(19)
(11)EP 3 901 551 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.09.2023 Bulletin 2023/37

(21)Application number: 21169740.4

(22)Date of filing:  21.04.2021
(51)International Patent Classification (IPC): 
F28F 1/04(2006.01)
F28D 7/16(2006.01)
F28F 1/26(2006.01)
F28F 9/02(2006.01)
F28D 1/053(2006.01)
F28F 1/02(2006.01)
F28F 3/04(2006.01)
(52)Cooperative Patent Classification (CPC):
F28D 1/05366; F28F 1/022; F28F 1/045; F28F 1/26; F28F 3/048; F28F 9/0282; F28F 2255/14; F28D 7/1684; F28F 1/04

(54)

MODIFIED SHAPED HEAT EXCHANGER INLETS/OUTLETS

MODIFIZIERTE GEFORMTE WÄRMETAUSCHEREINLÄSSE/-AUSLÄSSE

ENTRÉES/SORTIES D'ÉCHANGEUR DE CHALEUR À FORME MODIFIÉE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 21.04.2020 US 202016854661

(43)Date of publication of application:
27.10.2021 Bulletin 2021/43

(73)Proprietor: Raytheon Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • SPANGLER, Brandon W.
    Vernon 06066 (US)
  • PACK, David R.
    Ellington 06029 (US)
  • STILLMAN, William P.
    Ashford 06278 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 1 903 207
WO-A1-2017/052798
EP-A1- 3 396 294
WO-A1-2017/165921
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention is directed to heat exchangers with modified hot side inlets and outlets, and more particularly hot side inlets and outlets with specialized shapes configured to align load directions proximate to the manifold.

    [0002] Heat exchangers with rectangular inlets and outlets on the hot side of the heat exchanger have been cast, creating a stiff box like structure. The inlet and outlet regions of the heat exchanger are surrounded by a manifold that delivers the hot air to and from the heat exchanger. The outside of the manifold is surrounded by cold bypass air that also goes through the cold side of the heat exchanger. This cold air on the outside of the manifold causes the manifold to heat up slower than the inlets and outlets of the heat exchanger, which are surrounded entirely by hot air. Thus, a thermal fight between the hot inlets and the colder manifold is created, causing high compressive stress in the stiff boxlike structure of the rectangular inlets. Since the inlets and outlets of the heat exchanger are the regions of the heat exchanger that are surrounded by and constrained by the colder manifold, the stress is focused at the inlet and outlet regions of the heat exchanger. Because the main portion of the heat exchanger is not constrained by the manifold, it is free to expand and therefore experiences minimal stress.

    [0003] WO 2017/0165921, which is considered as the closest prior art, discloses a prior art heat exchanger, which is additively manufactured and comprises a block having arranged therein channels of various cross-sectional shapes.

    [0004] What is needed is a modified shape for the heat exchanger inlets and outlets proximate the manifold.

    SUMMARY



    [0005] In accordance with the present invention, there is provided a modified shaped heat exchanger hot air inlet and hot air outlet, as claimed in claim 1.

    [0006] Optionally, the first heat exchanger manifold and second heat exchanger manifold constrain the thermal expansion of the hot air inlet and hot air outlet respectively.

    [0007] Optionally, the modified shaped heat exchanger hot air inlet and hot air outlet further comprises: a first hot side transition region between the hot air inlet and heat transfer channels, the first hot side transition region configured as a smooth gradual cross sectional area transition to the heat transfer channels; and a second hot side transition region between the hot air outlet and the heat transfer channels, the second hot side transition region configured as a smooth gradual cross sectional area transition to the heat transfer channels.

    [0008] Optionally, the heat transfer channels have a rectangular cross sectional flow area.

    [0009] Optionally, the star shaped hot air inlet and the star shaped hot air outlet are configured to align secondary vertices with the thermal load directions in a corner of the heat exchanger.

