the horizontal plane of the aircraft and the rotor blade system is in the active mode thereof and a second orientation in which the rotation axis of the set is inclined to the horizontal plane of the aircraft and the rotor blade system is in the passive mode thereof.
[0016] Preferably the third and fourth rotor units each comprise a respective rudder for influencing the yaw of the aircraft.
[0017] At least part of the rotor blade system may be arranged to drive an electrical generator or an electrical machine configured as an electrical generator during the passive mode of operation of the rotor blade system, for example for use in charging a battery.
[0018] The power system may comprise an electric motor, or an electrical machine configurable as an electric motor, and an electrical power source, the electric motor or as the case may be the electrical machine configured an electric motor being arranged to receive electrical power from the electrical power source and to drive at least part of the rotor blade system.
[0019] The electrical power source may be an electrical power generator or an electrical energy store.
[0020] The electrical power source may comprise an electrical power generator and an electrical energy store, the power system being configurable such that (i) the electric motor or as the case may be the electrical machine configured as an electric motor may receive electrical power from the electrical power generator or the electrical energy store or both the electrical power generator and the electrical energy store, and (ii) the electrical energy store receives electrical power from the electrical power generator.
[0021] The power system may comprise an electric motor arranged to receive electrical power from the electrical power generator, the electrical energy store or both the electrical power generator and the electrical energy store, and to provide mechanical power to the propeller.
[0022] The electrical power source may comprise an electrical generator and a gas turbine engine arranged to drive the electrical generator. In this case optionally a shaft of the gas turbine engine may be mechanically coupled to or integral with a shaft of the electric motor which is arranged to provide mechanical power to the propeller, so that the propeller may be driven by the gas turbine engine and/or said motor.
[0023] The electric motor or as the case may be the electrical machine configured as an electric motor may be an electrical machine which is configurable in the passive mode as an electrical generator which is arranged to provide electrical power to the electrical energy store.
BRIEF DESCRIPTION OF THE DRAWINGS
[0024] Examples are described below by way of example only, with reference to the figures in which:
- Figures 1 & 2
- show side elevations of an example aircraft of the invention;
- Figure 3
- shows a front elevation of the aircraft of Figures 1 & 2;
- Figure 4
- shows a plan view of the aircraft of Figures 1 to 3;
- Figures 5 & 6
- show perspective views of the aircraft of Figures 1 to 4;
- Figure 7
- shows an example arrangement for powering the aircraft of Figures 1 to 6; and
- Figures 8, 9 & 10
- each show a respective alternative arrangement for an electrical power source comprised in the Figure 7 arrangement.
DETAILED DESCRIPTION
[0025] Referring generally to Figures 1 to 7, a first example aircraft 100 comprises a fuselage 112, right and left fore wings 124A, 124B and right and left aft wings 119A, 119B. The right aft wing 119A is a box-wing comprising forward- and rearward-swept wing segments 120A, 122A attached towards the top and bottom of the fuselage 112 respectively and a coupling element 123A located at the ends of the wing segments 120A, 120B remote from the fuselage 112. Similarly, the left aft wing 119B is a box-wing comprising forward- and rearward-swept wing segments 120B, 122B attached towards the top and bottom of the fuselage 112 respectively and a coupling element 123B. A propulsor unit 114 for providing forward thrust comprises a dual contra-rotating pusher propeller 115 located at the tail portion of the fuselage 112 and a motor 184 for driving the propeller 115. The aircraft 100 has a two-wheel nose landing gear 126 and a dual rear undercarriage having right and left units 128A, 128B. An intake 130 located at the top of the fuselage 112 provides an air flow to a portion of a power system 179 of the aircraft 100. The aircraft 100 has a horizontal plane 190 and a central longitudinal axis 194 (both fixed in the frame of the aircraft 100).
[0026] The aircraft 100 comprises a rotor blade system for providing vertical lift, the rotor blade system having first, second, third and fourth sets 165A, 165B, 176A, 176B of rotor blades comprised in first, second, third and fourth rotor units 116A, 116B, 118A, 118B respectively. The first and second rotor units 116A, 116B are attached to coupling elements 123A, 123B respectively of the right and left aft wings 119A, 119B and comprise the first and second sets 165A, 165B of rotor blades respectively. The third and fourth rotor units 118A, 118B are attached at the ends of the right and left fore wings 124A, 124B respectively, remote from the fuselage 112, and comprise the third and fourth sets 176A and 176B of rotor blades respectively. The first 165A and second 165B sets of rotor blades each comprise respective first 166A, 168A and second 166B, 168B sub-sets of rotor blades.
