(19)
(11)EP 3 841 154 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
21.09.2022 Bulletin 2022/38

(21)Application number: 19752583.5

(22)Date of filing:  03.07.2019
(51)International Patent Classification (IPC): 
C08G 77/08(2006.01)
C08G 77/16(2006.01)
C08G 77/10(2006.01)
C08L 83/04(2006.01)
(52)Cooperative Patent Classification (CPC):
C08G 77/16; C08G 77/08; C08G 77/10; C08L 83/04
(86)International application number:
PCT/US2019/040441
(87)International publication number:
WO 2020/040885 (27.02.2020 Gazette  2020/09)

(54)

METHOD FOR CONDENSATION POLYMERIZATION OF HYDROXYL-TERMINATED POLYDIORGANOSILOXANES

VERFAHREN ZUR KONDENSATIONSPOLYMERISIERUNG VON HYDROXYLTERMINIERTEN POLYDIORGANOSILOXANEN

PROCÉDÉ DE POLYMÉRISATION PAR CONDENSATION DE POLYDIORGANOSILOXANES À TERMINAISON HYDROXYLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.08.2018 US 201862722345 P

(43)Date of publication of application:
30.06.2021 Bulletin 2021/26

(73)Proprietors:
  • Dow Silicones Corporation
    Midland, MI 48686-0994 (US)
  • Dow Global Technologies LLC
    Midland, MI 48674 (US)

(72)Inventors:
  • BELOWICH, Matthew
    Midland, MI 48674 (US)
  • RICKARD, Mark
    Midland, MI 48667 (US)
  • PUSHKAREV, Vladimir
    Midland, MI 48642 (US)
  • HAN, Shuangbing
    Midland, MI 48642 (US)
  • AUYEUNG, Evelyn
    Lake Jackson, TX 77566 (US)
  • ROBERTS, John
    Midland, MI 48642 (US)
  • PETERSON, Thomas
    Midland, MI 48674 (US)

(74)Representative: Murgitroyd & Company 
Murgitroyd House 165-169 Scotland Street
Glasgow G5 8PL
Glasgow G5 8PL (GB)


(56)References cited: : 
EP-B1- 2 155 804
GB-A- 2 390 092
WO-A1-2013/101755
US-A1- 2010 331 483
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] This invention relates to a method for condensation polymerization of hydroxyl-terminated polydiorganosiloxanes. The method employs a trifluoromethane sulfonate (triflate) compound as a catalyst that minimizes production of cyclic polydiorganosiloxane by-products.

    BACKGROUND



    [0002] Organosiloxane oligomers and short chain polymers having hydroxyl groups may be polymerized via condensation reaction to high molecular weight, high degree of polymerization (DP), polymers by polymerization in the presence of a suitable condensation reaction catalyst. Condensation polymerization of hydroxyl functional organosiloxanes occurs with the elimination of water as a by-product. Previous methods employed Bronsted acids, Bronsted bases, or phosphonitriles as catalysts. Although these catalysts can be highly active (to produce product with high DP), they tend to produce large quantities (>1000 ppm) of the cyclic by-product, octamethylcyclotetrasiloxane (D4), in the resulting hydroxyl-functional polydiorganosiloxane product.

    [0003] EP2155804 B1 discloses a method of making increased molecular weight phenylalkylsiloxanes via the polymerization of shorter-chain phenylalkylsiloxanes under vacuum in an aqueous alkaline solution comprising a hydroxide of sodium, potassium, magnesium, calcium, rubidium, (substituted) ammonium or phosphonium. The document goes on to disclose the use of phosphonitrile and dodecylbenzylsulfonic acid as catalysts for this same reaction in comparative examples. PROBLEM TO BE SOLVED

    [0004] There is an industry need to produce high molecular weight, high degree of polymerization polyorganosiloxanes with lower D4 content than achieved with previous methods, described above.

    SUMMARY



    [0005] A method for polymerizing polydiorganosiloxanes comprises:
    1. 1) heating, at a temperature of 50°C to 200°C, a reaction mixture prepared by mixing starting materials comprising
      1. A) a polydiorganosiloxane of unit formula [(HO)R2SiO1/2]2(R2SiO2/2)n, where subscript n is 0 to 2000, and each R is an independently selected monovalent hydrocarbon group of 1 to 18 carbon atoms; and
      2. B) 10 ppm to 500 ppm, based on weight of starting material A), of a trifluoromethane sulfonate compound selected from the group consisting of

        B-1) aluminum(III) trifluoromethane sulfonate,

        B-2) bismuth(III) trifluoromethane sulfonate,

        B-3) gallium(III) trifluoromethane sulfonate,

        B-4) iron(III) trifluoromethane sulfonate,

        B-5) indium(III) trifluoromethane sulfonate,

        B-6) scandium(III) trifluoromethane sulfonate, and

        B-7) dicyclohexylboron trifluoromethane sulfonate;

    2. 2) quenching the reaction mixture; and
    3. 3) recovering a product from the reaction mixture, where the product has unit formula [(HO)R2SiO1/2]2(R2SiO2/2)m, where m > n.

