(19) |  |
| (11) | EP 4 002 590 B1 |
(12) | EUROPEAN PATENT SPECIFICATION |
(45) | Mention of the grant of the patent: | | 13.09.2023 Bulletin 2023/37 |
(22) | Date of filing: 30.06.2021 |
| (51) | International Patent Classification (IPC): |
(52) | Cooperative Patent Classification (CPC): | | H01Q 19/08 |
|
(54) | ULTRA-WIDEBAND NON-METAL HORN ANTENNA ULTRABREITBANDIGE NICHTMETALLISCHE HORNANTENNE ANTENNE CORNET NON-MÉTALLIQUE À ULTRA LARGE BANDE |
(84) | Designated Contracting States: | | AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
(30) | Priority: | 18.11.2020 US 202063115570 P 23.04.2021 TW 110114721
|
(43) | Date of publication of application: | | 25.05.2022 Bulletin 2022/21 |
(73) | Proprietor: TMY Technology Inc. | | Taipei City 106 (TW) |
| (72) | Inventors: | | - TAI, Yang
106 Taipei City (TW) - KUO, Shun-Chung
106 Taipei City (TW) - TSAI, Wen-Tsai
106 Taipei City (TW) - WU, Jiun-Wei
106 Taipei City (TW) - HSU, Shao-Chun
106 Taipei City (TW)
|
(74) | Representative: Becker, Eberhard | | Becker Kurig & Partner
Patentanwälte mbB
Bavariastraße 7 80336 München 80336 München (DE) |
(56) | References cited: : US-A1- 2006 125 705 US-B2- 8 242 965
| US-A1- 2010 315 310
|
| | | | |
|
| |
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). |
BACKGROUND
Technical Field
[0001] The disclosure relates to an antenna structure, and particularly relates to an ultra-wideband non-metal horn antenna.
Description of Related Art
[0002] In known technology, although there is a way to achieve impedance matching between the waveguide tube and the feed horn antenna by configuring a mode matching part, but this method can only make adjustment to limited parameters, and it may be difficult to achieve impedance matching due to the overall structure of the feed horn antenna.
[0003] In addition, in known technology, there is also a method of adjusting the side lobe level and return loss by adjusting the development angle of the radiation section, but such design needs to be equipped with a longer launcher and the metal strip structure as the feed part, and therefore the overall size is large. Besides, the feeding has poor performance in fixation, and is not suitable for commercialization.
SUMMARY
[0005] In view of this, the disclosure provides an ultra-wideband non-metal horn antenna, which can be used to solve the above technical problems.
[0006] The disclosure provides an ultra-wideband non-metal horn antenna, which includes an impedance matching member, a field adjustment member and an outer cover member. The impedance matching member includes a first end and a second end opposite to each other. The first end of the impedance matching member includes a first tenon portion, and the end surface of the second end of the impedance matching member is provided with a first recessed structure, wherein the first recessed structure includes a first protruding portion and a first groove structure surrounding the first protruding portion. The field adjustment member includes a first end and a second end opposite to each other. The end surface of the first end of the field adjustment member is provided with a first trench structure, and the end surface of the second end of the field adjustment member is provided with a second recessed structure, wherein the second recessed structure includes a second protruding portion and a second groove structure surrounding the second protruding portion, and the top surface of the second protruding portion is provided with a second trench structure corresponding to the first tenon portion. Moreover, the first tenon portion of the impedance matching member is inserted into the second trench structure of the field adjustment member. The outer cover member includes a first tapered structure and a second tenon portion corresponding to the first trench structure. The first tapered structure includes a vertex angle and a bottom surface. The second tenon portion is connected to the bottom surface of the first tapered structure, and the second tenon portion of the outer cover member is inserted into the first trench structure of the field adjustment member.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007]
FIG. 1 is a schematic view of an ultra-wideband non-metal horn antenna connected with a waveguide tube according to an embodiment of the disclosure.
FIG. 2A is a side perspective view of the impedance matching member illustrated according to the first embodiment of the disclosure.
FIG. 2B is another view of the impedance matching member illustrated according to FIG. 2A.
FIG. 2C is still another view of the impedance matching member illustrated according to FIG. 2A.
FIG. 3 is a comparison view of |S11| illustrated according to the first embodiment of the disclosure.
FIG. 4A is a side perspective view of the impedance matching member and the waveguide tube illustrated according to the second embodiment of the disclosure.
FIG. 4B is another view illustrated according to FIG. 4A.
FIG. 4C is yet another view illustrated based on FIG. 4B.
FIG. 5A is a side perspective view of a field adjustment member illustrated according to the third embodiment of the disclosure.
FIG. 5B is another view of the field adjustment member illustrated according to FIG. 5A.
FIG. 5C is still another view of the field adjustment member illustrated according to FIG. 5B.
FIG. 6A is a radiation pattern diagram of a horn antenna without a second groove structure.
FIG. 6B is a radiation pattern diagram of a horn antenna provided with a second groove structure.
FIG. 7A is a side view of the outer cover member illustrated according to the fourth embodiment of the disclosure.
FIG. 7B is another view of the outer cover member illustrated according to FIG. 7A.
FIG. 7C is yet another view of the outer cover member illustrated according to FIG. 7A.
FIG. 8A is a radiation pattern diagram of a horn antenna without an outer cover member.
FIG. 8B is a radiation pattern diagram of a horn antenna provided with an outer cover member.
FIG. 9A is a side view of the conventional horn antenna and the horn antenna of the disclosure.
FIG. 9B is a top view of the conventional horn antenna and the horn antenna of the disclosure illustrated according to FIG. 9A.
FIG. 9C is a radiation pattern diagram illustrated according to FIG. 9A.
FIG. 9D is a reflection coefficient diagram illustrated according to FIG. 9A.
FIG. 10A is a horizontally and vertically polarized radiation pattern diagram illustrated according to an embodiment of the disclosure.
FIG. 10B is a reflection coefficient diagram illustrated according to FIG. 10A.
FIG. 11 is a horizontally and vertically polarized radiation pattern diagram illustrated according to an embodiment of the disclosure.
FIG. 12A is a side perspective view of an ultra-wideband non-metal horn antenna connected with a waveguide tube according to an embodiment of the disclosure.