[0027] Referring specifically to Figures 5 and 6, the second rotor unit 116B comprises first and second sub-sets 166B, 168B of rotor blades arranged for rotation about a common axis 192B, an aerodynamic fairing 162B and a rudder 164B for influencing the yaw of the aircraft 100 in forward flight of the aircraft 100. The first and second sub-sets 166B, 168B of rotor blades are mutually displaced along the axis 192B. The second rotor unit 116B is rotatably mounted to coupling element 123B of left aft wing 119B such that the axis 192B may be rotated in a plane which is orthogonal to the horizontal plane 190 of the aircraft 100 and parallel to its central longitudinal axis 194. Figure 5 shows the second rotor unit 116B in an upright position with axis 192B normal to the horizontal plane 190 of the aircraft 100. Figure 6 shows the second rotor unit 116B in a tilted position with axis 192B inclined at about 80° to the aircraft horizontal plane 190 such that the first (upper) sub-set 166B of rotor blades is slightly forward of the second (lower) sub-set 168B of rotor blades. The first rotor unit 116A has similar structure and function to that of the second rotor unit 116B and is rotatably mounted to the right aft wing 116A in a manner like to that in which the second rotor unit 116B is attached to the left aft wing 116B. The first rotor unit 116A comprises the first set 165A of rotor blades, the first set 165A being made up of first 166A and second 168A sub-sets of rotor blades mutually displaced along a common rotation axis 192A.
[0028] The fourth rotor unit 118B comprises the fourth set 176B of rotor blades arranged for rotation about an axis 193B, an aerodynamic fairing 172B and a rudder 174B for influencing the yaw of the aircraft 100 in forward flight. The fourth rotor unit 118B is rotatably mounted to left fore wing 124B such that the axis 193B may be rotated in a plane which is orthogonal to the horizontal plane 190 of the aircraft 100 and parallel to its central longitudinal axis 194. Figure 5 shows the fourth rotor unit 118B in an upright position with axis 193B normal to the horizontal plane 190 of the aircraft 100. Figure 6 shows the fourth rotor unit 118B in a tilted position with axis 193B inclined at about 80° to the horizontal plane 190 of the aircraft 100 such that the fourth set 176B of rotor blades is slightly forward of the position it occupies when the fourth rotor unit 118B is in the upright position, as shown in Figure 5. The third rotor unit 118A comprises the third set 176A of rotor blades, has a similar structure and function to that of the fourth rotor unit 118B and is rotatably mounted to right fore wing 124A in a manner like to that in which the third rotor unit 118B is attached to the left fore wing 124B. Figures 1 and 2 show the aircraft 100 with the first and third rotor units 116A, 118A in the upright and tilted positions respectively. In Figure 3, the first and third rotor units 116A, 118A are each shown in the upright position and the second and fourth rotor units 116B, 118B are each shown in the tilted position. In Figure 4, the fourth rotor unit 118B is shown in the upright position and third rotor unit 118A is shown in the tilted position. It will be understood that the rotors can be tilted to a forward (negative angle of attack) position as shown in the drawings, in order to passively rotate to generate sufficient rotational speed for an auto-rotation landing in the event of an electric motor failure. On the other hand, the rotors can be tilted to a rearward (positive angle of attack) position (not shown in the drawings) in order to generate lift during normal cruise flight.
[0029] The centre of gravity 113 of the aircraft 100 is located close to the roots of the aft wings 119A, 119B for increased stability and controllability, particularly in the case of failure of one or more the rotor units 116A, 116B, 118A, 118B.
[0030] Figure 7 schematically shows the power system 179 for delivery of mechanical power to the dual contra-rotating pusher propeller 115 and the first to fourth sets 165A, 165B, 176A, 176B of rotor blades of the rotor blade system. The first and second rotor units 116A, 116B comprise electrical machines 180, 182 respectively which are configurable as motors or electric generators depending on the aircraft's mode of operation and either drive, or are driven by, the first and second sets 165A, 165B of rotor blades respectively, depending on the aircraft's mode of operation. The third and fourth rotor units 118A, 118B comprise electric motors 181, 183 respectively arranged to drive the third 118A and fourth 118B sets of rotor blades respectively. The propulsor unit 114 comprises an electric motor 184 arranged to drive the dual contra-rotating pusher propeller 115.