    DETAILED DESCRIPTION



    [0006] A method for polymerizing polydiorganosiloxanes to produce a hydroxyl-terminated polydiorganosiloxane product having higher DP than the starting material and low D4 content comprises:
    optionally, pre-1) mixing B) a trifluoromethane sulfonate compound and C) a chelating ligand for the trifluoromethane sulfonate compound before step 1);
    1. 1) heating, at a temperature of 50°C to 200°C, a reaction mixture prepared by mixing starting materials comprising
      1. A) a polydiorganosiloxane of unit formula [(HO)R2SiO1/2]2(R2SiO2/2)n, where subscript n is 0 to 2000, and each R is an independently selected monovalent hydrocarbon group of 1 to 18 carbon atoms; and
      2. B) 10 ppm to 500 ppm, based on weight of starting material A), of the trifluoromethanesulfonate compound, which is selected from the group consisting of B-1) aluminum(III) trifluoromethanesulfonate,

        B-2) bismuth(III) trifluoromethanesulfonate,

        B-3) gallium(III) trifluoromethanesulfonate,

        B-4) iron(III) trifluoromethanesulfonate,

        B-5) indium(III) trifluoromethanesulfonate,

        B-6) scandium(III) trifluoromethanesulfonate, and

        B-7) dicyclohexylboron trifluoromethanesulfonate;

        optionally C) the chelating ligand; and

        optionally D) a solvent;

    2. 2) quenching the reaction mixture; and
    3. 3) recovering the product from the reaction mixture, where the product has unit formula [(HO)R2SiO1/2]2(R2SiO2/2)m, where m > n. In step 1), B) the trifluoromethane sulfonate compound and, when present, C) the chelating ligand may be combined. Alternatively, when step pre-1) is present, B) the trifluoromethane sulfonate compound and C) the chelating ligand may be combined to form a chelate before step 1).


    [0007] The method may be performed using a batch reactor or a continuous reactor, such as a gas liquid reactor. Residence time depends on various factors including the temperature selected and the type of reactor. However, step 1) may be performed by heating at a temperature of 80°C to 105°C for 30 seconds to 2 hours. The method may be performed at ambient pressure and does not require an inert atmosphere. However, conditions that enable by-product water to be removed may facilitate increasing DP of the product or improving selectivity (minimizing D4 in the product), or both. Therefore, the method may further comprise removing water during and/or after step 1). Selectivity may also be improved when starting material C), the ligand, is added. Alternatively, the method may be performed under conditions in which water is not removed during step 1). Step 2) may be performed by adding E) an amine and cooling the reaction mixture to a temperature less than 50°C. Step 3) may be performed by a method comprising filtering, stripping and/or distilling the reaction mixture.

    [0008] The method described above can produce a hydroxyl-terminated polydiorganosiloxane having a DP higher than that of starting material A) and a low D4 content. For example, D4 content in the product may be < 400 ppm, alternatively < 300 ppm. The minimum amount of D4 may be 0, alternatively 100 ppm. And, when starting material A) has a DP < 50, DP of the product may be > 300, alternatively > 400, alternatively > 500, alternatively > 1000, alternatively > 1500, and alternatively > 2000. Alternatively, when starting material A) has a DP < 50, DP of the product may be 300 to 3000, alternatively 400 to 2500, alternatively 500 to 2000.

    Starting Material A) Polydiorganosiloxane



    [0009] Starting material A) is a polydiorganosiloxane comprising unit formula [(HO)R2SiO1/2]2(R2SiO2/2)n, where subscript n is 0 to 2000, and each R is an independently selected monovalent hydrocarbon group of 1 to 18 carbon atoms. Suitable monovalent hydrocarbon groups for R may be selected from the group consisting of alkyl, alkenyl, and aryl. Exemplary alkyl groups include methyl, ethyl, propyl (including n-propyl and iso-propyl), butyl (including n-butyl, t-butyl, iso-butyl and sec-butyl), and hexyl groups (including branched and linear isomers thereof). Exemplary alkenyl groups include vinyl, allyl, and hexenyl (including branched and linear isomers thereof). Exemplary aryl groups include phenyl, tolyl, xylyl, naphthyl, and benzyl. Alternatively, each alkyl may be methyl, each alkenyl may be selected from the group consisting of vinyl, allyl, and hexenyl, and each aryl may be phenyl. Alternatively, 50% to 100%, alternatively 80% to 100%, and alternatively 90% to 100% of all instances of R are alkyl groups such as methyl. Alternatively, the R groups on starting material A) may be methyl and phenyl. Alternatively, the R groups on starting material A) may be methyl and vinyl. In starting material A), subscript n is 0 to 2000. Alternatively, subscript n may be 5 to 2000, alternatively 5 to 200, alternatively 10 to 150, alternatively 15 to 100, alternatively 20 to 50, and alternatively 25 to 35. One skilled in the art would recognize that starting material A) may be substantially linear, alternatively starting material A) is linear. Furthermore, starting material A) may contain a small number of additional siloxane units, such as those of formula (HORSiO2/2), (RSiO3/2) and/or (SiO4/2) provided that starting material A) is substantially linear. Examples of starting material A) include bis-hydroxy terminated polydimethylsiloxane. Suitable polydiorganosiloxanes for starting material (A) may be prepared by methods known in the art such as the addition of diorganodichlorosilanes to a water/solvent mixture to yield a mixture of low molecular weight hydroxy end-blocked polydiorganosiloxanes and cyclic siloxanes in solvent. The mixture may be purified to separate hydroxy end-blocked polydiorganosiloxanes and cyclic polysiloxanes. Alternatively, suitable bis-hydroxy terminated polydimethylsiloxane are commercially available from Dow Silicones Corporation of Midland, Michigan, USA.