    [0010] Optionally, the shaped hot air inlet comprises a star shaped hot air inlet and the shaped hot air outlet comprises a star shaped hot air outlet; wherein the star shaped hot air inlet and star shaped hot air outlet are configured to align primary vertices with the thermal load directions in a corner of the heat exchanger.

    [0011] Optionally, the shaped hot air inlet comprises a star shaped hot air inlet; a diamond shaped hot air inlet is situated proximate to the star shaped hot air inlet; the shaped hot air outlet comprises a star shaped hot air outlet; and a diamond shaped hot air outlet is situated proximate to the star shaped hot air outlet.

    [0012] In accordance with an aspect of the present invention, there is provided a process for creating a flexible heat exchanger inlet and outlet, as claimed in claim 6.

    [0013] Optionally, the process further comprises coupling a first hot side transition region between the hot air inlet and heat transfer channels, and coupling a second hot side transition region between the hot air outlet and the heat transfer channels.

    [0014] Optionally, the process further comprises aligning secondary vertices with the thermal load directions in a corner of the heat exchanger.

    [0015] Optionally, the process further comprises: forming the at least one star shaped inlet within the array of shaped inlets; forming the at least one star shaped outlet within the array of shaped outlets; forming the at least one diamond shaped inlet proximate the at least one star shaped inlet; and forming the at least one diamond shaped outlet proximate the at least one star shaped outlet.

    [0016] Optionally, the process further comprises aligning primary vertices with the thermal load directions.

    [0017] Optionally, the process further comprises changing the shape of a first cavity formed by the first manifold surrounding the hot air inlet by allowing the first cavity to distort while the vertices align with the thermal load directions; and changing the shape of a second cavity formed by the second manifold surrounding the hot air outlet by allowing the second cavity to distort while the vertices align with the thermal load directions.

    [0018] The disclosed heat exchanger modification to the inlets and outlets replaces the rectangular inlets and outlets with a staggered array of diamond or star shaped inlets and outlets. The diamond/star shape inlets/outlets result in the flexible vertices being aligned with the compressive thermal load directions caused by the colder manifold, allowing the ribs of the heat exchanger hot side inlets to expand and deform with minimal stress. At the location where the manifold stops constraining the heat exchanger, a transition region begins where the diamond/star shaped inlets transition shape back to the rectangular heat exchanger hot side channels to allow room for the cold side passages.

    [0019] Other details of the modified shape heat exchanger inlets/outlets are set forth in the following detailed description and the accompanying drawings wherein like reference numerals depict like elements.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0020] 

    Fig. 1 is an isometric schematic diagram of an exemplary heat exchanger.

    Fig. 2 is a view through cut A-A of the exemplary heat exchanger of Fig. 1.

    Fig. 3 is a view through cut B-B of the exemplary heat exchanger of Fig. 2.

    Fig. 4 is a view through cut B-B of another exemplary heat exchanger of Fig. 2.

    Fig. 5 is a schematic diagram with a view through cut B-B of an exemplary heat exchanger in a hot state including exploded view details.

    Fig. 6 is a schematic diagram with a view through cut B-B of an exemplary heat exchanger in a hot state including exploded view details.


    DETAILED DESCRIPTION



    [0021] Referring to Fig. 1 and Fig. 2, an exemplary heat exchanger 10 is shown. The heat exchanger 10 includes a hot air inlet 12 and a hot air outlet 14 opposite each other, the inlet 12 and outlet 14 are configured for a hot side 16 of the heat exchanger 10. A cold side 18 of the heat exchanger 10 is thermally coupled to the hot side 16. The hot air inlet 12 and hot air outlet 14 are both surrounded by a manifold 20 that is configured to deliver the hot air 22. Cold air 24 flows through the cold side 18 to receive thermal energy Q from the hot air 22 flowing through the hot side 16. The heat exchanger 10 also includes hot side transition regions 26 between the hot air inlet 12 and hot side heat transfer channels 28 as well as between the hot air outlet 14 and hot side heat transfer channels 28. The transition regions 26 from the inlets act as bell mouth inlets with relatively larger cross sectional area than the rectangular cross section in the heat transfer channels 28 resulting in a lower pressure drop. The transition regions 26 allow for a smooth gradual cross sectional area transition to the rectangular cross section. In an exemplary embodiment, the hot side heat transfer channels 28 have a rectangular cross section in order to maximize flow area of the cold side heat transfer passages 30. In other exemplary embodiments, the cross section can be configured to maximize the flow area of the hot side and cold side flow of air. The heat transfer channels 28 can be staggered to match the inlets 12 and outlets 14. The heat exchanger 10 portions between the manifolds 20 are not constrained by the manifold and can be square shaped, since no effective compressive stress loads are created in that region.