[0031] Electrical power drawn from an electrical power source 186, in this case an electrical energy store (e.g. a battery), is provided to the electric motor 184 via a controller 185 such that the forward thrust provided by the dual contra-rotating pusher propeller 115 may be varied. In an active mode of operation of the rotor blade system, the first to fourth sets of rotor blades 165A, 165B, 176A, 176B are in their upright positions (as shown in Figure 1 for example), and electrical power drawn from the electrical energy store 186 is provided to the electric motors 181, 183 and electrical machines 180, 182 configured as electric motors via the controller 185 such that the lift provided by the rotor blade system 165A, 165B, 176A, 176B may be varied. In a passive mode of operation of the rotor blade system, the first to fourth sets of rotor blades 165A, 165B, 176A, 176B are not actively driven, but rotate passively in forward flight of the aircraft 100 in their titled positions (as shown in Figure 2 for example). In the passive mode, machines 180, 182 may be configured as electrical generators to provide electrical power to the electrical energy store 186.
[0032] The aircraft 100 may generally operate, or be operated, as follows. During vertical take-off, the rotor blade system 165A, 165B, 176A, 176B is operated in an active mode in which electrical power is provided to electric motors 181, 183 and electrical machines 180, 182 configured as electric motors, with the rotor units 116A, 116B, 118A, 118B in their upright positions. The rotor blade arrangement is thus actively driven. Little or no electrical power is provided to motor 184 such that the dual contra-rotating propeller 115 produces little or no forward thrust. The rotor blade arrangement 165A, 165B, 176A, 176B thus provides lift for vertical take-off. After vertical take-off, power is provided to the motor 184 so that the propeller 115 provides forward thrust. Once the aircraft 100 has reached sufficient forward air speed, the rotor units 116A, 116B, 118A, 118B are moved to their tilted positions by means of actuators (not shown) comprised in the aircraft 100 and supply of electrical power to motors 181, 183 and machines 180, 182 (configured as motors) ceases. The first to fourth sets of rotor blades 165A, 165B, 176A, 176B then rotate passively, i.e. they continue rotate in a passive mode of operation due to the forward motion of the aircraft 100 but are not actively driven. The rotor blade system, consisting of the first to fourth sets of rotors blades 116A, 116B, 118A, 118B, provides lift in the passive mode by the autogyro principle.
[0033] When the rotor blade system is in the passive mode, electrical machines 180, 182, which are general electrical machines configured as electric motors in the active mode of the rotor arrangement 165A, 165B, 176A, 176B, maybe re-configured to operate as electrical generators in order to provide electrical energy to the electrical energy store 186. For example, when it is desired to reduce the altitude of the aircraft 100 in preparation for landing, the machines 180, 182 may be operated as electrical generators, charging the electrical energy store 186 and reducing the lift provided by the rotor units 116A, 116B by slowing the rotational speed of the first and second sets 165A, 165B of rotor blades of first and second rotor units 116A, 116B. Alternatively, the machines 180, 182 may be configured to operate as electrical generators throughout forward flight in order to charge the electrical energy store 186. Any resulting loss in lift provided by the first and second sets 165A, 165B of rotor blades may be compensated for by increasing the electrical power provided via the controller 185 to the motor 184, thus increasing the forward thrust provided by the dual contra-rotating pusher propeller 115 and increasing the airspeed of the aircraft 100.
[0034] To effect vertical landing, the thrust provided by the propeller 115 is reduced by reducing the electrical power provided to the motor 184 via the controller 185, the lift provided by the fore and aft wings 124A, 124B, 119A, 119B thus decreases and the rotor arrangement 165A, 165B, 176A, 176B is again actively driven to provide lift with the first to fourth rotor units 116A, 116B, 118A, 118B in their upright positions, that is, with the rotation axes 192A, 192B, 193A, 193B substantially normal to the horizontal plane 190 of the aircraft 100, the horizontal plane 100 also being parallel to the ground. The propulsor unit 114 ceases operation and the electrical power provided to the electric motors 181, 183 and electrical machines 180, 182 is gradually reduced.
[0035] In the passive mode of the rotor blade system, zero net power is required for the rotor blade system. Therefore in the case of failure of the power system 179, the rotor blade system can continue to provide lift almost equal to the aircraft weight, allowing the aircraft 100 to safely descend. In the passive mode of operation of the rotor blade system, air passing through the sets of rotor blades provides the energy required to rotated the sets of rotor blades.