    Starting Material B) Trifluoromethane sulfonate Compound



    [0010] Starting material B) is a trifluoromethane sulfonate compound (triflate compound). Starting material B) is used in the method in an amount of 10 ppm to 500 ppm, based on the weight of starting material A). Starting material B) is selected from the group consisting of: B-1) aluminum(III) trifluoromethane sulfonate, B-2) bismuth(III) trifluoromethane sulfonate, B-3) gallium(III) trifluoromethane sulfonate, B-4) iron(III) trifluoromethane sulfonate, B-5) indium(III) trifluoromethane sulfonate, B-6) scandium(III) trifluoromethane sulfonate, and B-7) dicyclohexylboron trifluoromethane sulfonate. Alternatively, starting material B) may be selected from the group consisting of B-1) aluminum(III) trifluoromethane sulfonate, B-2) bismuth(III) trifluoromethane sulfonate, B-3) gallium(III) trifluoromethane sulfonate, B-4) iron(III) trifluoromethane sulfonate, and B-5) indium(III) trifluoromethane sulfonate. Alternatively, starting material B) may be a metal trifluoromethane sulfonate, i.e., starting material B) may be any one of B1), B2), B3), B4), B5), and B6). Alternatively, starting material B) may be selected from the group consisting of B-2) bismuth(III) trifluoromethane sulfonate, B-3) gallium(III) trifluoromethane sulfonate, and B-4) iron(III) trifluoromethane sulfonate. Alternatively, starting material B) may be selected from the group consisting of B-1) aluminum(III) trifluoromethane sulfonate, B-5) indium(III) trifluoromethane sulfonate, and B-6) scandium(III) trifluoromethane sulfonate. Alternatively, starting material B) may be selected from the group consisting of B-1) aluminum(III) trifluoromethane sulfonate and B-5) indium(III) trifluoromethane sulfonate. In one embodiment, starting material B) may be combined with starting material C), a ligand, before step 1) of the method described herein. Suitable trifluoromethane sulfonate compounds are commercially available, e.g., from Sigma-Aldrich, Fischer Scientific, or Alfa Aesar.

    Starting Material C) Ligand



    [0011] Starting material C) may optionally be added in the method described herein. In this embodiment, starting material C) and starting material B) may be combined before step 1) by any convenient means, such as mixing. In one embodiment, starting material C) may be a bisimine ligand. Starting material C) may have general formula:

    , where each R2 and each R1 are an independently selected alkyl groups of 1 to 8 carbon atoms, alternatively 1 to 6 carbon atoms, and alternatively 2 to 5 carbon atoms. Alternatively, R1 and R2 may each be a butyl group, such as a tert-butyl group. Suitable bisimine ligands such as 1,2-bis-(2-di-iso-propylphenyl) imino)ethane or 1,2-bis(2-di-tert-butylphenyl)imino)ethane are commercially available, e.g., from Sigma-Aldrich.

    [0012] Alternatively, starting material C) may be

    where tBu represents a t-butyl group. The amount of ligand added depends on various factors including which triflate compound is selected for starting material B) and the DP desired in the product, however, the amount of ligand may be 1 molar equivalent to 2 molar equivalents based on the amount of starting material B).

    Starting Material D) Solvent



    [0013] Starting material D), a solvent, may optionally be used in the method described herein. The solvent may be used to deliver one or more of the other starting materials. For example, the ligand may be dissolved in a solvent before combining the ligand and the metal triflate. Alternatively, the metal triflate may be dissolved in a solvent before combining with the metal triflate in step pre-1) described above, or before combining with starting material A) in step 1). The solvent may be an aprotic solvent, such as tetrahydrofuran, toluene, or dichloromethane. Alternatively, the solvent may be a low molecular weight trimethylsiloxy-terminated polydimethylsiloxane, such as an OS Fluid, which is commercially available from Dow Silicones Corporation of Midland, Michigan, U.S.A. The solvent may be used to deliver one or more starting materials (i.e., one or more starting materials may be dissolved in solvent before step 1), the reaction may proceed in solvent, or both. The amount of solvent depends on various factors including the type and amount of starting materials A), B), and C) selected and whether one or more starting materials is being delivered in a solvent, or whether the reaction will proceed in a solvent. For example, when present, the amount may be sufficient to form a reaction mixture with a concentration of starting material A) of 0.1 M - 0.5 M.

    Starting Material E) Amine



    [0014] Starting material E) the amine is used to quench the reaction mixture in step 2) of the method described herein. The amine may be an alkyl amine such as trimethylamine, triethylamine, or N,N-dimethylcyclohexylamine. The amount of amine may be 100 ppm to 100,000 ppm of amine based on total weight of all starting materials used in the method. Alternatively, the amount of amine may be 100 ppm to 1000 ppm on the same basis. Suitable amines are commercially available, e.g., from Sigma-Aldrich or Fisher Scientific.

    Product



    [0015] The product of the method described herein is a bis-hydroxyl terminated polydiorganosiloxane of unit formula [(HO)R2SiO1/2]2(R2SiO2/2)m, where R is as described above for starting material A), and subscript m has a value greater than subscript n in starting material A). For example, in the product described above, subscript m may have a value ranging from (n + 250) to (n + 2500), alternatively (n + 300) to (n + 2400), alternatively (n + 350) to (n + 2300), alternatively (n + 400) to (n + 2000), alternatively (n + 450) to (n + 1500).