FIG. 12B is an oblique perspective view illustrated according to FIG. 12A.
FIG. 12C is a top perspective view illustrated according to FIG. 12A.
FIG. 12D is an oblique perspective view of the field adjustment member illustrated according to FIG. 12A.
FIG. 12E is a top perspective view illustrated according to FIG. 12D.
DESCRIPTION OF THE EMBODIMENTS
[0008] Please refer to FIG. 1, which is a schematic view of an ultra-wideband non-metal horn antenna connected with a waveguide tube according to an embodiment of the disclosure. In FIG. 1, the horn antenna 100 (i.e., ultra-wideband non-metal horn antenna) of the disclosure includes an impedance matching member 110, a field adjustment member 130, and an outer cover member 150, wherein the field adjustment member 130 is connected between the impedance matching member 110 and the outer cover member 150, and the horn antenna 100 is connected to the waveguide tube 199 through the impedance matching member 110. In the embodiment of the disclosure, the impedance matching member 110, the field adjustment member 130, the outer cover member 150 and the waveguide tube 199 can be realized by non-metal materials (but the outer layer of the waveguide tube 199 can be sputtered with a metal layer), and the following will further describe the structure of the impedance matching member 110, the field adjustment member 130, and the outer cover member 150 respectively.
[0009] Please refer to FIG. 2A to FIG. 2C. FIG. 2A is a side perspective view of the impedance matching member illustrated according to the first embodiment of the disclosure, FIG. 2B is another view of the impedance matching member illustrated according to FIG. 2A, and FIG. 2C is still another view of the impedance matching member illustrated according to FIG. 2A.
[0010] In the first embodiment, the impedance matching member 110 is, for example, a cylindrical object, and may include a first end 111 and a second end 112 opposite to each other. The first end 111 of the impedance matching member 110 includes a first tenon portion 111a, and the end surface of the second end 112 of the impedance matching member 110 is provided with a first recessed structure 114.
[0011] As shown in FIG. 2A to FIG. 2C, the first recessed structure 114 may include a first protruding portion 114a and a first groove structure 114b surrounding the first protruding portion 114a. In an embodiment, the first recessed structure 114 may include a bottom surface 115, the first protruding portion 114a may include a bottom surface 116, and the bottom surface 116 of the first protruding portion 114a may be connected to the bottom surface 115 of the first recessed structure 114. In addition, the bottom surface 116 of the first protruding portion 114a may be disposed in the middle of the bottom surface 115 of the first recessed structure 114, but the disclosure is not limited thereto.
[0012] In some embodiments, the first protruding portion 114a may be a tapered structure in any form (for example, a cone, a polygonal pyramid, etc.), and the height H1 of the first protruding portion 114a may be greater than the depth H2 of the first groove structure 114b. In an embodiment, the horn antenna 100 can be, for example, configured to provide a radiation signal having a specific wavelength, and the height H1 of the first protruding portion 114a can be less than the specific wavelength, and the depth H2 of the first groove structure 114b can be less than half of the specific wavelength, but the disclosure is not limited thereto.
[0013] In FIG. 2A to FIG. 2C, the first protruding portion 114a further has a vertex angle A1 extending outward, and the vertex angle A1 may be between 13 degrees and 45 degrees. In an embodiment, the vertex angle A1 of the first protruding portion 114a can be regarded as extending toward the normal direction N1 of the bottom surface 115 of the first recessed structure 114, but it may not be limited thereto.
[0014] In different embodiments, the sizes of the first protruding portion 114a and the first groove structure 114b can be adjusted according to the waveguide tube to be connected (for example, the waveguide tube 199 of FIG. 1), so as to achieve the purpose of impedance matching with the waveguide tube.
[0015] Referring to FIG. 3, FIG. 3 is a comparison view of |S
11| illustrated according to the first embodiment of the disclosure. In FIG. 3, the horn antenna 301 is assembled by, for example, the field adjustment member 130 and the outer cover member 150 of FIG. 1. In other words, the horn antenna 301 can be regarded as a horn antenna in which the impedance matching member 110 of the horn antenna 100 in FIG. 1 is removed.
[0016] In this embodiment, the curves 310 and 320 are the return loss curves corresponding to the horn antennas 301 and 100, respectively. It can be seen from FIG. 3 that when the impedance matching member 110 is provided, the return loss (RL) of the horn antenna 100 is greater than 10dB (|S
11| is lower than -10dB), but which does not equally apply to the horn antenna 301 that is not provided with the impedance matching member 110. It can be seen that the impedance matching member 110 can effectively enable the horn antenna 100 and the waveguide tube 199 to achieve impedance matching effect.
[0017] Please refer to FIG. 4A to FIG. 4C. FIG. 4A is a side perspective view of the impedance matching member and the waveguide tube illustrated according to the second embodiment of the disclosure, FIG. 4B is another view illustrated according to FIG. 4A, and FIG. 4C is yet another view illustrated based on FIG. 4B. In the second embodiment, the impedance matching member 110 can be connected to the waveguide tube 199 through the second end 112. More specifically, the second end 112 of the impedance matching member 110 can be inserted into the waveguide tube 199 so that the impedance matching member 110 is connected to the waveguide tube 199, but the disclosure is not limited thereto.
[0018] In some embodiments, the waveguide tube 199 and the impedance matching member 110 may be integrally formed. In other embodiments, the waveguide tube 199 and the impedance matching member 110 may be designed to have a size that can be combined with each other. After forming, the outer layer of the waveguide tube 199 can be sputtered with a metal layer 199a, so as to achieve the effect of low cost and light weight.
[0019] Referring to FIG. 5A to FIG. 5C, FIG. 5A is a side perspective view of a field adjustment member illustrated according to the third embodiment of the disclosure, FIG. 5B is another view of the field adjustment member illustrated according to FIG. 5A, and FIG. 5C is still another view of the field adjustment member illustrated according to FIG. 5B.