    [0022] As seen in Fig. 3, the manifold 20 constrains the expansion of the hot air inlet 12 and hot air outlet 14. The manifold 20 heats up slower than the hot air inlet 12 and hot air outlet 14 due to the cooling influence of the cold air 24 flowing over the manifold 20. As a result of the mismatch between the manifold 20 and hot air inlet 12 and hot air outlet 14, thermal expansion of the hot air inlet 12 and hot air outlet 14 is more rapid than the manifold 20 creating thermal loads and stress caused by the mismatched expansion. The size and orientation of the thermal loads 32 can vary based on the location within the hot air inlet 12 and hot air outlet 14, as well as the size and shape of the manifold 20. For instance, at the center 46 of the manifold walls 50, the mismatch in thermal expansion between the manifold 20 and hot air inlet 12 and hot air outlet 14 can cause compressive thermal loads 33. Since the thermal expansion of the hot air inlet 12 and hot air outlet 14 can cause long unsupported lengths of the manifold walls 50 to bulge at the center 46 while the corners 44 of the manifold walls 50 remain constrained, the compressive loads 33 may be less at the center 46 and increasing towards the corners 44. Moreover, the combination of a cold manifold 20 perimeter and bulging of the manifold wall 50 at the center 46 can result in high corner compression loads 45 in the heat exchanger 10 inlet 12 corners 44 that are at an angle relative to the compressive loads 33. Whereas, the combination of corner compression loads 45 and bulging of the manifold 20 wall at the center 46 can result in high tensile loads 48 near the corners 44 that are perpendicular to the corner compression loads 45, see Fig. 5 and Fig. 6.

    [0023] Referring also to Fig. 4, Fig. 5 and Fig. 6, the exemplary heat exchanger hot air inlet 12 and hot air outlet 14 are shown in cross section through cut B-B of Fig. 2. The inlet 12 and outlet 14 are configured with a shaped array, more specifically an array in a diamond shape 34 and/or star shape 36. The shaped array, i.e., diamond shape 34 and/or star shape 36 inlets 12 and outlets 14 provide for flexible vertices, including primary vertices 38 and secondary vertices 40 that can align with the thermal loads 32. When the orientation of the vertices 38, 40 align with the thermal loads 32, the overall structure becomes more flexible and can distort, changing the shape of the cavity 42 of the inlet 12 and outlet 14, thus minimizing the stresses. The fight between the expansion of the hot structure of the hot air inlet 12, hot air outlet 14 and the cold structure of the manifold 20 can be taken up by the distortion of the cavity 42. The prior structures having rectangular inlets/outlets, in contrast to the disclosed structure, aligned the loads with the walls 50 of the cavity 42 instead of the vertices 38, 40, resulting in the high stress. As can be seen in Figs. 3, 4, 5, and 6, the disclosed structures allow for the diamond shape 34 and/or star shape 36 to align the primary vertices 38 with some of the thermal loads 32. The star shape 36 also includes secondary vertices 40 that can be aligned with the thermal loads 32 in a different orientation. For instance, in Fig. 5, the primary vertices 38 of the star shape 36 are aligned with corner loads 45, 48 while the secondary vertices 40 are aligned with the compressive loads 33. Whereas, in Fig. 6, the primary vertices 38 of the star shape 36 are aligned with the compressive loads 33 and the secondary vertices 40 aligned with the corner loads 45, 48. In an exemplary embodiment, the diamond shape 34 can be situated proximate the star shapes 36 to enable flexibility. In an exemplary embodiment, the diamond shape 34 can be located between the star shapes 36. In this configuration, as can be seen in Figs. 5, 6, the primary vertices of the diamond shape 34 and the secondary vertices 40 of the star shape 36 are aligned.