    EXAMPLES



    [0016] These examples are intended to illustrate some embodiments of the invention and should not be interpreted as limiting the scope of the invention set forth in the claims.

    Comparative Example 1 - Polymerization of Bis-Hydroxyl-Terminated Polydimethylsiloxane with trifluoromethanesulfonic acid (Entry 12 in Table 1).



    [0017] A 40 mL glass vial was filled with 10 g of bis-hydroxy terminated poly(dimethylsiloxane) having an average DP of 35 and equipped with a stir bar. The bis-hydroxy terminated poly(dimethylsiloxane) was obtained from Dow Silicones Corporation of Midland, MI, USA. The vial was heated to 80°C, and 71 µL of trifluoromethanesulfonic acid (as a 0.01 M solution in anhydrous dichloromethane) was added to the bis-hydroxy terminated poly(dimethylsiloxane) to initiate polymerization. Stirring was continued for 2 hr at 80°C with open caps before the solutions were quenched by adding 2 drops of N,N-dimethylcyclohexylamine (as a 1% solution in toluene), and cooling to room temperature. Analysis of the crude reaction mixture by GPC indicated a final degree of polymerization of 1117, while headspace GC measured 3,678 ppm of residual D4.

    Reference Example 2 - General Procedure



    [0018] 



    [0019] Samples were prepared as follows. A 40 mL glass vial was filled with 10 g of bis-hydroxy terminated poly(dimethylsiloxane) having an average DP of 35 and equipped with a sandwich-style rare earth magnet stirbar. The vial was heated to 80°C or 105°C, and a trifluoromethane sulfonate compound (as a 0.01 M solution in anhydrous THF) was added to the bis-hydroxy terminated poly(dimethylsiloxane) to initiate polymerization. Stirring was continued for 2 hr at 80°C or 105°C with open caps before the resulting solution was quenched by adding 2 drops of N,N-dimethylcyclohexylamine (as a 1% solution in toluene), and cooling to room temperature. Analysis of the resulting crude reaction mixture by GPC indicated a final degree of polymerization, while headspace GC measured residual octamethylcyclotetrasiloxane. The trifluoromethane sulfonate compound, temperature, concentration of metal triflate, degree of polymerization of the bis-hydroxy terminated polydimethylsiloxane prepared by the method, residual D4 in the bis-hydroxy terminated polydimethylsiloxane prepared by the method and DP/D4 ratio are shown below in Table 1. Other catalysts tested were Nonafluorobutane-1-sulfonic acid, Dicyclohexylboron trifluoromethanesulfonate, and Phosphonitrilic Chloride Catalyst were used instead of the metal triflate catalyst.
    Table 1 - Comparison of Metal Triflates and Other Catalysts
    EntryCatalystTemp (°C)Catalyst Concentration (mol/L)Degree of Polymerization (DP)Residual D4 (ppm)DP/D4
    1 Bismuth(III) Triflate 80 1.44 × 10-5 1004 140 7.17
    2 Gallium(III) Triflate 80 1.44 × 10-5 1054 229 4.60
    3 Indium(III) Triflate 80 1.44 × 10-5 677 147 4.61
    4 Iron(III) Triflate 80 1.44 × 10-5 1132 173 6.54
    5 Scandium(III) Triflate 80 1.44 × 10-5 224 103 2.17
    6 Aluminum(III) Triflate 80 1.44 × 10-5 598 151 3.96
    7 Dicyclohexylboron trifluoromethanesulfonate 80 1.44 × 10-5 476 164 2.90
    8 (comp) Copper(II) Triflate 80 7.19 × 10-5 118 55 2.15
    9 (comp) Yttrium(III) Triflate 80 7.19 × 10-5 54 73 0.74
    10 (comp) Cerium(IV) Triflate 80 7.19 × 10-5 226 132 1.71
    11 (comp) Nonafluorobutane-1-sulfonic acid 80 7.19 × 10-5 1948 4844 0.40
    12 (comp) Trifluoromethanesulfonic acid 80 7.19 × 10-5 1117 3678 0.30
    13 Bismuth(III) Triflate 105 1.44 × 10-5 746 152 4.91
    14 Gallium(III) Triflate 105 1.44 × 10-5 818 193 4.24
    15 Indium(III) Triflate 105 1.44 × 10-5 445 110 4.05
    16 Iron(III) Triflate 105 1.44 × 10-5 673 155 4.34
    17 Scandium(III) Triflate 105 1.44 × 10-5 187 62 3.02
    18 Aluminum(III) Triflate 105 1.44 × 10-5 481 108 4.45
    19 Dicyclohexylboron trifluoromethanesulfonate 105 1.44 × 10-5 372 99 3.76
    20 (comp) Phosphonitrilic Chloride Catalyst* 105 7.19 × 10-6 1189 670 1.77
    20 (comp) Phosphonitrilic Chloride Catalyst* 105 2.88 × 10-5 3585 14346 0.25
    *The phosphonitrilic chloride catalyst is a mixture of [Cl3P=N-PCl2=N-PCl3]+[PxCl5x+1]- and [Cl3P=N-PCl2=N-PCl2=N-PCl3]+[PxCl5x+1]-


    [0020] The DP/D4 ratio shown in the tables herein was calculated by dividing the difference in DP between the final product and starting material A) by the amount of D4 generated. Generally, high DP/D4 ratio is desired, provided that DP increased sufficiently.

    Example 3 - General Procedure.