[0020] As shown in FIG. 5A to FIG. 5C, the field adjustment member 130 is, for example, a cylindrical object, which may include a first end 131 and a second end 132 opposite to each other. The end surface of the first end 131 of the field adjustment member 130 may be provided with a first trench structure 131a (which, for example, has a depth H5), and the end surface of the second end 132 of the field adjustment member 130 may be provided with a second recessed structure 134. In other embodiments, the field adjustment member 130 can also be designed as a prism-shaped object, but the disclosure is not limited thereto.
[0021] In the third embodiment, the second recessed structure 134 may include a second protruding portion 134a and a second groove structure 134b surrounding the second protruding portion 134a. In addition, the top surface 135 of the second protruding portion 134a may be provided with a second trench structure 134c corresponding to the first tenon portion 111a.
[0022] In the third embodiment, the first tenon portion 111a of the impedance matching member 110 can be inserted into the second trench structure 134c of the field adjustment member 130, so that the impedance matching member 110 can be connected to the field adjustment member 130 in the manner shown in FIG. 1. In addition, in order to allow the first tenon portion 111a to be inserted and fixed in the second trench structure 134c, the size of the first tenon portion 111a may be designed to correspond to the second trench structure 134c.
[0023] In some embodiments, the impedance matching member 110 and the field adjustment member 130 may be integrally formed, but may not be limited thereto.
[0024] In the third embodiment, the configuration of the second groove structure 134b (such as the diameter D1, depth H4, width G1, height difference G2, etc. shown below) can be adjusted to improve the radiation pattern of the horn antenna 100, so that the horizontally polarized pattern and vertically polarized pattern are more symmetrical, thereby achieving the effect of narrow beam.
[0025] In an embodiment, the second trench structure 134c may have a depth H3', and the difference between the depth H3' of the second trench structure 134c and the height H3 of the first tenon portion 111a may be less than 0.5 mm.
[0026] In an embodiment, the second protruding portion 134a may be cylindrical, and the diameter D1 of the top surface 135 of the second protruding portion 134a may be between 1.1 times and 2 times the specific wavelength.
[0027] In an embodiment, the depth H4 of the second recessed structure 134 may be between 0.8 times and 1.5 times the specific wavelength.
[0028] In an embodiment, the width G1 of the second groove structure 134b may be between 0.5 mm and 0.4 times the specific wavelength.
[0029] In an embodiment, the second recessed structure 134 may have a top surface 132a and a bottom surface 132b. The bottom surface 132b of the second recessed structure 134 may be connected to the second protruding portion 134a. The height difference G2 between the top surface 132a of the second recessed structure 134 and the top surface 135 of the second protruding portions 134a may be less than 0.4 times the specific wavelength.
[0030] In addition, the second recessed structure 134 may further include an inner annular surface 132c, and the included angle ang1 between the inner annular surface 132c of the second recessed structure 134 and the bottom surface 132b of the second recessed structure 134 may be between 80 degrees and 100 degrees.
[0031] In an embodiment, the second protruding portion 134a may have an outer annular surface 136, and the included angle ang2 between the bottom surface 132b of the second recessed structure 134 and the outer annular surface 136 of the second protruding portion 134a may be between 80 degrees and 100 degrees.
[0032] In an embodiment, the second groove structure 134b may be a circular structure or a polygonal structure other than a regular triangle (for example, a regular quadrilateral, a regular pentagon, etc.). In this way, the radiation energy can be made more even, and therefore it is easier to design a laterally symmetrical radiation pattern.
[0033] Referring to FIG. 6A and FIG. 6B, FIG. 6A is a radiation pattern diagram of a horn antenna without a second groove structure, and FIG. 6B is a radiation pattern diagram of a horn antenna provided with a second groove structure. In FIG. 6A, the antenna structure 601 can be regarded as an antenna structure obtained by removing the second groove structure 134b in the horn antenna 100 of FIG. 6B.
[0034] In FIG. 6A and FIG. 6B, the solid line is, for example, a horizontally polarized radiation pattern, and the dashed line is, for example, a vertically polarized radiation pattern. Comparing FIG. 6A with FIG. 6B, it can be seen that the radiation pattern in FIG. 6B is more symmetrical, and the side lobes are also lower. Therefore, it can be obtained that the horn antenna 100 provided with the second groove structure 134b can indeed improve the radiation pattern.
[0035] Referring to FIG. 7A to FIG. 7C, FIG. 7A is a side view of the outer cover member illustrated according to the fourth embodiment of the disclosure, FIG. 7B is another view of the outer cover member illustrated according to FIG. 7A, and FIG. 7C is yet another view of the outer cover member illustrated according to FIG. 7A.
[0036] As shown in FIG. 7A to FIG. 7C, the outer cover member 150 may include a first tapered structure 151 and a second tenon portion 152 corresponding to the first trench structure 131a, wherein the length of the second tenon portion 152 may be less than or equal to the depth H5 of the first trench structure 131a. The first tapered structure 151 is, for example, a cone-shaped object, which may include a vertex angle A2 and a bottom surface 151a, wherein one end of the second tenon portion 152 can be connected to the bottom surface 151a of the first tapered structure 151, and the other end of the second tenon portion 152 can be inserted into the first trench structure 131a of the field adjustment member 130, so that the outer cover member 150 can be connected to the field adjustment member 130 in the manner shown in FIG. 1. In addition, in other embodiments, the first tapered structure 151 can also be implemented as a pyramidal object, but it may not be limited thereto.
[0037] In an embodiment, in order to enable the second tenon portion 152 to be inserted and fixed in the first trench structure 131a, the size of the second tenon portion 152 may be designed to correspond to the first trench structure 131a. In addition, one end of the second tenon portion 152 can be connected to the middle of the bottom surface 151a of the first tapered structure 151, and the area of the bottom surface 151a of the first tapered structure 151 can match the area of the end surface of the first end 131 of the field adjustment member 130. In this way, unevenness in the connection between the outer cover member 150 and the field adjustment member 130 can be avoided.
[0038] In the embodiment of the disclosure, the first tapered structure 151 of the outer cover member 150 can be used to suppress side lobes and back lobes in the radiation pattern and increase the radiation gain. In addition, realizing the outer cover member 150 with a material with a higher dielectric coefficient can further achieve the effect of narrow beams.