    [0024] Although the disclosure focuses on diamond and star shapes, the thermal stresses can be reduced by orienting the vertices of other shapes with the thermal loads.

    [0025] A technical advantage of the disclosed heat exchanger can include aligning the orientation of the cavity vertices with the thermal loads, which makes the structure in the cavity flexible and free to distort, changing the shape of the cavity and minimizing stresses.

    [0026] A technical advantage of the disclosed heat exchanger can include minimizing the stress associated with the fight between the expansion of the hot structure at the heat exchanger inlets/outlets and the cold structure at the manifold, which can be taken up by the distortion of the cavity.

    [0027] A technical advantage of the disclosed heat exchanger can include the capacity of the aligned vertices to allow the heat exchanger to expand and collapse, bending with lower stress and without failure.

    [0028] There has been provided modified shaped heat exchanger inlets/outlets. While the modified shaped heat exchanger inlets/outlets have been described in the context of specific embodiments thereof, other unforeseen alternatives, modifications, and variations may become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications, and variations that fall within the scope of the appended claims.


    Claims

    1. A modified shaped heat exchanger (10) hot air inlet (12) and hot air outlet (14) comprising:

    a first heat exchanger manifold (20) surrounding said hot air inlet (12) and a second heat exchanger manifold (20) surrounding said hot air outlet (14); and

    a shaped array of a shaped inlet and a shaped outlet, each of said shaped inlet and shaped outlet being configured to align vertices (38, 40) with thermal load directions (32) responsive to a thermal expansion mismatch between the hot air inlet (12) and hot air outlet (14) and respective first heat exchanger manifold (20) and second heat exchanger manifold (20),

    wherein said shaped hot air inlet (12) comprises a star shaped hot air inlet (36) and said shaped hot air outlet (14) comprises a star shaped hot air outlet (36).


     
    2. The modified shaped heat exchanger (10) hot air inlet (12) and hot air outlet (14) according to claim 1, wherein said first heat exchanger manifold (20) and second heat exchanger manifold (20) constrain said thermal expansion of said hot air inlet (12) and hot air outlet (14) respectively.
     
    3. The modified shaped heat exchanger (10) hot air inlet (12) and hot air outlet (14) according to claim 1 or 2, further comprising:

    a first hot side transition region (26) between said hot air inlet (12) and heat transfer channels (28), said first hot side transition region (26) configured as a smooth gradual cross sectional area transition to said heat transfer channels (28); and

    a second hot side transition region (26) between said hot air outlet (14) and said heat transfer channels (28), said second hot side transition region (26) configured as a smooth gradual cross sectional area transition to said heat transfer channels (28),

    wherein, optionally, said heat transfer channels (28) have a rectangular cross sectional flow area.


     
    4. The modified shaped heat exchanger (10) hot air inlet (12) and hot air outlet (14) according to claim 1, 2 or 3, wherein:
    said star shaped hot air inlet (36) and said star shaped hot air outlet (36) are configured to align primary vertices (38) or secondary vertices (40) with the thermal load directions (32) in a corner (44) of the heat exchanger (10).
     
    5. The modified shaped heat exchanger (10) hot air inlet (12) and hot air outlet (14) according to claim 1, 2 or 3, wherein said shaped hot air inlet (12) comprises:

    a diamond shaped hot air inlet (34) situated proximate to the star shaped hot air inlet (36); and

    said shaped hot air outlet (14) comprises:
    a diamond shaped hot air outlet (34) situated proximate to the star shaped hot air outlet (36).