    [0021] Samples were prepared as described above in Reference Example 2, except that heating was performed for 2 hr at 105°C and loading of the triflate was 25 ppm. Table 2, below, shows the degree of polymerization for each catalyst with bis-hydroxy terminated poly(dimethylsiloxane) after 2 hr at 105°C.
    Table 2
    EntryMetal Triflate SaltDP
    21 Bismuth (III) Triflate 2,350
    22 Iron (III) Triflate 2,008
    23 Gallium (III) Triflate 1,732
    24 Indium (III) Triflate 591
    25 Aluminum (III) Triflate 430
    26 Scandium (III) Triflate 317
    27 (comp) Cerium (IV) Triflate 241
    28 (comp) Copper (II) Triflate 118
    29 (comp) Ytterbium (III) Triflate 54
    30 (comp) Zinc (II) Triflate 42
    31 (comp) Yttrium (III) Triflate 40
    32 (comp) Samarium (III) Triflate 32
    33 (comp) Cerium (III) Triflate 32


    [0022] Tables 1 and 2 show that under the conditions tested, only certain metal triflates produced a bis-hydroxy terminated polydimethylsiloxane with sufficient chain extension (as shown by increase in DP) and low D4 content. For example, Copper(II) triflate, Yttrium (III) triflate, Cerium (IV) triflate, Cerium (III) triflate, Ytterbium (III) triflate, Zinc (II) triflate, and Samarium(III) triflate did not produce sufficient increase in DP of the product under the conditions tested.

    Example 4 - Addition of Ligands



    [0023] Samples were prepared as follows. A metal triflate and 1 or 2 molar equivalents of a ligand were dissolved in anhydrous THF to prepare a metal triflate• ligand solution. A 40 mL glass vial was filled with 10 g of bis-hydroxy terminated poly(dimethylsiloxane) having an average DP of 35 and equipped with a sandwich-style rare earth magnet stirbar. The vial was heated to 105°C, and metal triflate• ligand solution at a concentration of 0.01 M was added to the bis-hydroxy terminated poly(dimethylsiloxane) to initiate polymerization. Stirring was continued for 2 hr at 105°C with open caps before the resulting solutions were quenched by adding 2 drops of N,N-dimethylcyclohexylamine (as a 1% solution in toluene) to each vial, and cooling to room temperature. Analysis of the resulting crude reaction mixtures by gel permeation chromatography (GPC) indicated a final degree of polymerization, and headspace gas chromatography (GC) measured residual D4. Table 3, below, shows the metal triflate or metal triflate• ligand tested, the concentration at which it was added, DP, and amount of D4 in the product.

    [0024] Ligands tested were as follows.



    Table 3
    EntryCatalystCatalyst Concentration (mol/L)DPResidual D4 (ppm)DP/D4
    34 (comp) BiOTf3•2A 3.60 × 10-5 814 459 1.9
    35 (comp) BiOTf3•2B 1.44 × 10-4 373 160 3.1
    36 (comp) BiOTf3•2C 1.44 × 10-4 138 -- --
    37 BiOTf3•2D 1.44 × 10-4 1168 282 4.9
    38 (comp) BiOTf3•2E 1.44 × 10-4 438 201 2.7
    39 (comp) BiOTf3•2F 1.44 × 10-4 328 162 2.6
    40 (comp) BiOTf3•2G 1.44 × 10-4 38 -- --
    41 BiOTf3 2.88 × 10-5 1007 442 2.5


    [0025] Table 3 shows that the ligand of formula

    improved performance (with higher DP and lower D4) than bismuth(III) triflate alone under the conditions tested in Example 3. Example 5 - Addition of Ligands

    [0026] Samples were prepared as follows. A metal triflate and 1 or 2 molar equivalents of ligand D were dissolved in anhydrous THF to prepare a metal triflate- ligand solution. A 40 mL glass vial was filled with 10 g of bis-hydroxy terminated poly(dimethylsiloxane) having an average DP of 35 and equipped with a sandwich-style rare earth magnet stirbar. The vial was heated to 105°C, and metal triflate• ligand solution at a concentration of 0.01 M was added to the bis-hydroxy terminated poly(dimethylsiloxane) to initiate polymerization. Stirring was continued for 2 hr at 105 °C with open caps before the resulting solutions were quenched by adding 2 drops of N,N-dimethylcyclohexylamine (as a 1% solution in toluene) to each vial, and cooling to room temperature. Analysis of the resulting crude reaction mixtures by GPC indicated a final degree of polymerization, and headspace GC measured residual D4. Table 4, below, shows the metal triflate or metal triflate• ligand tested, the concentration at which it was added, DP, and amount of D4 in the product.
    Table 4
    EntryCatalystMolar equivalents of ligandCatalyst Concentration (mol/L)DPResidual D4 (ppm)ΔDP/ΔD4
    42 Bi(OTf)3 0 3.60 × 10-5 1239 332 4.3
    43 Bi(OTf)3•D 1 1.44 × 10-4 846 133 6.1
    44 Bi(OTf)3•2D 2 3.60 × 10-5 1193 186 8.5
    45 Fe(OTf)3 0 1.44 × 10-5 673 155 6.1
    46 (comparative) Fe(OTf)3•D 1 3.60 × 10-5 274 -- --
    47 Fe(OTf)3•2D 2 1.44 × 10-4 676 110 10.7
    48 Ga(OTf)3 0 3.60 × 10-5 2132 333 7.4
    49 (comparative) Ga(OTf)3•D 1 3.60 × 10-5 1189 581 2.0
    50 Ga(OTf)3•2D 2 3.60 × 10-5 1323 177 10.1
    51 In(OTf)3 0 3.60 × 10-5 1014 232 5.4
    52 In(OTf)3•D 1 3.60 × 10-5 1120 198 5.5
    53 In(OTf)3•2D 2 3.60 × 10-5 1188 196 7.9
    54 Al(OTf)3 0 3.60 × 10-5 1131 169 9.2
    55 Al(OTf)3•D 1 3.60 × 10-5 1160 218 5.2
    56 Al(OTf)3•2D 2 3.60 × 10-5 1155 120 16.0

