[0001] Die Erfindung betrifft eine schwefelvernetzbare Kautschukmischung und einen Fahrzeugluftreifen mit einem Laufstreifen, dessen zumindest mit der Fahrbahn in Berührung kommender Teil aus einer mit Schwefel vulkanisierten Kautschukmischung besteht.
[0002] Da die Fahreigenschaften eines Reifens, insbesondere Fahrzeugluftreifens, in einem großen Umfang von der Kautschukzusammensetzung des Laufstreifens abhängig sind, werden besonders hohe Anforderungen an die Zusammensetzung der Laufstreifenmischung gestellt. So wurden vielfältige Versuche unternommen, die Eigenschaften des Reifens durch die Variation der Polymerkomponenten, der Füllstoffe und der sonstigen Zuschlagstoffe in der Laufstreifenmischung positiv zu beeinflussen. Dabei muss man berücksichtigen, dass eine Verbesserung in der einen Reifeneigenschaft oft eine Verschlechterung einer anderen Eigenschaft mit sich bringt, so ist eine Verbesserung des Rollwiderstandes üblicherweise mit einer Verschlechterung des Bremsverhaltens verbunden.
[0003] Um Reifeneigenschaften wie Abrieb, Nassrutschverhalten und Rollwiderstand zu beeinflussen, ist es z. B. bekannt, lösungspolymerisierte Styrol-Butadien-Copolymere mit unterschiedlicher Mikrostruktur einzusetzen. Außerdem lassen sich Styrol-Butadien-Copolymere modifizieren, indem z. B. die Styrol- und Vinyl-Anteile variiert werden, Endgruppenmodifizierungen, Kopplungen oder Hydrierungen vorgenommen werden. Die verschiedenen Copolymertypen haben unterschiedlichen Einfluss auf die Vulkanisat- und damit auch auf die Reifeneigenschaften.
[0004] In der
EP 3 150 403 A1 werden kieselsäurehaltige Kautschukmischungen für Reifen mit niedrigem Rollwiderstand beschrieben, die lösungspolymerisierte Styrol-Butadien-Copolymere enthalten, welche an wenigstens einem Kettenende mit aminogruppen-enthaltenden Alkoxysilylgruppen und einer weiteren Gruppe ausgewählt aus der Gruppe bestehend aus Alkoxysilylgruppen und aminogruppen-enthaltenden Alkoxysilylgruppen funktionalisiert sind. Die Kautschukmischungen enthalten ferner Kieselsäure und zumindest ein geblocktes und/oder ungeblocktes Mercaptosilan. Die Rollwiderstandsreduzierung begründet sich vermutlich in einer verstärkten Füllstoff-Polymer-Wechselwirkung.
[0005] Auch in der
EP 3 150 402 A1, der
EP 3 150 401 A1, der
DE 10 2015 218 745 A1 und der
DE 10 2015 218 746 A1 werden die lösungspolymerisierte Styrol-Butadien-Copolymere beschrieben, welche an wenigstens einem Kettenende mit aminogruppen-enthaltenden Alkoxysilylgruppen und einer weiteren Gruppe ausgewählt aus der Gruppe bestehend aus Alkoxysilylgruppen und aminogruppen-enthaltenden Alkoxysilylgruppen funktionalisiert sind. Sie werden in Kombination mit unterschiedlichen weiteren Zuschlagstoffen in den Kautschukmischungen eingesetzt.
[0006] Die
EP 2 703 416 A1 offenbart modifizierte lösungspolymerisierte Styrol-Butadien-Copolymere, deren Herstellung und deren Verwendung in Reifen. Die Styrol-Butadien-Copolymere weisen stickstoffenthaltende Gruppen (aminogruppen-enthaltende Organosilylgruppen) auf, die bei der Herstellung der Polymere mit Schutzgruppen geschützt waren. Die Kautschukmischungen mit derartigen Styrol-Butadien-Copolymeren sollen sich durch ein ausgewogenes Verhältnis von Verarbeitbarkeit, Nassgriff und niedriger Hysterese auszeichnen.
[0007] Aus der
WO 2018/092716 A1 ist ein konjugierter Dienkautschuk bekannt, der an einem Kettenende durch Reaktion mit zumindest einem Polyorganosiloxan und zumindest einem Alkylaminosilan funktionalisiert ist und am anderen Kettenende mit einer Polyisoprengruppe, enthaltend Isopren- und Styrol-Einheiten, funktionalisiert ist. Der vernetzte Kautschuk soll sich durch einen geringen Wärmeaufbau und ein gutes Nassgriffverhalten auszeichnen.
[0008] Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, Kautschukmischungen für die Laufstreifen von Fahrzeugluftreifen bereitzustellen, die hinsichtlich des Rollwiderstandes weiter verbessert sind.
[0009] Gelöst wird diese Aufgabe durch eine schwefelvernetzbare Kautschukmischung, die
- 20 - 100 phr (Gewichtsteile, bezogen auf 100 Gewichtsteile der gesamten Kautschuke in der Mischung) zumindest eines funktionalisierten Styrol-Butadien-Copolymers A, wobei das funktionalisierte Styrol-Butadien-Copolymer A zumindest teilweise an einem Kettenende durch Reaktion mit zumindest einem Polyorganosiloxan und zumindest einem Alkylaminosilan funktionalisiert ist,
und wobei das funktionalisierte Styrol-Butadien-Copolymer A am anderen Kettenende mit einer Polyisoprengruppe, enthaltend Isopren- und Styrol-Einheiten, funktionalisiert ist, wobei der Isoprenanteil in der Polyisoprengruppe mehr als 90 Gew.-% beträgt, - bis zu 80 phr zumindest eines weiteren Dienkautschuks,
- 30 bis 300 phr zumindest einer Kieselsäure und
- 1 bis 20 phf zumindest eines geblockten und/oder ungeblockten Mercaptosilans als Silankupplungsagens enthält.