[0036] The aircraft 100 is a fully electric aircraft, the electrical power source 186 of the aircraft being an electrical energy store within the power system 179. In a first alternative embodiment, the electrical power source 186 is an electrical power generator, for example a fuel cell or a turbo-electric generator, so that electrical power is generated on board the aircraft rather being stored on the aircraft.
[0037] Referring to Figure 8, in a second alternative embodiment the electrical power source 186 is a hybrid arrangement comprising an electrical power generator 187 and an electrical energy store 199 and electrical power may be provided to the controller 185 by the electrical power generator 187 and/or the electrical energy store 199. The electrical energy store 199 may also be charged by the electrical power generator 187. In a first example hybrid arrangement for the electrical power source 186, the electrical power generator 187 is a fuel cell. During the passive mode of operation of the rotor blade system, machines 180, 182 of rotor units 116A, 116B may be configured as electric generators and provide electrical power to the electrical energy store 199 to charge it.
[0038] Referring to Figure 9, in a second example hybrid arrangement, the electrical power generator 187 is a turbo-electric generator comprising an electric generator 191 driven by a shaft 195 of a gas turbine engine 189. Figure 9 depicts a series-hybrid arrangement in which the gas turbine engine 189 operates only a source of mechanical power driving the electrical generator 191. Again, machines 180, 182, operating as electrical generators in the passive mode of the rotor blade arrangement, provide electrical power to the electrical energy store 199.
[0039] Figure 10 schematically shows a third example hybrid arrangement for the power source 186 in which a shaft 195 of a gas turbine engine 189 may provide mechanical power to electrical generator 191 and to propeller 115 of propulsor unit 114. Motor 184 is mounted on the shaft 195 so that propeller 115 may be driven by gas turbine engine 189, or motor 184 using electrical power from the electrical energy store 199, or both, in a parallel-hybrid arrangement, with motors and machines 180, 181, 182, 183 being powered in a series-hybrid arrangement.
1. A VTOL aircraft (100) comprising a pair of fixed wings (119A, 119B) each wing being located on a respective lateral side of the aircraft, a propeller (115) for providing forward thrust when driven by a power system (179) of the aircraft and rotor blade system (165A, 165B) for providing lift in active and passive modes thereof, the rotor blade system comprising first (165A) and second (165B) sets of rotor blades, each of which is mounted by a respective fixed wing, wherein operation of the rotor blade system may be switched between the active mode in which the rotor blade system is driven by a power system of the aircraft and the passive mode in which the rotor blade system is not driven by the power system of the aircraft, the rotor blade system being configurable to provide lift in the passive mode during forward flight of the aircraft; wherein the first and second sets of rotor blades are comprised in first (116A) and second (116B) rotor units respectively, each rotor unit being rotatably mounted to a respective fixed wing of the aircraft such that the rotation axis (192A, 192B) of any given set of the first and second sets of rotor blades may be rotated in a plane which is orthogonal to the horizontal plane (190) of the aircraft and parallel to the central longitudinal axis (194) of the aircraft between a first orientation in which the rotation axis of the set is substantially normal to the horizontal plane of the aircraft and the rotor blade system is in the active mode thereof and a second orientation in which the rotation axis of the set is inclined rearwardly to the horizontal plane of the aircraft and the rotor blade system is in the passive mode thereof and the first and second rotor units each comprise a respective rudder (164A, 164B) for influencing the yaw of the aircraft.
2. A VTOL aircraft according to claim 1 wherein each of the first and second sets of rotor blades comprises respective first (166A, 166B) and second (168A, 168B) sub-sets of rotor blades, the sub-sets of a given set being arranged for rotation about a common rotation axis (192A, 192B) and mutually displaced along said axis.
3. A VTOL aircraft according to any preceding claim further comprising a second pair of fixed wings (124A, 124B) each of which is located on a respective lateral side of the aircraft, the second pair of fixed wings being located forward of the first pair of fixed wings.
4. A VTOL aircraft according to claim 3 wherein the rotor blade system further comprises third and fourth sets (176A, 176B) of rotor blades, each of which is mounted by a respective fixed wing of the second pair of fixed wings.