[0039] In an embodiment, the vertex angle A2 of the first tapered structure 151 may be between 90 degrees and 120 degrees to effectively suppress the side lobes and the back lobes. In addition, the first tapered structure 151 may be a cone structure or a regular polygonal cone structure (for example, a regular triangle, a regular tetragon, a regular pentagon, etc.).
[0040] In some embodiments, when the field adjustment member 130 is designed as a regular N-sided angular columnar object, the first tapered structure 151 can also be correspondingly designed as a regular N-sided angular pyramidal object, wherein N is a positive integer greater than or equal to 3, for example.
[0041] In an embodiment, when the shrinkage rate of the material is low, the impedance matching member 110, the field adjustment member 130 and the outer cover member 150 may be integrally formed. In addition, when the shrinkage rate of the material is high, the impedance matching member 110, the field adjustment member 130 and the outer cover member 150 can be realized as separate parts.
[0042] Please refer to FIG. 8A and FIG. 8B. FIG. 8A is a radiation pattern diagram of a horn antenna without an outer cover member, and FIG. 8B is a radiation pattern diagram of a horn antenna provided with an outer cover member. In FIG. 8A, the antenna structure 801 can be regarded as an antenna structure in which the outer cover member 150 in the horn antenna 100 of FIG. 8B is removed.
[0043] In FIG. 8A and FIG. 8B, the solid line is, for example, a horizontally polarized radiation pattern, and the dashed line is, for example, a vertically polarized radiation pattern. Comparing FIG. 8A with FIG. 8B, it can be seen that the side lobes and back lobes in FIG. 8B are relatively low. Therefore, it can be obtained that the horn antenna 100 provided with the outer cover member 150 can indeed effectively suppress the side lobes and back lobes.
[0044] Please refer to FIG. 9A to FIG. 9D. FIG. 9A is a side view of the conventional horn antenna and the horn antenna of the disclosure, FIG. 9B is a top view of the conventional horn antenna and the horn antenna of the disclosure illustrated according to FIG. 9A, FIG. 9C is a radiation pattern diagram illustrated according to FIG. 9A, and FIG. 9D is a reflection coefficient diagram illustrated according to FIG. 9A. In FIG. 9A and FIG. 9B, the horn antenna 901 is, for example, a conventional metal horn antenna provided with a mode matching part. In FIG. 9C, curves 910 and 920 correspond to horn antennas 901 and 100, respectively.
[0045] It can be seen from FIG. 9A to FIG. 9D that under the bandwidth with the same 10dB beamwidth, the size of the horn antenna 100 of the disclosure is only about 50% of the size of the horn antenna 901, and the radiation pattern is also relatively concentrated. In addition, it is also possible to achieve ultra-wideband characteristics (reflection coefficient less than -10dB).
[0046] In different embodiments, the impedance matching member 110, the field adjustment member 130, and the outer cover member 150 of the disclosure can be realized by using the same non-metal material, wherein the dielectric coefficient of the non-metal material can be between 2 and 16.
[0047] Please refer to FIG. 10A and FIG. 10B. FIG. 10A is a horizontally and vertically polarized radiation pattern diagram illustrated according to an embodiment of the disclosure. FIG. 10B is a reflection coefficient diagram illustrated according to FIG. 10A. In this embodiment, the impedance matching member 110, the field adjustment member 130, and the outer cover member 150 are assumed to be implemented by using non-metal materials with a dielectric coefficient of 10.2. It can be seen from FIG. 10A and FIG. 10B that in the case of using non-metal materials with a dielectric coefficient of 10.2 to implement the impedance matching member 110, the field adjustment member 130, and the outer cover member 150, the horizontally and vertically polarized patterns can be symmetrical and also have the ultra-wideband effect.
[0048] Please refer to FIG. 11. FIG. 11 is a horizontally and vertically polarized radiation pattern diagram illustrated according to an embodiment of the disclosure. In this embodiment, the impedance matching member 110, the field adjustment member 130, and the outer cover member 150 are assumed to be implemented by using non-metal materials with a dielectric coefficient of 16.2. It can be seen from FIG. 11 that in the case of using non-metal materials with a dielectric coefficient of 16.2 to implement the impedance matching member 110, the field adjustment member 130 and the outer cover member 150, the horizontally and vertically polarized patterns can still be symmetrical.
[0049] Please refer to FIG. 12A to FIG. 12E. FIG. 12A is a side perspective view of an ultra-wideband non-metal horn antenna connected with a waveguide tube according to an embodiment of the disclosure. FIG. 12B is an oblique perspective view illustrated according to FIG. 12A. FIG. 12C is a top perspective view illustrated according to FIG. 12A. FIG. 12D is an oblique perspective view of the field adjustment member illustrated according to FIG. 12A. FIG. 12E is a top perspective view illustrated according to FIG. 12D. In this embodiment, the horn antenna 1200 of the disclosure includes an impedance matching member 110, a field adjustment member 1230, and an outer cover member 1250, wherein the field adjustment member 1230 is connected between the impedance matching member 110 and the outer cover member 1250, and the horn antenna 1200 is connected to the waveguide tube 199 through the impedance matching member 110.
[0050] As shown in FIG. 12A to FIG. 12E, in this embodiment, the field adjustment member 1230 may be an equilateral triangle angular columnar object, and the first tapered structure 1251 of the outer cover member 1250 may correspond to the field adjustment member 1230 and is designed as a cone-shaped object in the shape of equilateral triangle.
[0051] In this embodiment, the field adjustment member 1230 and the outer cover member 1250 are different from the field adjustment member 130 and the outer cover member 150 in appearance, in addition to that, other characteristics/structures of the field adjustment member 1230 and the outer cover member 1250 can be derived from the description related to the field adjustment member 130 and the outer cover member 150.
[0052] For example, the field adjustment member 1230 may include a first end 1231 and a second end 1232 opposite to each other. The end surface of the first end 1231 of the field adjustment member 1230 may be provided with a first trench structure 1231a, and the end surface of the second end 1232 of the field adjustment member 1230 may be provided with a second recessed structure 1234.