[0010] Die in dieser Schrift verwendete Angabe phr (parts per hundred parts of rubber by weight) ist dabei die in der Kautschukindustrie übliche Mengenangabe für Mischungsrezepturen. Die Dosierung der Gewichtsteile der einzelnen Substanzen wird dabei stets auf 100 Gewichtsteile der gesamten Masse aller in der Mischung vorhandenen festen Kautschuke bezogen.
[0011] Die in dieser Schrift verwendete Angabe phf (parts per hundred parts of filler by weight) ist dabei die in der Kautschukindustrie gebräuchliche Mengenangabe für Kupplungsagenzien für Füllstoffe. Im Rahmen der vorliegenden Anmeldung bezieht sich phf auf die vorhandene Kieselsäure(n), das heißt, dass andere eventuell vorhandene Füllstoffe wie Ruß nicht in die Berechnung der Silanmenge mit eingehen.
[0012] Überraschenderweise hat sich herausgestellt, dass durch den Einsatz des speziell funktionalisierten Styrol-Butadien-Copolymers A in Kombination mit Kieselsäure und dem speziellen geblockten und/oder ungeblockten Mercaptosilan als Silankupplungsagens in den angegebenen Mengen der Rollwiderstand von Fahrzeugluftreifen verbessert werden kann.
[0013] Die Mischungen weisen außerdem den Vorteil auf, dass sie ein gutes Verarbeitungsverhalten, insbesondere bei der Extrusion zeigen. Durch eine nicht zu schnelle Anvulkanisationszeit (Scorchzeit) wird eine Anvulkanisation während der Extrusion vermieden.
[0014] Funktionalisierte Styrol-Butadien-Copolymere A werden beispielsweise in der
WO 2018/092716 A1 beschrieben. Das funktionalisierte Styrol-Butadien-Copolymer A kann auch in ölverstreckter Form eingesetzt werden.
[0015] Das funktionalisierte Styrol-Butadien-Copolymer A weist bevorzugt ein Gewichtsmittel M
w des Molekulargewichts gemäß GPC von 300000 bis 600000 g/mol auf und kann damit auch als zumindest bei Raumtemperatur fester Kautschuk bezeichnet werden.
[0016] Für eine weitere Verbesserung des Rollwiderstandsverhaltens des Reifens hat es sich als vorteilhaft erwiesen, wenn das Polyorganosiloxan für die Funktionalisierungsreaktion des Styrol-Butadien-Copolymers A Alkylgruppen und/oder Cycloalkylgruppen und/oder Arylgruppen und/oder eine Aralkylgruppen und/oder Alkoxygruppen und/oder Epoxygruppen und/oder Aminogruppen, vorzugsweise zumindest eine Epoxygruppe, enthält. Auf diese Weise scheint sich ein besonders gutes Zusammenspiel zwischen Polymer und vorhandenen Füllstoffen zu ergeben.
[0017] Das funktionalisierte Styrol-Butadien-Copolymer A ist durch Reaktion mit einen Alkylaminosilan funktionalisiert.
[0018] Das Alkylaminosilan kann dabei die folgende Struktur aufweisen

wobei R
9 eine Kohlenwasserstoffgruppe ist, A
1 eine Gruppe ist, die mit dem Reaktionsprodukt aus dem Styrol-Butadien-Copolymer mit dem Polyorganosiloxan reagieren kann, und A
2 eine Stickatom-enthaltende Gruppe ist, und wobei p = 0 bis 2, q = 1 bis 3, r = 1 bis 3 und p + q + r = 4.
[0019] Für eine gute Reaktion mit dem Reaktionsprodukt aus dem Styrol-Butadien-Copolymer mit dem Polyorganosiloxan enthält das Alkylaminosilan eine primäre und/oder sekundäre Aminogruppe mit einem aktiven Wasserstoffatom.
[0020] Vorzugsweise ist das Alkylaminosilan ausgewählt aus 3-Aminopropyltrimethoxysilan, 3-(2-Aminoethylamino)propyltrimethoxysilan, N,N-bis(Triethylsilyl)aminopropyltrimethoxysilan und/oder 3-Diethylaminopropyltrimethoxysilan.
[0021] Gemäß einer bevorzugten Weiterbildung der Erfindung weist die Polyisoprengruppe des funktionalisierten Styrol-Butadien-Copolymers A ein mittleres Molekulargewicht M
w von 2000 bis 10000 g/mol, vorzugsweise 5000 bis 8000 g/mol, auf. Die Eigenschaften von Fahrzeugluftreifen mit einem Laufstreifen aus einer derartigen Mischung können auf diese Weise weiter verbessert werden.
[0022] Vorzugsweise ist das funktionalisierte Styrol-Butadien-Copolymer A frei von zusätzlichen Kautschuk-Kopplungsmitteln. Letztere können einen störenden Einfluss auf das Verarbeitungsverhalten haben. Unter diesen zusätzlichen Kautschuk-Kopplungsmitteln sind solche zu verstehen, die der Fachmann üblicherweise für die Kopplung von Polymeren einsetzt. Es kann sich dabei beispielsweise um SnCl
4 oder SiCl
4 sowie deren Alkyltrichloride handeln.
[0023] Die erfindungsgemäße Kautschukmischung enthält 20 bis 100 phr, vorzugsweise 50 bis 100 phr, zumindest eines funktionalisierten Styrol-Butadien-Copolymers A. Es können auch mehrere Polymere dieses Typs im Verschnitt eingesetzt werden.
[0024] Die erfindungsgemäße Kautschukmischung enthält weiterhin bis zu 80 phr, vorzugsweise bis zu 50 phr, zumindest eines weiteren Dienkautschuks. Als Dienkautschuke werden Kautschuke bezeichnet, die durch Polymerisation oder Copolymerisation von Dienen und/oder Cycloalkenen entstehen und somit entweder in der Hauptkette oder in den Seitengruppen C=C-Doppelbindungen aufweisen.