5. A VTOL aircraft according to claim 4 wherein the third and fourth sets of rotor blades are comprised in third (118A) and fourth (118B) rotor units respectively, each of the third and fourth rotor units being mounted to a respective fixed wing of the second pair of fixed wings such that the rotation axis (193A, 193B) of any given set of the third and fourth sets of rotor blades may be rotated in a plane which is orthogonal to the horizontal plane (190) of the aircraft and parallel to the central longitudinal axis (194) of the aircraft between a first orientation in which the rotation axis of the set is substantially normal to the horizontal plane of the aircraft and the rotor blade system is in the active mode thereof and a second orientation in which the rotation axis of the set is inclined to the horizontal plane of the aircraft and the rotor blade system is in the passive mode thereof.
6. A VTOL aircraft according to claim 5 wherein the third and fourth rotor units each comprise a respective rudder (174A, 174B) for influencing the yaw of the aircraft.
7. A VTOL aircraft according to any preceding claim wherein at least part (165A, 165B) of the rotor blade system may be arranged to drive an electrical generator or an electrical machine (180, 182) configured as an electrical generator during the passive mode of operation of the rotor blade system.
8. A VTOL aircraft according to any preceding claim wherein the power system comprises an electric motor (181, 183) or an electrical machine (180, 182) configurable as an electric motor and an electrical power source (186) and wherein in the active mode the electric motor or as the case may be the electrical machine configured an electric motor is arranged to receive electrical power from the electrical power source and to drive at least part (118A, 118B; 165A, 165B) of the rotor blade system.
9. A VTOL aircraft according to claim 8 wherein the electrical power source is one of an electrical power generator and an electrical energy store.
10. A VTOL aircraft according to claim 8 wherein the electrical power source comprises an electrical power generator (187) and an electrical energy store (199) and wherein the power system is configurable such that (i) the electric motor or as the case may be the electrical machine configured as an electric motor may receive electrical power from the electrical power generator or the electrical energy store or both the electrical power generator and the electrical energy store, and (ii) the electrical energy store receives electrical power from the electrical power generator.
11. A VTOL aircraft according to claim 10 wherein the power system comprises an electric motor (184) arranged to receive electrical power from the electrical power generator, the electrical energy store or both the electrical power generator and the electrical energy store and to provide mechanical power to the propeller.
12. A VTOL aircraft according to claim 11 wherein the electrical power source comprises an electrical generator (191) and a gas turbine engine (189) arranged to drive the electrical generator, wherein a shaft (195) of the gas turbine engine may be mechanically coupled to or integral with a shaft of the electric motor which is arranged to provide mechanical power to the propeller.
13. A VTOL aircraft according to any of claims 8 to 12 wherein the electric motor or as the case may be the electrical machine configured as an electric motor is an electrical machine (180; 182) and is configurable in the passive mode as an electrical generator which is arranged to provide electrical power to the electrical energy store.
1. VTOL-Flugzeug (100), umfassend ein Paar Starrflügel (119A, 119B), wobei sich jeder Flügel auf einer jeweiligen lateralen Seite des Flugzeugs befindet, einen Propeller (115) zum Bereitstellen von Vorwärtsschub, wenn er durch ein Leistungssystem (179) des Flugzeugs angetrieben wird, und Rotorblattsystem (165A, 165B) zum Bereitstellen von Auftrieb in einem aktiven und einem passiven Modus davon, wobei das Rotorblattsystem einen ersten (165A) und einen zweiten (165B) Satz von Rotorblättern umfasst, von denen jeder an einem jeweiligen Starrflügel montiert ist, wobei der Betrieb des Rotorblattsystems zwischen dem aktiven Modus, in dem das Rotorblattsystem durch ein Leistungssystem des Flugzeugs angetrieben wird, und dem passiven Modus, in dem das Rotorblattsystem nicht durch das Leistungssystem des Flugzeugs angetrieben wird, umgeschaltet werden kann, wobei das Rotorblattsystem dazu konfigurierbar ist, im passiven Modus während des Vorwärtsflugs des Flugzeugs Auftrieb bereitzustellen; wobei der erste und der zweite Satz von Rotorblättern in einer ersten (116A) bzw. einer zweiten (116B) Rotoreinheit umfasst sind, wobei jede Rotoreinheit derart drehbar an einem jeweiligen Starrflügel des Flugzeugs montiert ist, dass die Drehachse (192A, 192B) eines beliebigen gegebenen Satzes des ersten und des zweiten Satzes von Rotorblättern in einer Ebene, die orthogonal zu der horizontalen Ebene (190) des Flugzeugs und parallel zu der zentralen Längsachse (194) des Flugzeugs ist, zwischen einer ersten Ausrichtung, in der die Drehachse des Satzes im Wesentlichen normal zu der horizontalen Ebene des Flugzeugs ist und sich das Rotorblattsystem im aktiven Modus davon befindet, und einer zweiten Ausrichtung, in der die Drehachse des Satzes nach hinten zu der horizontalen Ebene des Flugzeugs geneigt ist und sich das Rotorblattsystem im passiven Modus davon befindet, gedreht werden kann, und die erste und die zweite Rotoreinheit j eweils ein jeweiliges Seitenruder (164A, 164B) zum Beeinflussen des Gierens des Flugzeugs umfassen.