    Reference Example 6 - Molecular distribution



    [0027] Molecular distribution of starting materials can be analyzed by GPC equipped with triple detector array (Refractive Index, Right Angle Light Scattering, and Viscometer). 0.5% of samples were used for GPC analysis. Mw of Polystyrene standards were in the range of 580 to 100,000, and a 3rd order calibration curve was used for molecular weight determination. Both samples and standards were diluted in HPLC grade ethyl acetate.

    Reference Example 7 - D4 Concentration



    [0028] D4 Concentration measurements were made using the following instruments, procedures, and quantitation methods.

    GC - HP 6890



    [0029] Gradient: 50 °C (1 min) - 220 °C @ 10 °C/min (no hold); Inlet: Split 1:20, 9.68 psi, 150 °C; Flow: 2 mL/min
    FID: Hydrogen 40 mL/min, Air 450 mL/min, Makeup 45 mL/min, Temperature 260 °C; Column: RTX-1, 30 m / 320 µm / 0.25 µm

    Headspace Unit - Perkin-Elmer TurboMatrix 40



    [0030] Incubation: 120 °C for 10 min with shaking; Syringe: 125 °C; Transfer Line: 130 °C; Pressurize: 3 min; Withdraw: 0.5 min; Column pressure: 20 psi; Injection: 0.15 min / 0.3 mL; GC cycle: 25 min

    Sample preparation



    [0031] Internal standards were prepared to be 0.01% dodecane by weight in Fisher Brand 19 fluid vacuum oil. 1 mL of internal standard solution was added to a 20 mL headspace vial (with Eppendorf repeater pipet). 100 mg of D4 standard (usually 100 ppm standard used) or 100 mg of experimental sample was added to the headspace vial.

    Quantitation:



    [0032] Quantitation of the D4 content was by the single point internal standard method. A relative response factor (RRF) of D4 relative to dodecane was established and updated every time a new batch of internal standard solution was prepared. The amount of D4 in the samples was determined within the Thermo Atlas data system according to an equation of the same type as the one below:


    Industrial Applicability



    [0033] Bis-hydroxy terminated silicone polymers produced by Dow Silicones Corporation can contain approximately 1000 ppm D4 as a by-product. The inventors surprisingly found that several triflate compounds generate significantly less octamethylcyclotetrasiloxane than the conventional catalysts used under the conditions tested in the examples above. The inventors further found that several ligands can improve the selectivity in silanol condensation polymerizations when combined with a metal triflate salt under the conditions tested in the examples above. In each case the selectivity for each catalyst was determined by dividing the change in the degree of polymerization by the amount of D4 produced in the reaction (ΔDP/ΔD4). The initial ligand screen identified bisimine D as the optimal ligand for reducing D4 generation, increasing ΔDP/ΔD4 from 2.5 for Bi(OTf)3 to 4.9 for the Bi(OTf)3•2D complex (Table 3).

    Definitions and Usage of Terms



    [0034] Table 5, below, defines abbreviations used throughout this application.
    Table 5 - Abbreviations
    AbbreviationDescription
    °C degrees Celsius
    D4 octamethylcyclotetrasiloxane
    DP degree of polymerization
    g grams
    GC gas chromatography
    GPC gel permeation chromatography
    HPLC high performance liquid chromatography
    hr hours
    M molar
    mL milliliter
    ppm parts per million
    THF tetrahydrofuran
    OTf or triflate trifluoromethanesulfonate
    µL microliters



    Claims

    1. A method for polymerizing polydiorganosiloxanes comprising:

    1) heating, at a temperature of 50°C to 200°C, a reaction mixture prepared by mixing starting materials comprising

    A) a polydiorganosiloxane of unit formula [(HO)R2SiO1/2]2(R2SiO2/2)n, where subscript n is 0 to 2000, and each R is an independently selected monovalent hydrocarbon group of 1 to 18 carbon atoms; and

    B) 10 ppm to 500 ppm, based on weight of starting material A), of a trifluoromethane sulfonate compound selected from the group consisting of

    B-1) aluminum(III) trifluoromethanesulfonate,

    B-2) bismuth(III) trifluoromethane sulfonate,

    B-3) gallium(III) trifluoromethane sulfonate,

    B-4) iron(III) trifluoromethanesulfonate,

    B-5) indium(III) trifluoromethane sulfonate,

    B-6) scandium(III) trifluoromethane sulfonate, and

    B-7) dicyclohexylboron trifluoromethanesulfonate;

    2) quenching the reaction mixture; and

    3) recovering a product from the reaction mixture, where the product has unit formula [(HO)R2SiO1/2]2(R2SiO2/2)m, where m > n.