Bei den Dienkautschuken kann es sich z. B. um natürliches Polyisopren und/oder synthetisches Polyisopren und/oder Polybutadien (Butadien-Kautschuk) und/oder Styrol-Butadien-Copolymer (Styrol-Butadien-Kautschuk) und/oder epoxidiertes Polyisopren und/oder Styrol-Isopren-Kautschuk und/oder Halobutyl-Kautschuk und/oder Polynorbornen und/oder Isopren-Isobutylen-Copolymer und/oder Ethylen-Propylen-DienKautschuk handeln. Die Kautschuke können als reine Kautschuke oder in ölverstreckter Form eingesetzt werden.
[0025] Bevorzugt ist der weitere Dienkautschuk jedoch ausgewählt aus der Gruppe, bestehend aus natürlichem Polyisopren, synthetischem Polyisopren, Polybutadien und weiteren Styrol-Butadien-Copolymeren. Diese Dienkautschuke lassen sich gut zu der Kautschukmischung verarbeiten und ergeben in den vulkanisierten Reifen gute Reifeneigenschaften.
[0026] Bei dem natürlichen und/oder synthetischen Polyisopren kann es sich sowohl um cis-1,4-Polyisopren als auch um 3,4-Polyisopren handeln. Bevorzugt ist allerdings die Verwendung von cis-1,4-Polyisoprenen mit einem cis 1,4 Anteil > 90 Gew.-%. Zum einen kann solch ein Polyisopren durch stereospezifische Polymerisation in Lösung mit Ziegler-Natta-Katalysatoren oder unter Verwendung von fein verteilten Lithiumalkylen erhalten werden. Zum anderen handelt es sich bei Naturkautschuk (NR) um ein solches cis-1,4 Polyisopren; der cis-1,4-Anteil im Naturkautschuk ist größer 99 Gew.-%.
Ferner ist auch ein Gemisch eines oder mehrerer natürlicher Polyisoprene mit einem oder mehreren synthetischen Polyisoprenen denkbar. Natürliches Polyisopren wird verstanden als Kautschuk, der durch Ernte von Quellen wie Kautschukbäumen (Hevea brasiliensis) oder nicht-Kautschukbaumquellen (wie z. B. Guayule oder Löwenzahn (z. B. Taraxacum koksaghyz)) gewonnen werden kann. Unter natürlichem Polyisopren (NR) wird nicht synthetisches Polyisopren verstanden.
[0027] Bei dem Butadien-Kautschuk (BR, Polybutadien) kann es sich um alle dem Fachmann bekannten Typen mit einem M
w von 250000 bis 500000 g/mol handeln. Darunter fallen u. a. die sogenannten high-cis- und low-cis-Typen, wobei Polybutadien mit einem cis-Anteil größer oder gleich 90 Gew.-% als high-cis-Typ und Polybutadien mit einem cis-Anteil kleiner als 90 Gew.-% als low-cis-Typ bezeichnet wird. Ein low-cis-Polybutadien ist z. B. Li-BR (Lithium-katalysierter Butadien-Kautschuk) mit einem cis-Anteil von 20 bis 50 Gew.-%. Mit einem high-cis BR werden besonders gute Abriebeigenschaften sowie eine niedrige Hysterese der Kautschukmischung erzielt. Das eingesetzte Polybutadien kann mit Modifizierungen und Funktionalisierungen endgruppenmodifiziert und/oder entlang der Polymerketten funktionalisiert sein. Bei der Modifizierung kann es sich um solche mit Hydroxy-Gruppen und/oder Ethoxy-Gruppen und/oder Epoxy-Gruppen und/oder SiloxanGruppen und/oder Amino-Gruppen und/oder Aminosiloxan und/oder Carboxy-Gruppen und/oder Phthalocyanin-Gruppen und/oder Silan-Sulfid-Gruppen handeln. Es kommen aber auch weitere, der fachkundigen Person bekannte, Modifizierungen, auch als Funktionalisierungen bezeichnet, in Frage. Bestandteil solcher Funktionalisierungen können Metallatome sein.
[0028] Bei dem weiteren Styrol-Butadien-Kautschuk (Styrol-Butadien-Copolymer) kann es sich sowohl um lösungspolymerisierten Styrol-Butadien-Kautschuk (SSBR) als auch um emulsionspolymerisierten Styrol-Butadien-Kautschuk (ESBR) handeln, wobei auch ein Gemisch aus wenigstens einem SSBR und wenigstens einem ESBR eingesetzt werden kann. Die Begriffe "Styrol-Butadien-Kautschuk" und "Styrol-Butadien-Copolymer" werden im Rahmen der vorliegenden Erfindung synonym verwendet. Bevorzugt sind in jedem Fall Styrol-Butadien-Copolymere mit einem M
w von 250000 bis 600000 g/mol (zweihundertfünfzigtausend bis sechshunderttausend Gramm pro Mol).
[0029] Das oder die eingesetzte(n) weiteren Styrol-Butadien-Copolymere kann/können mit anderen Modifizierungen und Funktionalisierungen als beim Styrol-Butadien-Copolymer A endgruppenmodifiziert und/oder entlang der Polymerketten funktionalisiert sein.
[0030] Die erfindungsgemäße schwefelvernetzbare Kautschukmischung enthält neben dem funktionalisierten Styrol-Butadien-Copolymer A 30 bis 300 phr, bevorzugt 50 bis 200 phr, zumindest einer Kieselsäure. Durch die Anwesenheit des funktionalisierten Styrol-Butadien-Copolymers A, kann eine optimale Verteilung der Kieselsäure in der Polymermatrix erfolgen, wobei gleichzeitig eine gute Anbindung der Kieselsäure an das Polymer über die funktionellen Gruppen erfolgen kann. Dies führt zu einem verbesserten Eigenschaftsbild.