     
    6. A process for creating a flexible heat exchanger (10) inlet (12) and outlet (14) comprising:

    surrounding a hot air inlet (12) with a first manifold (20) ;

    surrounding a hot air outlet (14) with a second manifold (20) ;

    forming an array of shaped inlets at said hot air inlet (12) ;

    forming an array of shaped outlets at said hot air outlet (14); and

    aligning a vertices direction (38, 40) of said shaped inlets and said shaped outlets with a thermal load direction (32), said thermal load (32) being responsive to a thermal expansion mismatch between the hot air inlet (12) and the first manifold (20) and a thermal expansion mismatch between the hot air outlet (40) and the second manifold (20),

    wherein the process optionally further comprises:

    coupling a first hot side transition region (26) between said hot air inlet (12) and heat transfer channels (28); and

    coupling a second hot side transition region (26) between said hot air outlet (14) and said heat transfer channels (28,

    wherein the array of shaped inlets at said hot air inlet (12) comprises at least one of a star shaped (36) and diamond shaped (34) hot air inlet (12); and said array of shaped outlets at said hot air outlet (14) comprises at least one of a star shaped (36) and a diamond shaped (34) hot air outlet (14).


     
    7. The process of claim 6, further comprising:
    aligning secondary vertices (40) with the thermal load directions (32) in a corner (44) of the heat exchanger (10).
     
    8. The process of claim 6 or 7, further comprising:

    forming the at least one star shaped inlet (36) within the array of shaped inlets;

    forming the at least one star shaped outlet (36) within the array of shaped outlets;

    forming the at least one diamond shaped inlet (34) proximate the at least one star shaped inlet (36); and

    forming the at least one diamond shaped outlet (34) proximate the at least one star shaped outlet (36).


     
    9. The process of any of claims 6-8, further comprising:
    aligning primary vertices (38) with the thermal load directions (32), and optionally:

    changing the shape of a first cavity (42) formed by the first manifold (20) surrounding said hot air inlet (12) by allowing the first cavity (42) to distort while said vertices (38, 40) align with said thermal load directions (32); and

    changing the shape of a second cavity (42) formed by the second manifold (20) surrounding said hot air outlet (14) by allowing the second cavity (42) to distort while said vertices (38, 40) align with said thermal load directions (32).


     


    Ansprüche

    1. Modifizierter geformter Heißlufteinlass (12) und Heißluftauslass (14) eines Wärmetauschers (10), umfassend:

    einen ersten Wärmetauscherverteiler (20), der den Heißlufteinlass (12) umgibt, und einen zweiten Wärmetauscherverteiler (20), der den Heißluftauslass (14) umgibt; und

    eine geformte Anordnung aus einem geformten Einlass und einem geformten Auslass, wobei jeder des geformten Einlasses und des geformten Auslasses konfiguriert ist, um Scheitelpunkte (38, 40) mit Wärmebelastungsrichtungen (32) als Reaktion auf eine Fehlanpassung der Wärmeausdehnung zwischen dem Heißlufteinlass (12) und dem Heißluftauslass (14) und jeweils dem ersten Wärmetauscherverteiler (20) und dem zweiten Wärmetauscherverteiler (20) auszurichten,

    wobei der geformte Heißlufteinlass (12) einen sternförmigen Heißlufteinlass (36) umfasst und der geformte Heißluftauslass (14) einen sternförmigen Heißluftauslass (36) umfasst.


     
    2. Modifizierter geformter Heißlufteinlass (12) und Heißluftauslass (14) eines Wärmetauschers (10) nach Anspruch 1, wobei der erste Wärmetauscherverteiler (20) und der zweite Wärmetauscherverteiler (20) jeweils die Wärmeausdehnung des Heißlufteinlasses (12) und des Heißluftauslasses (14) einschränken.
     