2. VTOL-Flugzeug nach Anspruch 1, wobei jeder des ersten und des zweiten Satzes von Rotorblättern einen jeweiligen ersten (166A, 166B) und zweiten (168A, 168B) Teilsatz von Rotorblättern umfasst, wobei die Teilsätze eines gegebenen Satzes zur Drehung um eine gemeinsame Drehachse (192A, 192B) angeordnet sind und gegeneinander entlang der Achse verschoben sind.
3. VTOL-Flugzeug nach einem vorhergehenden Anspruch, ferner umfassend ein zweites Paar Starrflügel (124A, 124B), von dem sich jeder auf einer jeweiligen lateralen Seite des Flugzeugs befindet, wobei sich das zweite Paar Starrflügel vor dem ersten Paar Starrflügel befindet.
4. VTOL-Flugzeug nach Anspruch 3, wobei das Rotorblattsystem ferner einen dritten und einen vierten Satz (176A, 176B) von Rotorblättern umfasst, von denen jeder durch einen jeweiligen Starrflügel des zweiten Paars Starrflügel montiert ist.
5. VTOL-Flugzeug nach Anspruch 4, wobei der dritte und der vierte Satz von Rotorblättern in einer dritten (118A) bzw. einer vierten (118B) Rotoreinheit umfasst sind, wobei jede der dritten und der vierten Rotoreinheit derart an einem jeweiligen Starrflügel des zweiten Paars Starrflügel montiert ist, dass die Drehachse (193A, 193B) eines beliebigen gegebenen Satzes des dritten und des vierten Satzes von Rotorblättern in einer Ebene, die orthogonal zu der horizontalen Ebene (190) des Flugzeugs und parallel zu der zentralen Längsachse (194) des Flugzeugs ist, zwischen einer ersten Ausrichtung, in der die Drehachse des Satzes im Wesentlichen normal zu der horizontalen Ebene des Flugzeugs ist und sich das Rotorblattsystem im aktiven Modus davon befindet, und einer zweiten Ausrichtung, in der die Drehachse des Satzes zu der horizontalen Ebene des Flugzeugs geneigt ist und sich das Rotorblattsystem im passiven Modus davon befindet, gedreht werden kann.
6. VTOL-Flugzeug nach Anspruch 5, wobei die dritte und die vierte Rotoreinheit jeweils ein jeweiliges Seitenruder (174A, 174B) zum Beeinflussen des Gierens des Flugzeugs umfassen.
7. VTOL-Flugzeug nach einem vorhergehenden Anspruch, wobei mindestens ein Teil (165A, 165B) des Rotorblattsystems dazu angeordnet sein kann, einen elektrischen Generator oder eine als elektrischer Generator konfigurierte elektrische Maschine (180, 182) während des passiven Betriebsmodus des Rotorblattsystems anzutreiben.
8. VTOL-Flugzeug nach einem vorhergehenden Anspruch, wobei das Leistungssystem einen Elektromotor (181, 183) oder eine als Elektromotor konfigurierbare elektrische Maschine (180, 182) und eine elektrische Leistungsquelle (186) umfasst und wobei im aktiven Modus der Elektromotor oder gegebenenfalls die Elektromotor konfigurierte elektrische Maschine dazu angeordnet ist, elektrische Leistung von der elektrischen Leistungsquelle zu empfangen und mindestens einen Teil (118A, 118B; 165A, 165B) des Rotorblattsystems anzutreiben.
9. VTOL-Flugzeug nach Anspruch 8, wobei die elektrische Leistungsquelle einer von einem elektrischen Leistungsgenerator und einem elektrischen Energiespeicher ist.