[0031] Bei der vorhandenen Kieselsäure kann es sich um die dem Fachmann bekannten Kieselsäuretypen, die üblicherweise als Füllstoff für Reifenkautschukmischungen geeignet sind, handeln. Besonders bevorzugt ist es allerdings, wenn eine fein verteilte, gefällte Kieselsäure verwendet wird, die eine Stickstoff-Oberfläche (BET-Oberfläche) (gemäß DIN ISO 9277 und DIN 66132) von 35 bis 400 m
2/g, bevorzugt von 35 bis 350 m
2/g, besonders bevorzugt von 100 bis 320 m
2/g und ganz besonders bevorzugt von 120 bis 235 m
2/g, und eine CTAB-Oberfläche (gemäß ASTM D 3765) von 30 bis 400 m
2/g, bevorzugt von 50 bis 330 m
2/g, besonders bevorzugt von 100 bis 300 m
2/g und ganz besonders bevorzugt von 110 bis 230 m
2/g, aufweist. Derartige Kieselsäuren führen z. B. in Kautschukmischungen für Reifenlaufstreifen zu besonders guten physikalischen Eigenschaften der Vulkanisate. Außerdem können sich dabei Vorteile in der Mischungsverarbeitung durch eine Verringerung der Mischzeit bei gleichbleibenden Produkteigenschaften ergeben, die zu einer verbesserten Produktivität führen. Als Kieselsäuren können somit z. B. sowohl jene des Typs Ultrasil
® VN3 (Handelsname) der Firma Evonik als auch hoch dispergierbare Kieselsäuren, so genannte HD-Kieselsäuren, zum Einsatz kommen.
[0032] Die erfindungsgemäße Kautschukmischung enthält ferner 1 bis 20 phf, vorzugsweise 5 bis 15 phf zumindest eines geblockten und/oder ungeblockten Mercaptosilans als Silankupplungsagens.
[0033] Silankupplungsagenzien werden zur weiteren Verbesserung der Verarbeitbarkeit und zur Anbindung der Kieselsäure und anderer ggf. vorhandener polarer Füllstoffe an Dienkautschuk in Kautschukmischungen eingesetzt werden. Hierbei können ein oder mehrere verschiedene Silan-Kupplungsagenzien in Kombination miteinander eingesetzt werden. Die Kautschukmischung kann somit ein Gemisch verschiedener Mercaptosilane enthalten. Unter ungeblockten Mercaptosilanen sind Silane zu verstehen, die eine -S-H-Gruppe aufweisen, also ein Wasserstoffatom am Schwefelatom. Unter geblockten Mercaptosilanen sind Silane zu verstehen, die eine S-SG-Gruppe aufweisen, wobei SG die Abkürzung für eine Schutzgruppe am Schwefelatom ist. Bevorzugte Schutzgruppen sind Acylgruppen. Als Mercaptosilane können alle dem Fachmann für die Verwendung in Kautschukmischungen bekannten Mercaptosilane verwendet werden. Solche aus dem Stand der Technik bekannten Mercaptosilane sind z. B. aus der
WO 99/09036 bekannt. Auch Mercaptosilane, wie sie in der
WO 2008/083241 A1, der
WO 2008/083242 A1, der
WO 2008/083243 A1 und der
WO 2008/083244 A1 beschrieben sind, können eingesetzt werden. Verwendbar sind z. B. Silane, die unter dem Namen NXT in verschiedenen Varianten von der Firma Momentive, USA vertrieben werden.
[0034] Gemäß einer bevorzugten Ausführungsform der Erfindung enthält die Kautschukmischung als geblocktes Mercaptosilan 3-Octanoylthio-1-propyltriethoxysilan.
[0035] Neben der Kieselsäure kann die Kautschukmischung weitere, dem Fachmann bekannte Füllstoffe in üblichen Mengen enthalten. Hierbei kann es sich um Ruß oder andere Füllstoffe, wie beispielsweise Alumosilicate, Kaolin, Kreide, Stärke, Magnesiumoxid, Titandioxid, Kautschukgele, Fasern (wie zum Beispiel Aramidfasern, Glasfasern, Carbonfasern, Cellulosefasern), Kohlenstoffnanoröhrchen (carbon nanotubes (CNT) inklusive diskreter CNTs, sogenannte hollow carbon fibers (HCF) und modifizierte CNT enthaltend eine oder mehrere funktionelle Gruppen, wie Hydroxy-, Carboxy und CarbonylGruppen), Graphit und Graphene und sogenannte "carbon-silica dual-phase filler" handeln.
[0036] Als Ruße kommen alle der fachkundigen Person bekannten Rußtypen in Frage.
[0037] In einer Ausführungsform hat der Ruß eine Jodzahl, gemäß ASTM D 1510, die auch als Jodadsorptionszahl bezeichnet wird, zwischen 30 g/kg und 250 g/kg, bevorzugt 30 bis 180 g/kg, besonders bevorzugt 40 bis 180 g/kg, und ganz besonders bevorzugt 40 bis 130 g/kg, und eine DBP-Zahl gemäß ASTM D 2414 von 30 bis 200 ml/100 g, bevorzugt 70 bis 200 ml/100g, besonders bevorzugt 90 bis 200 ml/100g.
[0038] Die DBP-Zahl gemäß ASTM D 2414 bestimmt das spezifische Absorptionsvolumen eines Rußes oder eines hellen Füllstoffes mittels Dibutylphthalat.