[0053] In this embodiment, the second recessed structure 1234 may include a second protruding portion 1234a and a second groove structure 1234b surrounding the second protruding portion 1234a, wherein the second protruding portion 1234a is, for example, a triangular columnar object, and the second groove structure 1234b is, for example, a triangular groove surrounding the second protruding portion 1234a. In addition, the top surface 1235 of the second protruding portion 1234a may be provided with a second trench structure 1234c corresponding to the first tenon portion 111a of the impedance matching member 110.
[0054] In this embodiment, the first tenon portion 111a of the impedance matching member 110 can be inserted into the second trench structure 1234c of the field adjustment member 1230, so that the impedance matching member 110 can be connected to the field adjustment member 1230 in the manner shown in FIG. 12A to FIG. 12C. In addition, in order to enable the first tenon portion 111a to be inserted and fixed in the second trench structure 1234c, the size of the first tenon portion 111a can be designed to correspond to the second trench structure 1234c.
[0055] In some embodiments, the impedance matching member 110 and the field adjustment member 1230 may be formed integrally, but may not be limited thereto.
[0056] In this embodiment, the form of the second groove structure 1234b can be adjusted to improve the radiation pattern of the horn antenna 1200, thereby making the horizontally polarized and vertically polarized patterns more symmetrical, and achieve the effect of narrow beams. For example, the width G1 of the second groove structure 1234b may be between 0.5 mm and 0.4 times the specific wavelength. In addition, the horn antenna 1200 may have, for example, a reference centerline RC, and the shortest distance (for example, the distance D1') between any angular column side of the second protruding portion 1234a (for example, a regular triangular column) and the reference centerline RC may be 0.5 times the diameter D1 in FIG. 5A, but the disclosure is not limited thereto. For other related details, please refer to the description of the field adjustment member 130, and no further description will be incorporated herein.
[0057] In other embodiments, those with ordinary knowledge in the art should be able to directly and unambiguously infer from the above-mentioned embodiments the specific structure and related structural parameters of the correspondingly formed horn antenna when the field adjustment member and the first tapered structure of the disclosure are respectively designed as regular N-sided angular columnar objects and regular N-sided angular pyramidal objects.
[0058] In summary, the horn antenna of the disclosure can be formed by combining three non-metal elements, including impedance matching member, field adjustment member, and outer cover member. By designing the first groove structure in the impedance matching member, the horn antenna of the disclosure can achieve the effect of impedance matching. By setting the second groove structure in the field adjustment member, the horn antenna of the disclosure can have a more symmetrical radiation pattern (that is, the horizontally polarized pattern is symmetrical to the vertically polarized pattern) and a smaller antenna size.
[0059] In different embodiments, the above three non-metal elements can be implemented by using the same non-metal material (for example, a material with a dielectric coefficient between 2 and 16). In addition, the above three non-metal materials can also be realized by adopting non-metal materials with different dielectric coefficients to further reduce the size of the antenna and avoid the problem of poor shrinkage. In addition, the waveguide tube can also be realized as a non-metal material sputtered with a metal layer on the outer layer, so as to achieve the effect of low cost and light weight.
[0060] Through experiments, the horn antenna of the disclosure can be applied to satellite communications, fifth-generation (5G) millimeter wave communications, antenna pattern measurement, and other antenna application technologies that require high gain and narrow beams.
1. An ultra-wideband non-metal horn antenna (100, 301, 901, 1200), comprising:
an impedance matching member (110) comprising a first end (111) and a second end (112) opposite to each other, wherein the first end (111) of the impedance matching member (110) comprises a first tenon portion (111a), and an end surface of the second end (112) of the impedance matching member (110) is provided with a first recessed structure (114), wherein the first recessed structure (114) comprises a first protruding portion (114a) and a first groove structure (114b) surrounding the first protruding portion (114a);
a field adjustment member (130, 1230), which comprises a first end (131, 1231) and a second end (132, 1232) opposite to each other, wherein an end surface of the first end (131, 1231) of the field adjustment member (130, 1230) is provided with a first trench structure (131a, 1231a), and an end surface of the second end (132, 1232) of the field adjustment member (130, 1230) is provided with a second recessed structure (134, 1234), wherein the second recessed structure (134, 1234) comprises a second protruding portion (134a, 1234a) and a second groove structure (134b, 1234b) surrounding the second protruding portion (134a, 1234a), and a top surface (135, 1235) of the second protruding portion (134a, 1234a) is provided with a second trench structure (134c, 1234c) corresponding to the first tenon portion (111a), and the first tenon portion (111a) of the impedance matching member (110) is inserted into the second trench structure (134c, 1234c) of the field adjustment member (130, 1230); and
an outer cover member (150, 1250), which comprises a first tapered structure (151, 1251) and a second tenon portion (152) corresponding to the first trench structure (131a, 1231a), wherein the first tapered structure (151, 1251) comprises a vertex angle (A1, A2) and a bottom surface (151a), the second tenon portion (152) is connected to the bottom surface (151a) of the first tapered structure (151, 1251), and the second tenon portion (152) of the outer cover member (150, 1250) is inserted into the first trench structure (131a, 1231a) of the field adjustment member (130, 1230).
2. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 1, wherein the first protruding portion (114a) is a second tapered structure, and a height (H1) of the first protruding portion (114a) is greater than a depth (H2) of the first groove structure (114b).
3. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 2, wherein the ultra-wideband non-metal horn antenna (100, 301, 901, 1200) is configured to provide a radiation signal with a specific wavelength, the height (H1) of the first protruding portion (114a) is less than the specific wavelength, and the depth (H2) of the first groove structure (114b) is less than half of the specific wavelength.
4. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 2, wherein the first protruding portion (114a) has a vertex angle (A1, A2) extending outward, and the vertex angle (A1, A2) of the first protruding portion (114a) is between 13 degrees and 45 degrees.
5. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 1, wherein the impedance matching member (110) is connectable to a waveguide tube (199) through the second end (112) of the impedance matching member (110).
6. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 5, wherein the waveguide tube (199) and the impedance matching member (110) are formed integrally.
7. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 5, wherein the waveguide tube (199) is made of a non-metal material, and an outer layer of the waveguide tube (199) is sputtered with a metal layer (199a).
8. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 1, wherein the impedance matching member (110) and the field adjustment member (130, 1230) are formed integrally, or the impedance matching member (110), the field adjustment member (130, 1230) and the outer cover member (150, 1250) are formed integrally.
9. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 1, wherein a difference between a height (H3) of the first tenon portion (111a) and a depth (H3') of the second trench structure (134c, 1234c) is less than 0.5 mm.
10. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 1, wherein the ultra-wideband non-metal horn antenna (100, 301, 901, 1200) is configured to provide a radiation signal with a specific wavelength, the second protruding portion (134a, 1234a) is cylindrical, and a diameter (D1) of an end surface of the second protruding portion (134a, 1234a) is between 1.1 and 2 times the specific wavelength.
11. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 10, wherein a depth (H4) of the second recessed structure (134, 1234) is between 0.8 times and 1.5 times the specific wavelength.
12. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 10, wherein a width (G1) of the second groove structure (134b, 1234b) is between 0.5 mm and 0.4 times the specific wavelength.
13. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 10, wherein the second recessed structure (134, 1234) has a top surface (132a) and a bottom surface (132b), the bottom surface (132b) of the second recessed structure (134, 1234) is connected to the second protruding portion (134a, 1234a), a height difference (G2) between the top surface (132a) of the second recessed structure (134, 1234) and the top surface (132a) of the second protruding portion (134, 1234) is less than 0.4 times the specific wavelength.
14. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 13, wherein the second recessed structure (134, 1234) further comprises an inner annular surface (132c), and an included angle (ang1, ang2) between the inner annular surface (132c) of the second recessed structure (134, 1234) and the bottom surface (132b) of the second recessed structure (134, 1234) is between 80 degrees and 100 degrees.
15. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 13, wherein the second protruding portion (134a, 1234a) has an outer annular surface (136), and an included angle (ang1, ang2) between the bottom surface (132b) of the second recessed structure (134, 1234) and the outer annular surface (136) of the second protruding portion (134a, 1234a) is between 80 degrees and 100 degrees.
16. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 1, wherein the second groove structure (134b, 1234b) is a circular structure or a polygonal structure other than a regular triangle.
17. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 1, wherein the vertex angle (A1, A2) of the first tapered structure (151, 1251) is between 90 degrees and 120 degrees.
18. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 1, wherein the first tapered structure (151, 1251) is a cone structure or a regular polygonal cone structure.
19. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 1, wherein the impedance matching member (110), the field adjustment member (130, 1230) and the outer cover member (150, 1250) are all made of non-metal materials.
20. The ultra-wideband non-metal horn antenna (100, 301, 901, 1200) according to claim 1, wherein the field adjustment member (130, 1230) is a regular N-sided angular columnar object, and a first cone structure is a regular N-sided angular pyramidal object, where N is a positive integer greater than or equal to 3.
1. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200), umfassend:
ein Impedanz-Anpassungselement (110), umfassend ein erstes Ende (111) und ein zweites Ende (112), die einander gegenüberliegen, wobei das erste Ende (111) des Impedanz-Anpassungselements (110) einen ersten Zapfenabschnitt (111a) umfasst, und eine Endfläche des zweiten Endes (112) des Impedanz-Anpassungselements (110) mit einer ersten ausgesparten Struktur (114) bereitgestellt ist, wobei die erste ausgesparte Struktur (114) einen ersten vorstehenden Abschnitt (114a) und eine erste Rillenstruktur (114b) umfasst, die den ersten vorstehenden Abschnitt (114a) umgibt;
ein Feldeinstellungselement (130, 1230), das ein erstes Ende (131, 1231) und ein zweites Ende (132, 1232) umfasst, die einander gegenüberliegen, wobei eine Endfläche des ersten Endes (131, 1231) des Feldeinstellungselements (130, 1230) mit einer ersten Schlitzstruktur (131a, 1231a) bereitgestellt ist und eine Endfläche des zweiten Endes (132, 1232) des Feldeinstellungselements (130, 1230) mit einer zweiten ausgesparten Struktur (134, 1234) bereitgestellt ist, wobei die zweite ausgesparte Struktur (134, 1234) einen zweiten vorstehenden Abschnitt (134a, 1234a) und eine zweite Rillenstruktur (134b, 1234b) umfasst, die den zweiten vorstehenden Abschnitt (134a, 1234a) umgibt, und eine obere Fläche (135, 1235) des zweiten vorstehenden Abschnitts (134a, 1234a) mit einer zweiten Schlitzstruktur (134c, 1234c) bereitgestellt ist, die dem ersten Zapfenabschnitt (111a) entspricht, und der erste Zapfenabschnitt (1lla) des Impedanz-Anpassungselements (110) in die zweite Schlitzstruktur (134c, 1234c) des Feldanpassungselements (130, 1230) eingesetzt ist; und
ein äußeres Abdeckelement (150, 1250), das eine erste verjüngte Struktur (151, 1251) und einen zweiten Zapfenabschnitt (152) entsprechend der ersten Schlitzstruktur (131a, 1231a) umfasst, wobei die erste verjüngte Struktur (151, 1251) einen Scheitelwinkel (A1, A2) und eine untere Fläche (151a) aufweist, der zweite Zapfenabschnitt (152) mit der unteren Fläche (151a) der ersten konischen Struktur (151, 1251) verbunden ist, und der zweite Zapfenabschnitt (152) des äußeren Abdeckelements (150, 1250) in die erste Schlitzstruktur (131a, 1231a) des Feldeinstellelements (130, 1230) eingesetzt ist.
2. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 1, wobei der erste vorstehende Abschnitt (114a) eine zweite verjüngte Struktur ist und eine Höhe (H1) des ersten vorstehenden Abschnitts (114a) größer als eine Tiefe (H2) der ersten Rillenstruktur (114b) ist.
3. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 2, wobei die Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) konfiguriert ist, um ein Strahlungssignal mit einer spezifischen Wellenlänge bereitzustellen, die Höhe (H1) des ersten vorstehenden Abschnitts (114a) kleiner als die spezifische Wellenlänge ist und die Tiefe (H2) der ersten Rillenstruktur (114b) kleiner als die Hälfte der spezifischen Wellenlänge ist.
4. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 2, wobei der erste vorstehende Abschnitt (114a) einen Scheitelwinkel (A1, A2) aufweist, der sich nach außen erstreckt, und der Scheitelwinkel (A1, A2) des ersten vorstehenden Abschnitts (114a) zwischen 13 Grad und 45 Grad liegt.
5. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 1, wobei das Impedanz-Anpassungselement (110) über das zweite Ende (112) des Impedanz-Anpassungselements (110) mit einem Wellenführungsrohr (199) verbindbar ist.
6. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 5, wobei das Wellenführungsrohr (199) und das Impedanz-Anpassungselement (110) einstückig ausgebildet sind.
7. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 5, wobei das Wellenführungsrohr (199) aus einem nicht-metallischen Material hergestellt ist und eine äußere Schicht des Wellenführungsrohrs (199) mit einer Metallschicht (199a) besputtert ist.
8. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 1, wobei das Impedanz-Anpassungselement (110) und das Feldanpassungselement (130, 1230) einstückig ausgebildet sind oder das Impedanz-Anpassungselement (110), das Feldanpassungselement (130, 1230) und das äußere Abdeckelement (150, 1250) einstückig ausgebildet sind.
9. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 1, wobei eine Differenz zwischen einer Höhe (H3) des ersten Zapfenabschnitts (111a) und einer Tiefe (H3') der zweiten Schlitzstruktur (134c, 1234c) weniger als 0,5 mm beträgt.
10. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 1, wobei die Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) konfiguriert ist, um ein Strahlungssignal mit einer spezifischen Wellenlänge bereitzustellen, der zweite vorstehende Abschnitt (134a, 1234a) zylindrisch ist und ein Durchmesser (D1) einer Endfläche des zweiten vorstehenden Abschnitts (134a, 1234a) zwischen dem 1,1- und 2-fachen der spezifischen Wellenlänge liegt.
11. Ultrabreitban nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 10, wobei eine Tiefe (H4) der zweiten ausgesparten Struktur (134, 1234) zwischen dem 0,8- und 1,5-fachen der spezifischen Wellenlänge liegt.
12. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 10, wobei eine Breite (G1) der zweiten Rillenstruktur (134b, 1234b) zwischen 0,5 mm und dem 0,4-fachen der spezifischen Wellenlänge liegt.
13. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 10, wobei die zweite ausgesparte Struktur (134, 1234) eine obere Fläche (132a) und eine untere Fläche (132b) aufweist, wobei die untere Fläche (132b) der zweiten ausgesparten Struktur (134, 1234) mit dem zweiten vorstehenden Abschnitt (134a, 1234a) verbunden ist, eine Höhendifferenz (G2) zwischen der oberen Fläche (132a) der zweiten ausgesparten Struktur (134, 1234) und der oberen Fläche (132a) des zweiten vorstehenden Abschnitts (134, 1234) kleiner als das 0,4 fache der spezifischen Wellenlänge ist.
14. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 13, wobei die zweite ausgesparte Struktur (134, 1234) ferner eine innere ringförmige Fläche (132c) umfasst und ein eingeschlossener Winkel (ang1, ang2) zwischen der inneren ringförmigen Fläche (132c) der zweiten ausgesparten Struktur (134, 1234) und der unteren Fläche (132b) der zweiten ausgesparten Struktur (134, 1234) zwischen 80 Grad und 100 Grad beträgt.
15. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 13, wobei der zweite vorstehende Abschnitt (134a, 1234a) eine äußere ringförmige Fläche (136) aufweist und ein eingeschlossener Winkel (ang1, ang2) zwischen der unteren Fläche (132b) der zweiten ausgesparten Struktur (134, 1234) und der äußeren ringförmigen Fläche (136) des zweiten vorstehenden Abschnitts (134a, 1234a) zwischen 80 Grad und 100 Grad beträgt.
16. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 1, wobei die zweite Rillenstruktur (134b, 1234b) eine kreisförmige Struktur oder eine polygonale Struktur ist, die kein regelmäßiges Dreieck ist.
17. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 1, wobei der Scheitelwinkel (A1, A2) der ersten verjüngten Struktur (151, 1251) zwischen 90 Grad und 120 Grad liegt.
18. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 1, wobei die erste verjüngte Struktur (151, 1251) eine Kegelstruktur oder eine regelmäßige polygonale Kegelstruktur ist.
19. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 1, wobei das Impedanz-Anpassungselement (110), das Feldanpassungselement (130, 1230) und das äußere Abdeckelement (150, 1250) alle aus nicht-metallischen Materialien hergestellt sind.
20. Ultrabreitband nicht-metallische Hornantenne (100, 301, 901, 1200) gemäß Anspruch 1, wobei das Feldanpassungselement (130, 1230) ein regelmäßiges N-seitiges, winkelförmiges, säulenförmiges Objekt ist, und eine erste Kegelstruktur ein regelmäßiges N-seitiges, winkelförmiges, pyramidenförmiges Objekt ist, wobei N eine positive ganze Zahl größer oder gleich 3 ist.
1. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200), comprenant :
un élément d'adaptation d'impédance (110) comprenant une première extrémité (111) et une deuxième extrémité (112) à l'opposé l'une de l'autre, dans laquelle la première extrémité (111) de l'élément d'adaptation d'impédance (110) comprend une première partie de tenon (111a), et une surface d'extrémité de la deuxième extrémité (112) de l'élément d'adaptation d'impédance (110) est pourvue d'une première structure évidée (114), dans laquelle la première structure évidée (114) comprend une première partie saillante (114a) et une première structure de rainure (114b) entourant la première partie saillante (114a) ;
un élément d'ajustement de champ (130, 1230), qui comprend une première extrémité (131, 1231) et une deuxième extrémité (132, 1232) à l'opposé l'une de l'autre, dans laquelle une surface d'extrémité de la première extrémité (131, 1231) de l'élément d'ajustement de champ (130, 1230) est pourvue d'une première structure de tranchée (131a, 1231a), et une surface d'extrémité de la deuxième extrémité (132, 1232) de l'élément d'ajustement de champ (130, 1230) est pourvue d'une deuxième structure évidée (134, 234), dans laquelle la deuxième structure évidée (134, 1234) comprend une deuxième partie saillante (134a, 1234a) et une deuxième structure de rainure (134b, 1234b) entourant la deuxième partie saillante (134a, 1234a), et une surface supérieure (135, 1235) de la deuxième partie saillante (134a, 1234a) est pourvue d'une deuxième structure de tranchée (134c, 1234c) correspondant à la première partie de tenon (111a), et la première partie de tenon (111a) de l'élément d'adaptation d'impédance (110) est insérée dans la deuxième structure de tranchée (134c, 1234c) de l'élément d'ajustement de champ (130, 1230) ; et
un élément de recouvrement extérieur (150, 1250), qui comprend une première structure effilée (151, 1251) et une deuxième partie de tenon (152) correspondant à la première structure de tranchée (131a, 1231a), dans laquelle la première structure effilée (151, 1251) comprend un angle de sommet (A1, A2) et une surface inférieure (151a), la deuxième partie de tenon (152) est reliée à la surface inférieure (151a) de la première structure effilée (151, 1251), et la deuxième partie de tenon (152) de l'élément de recouvrement extérieur (150, 1250) est insérée dans la première structure de tranchée (131a, 1231a) de l'élément d'ajustement de champ (130, 1230).
2. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 1, dans laquelle la première partie saillante (114a) est une deuxième structure effilée, et une hauteur (H1) de la première partie saillante (114a) est plus grande qu'une profondeur (H2) de la première structure de rainure (114b).
3. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 2, dans laquelle l'antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) est configurée pour fournir un signal de rayonnement d'une longueur d'onde spécifique, la hauteur (H1) de la première partie saillante (114a) est plus petite que la longueur d'onde spécifique, et la profondeur (H2) de la première structure de rainure (114b) est plus petite qu'une moitié de la longueur d'onde spécifique.
4. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 2, dans laquelle la première partie saillante (114a) présente un angle de sommet (A1, A2) s'étendant vers l'extérieur, et l'angle de sommet (A1, A2) de la première partie saillante (114a) est entre 13 degrés et 45 degrés.
5. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 1, dans laquelle l'élément d'adaptation d'impédance (110) peut être relié à un tube de guide d'onde (199) à travers la deuxième extrémité (112) de l'élément d'adaptation d'impédance (110).
6. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 5, dans laquelle le tube de guide d'onde (199) et l'élément d'adaptation d'impédance (110) sont formés d'un seul tenant.
7. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 5, dans laquelle le tube de guide d'onde (199) est constitué d'un matériau non métallique, et une couche extérieure du tube de guide d'onde (199) est pulvérisée avec une couche métallique (199a).
8. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 1, dans laquelle l'élément d'adaptation d'impédance (110) et l'élément d'ajustement de champ (130, 1230) sont formés d'un seul tenant, ou l'élément d'adaptation d'impédance (110), l'élément d'ajustement de champ (130, 1230) et l'élément de recouvrement extérieur (150, 1250) sont formés d'un seul tenant.
9. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 1, dans laquelle une différence entre une hauteur (H3) de la première partie de tenon (111a) et une profondeur (H3') de la deuxième structure de tranchée (134c, 1234c) est plus petite que 0,5 mm.
10. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 1, dans laquelle l'antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) est configurée pour fournir un signal de rayonnement d'une longueur d'onde spécifique, la deuxième partie saillante (134a, 1234a) est cylindrique, et un diamètre (D1) d'une surface d'extrémité de la deuxième partie saillante (134a, 1234a) est entre 1,1 et 2 fois la longueur d'onde spécifique.
11. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 10, dans laquelle une profondeur (H4) de la deuxième structure évidée (134, 1234) est entre 0,8 fois et 1,5 fois la longueur d'onde spécifique.
12. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 10, dans laquelle une largeur (G1) de la deuxième structure de rainure (134b, 1234b) est entre 0,5 mm et 0,4 fois la longueur d'onde spécifique.
13. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 10, dans laquelle la deuxième structure évidée (134, 1234) comporte une surface supérieure (132a) et une surface inférieure (132b), la surface inférieure (132b) de la deuxième structure évidée (134, 1234) est reliée à la deuxième partie saillante (134a, 1234a), une différence de hauteur (G2) entre la surface supérieure (132a) de la deuxième structure évidée (134, 1234) et la surface supérieure (132a) de la deuxième partie saillante (134, 1234) est plus petite que 0,4 fois la longueur d'onde spécifique.
14. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 13, dans laquelle la deuxième structure évidée (134, 1234) comprend en outre une surface annulaire intérieure (132c), et un angle inclus (ang1, ang2) entre la surface annulaire intérieure (132c) de la deuxième structure évidée (134, 1234) et la structure inférieure (132b) de la deuxième structure évidée (134, 1234) est entre 80 degrés et 100 degrés.
15. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 13, dans laquelle la deuxième partie saillante (134a, 1234a) comporte une surface annulaire extérieure (136), et un angle inclus (ang1, ang2) entre la surface inférieure (132b) de la deuxième structure évidée (134, 1234) et la surface annulaire extérieure (136) de la deuxième partie saillante (134a, 1234a) est entre 80 degrés et 100 degrés.
16. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 1, dans laquelle la deuxième structure de rainure (134b, 1234b) est une structure circulaire ou une structure polygonale autre qu'un triangle régulier.
17. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 1, dans laquelle l'angle de sommet (A1, A2) de la première structure effilée (151, 1251) est entre 90 degrés et 120 degrés.
18. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 1, dans laquelle la première structure effilée (151, 1251) est une structure conique ou une structure conique polygonale régulière.
19. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 1, dans laquelle l'élément d'adaptation d'impédance (110), l'élément d'ajustement de champ (130, 1230) et l'élément de recouvrement extérieur (150, 1250) sont tous constitués de matériaux non métalliques.
20. Antenne cornet non métallique à ultra large bande (100, 301, 901, 1200) selon la revendication 1, dans laquelle l'élément d'ajustement de champ (130, 1230) est un objet colonnaire angulaire à N côtés régulier, et une première structure conique est un objet pyramidal angulaire à N côtés régulier, où N est un entier positif supérieur ou égal à 3.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description