10. VTOL-Flugzeug nach Anspruch 8, wobei die elektrische Leistungsquelle einen elektrischen Leistungsgenerator (187) und einen elektrischen Energiespeicher (199) umfasst und wobei das Leistungssystem derart konfigurierbar ist, dass (i) der Elektromotor oder gegebenenfalls die als Elektromotor konfigurierte elektrische Maschine elektrische Leistung von dem elektrischen Leistungsgenerator oder dem elektrischen Energiespeicher oder sowohl dem elektrischen Leistungsgenerator als auch dem elektrischen Energiespeicher empfangen kann und (ii) der elektrische Energiespeicher elektrische Leistung von dem elektrischen Leistungsgenerator empfängt.
11. VTOL-Flugzeug nach Anspruch 10, wobei das Leistungssystem einen Elektromotor (184) umfasst, der dazu angeordnet ist, elektrische Leistung von dem elektrischen Leistungsgenerator, dem elektrischen Energiespeicher oder sowohl dem elektrischen Leistungsgenerator als auch dem elektrischen Energiespeicher zu empfangen und dem Propeller mechanische Leistung bereitzustellen.
12. VTOL-Flugzeug nach Anspruch 11, wobei die elektrische Leistungsquelle einen elektrischen Generator (191) und ein Gasturbinentriebwerk (189) umfasst, das dazu angeordnet ist, den elektrischen Generator anzutreiben, wobei eine Welle (195) des Gasturbinentriebwerks mechanisch an eine Welle des Elektromotors gekoppelt oder einstückig damit ausgebildet sein kann, der dazu angeordnet ist, dem Propeller mechanische Leistung bereitzustellen.
13. VTOL-Flugzeug nach einem der Ansprüche 8 bis 12, wobei der Elektromotor oder gegebenenfalls die als Elektromotor konfigurierte elektrische Maschine eine elektrische Maschine (180, 182) ist und im passiven Modus als elektrischer Generator konfigurierbar ist, der dazu angeordnet ist, dem elektrischen Energiespeicher elektrische Leistung bereitzustellen.
1. Aéronef ADAV (100) comprenant une paire d'ailes fixes (119A, 119B), chaque aile étant située sur un côté latéral respectif de l'aéronef, une hélice (115) pour fournir une poussée vers l'avant lorsqu'elle est entraînée par un système d'alimentation (179) de l'aéronef et un système de pales de rotor (165A, 165B) destiné à fournir une portance dans ses modes actif et passif, le système de pales de rotor comprenant des premier (165A) et deuxième (165B) ensembles de pales de rotor, dont chacun est monté par une aile fixe respective, ledit fonctionnement du système de pales de rotor pouvant être commuté entre le mode actif dans lequel le système de pales de rotor est entraîné par un système d'alimentation de l'aéronef et le mode passif dans lequel le système de pales de rotor n'est pas entraîné par le système d'alimentation de l'aéronef, le système de pales de rotor étant configurable pour fournir une portance dans le mode passif durant le vol vers l'avant de l'aéronef ; lesdits premier et deuxième ensembles de pales de rotor étant respectivement compris dans des première (116A) et deuxième (116B) unités de rotor, chaque unité de rotor étant montée de manière rotative sur une aile fixe respective de l'aéronef de sorte que l'axe de rotation (192A, 192B) de tout ensemble donné des premier et deuxième ensembles de pales de rotor puisse être tourné dans un plan qui est orthogonal au plan horizontal (190) de l'aéronef et parallèle à l'axe longitudinal central (194) de l'aéronef entre une première orientation dans laquelle l'axe de rotation de l'ensemble est sensiblement normal au plan horizontal de l'aéronef et le système de pales de rotor est dans son mode actif et une seconde orientation dans laquelle l'axe de rotation de l'ensemble est incliné vers l'arrière par rapport au plan horizontal de l'aéronef et le système de pales de rotor est dans son mode passif et lesdites première et deuxième unités de rotor comprenant chacune une gouverne de direction respective (164A, 164B) destinée à influencer le lacet de l'aéronef.
2. Aéronef ADAV selon la revendication 1, chacun des premier et deuxième ensembles de pales de rotor comprenant des premier (166A, 166B) et second (168A, 168B) sous-ensembles respectifs de pales de rotor, les sous-ensembles d'un ensemble donné étant agencés pour tourner autour d'un axe de rotation commun (192A, 192B) et mutuellement déplacés le long dudit axe.