[0039] Die Verwendung eines solchen Rußtyps in der Kautschukmischung, insbesondere für Fahrzeugreifen, gewährleistet einen bestmöglichen Kompromiss aus Abriebwiderstand und Wärmeaufbau, der wiederum den ökologisch relevanten Rollwiderstand beeinflusst. Bevorzugt ist hierbei, wenn lediglich ein Rußtyp in der jeweiligen Kautschukmischung verwendet wird, es können aber auch verschiedene Rußtypen in die Kautschukmischung eingemischt werden. Die Gesamtmenge an enthaltenen Rußen entspricht aber maximal 300 phr.
[0040] Gemäß einer bevorzugten Weiterbildung der Erfindung enthält die Kautschukmischung 0,1 bis 20 phr Ruß. Bei diesen geringen Rußmengen könnten bei besten Reifeneigenschaften in Hinblick auf den Rollwiderstand und den Nassgriff erzielt werden.
[0041] Die erfindungsgemäße Kautschukmischung kann bis zu 150 phr, vorzugsweise bis zu 80 phr, wenigstens eines Weichmachers enthalten.
[0042] Zu den im Rahmen der vorliegenden Erfindung verwendeten Weichmachern gehören alle dem Fachmann bekannten Weichmacher wie aromatische, naphthenische oder paraffinische Mineralölweichmacher, wie z. B. MES (mild extraction solvate) oder RAE (Residual Aromatic Extract) oder TDAE (treated distillate aromatic extract), oder Rubberto-Liquid-Öle (RTL) oder Biomass-to-Liquid-Öle (BTL) bevorzugt mit einem Gehalt an polyzyklischen Aromaten von weniger als 3 Gew.-% gemäß Methode IP 346 oder Rapsöl oder Faktisse oder Weichmacherharze oder Flüssig-Polymere. Der oder die Weichmacher werden bei der Herstellung der erfindungsgemäßen Kautschukmischung bevorzugt in wenigstens einer Grundmischstufe zugegeben.
[0043] Des Weiteren kann die erfindungsgemäße Kautschukmischung übliche Zusatzstoffe in üblichen Gewichtsteilen enthalten. Zu diesen Zusatzstoffen zählen
- a) Alterungsschutzmittel, wie z. B. N-Phenyl-N'-(1,3-dimethylbutyl)-p-phenylendiamin (6PPD), N,N'-Diphenyl-p-phenylendiamin (DPPD), N,N'-Ditolyl-p-phenylendiamin (DTPD), N-Isopropyl-N'-phenyl-p-phenylendiamin (IPPD), 2,2,4-Trimethyl-1,2-dihydrochinolin (TMQ), N,N'-bis-(1,4-Dimethylpentyl)-p-Phenylenediamin (77PD)
- b) Aktivatoren, wie z. B. Zinkoxid und Fettsäuren (z. B. Stearinsäure),
- c) Wachse,
- d) Harze, insbesondere Klebharze,
- e) Mastikationshilfsmittel, wie z. B. 2,2'-Dibenzamidodiphenyldisulfid (DBD und
- f) Verarbeitungshilfsmittel, wie z. B. Fettsäuresalze, wie z. B. Zinkseifen, und
Fettsäureester und deren Derivate.
[0044] Die Vulkanisation der Kautschukmischung wird in Anwesenheit von Schwefel und/oder Schwefelspendern mit Hilfe von Vulkanisationsbeschleunigern durchgeführt, wobei einige Vulkanisationsbeschleuniger zugleich als Schwefelspender wirken können. Dabei ist der Beschleuniger ausgewählt aus der Gruppe bestehend aus Thiazolbeschleunigern und/oder Mercaptobeschleunigern und/oder Sulfenamidbeschleunigern und/oder Thiocarbamatbeschleunigern und/oder Thiurambeschleunigern und/oder Thiophosphatbeschleunigern und/oder Thioharnstoffbeschleunigern und/oder Xanthogenat-Beschleunigern und/oder Guanidin-Beschleunigern.
[0045] Bevorzugt ist die Verwendung eines Sulfenamidbeschleunigers, der ausgewählt ist aus der Gruppe bestehend aus N-Cyclohexyl-2-benzothiazolsufenamid (CBS) und/oder N,N-Dicyclohexylbenzothiazol-2-sulfenamid (DCBS) und/oder Benzothiazyl-2-sulfenmorpholid (MBS) und/oder N-tert-Butyl-2-benzothiazylsulfenamid (TBBS).
[0046] Außerdem kann die Kautschukmischung Vulkanisationsverzögerer enthalten.
[0047] Als schwefelspendende Substanz können dabei alle dem Fachmann bekannten schwefelspendenden Substanzen verwendet werden. Enthält die Kautschukmischung eine schwefelspendende Substanz, ist diese bevorzugt ausgewählt aus der Gruppe bestehend aus z. B. Thiuramdisulfiden, wie z. B. Tetrabenzylthiuramdisulfid (TBzTD), Tetramethylthiuramdisulfid (TMTD) oder Tetraethylthiuramdisulfid (TETD), Thiuramtetrasulfiden, wie z. B. Dipentamethylenthiuramtetrasulfid (DPTT), Dithiophosphaten, wie z. B. DipDis (Bis-(Diisopropyl)thiophosphoryldisulfid), Bis(O,O-2-ethylhexyl-thiophosphoryl)Polysulfid (z. B. Rhenocure SDT 50
®, Rheinchemie GmbH, Zinkdichloryldithiophosphat (z. B. Rhenocure ZDT/S
®, Rheinchemie GmbH) oder Zinkalkyldithiophosphat, und 1,6-Bis(N,N-dibenzylthiocarbamoyldithio)hexan und Diarylpolysulfiden und Dialkylpolysulfiden.
[0048] Auch weitere netzwerkbildende Systeme, wie sie beispielsweise unter den Handelsnamen Vulkuren
®, Duralink
® oder Perkalink
® erhältlich sind, oder netzwerkbildende Systeme, wie sie in der
WO 2010/049216 A2 beschrieben sind, können in der Kautschukmischung eingesetzt werden. Das letztere System enthält ein Vulkanisationsmittel, welches mit einer Funktionalität größer vier vernetzt und zumindest einen Vulkanisationsbeschleuniger.