    3. Modifizierter geformter Heißlufteinlass (12) und Heißluftauslass (14) eines Wärmetauschers (10) nach Anspruch 1 oder 2, ferner umfassend:

    einen ersten Heißseiten-Übergangsbereich (26) zwischen dem Heißlufteinlass (12) und den Wärmeübertragungskanälen (28), wobei der erste Heißseiten-Übergangsbereich (26) als ein glatter allmählicher Querschnittflächenübergang zu den Wärmeübertragungskanälen (28) konfiguriert ist; und

    einen zweiten Heißseiten-Übergangsbereich (26) zwischen dem Heißluftauslass (14) und den Wärmeübertragungskanälen (28),

    wobei der zweite Heißseiten-Übergangsbereich (26) als ein glatter allmählicher Querschnittflächenübergang zu den Wärmeübertragungskanälen (28) konfiguriert ist,

    wobei optional die Wärmeübertragungskanäle (28) eine rechteckige Strömungsquerschnittfläche aufweisen.


     
    4. Modifizierter geformter Heißlufteinlass (12) und Heißluftauslass (14) eines Wärmetauschers (10) nach Anspruch 1, 2 oder 3, wobei:
    der sternförmige Heißlufteinlass (36) und der sternförmige Heißluftauslass (36) konfiguriert sind, um primäre Scheitelpunkte (38) oder sekundäre Scheitelpunkte (40) mit den Wärmebelastungsrichtungen (32) in einer Ecke (44) des Wärmetauschers (10) auszurichten.
     
    5. Modifizierter geformter Heißlufteinlass (12) und Heißluftauslass (14) eines Wärmetauschers (10) nach Anspruch 1, 2 oder 3, wobei der geformte Heißlufteinlass (12) Folgendes umfasst:

    einen diamantförmigen Heißlufteinlass (34), der in der Nähe des sternförmigen Heißlufteinlasses (36) liegt; und

    wobei der geformte Heißluftauslass (14) Folgendes umfasst:
    einen diamantförmigen Heißluftauslass (34), der in der Nähe des sternförmigen Heißluftauslasses (36) liegt.


     
    6. Prozess zum Schaffen eines flexiblen Einlasses (12) und Auslasses (14) eines Wärmetauschers (10), der Folgendes umfasst:

    Umgeben eines Heißlufteinlasses (12) mit einem ersten Verteiler (20) ;

    Umgeben eines Heißluftauslasses (14) mit einem zweiten Verteiler (20) ;

    Bilden einer Anordnung von geformten Einlässen an dem Heißlufteinlass (12);

    Bilden einer Anordnung von geformten Auslässen an dem Heißluftauslass (14); und

    Ausrichten einer Scheitelpunktrichtung (38, 40) der geformten Einlässe und der geformten Auslässe mit einer Wärmebelastungsrichtung (32), wobei die Wärmebelastung (32) auf eine Fehlanpassung der Wärmeausdehnung zwischen dem Heißlufteinlass (12) und dem ersten Verteiler (20) und eine Fehlanpassung der Wärmeausdehnung zwischen dem Heißluftauslass (40) und dem zweiten Verteiler (20) reagiert,

    wobei der Prozess optional ferner Folgendes umfasst:

    Koppeln eines ersten Heißseiten-Übergangsbereichs (26) zwischen dem Heißlufteinlass (12) und den Wärmeübertragungskanälen (28); und

    Koppeln eines zweiten Heißseiten-Übergangsbereichs (26) zwischen dem Heißluftauslass (14) und den Wärmeübertragungskanälen (28),

    wobei die Anordnung von geformten Einlässen an dem Heißlufteinlass (12) mindestens einen von einem sternförmigen (36) und einem diamantförmigen (34) Heißlufteinlass (12) umfasst; und die Anordnung von geformten Auslässen an dem Heißluftauslass (14) mindestens einen von einem sternförmigen (36) und einem diamantförmigen (34) Heißluftauslass (14) umfasst.


     
    7. Prozess nach Anspruch 6, ferner umfassend:
    Ausrichten sekundärer Scheitelpunkte (40) mit den Wärmebelastungsrichtungen (32) in einer Ecke (44) des Wärmetauschers (10).
     