     
    2. The method of claim 1, where each R is independently selected from the group consisting of alkyl, alkenyl, and aryl.
     
    3. The method of claim 1 or claim 2, where subscript n is 10 to 150.
     
    4. The method of any one of the preceding claims, where the trifluoromethanesulfonate compound is present in an amount of 10 ppm to 50 ppm.
     
    5. The method of any one of the preceding claims, where the trifluoromethanesulfonate compound is selected from the group consisting of B-2) bismuth(III) trifluoromethane sulfonate, B-3) gallium(III) trifluoromethane sulfonate, and B-4) iron(III) trifluoromethanesulfonate.
     
    6. The method of any one of claims 1 to 4, where the trifluoromethanesulfonate compound is selected from the group consisting of B-1) aluminum(III) trifluoromethane sulfonate, B-5) indium(III) trifluoromethane sulfonate, and B-6) scandium(III) trifluoromethane sulfonate.
     
    7. The method of claim 6, further comprising: mixing B) the trifluoromethanesulfonate compound and C) a chelating ligand for the metal trifluoromethanesulfonate before step 1).
     
    8. The method of claim 7, where starting material C) has general formula:

    where each R2 and each R1 are an independently selected alkyl groups of 1 to 8 carbon atoms.
     
    9. The method of any one of the preceding claims, where starting material D), a solvent, is present.
     
    10. The method of claim 9, where the solvent is selected from the group consisting of aprotic solvents and trimethylsiloxy-terminated polydimethylsiloxanes.
     
    11. The method of claim 10, where the solvent is selected from the group consisting of tetrahydrofuran, toluene and dichloromethane.
     
    12. The method of any one of the preceding claims, where step 1) is performed by heating at a temperature of 80°C to 105°C for 30 seconds to 2 hours.
     
    13. The method of any one of the preceding claims, where the method further comprises removing water during and/or after step 1).
     
    14. The method of any one of the preceding claims, where step 2) is performed by adding an amine and cooling the reaction mixture to a temperature less than 50°C.
     
    15. The method of any one of the preceding claims, where step 3) is performed by a method comprising filtering, stripping and/or distilling the reaction mixture.
     


    Ansprüche

    1. Verfahren zum Polymerisieren von Polydiorganosiloxanen, umfassend:

    1) Erwärmen, bei einer Temperatur von 50 °C bis 200 °C, eines Reaktionsgemisches, hergestellt durch Mischen von Ausgangsmaterialien, umfassend

    A) ein Polydiorganosiloxan der Einheitsformel [(HO)R2SiO1/2]2(R2SiO2/2)n, wobei das tiefgestellte n 0 bis 2000 ist und jedes R eine unabhängig ausgewählte einwertige Kohlenwasserstoffgruppe mit 1 bis 18 Kohlenstoffatomen ist; und

    B) 10 ppm bis 500 ppm, bezogen auf das Gewicht von Ausgangsmaterial A), einer Trifluormethansulfonatverbindung, ausgewählt sind aus der Gruppe, bestehend aus

    B-1) Aluminium(III)trifluormethansulfonat,

    B-2) Bismut(III)trifluormethansulfonat,

    B-3) Gallium(III)trifluormethansulfonat,

    B-4) Eisen(III)trifluormethansulfonat,

    B-5) Indium(III)trifluormethansulfonat,

    B-6) Scandium(III)trifluormethansulfonat und

    B-7) Dicyclohexylbortrifluormethansulfonat;

    2) Quenchen des Reaktionsgemisches; und

    3) Zurückgewinnen eines Produkts aus dem Reaktionsgemisch, wobei das Produkt die Einheitsformel [(HO)R2SiO1/2]2(R2SiO2/2)m aufweist, wobei m > n.


     
    2. Verfahren nach Anspruch 1, wobei jedes R unabhängig ausgewählt ist aus der Gruppe bestehend aus Alkyl, Alkenyl und Aryl.
     
    3. Verfahren nach Anspruch 1 oder Anspruch 2, wobei das tiefgestellte n 10 bis 150 beträgt.
     
    4. Verfahren nach einem der vorstehenden Ansprüche, wobei die Trifluormethansulfonatverbindung in einer Menge von 10 ppm bis 50 ppm vorliegt.
     
    5. Verfahren nach einem der vorstehenden Ansprüche, wobei die Trifluormethansulfonatverbindung ausgewählt ist aus der Gruppe bestehend aus B-2) Bismut(III)trifluormethansulfonat, B-3) Gallium(III)trifluormethansulfonat und B-4) Eisen(III)trifluormethansulfonat.
     
    6. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Trifluormethansulfonatverbindung ausgewählt ist aus der Gruppe bestehend aus B-1) Aluminium(III)trifluormethansulfonat, B-5) Indium(III)trifluormethansulfonat und B-6) Scandium(III)trifluormethansulfonat.
     
    7. Verfahren nach Anspruch 6, ferner umfassend: Mischen B) der Trifluormethansulfonatverbindung und C) eines chelatbildenden Liganden für das Metalltrifluormethansulfonat vor Schritt 1).
     
    8. Verfahren nach Anspruch 7, wobei das Ausgangsmaterial C) die allgemeine Formel aufweist:

    wobei jedes R2 und jedes R1 unabhängig voneinander ausgewählte Alkylgruppen mit 1 bis 8 Kohlenstoffatomen sind.
     