[0049] Der Kautschukmischung wird bei deren Herstellung bevorzugt wenigstens ein Vulkanisationsmittel ausgewählt aus der Gruppe bestehend aus Schwefel, Schwefelspender, Vulkanisationsbeschleuniger und Vulkanisationsmittel, die mit einer Funktionalität größer vier vernetzen, in der Fertigmischstufe zugegeben. Hierdurch lässt sich aus der gemischten Fertigmischung durch Vulkanisation eine schwefelvernetzte Kautschukmischung für die Anwendung im Fahrzeugluftreifen herstellen.
[0050] Die Begriffe "vulkanisiert" und "vernetzt" werden im Rahmen der vorliegenden Erfindung synonym verwendet.
[0051] Die Herstellung der Kautschukmischung erfolgt nach dem in der Kautschukindustrie üblichen Verfahren, bei dem zunächst in ein oder mehreren Mischstufen eine Grundmischung mit allen Bestandteilen außer dem Vulkanisationssystem (Schwefel und vulkanisationsbeeinflussende Substanzen) hergestellt wird. Durch Zugabe des Vulkanisationssystems in einer letzten Mischstufe wird die Fertigmischung erzeugt. Die Fertigmischung wird z. B. durch einen Extrusionsvorgang weiterverarbeitet und in die entsprechende Form gebracht. Anschließend erfolgt die Weiterverarbeitung durch Vulkanisation, wobei aufgrund des im Rahmen der vorliegenden Erfindung zugegebenen Vulkanisationssystems eine Schwefelvernetzung stattfindet.
[0052] Die Kautschukmischung wird für die Herstellung von Fahrzeugluftreifen, wie PKW-, Van-, LKW- oder Zweiradreifen, verwendet, wobei die Kautschukmischung zumindest den mit der Fahrbahn in Berührung kommenden Teil des Laufstreifens bildet.
[0053] Bei einem Fahrzeugluftreifen kann der Laufstreifen aus einer einzigen Mischung bestehen, die dann ein funktionalisierte Styrol-Butadien-Copolymer A, ggf. einen weiteren Dienkautschuk, Kieselsäure und ein geblocktes und/oder ungeblocktes Mercaptosilan enthält. Häufig weisen Fahrzeugluftreifen heute jedoch einen Laufstreifen mit einer sogenannten Cap/Base-Konstruktion auf. Unter "Cap" wird dabei der mit der Fahrbahn in Berührung kommende Teil des Laufstreifens verstanden, der radial außen angeordnet ist (Laufstreifenoberteil oder Laufstreifencap). Unter "Base" wird dabei der Teil des Laufstreifens verstanden, der radial innen angeordnet ist, und somit im Fahrbetrieb nicht oder nur am Ende des Reifenlebens mit der Fahrbahn in Berührung kommt (Laufstreifenunterteil oder Laustreifenbase). Bei einem Fahrzeugluftreifen mit einer solchen Cap/Base-Konstruktion ist zumindest die Kautschukmischung für die Cap gemäß dem Anspruch 1 ausgebildet.
[0054] Der erfindungsgemäße Fahrzeugluftreifen kann auch einen Laufstreifen aufweisen, der aus verschiedenen nebeneinander und/oder untereinander angeordneten Laufstreifenmischungen besteht (Multikomponentenlaufstreifen).
[0055] Bei der Herstellung des Fahrzeugluftreifens wird die Mischung als Fertigmischung vor der Vulkanisation in die Form eines Laufstreifens, bevorzugt wenigstens in die Form einer Laufstreifencap, gebracht und bei der Herstellung des Fahrzeugreifenrohlings wie bekannt aufgebracht. Der Laufstreifen, bevorzugt wenigstens die Laufstreifencap, kann auch in Form eines schmalen Kautschukmischungsstreifens auf einen Reifenrohling aufgewickelt werden.
[0056] Die Erfindung soll nun anhand von Vergleichs- und Ausführungsbeispielen, die in der Tabelle 1 zusammengefasst sind, näher erläutert werden.
[0057] Es wurde ein funktionalisiertes
Styrol-Butadien-Copolymer A gemäß folgender Versuchsbeschreibung synthetisiert:
70 g Cyclohexan und 0,77 mmol Tetramethylethylendiamin wurden in eine mit Stickstoff gespülte 800 ml Ampulle gegeben, und 7,69 mmol n-Butyllithium (Menge äquivalent zu 0,10 mol Tetramethylethylendiamin als polare Verbindung in Bezug auf 1 mol n-Butyllithium) von wurden hinzugefügt. Anschließend wurden 27,9 g Isopren und 2,1 g Styrol langsam zugegeben, und man ließ 120 Minuten bei 50 °C reagieren, wobei ein Polymerblock mit einem aktiven Ende erhalten wurde. Dieser Polymerblock hatte ein mittleres Molekulargewicht (Mw) von 6.500 g/mol, eine Polydispersität (Mw / Mn) von 1,10, einen Styrolgehalt von 7,0 Gew.-%, einen Isoprengehalt von 93,0 Gew.-% und einen Vinylgehalt von 7,7 Gew.-%.
[0058] Ein mit einem Rührer ausgestatteter Autoklav wurde in einer Stickstoffatmosphäre mit 4000 g Cyclohexan, 12,9 mmol Tetramethylethylendiamin, 432 g 1,3-Butadien und 168 g Styrol und anschließend der Gesamtmenge des vorgenannten Polymerblocks mit dem aktiven Ende beschickt. Die Polymerisationsreaktion wurde bei 50 °C gestartet (die Menge an Tetramethylethylendiamin als polare Verbindung, die in dem Reaktionssystem in Bezug auf 1 mol verwendetes n-Butyllithium vorhanden ist, beträgt 1,79 mol).
