(19)
(11)EP 4 056 578 A1

(12)EUROPEAN PATENT APPLICATION

(43)Date of publication:
14.09.2022 Bulletin 2022/37

(21)Application number: 22161311.0

(22)Date of filing:  10.03.2022
(51)International Patent Classification (IPC): 
C07F 15/00(2006.01)
H01L 51/00(2006.01)
C09K 11/06(2006.01)
(52)Cooperative Patent Classification (CPC):
C07F 15/0033; C09K 11/06; H01L 51/00
(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30)Priority: 12.03.2021 US 202163160071 P
15.02.2022 US 202217671692

(71)Applicant: Universal Display Corporation
Ewing, NJ 08618 (US)

(72)Inventors:
  • SHIH, Wei-Chun
    Ewing, 08618 (US)
  • JI, Zhiqiang
    Ewing, 08618 (US)
  • BOUDREAULT, Pierre-Luc T.
    Ewing, 08618 (US)

(74)Representative: Viganò, Elena et al
Dragotti & Associati S.r.l. Via Nino Bixio, 7
20129 Milano
20129 Milano (IT)

  


(54)ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES


(57) A compound of Formula Ir(LA)(LB)(LC) is disclosed. In Formula Ir(LA)(LB)(LC), LA has Formula I,

LB has Formula II,

; LC is a monoanionic bidentate ligand that does not comprise a phenylpyridine ligand; and each of LA, LB, and LC is different. Each of moieties A, C, and D is independently a monocyclic ring or a polycyclic fused ring structure or 5-membered and/or 6-membered rings; each of X1 to X6 is C or N; each of Z1 and Z2 is C or N; at least one of Z1 and Z2 is N; each RA, RB, RC, and RD is independently a hydrogen or a General Substituent; and any two adjacent substituents can be joined or fused together to form a ring. Formulations, OLEDs, and consumer products including the compound are also disclosed.




Description

CROSS-REFERENCE TO RELATED APPLICATIONS



[0001] This application claims priority under 35 U.S.C. § 119(e) to United States Provisional Application No. 63/160,071, filed on March 12, 2021, the entire contents of which are incorporated herein by reference.

FIELD



[0002] The present disclosure generally relates to organometallic compounds and formulations and their various uses including as emitters in devices such as organic light emitting diodes and related electronic devices.

BACKGROUND



[0003] Opto-electronic devices that make use of organic materials are becoming increasingly desirable for various reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials.

[0004] OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting.

[0005] One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as "saturated" colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively, the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single emissive layer (EML) device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.

SUMMARY



[0006] In one aspect, the present disclosure provides a compound of Formula Ir(LA)(LB)(LC). In Formula Ir(LA)(LB)(LC), LA has Formula I

LB has Formula II

; LC is a monoanionic bidentate ligand that does not comprise a phenylpyridine ligand; and each of LA, LB, and LC is different. In Formula I and Formula II:

each of moieties A, C, and D is independently a monocyclic ring or a polycyclic fused ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings;

each of X1 to X6 is independently C or N;

each of Z1 and Z2 is independently C or N;

at least one of Z1 and Z2 is N;

the maximum number of N atoms that can connect to each other within a ring is two;

each RA, RB, RC, and RD independently represents mono to the maximum allowable substitution, or no substitution;

each RA, RB, RC, and RD is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and

any two adjacent RA, RB, RC, and RD can be joined or fused together to form a ring.



[0007] In another aspect, the present disclosure provides a formulation of the compound of the present disclosure.

[0008] In yet another aspect, the present disclosure provides an OLED having an organic layer comprising the compound of the present disclosure.

[0009] In yet another aspect, the present disclosure provides a consumer product comprising an OLED with an organic layer comprising the compound of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS



[0010] 

FIG. 1 shows an organic light emitting device.

FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.

FIG. 3 shows photoluminescence spectra of one inventive compound and one comparative compound taken in PMMA.


DETAILED DESCRIPTION


A. Terminology



[0011] Unless otherwise specified, the below terms used herein are defined as follows:

[0012] As used herein, the term "organic" includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. "Small molecule" refers to any organic material that is not a polymer, and "small molecules" may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the "small molecule" class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a "small molecule," and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.