    9. Verfahren nach einem der vorstehenden Ansprüche, wobei das Ausgangsmaterial D), ein Lösungsmittel, vorhanden ist.
     
    10. Verfahren nach Anspruch 9, wobei das Lösungsmittel ausgewählt ist aus der Gruppe bestehend aus aprotischen Lösungsmitteln und Polydimethylsiloxanen mit Trimethylsiloxy-Endgruppen.
     
    11. Verfahren nach Anspruch 10, wobei das Lösungsmittel ausgewählt ist aus der Gruppe bestehend aus Tetrahydrofuran, Toluol und Dichlormethan.
     
    12. Verfahren nach einem der vorstehenden Ansprüche, wobei Schritt 1) durch Erwärmen bei einer Temperatur von 80 °C bis 105 °C für 30 Sekunden bis 2 Stunden durchgeführt wird.
     
    13. Verfahren nach einem der vorstehenden Ansprüche, wobei das Verfahren ferner das Entfernen von Wasser während und/oder nach Schritt 1) umfasst.
     
    14. Verfahren nach einem der vorstehenden Ansprüche, wobei Schritt 2) durch Zugeben eines Amins und Kühlen des Reaktionsgemisches auf eine Temperatur von weniger als 50 °C durchgeführt wird.
     
    15. Verfahren nach einem der vorstehenden Ansprüche, wobei Schritt 3) durch ein Verfahren durchgeführt wird, das das Filtern, Strippen und/oder Destillieren des Reaktionsgemisches umfasst.
     


    Revendications

    1. Procédé de polymérisation de polydiorganosiloxanes comprenant :

    1) le chauffage, à une température de 50 °C à 200 °C, d'un mélange réactionnel préparé en mélangeant des matériaux de départ comprenant

    A) un polydiorganosiloxane de formule unitaire [(HO)R2SiO1/2]2(R2SiO2/2)n, où l'indice n va de 0 à 2000, et chaque R est un groupe hydrocarboné monovalent indépendamment choisi de 1 à 18 atomes de carbone ; et

    B) 10 ppm à 500 ppm, sur la base du poids de matériau de départ A), d'un composé trifluorométhane sulfonate choisi dans le groupe constitué de

    B-1) trifluorométhanesulfonate d'aluminium(III),

    B-2) trifluorométhane sulfonate de bismuth(III),

    B-3) trifluorométhane sulfonate de gallium(III),

    B-4) trifluorométhanesulfonate de fer(III),

    B-5) trifluorométhane sulfonate d'indium(III),

    B-6) trifluorométhane sulfonate de scandium(III), et

    B-7) trifluorométhanesulfonate de dicyclohexylbore ;

    2) la neutralisation du mélange réactionnel ; et

    3) la récupération d'un produit à partir du mélange réactionnel, où le produit a une formule unitaire [(HO)R2SiO1/2]2(R2SiO2/2)m, où m > n.


     
    2. Procédé selon la revendication 1, où chaque R est indépendamment choisi dans le groupe constitué d'alkyle, alcényle, et aryle.
     
    3. Procédé selon la revendication 1 ou la revendication 2, où l'indice n va de 10 à 150.
     
    4. Procédé selon l'une quelconque des revendications précédentes, où le composé trifluorométhanesulfonate est présent en une quantité de 10 ppm à 50 ppm.
     
    5. Procédé selon l'une quelconque des revendications précédentes, où le composé trifluorométhanesulfonate est choisi dans le groupe constitué de B-2) trifluorométhane sulfonate de bismuth(III), B-3) trifluorométhanesulfonate de gallium(III), et B-4) trifluorométhanesulfonate de fer(III).
     
    6. Procédé selon l'une quelconque des revendications 1 à 4, où le composé trifluorométhanesulfonate est choisi dans le groupe constitué de B-1) trifluorométhane sulfonate d'aluminium(III), B-5) trifluorométhane sulfonate d'indium(III), et B-6) trifluorométhane sulfonate de scandium(III).
     
    7. Procédé selon la revendication 6, comprenant en outre : le mélange de B) le composé trifluorométhanesulfonate et de C) un ligand chélatant pour le trifluorométhanesulfonate de métal avant l'étape 1).
     
    8. Procédé selon la revendication 7, où le matériau de départ C) a la formule générale :

    , où chaque R2 et chaque R1 sont des groupes alkyle indépendamment choisis de 1 à 8 atomes de carbone.
     
    9. Procédé selon l'une quelconque des revendications précédentes, où un matériau de départ D), un solvant, est présent.
     
    10. Procédé selon la revendication 9, où le solvant est choisi dans le groupe constitué de solvants aprotiques et de polydiméthylsiloxanes à terminaison triméthylsiloxy.
     
    11. Procédé selon la revendication 10, où le solvant est choisi dans le groupe constitué de tétrahydrofurane, toluène et dichlorométhane.
     
    12. Procédé selon l'une quelconque des revendications précédentes, où l'étape 1) est mise en œuvre en chauffant à une température de 80 °C à 105 °C pendant 30 secondes à 2 heures.
     
    13. Procédé selon l'une quelconque des revendications précédentes, où le procédé comprend en outre l'élimination de l'eau pendant et/ou après l'étape 1).
     
    14. Procédé selon l'une quelconque des revendications précédentes, où l'étape 2) est mise en œuvre en ajoutant une amine et en refroidissant le mélange réactionnel à une température inférieure à 50 °C.
     
    15. Procédé selon l'une quelconque des revendications précédentes, où l'étape 3) est mise en œuvre par un procédé comprenant un filtrage, une épuration et/ou une distillation du mélange réactionnel.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description