[0059] Nach Ablauf von 10 Minuten nach Beginn der Polymerisation wurden über einen Zeitraum von 60 Minuten kontinuierlich 358 g 1,3-Butadien und 42 g Styrol zugegeben. Die maximale Temperatur während der Polymerisationsreaktion betrug 75 °C. Nachdem die kontinuierliche Zugabe abgeschlossen war, wurde die Polymerisationsreaktion weitere 10 Minuten fortgesetzt. Nach Bestätigung einer Umsetzungsrate von 95% bis 100%, wurden 2,44 g des folgenden Polyorganosiloxans als 40 Gew.-%ige Lösung in Xylol zugegeben:

X
1, X
4, R
1∼R
3, R
-5∼R
8: -CH
3
[0060] Es wurde über 30 min umgesetzt. Anschließend wurden 7,69 mmol 3-(2-Aminoethylamino)propyltrimethoxysilan als Alkylaminosilan zugegeben und über 10 min umgesetzt. Dann wurde Methanol in einer Menge, entsprechend 2 mol des verwendeten n-Butyllithiums, als Polymerisationsterminator zugegeben, um eine Lösung zu erhalten, die funktionalisiertes Styrol-Butadien-Copolymer A enthielt.
[0061] In Bezug auf 100 Teile des funktionalisierten Styrol-Butadien-Copolymers A wurden 0,15 Teile Irganox 1520 L (hergestellt von BASF) als Alterungsschutzmittel und 10 Teile eines TDAE-Öls zu der Lösung gegeben, dann wurde ein Dampfstrippen durchgeführt, um das Lösemittel zu entfernen. Im Anschluss wurde im Vakuum bei 60 °C über 24 h getrocknet. Das erhaltene feste, funktionalisierte Styrol-Butadien-Copolymer A hatte ein Gewichtsmittel des Molekulargewichts (M
w) von 550000 g/mol, einen Kopplungsgrad von 58,0 %, einen Styrolgehalt von 21,0 Gew.-% und einen Vinylgehalt von 60 Gew.-%.
[0062] Dieses so erhaltene funktionalisierte Styrol-Butadien-Copolymer A wurde für die erfindungsgemäßen Mischungen der Tabelle 1 eingesetzt.
[0063] In der Tabelle 1 sind Vergleichsmischungen mit V, die erfindungsgemäße Mischung ist mit E gekennzeichnet.
[0064] Die Mischungsherstellung erfolgte nach den in der Kautschukindustrie üblichen Verfahren unter üblichen Bedingungen in drei Stufen in einem Labormischer bei dem zunächst in der ersten Mischstufe (Grundmischstufe) alle Bestandteile außer dem Vulkanisationssystem (Schwefel und vulkanisationsbeeinflussende Substanzen) vermischt wurden. In der zweiten Mischstufe wurde die Grundmischung nochmals durchmischt. Durch Zugabe des Vulkanisationssystems in der dritten Stufe (Fertigmischstufe) wurde die Fertigmischung erzeugt, wobei bei 90 bis 120 °C gemischt wurde.
[0065] Bei den Mischungen wurde die Zeit bis zu einem relativen Vernetzungsgrad von 10 % (t
10 Anvulkanisationszeit) und 90 % (t
90, Ausvulkanisationszeit) mittels rotorlosem Vulkameter (MDR = Moving Disc Rheometer) gemäß DIN 53 529 bei 160 °C bestimmt.
[0066] Aus sämtlichen Mischungen wurden Prüfkörper durch 20-minütige Vulkanisation unter Druck bei 160 °C hergestellt und mit diesen Prüfkörpern für die Kautschukindustrie typische Materialeigenschaften mit den im Folgenden angegebenen Testverfahren ermittelt:
- Shore-A-Härte bei Raumtemperatur mittels Durometer gemäß DIN ISO 7619-1
- Rückprallelastizität bei 70°C gemäß DIN 53 512
- Verlustfaktor tan δ (10 %) und dynamischer Speichermodul G'(1%), G'(100%) mittels RPA (= engl. "rubber process analyzer") in Anlehnung an ASTM D6601 vom zweiten Dehnungsdurchlauf bei 1 Hz und 70 °C, angegebener Wert: G' bei 1 % minus G' bei 100 % als Maß für den Payne-Effekt
Tabelle 1
Bestandteile | Einheit | 1(V) | 2(V) | 3(V) | 4(E) |
Naturkautschuk |
phr |
15 |
15 |
15 |
15 |
SBRa |
phr |
85 |
- |
85 |
- |
SBR Ab |
phr |
- |
93,25 |
|
93,25 |
Ruß N220 |
phr |
5 |
5 |
5 |
5 |
Kieselsäurec |
phr |
115 |
115 |
115 |
115 |
Weichmacheröld |
phr |
49 |
40,4 |
49 |
34,4 |
Zusatzstoffe |
phr |
11 |
11 |
11 |
11 |
Silan-Kupplungsagens 1e |
phr |
8,3 |
8,3 |
|
- |
Silan-Kupplungsagens 2f |
phr |
- |
- |
11,5 |
11,5 |
Beschleuniger |
phr |
5,4 |
5,4 |
5,2 |
5,2 |
Schwefel |
phr |
1,3 |
1,3 |
1,3 |
1,3 |
Eigenschaften |
|
|
|
|
|
t10 |
min |
1,5 |
1,9 |
2,4 |
2,3 |
t90 |
min |
7 |
7,6 |
6.9 |
6,8 |
Shorehärte bei RT |
Shore A |
82 |
79 |
75 |
72 |
Rückprallelastizität bei 70 °C |
% |
44 |
47 |
49 |
53 |
tan δ (10 %) |
- |
0,189 |
0,186 |
0,165 |
0,142 |
G'(1 %) - G'(100 %) |
kPa |
1642 |
1703 |
1413 |
1259 |
a NS 616, Nippon Zeon, Japan, lösungspolymerisiertes Styrol-Butadien-Copolymer, Styrol-Anteil: 21 Gew.-%, funktionalisiert mit Epoxy- und Hydroxygruppen