[0013] As used herein, "top" means furthest away from the substrate, while "bottom" means closest to the substrate. Where a first layer is described as "disposed over" a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is "in contact with" the second layer. For example, a cathode may be described as "disposed over" an anode, even though there are various organic layers in between.

[0014] As used herein, "solution processable" means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.

[0015] A ligand may be referred to as "photoactive" when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as "ancillary" when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.

[0016] As used herein, and as would be generally understood by one skilled in the art, a first "Highest Occupied Molecular Orbital" (HOMO) or "Lowest Unoccupied Molecular Orbital" (LUMO) energy level is "greater than" or "higher than" a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A "higher" HOMO or LUMO energy level appears closer to the top of such a diagram than a "lower" HOMO or LUMO energy level.

[0017] As used herein, and as would be generally understood by one skilled in the art, a first work function is "greater than" or "higher than" a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a "higher" work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a "higher" work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.

[0018] The terms "halo," "halogen," and "halide" are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.

[0019] The term "acyl" refers to a substituted carbonyl radical (C(O)-Rs).

[0020] The term "ester" refers to a substituted oxycarbonyl (-O-C(O)-Rs or -C(O)-O-Rs) radical.

[0021] The term "ether" refers to an -ORs radical.

[0022] The terms "sulfanyl" or "thio-ether" are used interchangeably and refer to a -SRs radical.

[0023] The term "selenyl" refers to a -SeRs radical.

[0024] The term "sulfinyl" refers to a -S(O)-Rs radical.

[0025] The term "sulfonyl" refers to a -SO2-Rs radical.

[0026] The term "phosphino" refers to a -P(Rs)3 radical, wherein each Rs can be same or different.

[0027] The term "silyl" refers to a -Si(Rs)3 radical, wherein each Rs can be same or different.

[0028] The term "germyl" refers to a -Ge(Rs)3 radical, wherein each Rs can be same or different.

[0029] The term "boryl" refers to a -B(Rs)2 radical or its Lewis adduct -B(Rs)3 radical, wherein Rs can be same or different.

[0030] In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.

[0031] The term "alkyl" refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group may be optionally substituted.

[0032] The term "cycloalkyl" refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.

[0033] The terms "heteroalkyl" or "heterocycloalkyl" refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, O, S or N. Additionally, the heteroalkyl or heterocycloalkyl group may be optionally substituted.

[0034] The term "alkenyl" refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term "heteroalkenyl" as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group may be optionally substituted.

[0035] The term "alkynyl" refers to and includes both straight and branched chain alkyne radicals. Alkynyl groups are essentially alkyl groups that include at least one carbon-carbon triple bond in the alkyl chain. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.

[0036] The terms "aralkyl" or "arylalkyl" are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group may be optionally substituted.

[0037] The term "heterocyclic group" refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.

[0038] The term "aryl" refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are "fused") wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group may be optionally substituted.

[0039] The term "heteroaryl" refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are "fused") wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group may be optionally substituted.

[0040] Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.

[0041] The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.

[0042] In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, selenyl, sulfinyl, sulfonyl, phosphino, boryl, and combinations thereof.

[0043] In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, boryl, and combinations thereof.

[0044] In some instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, boryl, aryl, heteroaryl, sulfanyl, and combinations thereof.

[0045] In yet other instances, the most preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.

[0046] The terms "substituted" and "substitution" refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R1 represents mono-substitution, then one R1 must be other than H (i.e., a substitution). Similarly, when R1 represents di-substitution, then two of R1 must be other than H. Similarly, when R1 represents zero or no substitution, R1, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.

[0047] As used herein, "combinations thereof' indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.

[0048] The "aza" designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C-H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[f,h]quinoxaline and dibenzo[f,h]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.

[0049] As used herein, "deuterium" refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.

[0050] It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.

[0051] In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, "adjacent" means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2, 2' positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system.