    8. Prozess nach Anspruch 6 oder 7, ferner umfassend:

    Bilden des mindestens einen sternförmigen Einlasses (36) innerhalb der Anordnung von geformten Einlässen;

    Bilden des mindestens eines sternförmigen Auslasses (36) innerhalb der Anordnung von geformten Auslässen;

    Bilden des mindestens einen diamantförmigen Einlasses (34) in der Nähe des mindestens einen sternförmigen Einlasses (36); und Bilden des mindestens einen diamantförmigen Auslasses (34) in der Nähe des mindestens einen sternförmigen Auslasses (36).


     
    9. Prozess nach einem der Ansprüche 6-8, ferner umfassend:
    Ausrichten der primären Scheitelpunkte (38) mit den Wärmebelastungsrichtungen (32), und optional:

    Ändern der Form eines ersten Hohlraums (42), der von dem ersten Verteiler (20) gebildet wird, der den Heißlufteinlass (12) umgibt, indem zugelassen wird, dass sich der erste Hohlraum (42) verzerrt, während sich die Scheitelpunkte (38, 40) mit den Wärmebelastungsrichtungen (32) ausrichten; und

    Ändern der Form eines zweiten Hohlraums (42), der von dem zweiten Verteiler (20) gebildet wird, der den Heißluftauslass (14) umgibt, indem zugelassen wird, dass sich der zweite Hohlraum (42) verzerrt, während sich die Scheitelpunkte (38, 40) mit den Wärmebelastungsrichtungen (32) ausrichten.


     


    Revendications

    1. Entrée d'air chaud (12) et sortie d'air chaud (14) d'échangeur de chaleur (10) à forme modifiée comprenant :

    un premier collecteur d'échangeur de chaleur (20) entourant ladite entrée d'air chaud (12) et un second collecteur d'échangeur de chaleur (20) entourant ladite sortie d'air chaud (14) ; et

    un réseau profilé d'une entrée profilée et d'une sortie profilée, chacune desdites entrée profilée et sortie profilée étant conçue pour aligner des sommets (38, 40) avec des directions de charge thermique (32) en réponse à une différence de dilatation thermique entre l'entrée d'air chaud (12) et la sortie d'air chaud (14) et le premier collecteur d'échangeur de chaleur (20) et le second collecteur d'échangeur de chaleur (20) respectifs,

    dans lesquelles ladite entrée d'air chaud profilée (12) comprend une entrée d'air chaud en forme d'étoile (36) et ladite sortie d'air chaud profilée (14) comprend une sortie d'air chaud en forme d'étoile (36).


     
    2. Entrée d'air chaud (12) et sortie d'air chaud (14) d'échangeur de chaleur (10) à forme modifiée selon la revendication 1, dans lesquelles ledit premier collecteur d'échangeur de chaleur (20) et ledit second collecteur d'échangeur de chaleur (20) limitent ladite dilatation thermique de ladite entrée d'air chaud (12) et ladite sortie d'air chaud (14) respectivement.
     
    3. Entrée d'air chaud (12) et sortie d'air chaud (14) d'échangeur de chaleur (10) à forme modifiée selon la revendication 1 ou 2, comprenant en outre :

    une première région de transition côté chaud (26) entre ladite entrée d'air chaud (12) et les canaux de transfert de chaleur (28), ladite première région de transition côté chaud (26) étant conçue comme une transition progressive et lisse de zone transversale vers lesdits canaux de transfert de chaleur (28) ; et

    une seconde région de transition côté chaud (26) entre ladite sortie d'air chaud (14) et lesdits canaux de transfert de chaleur (28), ladite seconde région de transition côté chaud (26) étant conçue comme une transition progressive et lisse de zone transversale vers lesdits canaux de transfert de chaleur (28),

    dans lesquelles, éventuellement, lesdits canaux de transfert de chaleur (28) ont une zone d'écoulement transversale rectangulaire.


     
    4. Entrée d'air chaud (12) et sortie d'air chaud (14) d'échangeur de chaleur (10) à forme modifiée selon la revendication 1, 2 ou 3, dans lesquelles :
    ladite entrée d'air chaud en forme d'étoile (36) et ladite sortie d'air chaud en forme d'étoile (36) sont conçues pour aligner des sommets primaires (38) ou des sommets secondaires (40) avec les directions de charge thermique (32) dans un coin (44) de l'échangeur de chaleur (10).
     