3. Aéronef ADAV selon une quelconque revendication précédente, comprenant en outre une seconde paire d'ailes fixes (124A, 124B) dont chacune est située sur un côté latéral respectif de l'aéronef, la seconde paire d'ailes fixes étant située en avant de la première paire d'ailes fixes.
4. Aéronef ADAV selon la revendication 3, ledit système de pales de rotor comprenant en outre des troisième et quatrième ensembles (176A, 176B) de pales de rotor, dont chacun est monté par une aile fixe respective de la seconde paire d'ailes fixes.
5. Aéronef ADAV selon la revendication 4, lesdits troisième et quatrième ensembles de pales de rotor étant respectivement compris dans des troisième (118A) et quatrième (118B) unités de rotor, chacune des troisième et quatrième unités de rotor étant montée sur une aile fixe respective de la seconde paire d'ailes fixes de sorte que l'axe de rotation (193A, 193B) de quelconque ensemble donné des troisième et quatrième ensembles de pales de rotor puisse être tourné dans un plan qui est orthogonal au plan horizontal (190) de l'aéronef et parallèle à l'axe longitudinal central (194) de l'aéronef entre une première orientation dans laquelle l'axe de rotation de l'ensemble est sensiblement normal au plan horizontal de l'aéronef et le système de pales de rotor est dans son mode actif et une seconde orientation dans laquelle l'axe de rotation de l'ensemble est incliné par rapport au plan horizontal de l'aéronef et le système de pales de rotor est dans son mode passif.
6. Aéronef ADAV selon la revendication 5, lesdites troisième et quatrième unités de rotor comprenant chacune une gouverne de direction respective (174A, 174B) destinée à influencer le lacet de l'aéronef.
7. Aéronef ADAV selon une quelconque revendication précédente, au moins une partie (165A, 165B) du système de pales de rotor pouvant être agencée pour entraîner un générateur électrique ou une machine électrique (180, 182) configurée en tant que générateur électrique durant le mode de fonctionnement passif du système de pales de rotor.
8. Aéronef ADAV selon une quelconque revendication précédente, ledit système d'alimentation comprenant un moteur électrique (181, 183) ou une machine électrique (180, 182) configurable en tant que moteur électrique et une source de puissance électrique (186) et dans le mode actif, ledit moteur électrique ou, selon le cas, ladite machine électrique configurée en tant que moteur électrique étant agencé pour recevoir une puissance électrique en provenance de la source de puissance électrique et pour entraîner au moins une partie (118A, 118B ; 165A, 165B) du système de pales de rotor.
9. Aéronef ADAV selon la revendication 8, ladite source de puissance électrique étant l'une d'un générateur de puissance électrique et d'un dispositif de stockage d'énergie électrique.
10. Aéronef ADAV selon la revendication 8, ladite source de puissance électrique comprenant un générateur de puissance électrique (187) et un dispositif de stockage d'énergie électrique (199) et ledit système d'alimentation étant configurable de sorte que (i) le moteur électrique ou, selon le cas, la machine électrique configurée en tant que moteur électrique puisse recevoir une puissance électrique en provenance du générateur de puissance électrique ou du dispositif de stockage d'énergie électrique ou à la fois du générateur de puissance électrique et du dispositif de stockage d'énergie électrique, et (ii) le dispositif de stockage d'énergie électrique reçoive une puissance électrique en provenance du générateur de puissance électrique.
11. Aéronef ADAV selon la revendication 10, ledit système d'alimentation comprenant un moteur électrique (184) agencé pour recevoir une puissance électrique en provenance du générateur de puissance électrique, du dispositif de stockage d'énergie électrique ou à la fois du générateur de puissance électrique et du dispositif de stockage d'énergie électrique et pour fournir une puissance mécanique à l'hélice.
12. Aéronef ADAV selon la revendication 11, ladite source de puissance électrique comprenant un générateur électrique (191) et un moteur à turbine à gaz (189) agencé pour entraîner le générateur électrique, un arbre (195) du moteur à turbine à gaz pouvant être couplé mécaniquement ou d'un seul tenant avec un arbre du moteur électrique qui est agencé pour fournir une puissance mécanique à l'hélice.
13. Aéronef ADAV selon l'une quelconque des revendications 8 à 12, ledit moteur électrique ou, selon le cas, la machine électrique configurée en tant que moteur électrique, étant une machine électrique (180 ; 182) et pouvant être configuré dans le mode passif en tant que générateur électrique qui est agencé pour fournir une puissance électrique au dispositif de stockage d'énergie électrique.