B. The Compounds of the Present Disclosure



[0052] In one aspect, the present disclosure provides a compound of Formula Ir(LA)(LB)(LC). In Formula Ir(LA)(LB)(LC), LA has Formula I

LB has Formula II

LC is a monoanionic bidentate ligand that does not comprise a phenylpyridine ligand; and each of LA, LB, and LC is different. In Formula I and Formula II:

each of moieties A, C, and D is independently a monocyclic ring or a polycyclic fused ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings;

each of X1 to X6 is independently C or N;

each of Z1 and Z2 is independently C or N;

at least one of Z1 and Z2 is N;

the maximum number of N atoms that can connect to each other within a ring is two;

each RA, RB, RC, and RD independently represents mono to the maximum allowable substitution, or no substitution;

each RA, RB, RC, and RD is independently a hydrogen or a substituent selected from the group consisting of the General Substituents defined herein; and

any two adjacent RA, RB, RC, and RD can be joined or fused together to form a ring.



[0053] In some embodiments, each RA, RB, RC, and RD is independently a hydrogen or a substituent selected from the group consisting of the Preferred General Substituents defined herein. In some embodiments, each RA, RB, RC, and RD is independently a hydrogen or a substituent selected from the group consisting of the More Preferred General Substituents defined herein. In some embodiments, each RA, RB, RC, and RD is independently a hydrogen or a substituent selected from the group consisting of the Most Preferred General Substituents defined herein.

[0054] In some embodiments, at least one of moiety A and moiety C is a polycyclic fused ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings. In some embodiments, at least one of moiety A and moiety C is a polycyclic fused ring structure comprising 5-membered and/or 6-membered aryl or heteroaryl rings. In some embodiments, at least one of moiety A and moiety C is a polycyclic fused ring structure comprising at least one 5-membered ring and at least one 6-membered ring.

[0055] In some embodiments, at least one of moiety A and moiety C is a polycyclic fused ring structure and is coordinated to Ir by a N. In some embodiments, at least one of moiety A and moiety C is a polycyclic fused ring structure and is coordinated to Ir by a N of a 6-membered ring.

[0056] In some embodiments, at least one of moiety A and moiety C is a polycyclic fused ring structure comprising a combination of at least three rings fused together, where each of the at least three rings is independently aryl or heteroaryl. In some embodiments, at least one of moiety A and moiety C is a polycyclic fused ring structure comprising a combination of at least four rings fused together, where each of the at least four rings is independently aryl or heteroaryl.

[0057] In some embodiments, Z1 is N and Z2 is C.

[0058] In some embodiments, moiety D is phenyl or naphthyl.

[0059] In some embodiments, at least one of moiety A and moiety C is a polycyclic ring structure, wherein the distal ring is substituted by alkyl or cycloalkyl comprising at least 4 carbon atoms. In some embodiments, at least one of moiety A and moiety C is a polycyclic ring structure, wherein the distal ring is substituted by branched alkyl or cycloalkyl comprising at least 4 carbon atoms. As used herein, "distal ring" refers to the ring that is the furthest away from the atom bonded to the Ir atom.

[0060] In some embodiments, moiety C is a monocyclic ring and RC para to Ir comprises (i) at least two unfused RC rings each of which is a 5-membered and/or 6-membered carbocyclic or heterocyclic rings, or (ii) at least one unfused ring that is substituted by alkyl or cycloalkyl comprising at least 4 carbon atoms. In some embodiments, moiety C is a monocyclic ring and RC para to Ir comprises (i) at least two unfused RC rings each of which is a 5-membered and/or 6-membered carbocyclic or heterocyclic rings. In some embodiments, moiety C is a monocyclic ring and RC para to Ir comprises (ii) at least one unfused ring that is substituted by alkyl or cycloalkyl comprising at least 4 carbon atoms.

[0061] In some embodiments, at least one of X1 to X6 is N. In some embodiments, at least one of X1 and X2 is N. In some embodiments, at least one of X3 to X6 is N.

[0062] In some embodiments, the compound is in a mer configuration. In some embodiments, the compound is in a fac configuration.

[0063] In some embodiments, at least one of RA and the substituent of RC or RD with which the associated ring is trans to moiety A comprises a para-substituted 6-membered carbocyclic or heterocyclic ring. In other words, when moiety A is trans to moiety C, at least one of RA and RC comprises a para-substituted 6-membered carbocyclic or heterocyclic ring, and when moiety A is trans to moiety D, at least one of RA and RD comprises a para-substituted 6-membered carbocyclic or heterocyclic ring.