    5. Entrée d'air chaud (12) et sortie d'air chaud (14) d'échangeur de chaleur (10) à forme modifiée selon la revendication 1, 2 ou 3, dans lesquelles ladite entrée d'air chaud profilée (12) comprend :

    une entrée d'air chaud en forme de losange (34) située à proximité de l'entrée d'air chaud en forme d'étoile (36) ; et

    ladite sortie d'air chaud en forme de losange (14) comprend :
    une sortie d'air chaud en forme de losange (34) située à proximité de la sortie d'air chaud en forme d'étoile (36).


     
    6. Procédé de création d'une entrée (12) et d'une sortie (14) d'échangeur de chaleur (10) flexibles comprenant :

    le fait d'entourer une entrée d'air chaud (12) d'un premier collecteur (20) ;

    le fait d'entourer une sortie d'air chaud (14) d'un second collecteur (20) ;

    la formation d'un réseau d'entrées profilées au niveau de ladite entrée d'air chaud (12) ;

    la formation d'un réseau de sorties profilées au niveau de ladite sortie d'air chaud (14) ; et

    l'alignement d'une direction de sommets (38, 40) desdites entrées profilées et desdites sorties profilées avec une direction de charge thermique (32), ladite charge thermique (32) étant sensible à une différence de dilatation thermique entre l'entrée d'air chaud (12) et le premier collecteur (20) et à une différence de dilatation thermique entre la sortie d'air chaud (40) et le second collecteur (20),

    dans lequel le procédé comprend éventuellement en outre :

    le couplage d'une première région de transition côté chaud (26) entre ladite entrée d'air chaud (12) et les canaux de transfert de chaleur (28) ; et

    le couplage d'une seconde région de transition côté chaud (26) entre ladite sortie d'air chaud (14) et lesdits canaux de transfert de chaleur (28),

    dans lequel le réseau d'entrées profilées au niveau de ladite entrée d'air chaud (12) comprend au moins l'une parmi une entrée d'air chaud (12) en forme d'étoile (36) et une en forme de losange (34) ; et ledit réseau de sorties profilées au niveau de ladite sortie d'air chaud (14) comprend au moins l'une parmi une sortie d'air chaud (14) en forme d'étoile (36) et une en forme de losange (34).


     
    7. Procédé selon la revendication 6, comprenant en outre :
    l'alignement de sommets secondaires (40) avec les directions de charge thermique (32) dans un coin (44) de l'échangeur de chaleur (10).
     
    8. Procédé selon la revendication 6 ou 7, comprenant en outre :

    la formation de l'au moins une entrée en forme d'étoile (36) dans le réseau d'entrées profilées ;

    la formation de l'au moins une sortie en forme d'étoile (36) dans le réseau de sorties profilées ;

    la formation de l'au moins une entrée en forme de losange (34) à proximité de l'au moins une entrée en forme d'étoile (36) ; et

    la formation de l'au moins une sortie en forme de losange (34) à proximité de l'au moins une sortie en forme d'étoile (36).


     
    9. Procédé selon l'une quelconque des revendications 6 à 8, comprenant en outre :
    l'alignement de sommets primaires (38) avec les directions de charge thermique (32), et éventuellement :

    la modification de la forme d'une première cavité (42) formée par le premier collecteur (20) entourant ladite entrée d'air chaud (12) en permettant à la première cavité (42) de se déformer lorsque lesdits sommets (38, 40) s'alignent avec lesdites directions de charge thermique (32) ; et

    la modification de la forme d'une seconde cavité (42) formée par le second collecteur (20) entourant ladite sortie d'air chaud (14) en permettant à la seconde cavité (42) de se déformer lorsque lesdits sommets (38, 40) s'alignent avec lesdites directions de charge thermique (32).


     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description