b funktionalisiertes lösungspolymerisiertes Styrol-Butadien-Copolymer A gemäß Versuchsbeschreibung zumindest teilweise funktionalisiert an einem Kettenende durch Reaktion mit einem Polyorganosiloxan und einem Alkylaminosilan und funktionalisiert am anderen Kettenende mit einer Polyisoprengruppe, Styrol-Anteil: 21 Gew.-%, Vinyl-Anteil: 60 Gew.-%, ölverstreckt mit 10 phr Öl pro 100 phr Copolymer
c HD-Kieselsäure mit einer CTAB-Oberfläche von 160 m2/g
d Mineralölweichmacher TDAE (treated distillate aromatic extract), Vivatec® 500, Fa. Klaus Dahleke KG
e 3,3'-Bis(triethoxysilylpropyl)disulfid (TESPD), Si261, Fa. Evonik; f 3-Octanoylthio-1-propyltriethoxysilan (geblocktes Mercaptosilan), NXT, Fa Momentive |
[0067] Der Tabelle 1 kann man entnehmen, dass durch die spezielle Kombination des funktionalisierten Styrol-Butadien-Copolymers A mit Kieselsäure und dem geblockten Mercaptosilan als Silankupplungsagens eine deutliche Verbesserung der Indikatoren für einen niedrigen Rollwiderstand zu verzeichnen ist, die über die Summe der Einzelmaßnahmen hinaus geht. Als Indikatoren für einen verbesserten Rollwiderstand gelten dabei eine erhöhte Rückprallelastizität bei 70 °C, ein verringerter tan δ (10 %), und eine verringerte Differenz von G'(1 %) - G'(100 %). Außerdem zeigt die erfindungsgemäße Mischung t
10- und t
90-Zeiten, die eine gute Verarbeitung unter Verhinderung der Anvulkanisation bei Extrusion gewährleisten.
1. Schwefelvernetzbare Kautschukmischung, insbesondere für den Laufstreifen von Fahrzeugluftreifen, enthaltend
- 20 - 100 phr (Gewichtsteile, bezogen auf 100 Gewichtsteile der gesamten Kautschuke in der Mischung) zumindest eines funktionalisierten Styrol-Butadien-Copolymers A,
wobei das funktionalisierte Styrol-Butadien-Copolymer A zumindest teilweise an einem Kettenende durch Reaktion mit zumindest einem Polyorganosiloxan und zumindest einem Alkylaminosilan funktionalisiert ist,
und wobei das funktionalisierte Styrol-Butadien-Copolymer A am anderen Kettenende mit einer Polyisoprengruppe, enthaltend Isopren- und Styrol-Einheiten, funktionalisiert ist, wobei der Isoprenanteil in der Polyisoprengruppe mehr als 90 Gew.-% beträgt,
- bis zu 80 phr zumindest eines weiteren Dienkautschuks,
- 30 bis 300 phr zumindest einer Kieselsäure und
- 1 bis 20 phf zumindest eines geblockten und/oder ungeblockten Mercaptosilans als Silankupplungsagens.
2. Schwefelvernetzbare Kautschukmischung nach Anspruch 1, dadurch gekennzeichnet, dass das Polyorganosiloxan Alkylgruppen und/oder Cycloalkylgruppen und/oder Arylgruppen und/oder eine Aralkylgruppen und/oder Alkoxygruppen und/oder Epoxygruppen und/oder Aminogruppen enthält.
3. Schwefelvernetzbare Kautschukmischung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Polyorganosiloxan zumindest eine Epoxygruppe enthält.
4. Schwefelvernetzbare Kautschukmischung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Alkylaminosilan eine primäre und/oder sekundäre Aminogruppe mit einem aktiven Wasserstoffatom enthält.
5. Schwefelvernetzbare Kautschukmischung nach Anspruch 4, dadurch gekennzeichnet, dass das Alkylaminosilan ausgewählt ist aus 3-Aminopropyltrimethoxysilan, 3-(2-Aminoethylamino)propyltrimethoxysilan, N,N-bis(Triethylsilyl)aminopropyltrimethoxysilan und/oder 3-Diethylaminopropyltrimethoxysilan.
6. Schwefelvernetzbare Kautschukmischung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polyisoprengruppe ein mittleres Molekulargewicht Mw von 2000 bis 10000 g/mol, vorzugsweise 5000 bis 8000 g/mol, aufweist.
7. Schwefelvernetzbare Kautschukmischung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das funktionalisierte Styrol-Butadien-Copolymer A frei von zusätzlichen Kautschuk-Kopplungsmitteln ist.
8. Schwefelvernetzbare Kautschukmischung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der weitere Dienkautschuk ausgewählt ist aus der Gruppe, bestehend aus natürlichem Polyisopren, synthetischem Polyisopren, Polybutadien und weiteren Styrol-Butadien-Copolymeren.
9. Schwefelvernetzbare Kautschukmischung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie 50 bis 200 phr Kieselsäure enthält.
10. Schwefelvernetzbare Kautschukmischung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie 5 bis 15 phf zumindest eines geblockten und/oder ungeblockten Mercaptosilans als Silankupplungsagens enthält.
11. Fahrzeugluftreifen mit einem Laufstreifen, dessen zumindest mit der Fahrbahn in Berührung kommender Teil aus einer mit Schwefel vulkanisierten Kautschukmischung nach einem der Ansprüche 1 bis 10 besteht.