[0064] In some embodiments, one RA comprises a para-substituted 6-membered carbocyclic or heterocyclic ring. In some embodiments, one RC with which the associated ring is trans to moiety A comprises a para-substituted 6-membered carbocyclic or heterocyclic ring. In some embodiments, one RD with which the associated ring is trans to moiety A comprises a para-substituted 6-membered carbocyclic or heterocyclic ring.

[0065] In some embodiments, at least one of ring A, ring C, and ring D is a 6-membered ring that has a substituent RA, RC, or RD that is para to the atom (N, Z1, or Z2, respectively) that is coordinated to the Ir. In some embodiments, ring A can be a 6-memebred ring, and one RA can be para-substituted to N. In some embodiemnts, ring C can be a 6-membered ring and one RC can be para-substitued to Z1. In some embodiemnts, ring D can be a 6-membered ring and one RD can be para-substitued to Z2. In some such embodiments, the 6-membered ring is selected from the group consisting of phenyl, pyridine, pyrazine, pyrimidine, pyridazine, and cyclohexyl. In some such embodiments, RA, RC, or RD that is para substituted to the atom (N, Z1, or Z2, respectively) that is coordinated to the Ir is a 5- or 6-membered carbocyclic or heterocyclic ring. In some such embodiments, RA that is para-substituted to N can be a 5- or 6-membered carbocyclic or heterocyclic ring. In some such embodiments, RC that is para-substituted to Z1 can be a 5- or 6-membered carbocyclic or heterocyclic ring. In some such embodiments, RD that is para-substituted to Z2 can be a 5- or 6-membered carbocyclic or heterocyclic ring. In some such embodiments, RA, RC, or RD that is para-substituted to the atom (N, Z1, or Z2, respectively) that is coordinated to the Ir is selected from the group consisting of benzene, pyridine, pyrimidine, pyridazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, thiazole, cyclohexyl, and cyclopentyl.

[0066] In some embodiments, LB is a substituted or unsubstituted phenylpyridine and LC is a substituted or unsubstituted acetylacetonate.

[0067] In some embodiments, LC is selected from the group consisting of



wherein each of Ra2, Rb2, Rc2, Rd2, and Re2 is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, selenyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and
wherein any two adjacent Ra2, Rb2, Rc2, Rd2, and Re2 can be joined or fused together to form a ring.

[0068] In some embodiments, the ligand LA is selected from the group consisting of the structures in the following LIST 1:













wherein:

Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13, and Z14 are each independently C or N;

YY1 for each occurrence is independently BR, BRR', NR, PR, O, S, Se, C=O, S=O, SO2, CRR', SiRR', and GeRR';

RA1 represents mono to the maximum allowable substitution, or no substitution;

each RA1, RA2, R, and R' is independently a hydrogen or a substituent selected from the group consisting of the General Substitutions described herein.



[0069] In some embodiments, the ligand LA is selected from the group consisting of the structures in the following LIST 2:

















, and

wherein

RA1 represents mono to the maximum allowable substitution, or no substitution; and

each RA1, RA2, R, and R' is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, selenyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.



[0070] In some embodiments, the ligand LA is selected from the group consisting of LAi-m, wherein i = 1 to 600, m = 1 to 63, wherein each structure of LAi-1 through LAi-63 is defined in the following LIST 3:
when m is 1, LA1-1 to LA600-1 have the structure when m is 2, LA1-2 to LA600-2 have the structure when m is 3, LA1-3 to LA600-3 have the structure






when m is 4, LA1-4 to LA600-4 have the structure when m is 5, LA1-5 to LA600-5 have the structure when m is 6, LA1-6 to LA600-6 have the structure






when m is 7, LA1-7 to LA600-7 have the structure when m is 8, LA1-8 to LA600-8 have the structure when m is 9, LA1-9 to LA600-9 have the structure






when m is 10, LA1-10 to LA600-10 have the structure when m is 11, LA1-11 to LA600-11 have the structure when m is 12, LA1-12 to LA600-12 have the structure






when m is 13, LA1-13 to LA600-13 have the structure when m is 14, LA1-14 to LA600-14 have the structure when m is 15, LA1-15 to LA600-15 have the structure






when m is 16, LA1-16 to LA600-16 have the structure when m is 17, LA1-17 to LA600-17 have the structure when m is 18, LA1-18 to LA600-18 have the structure






when m is 19, LA1-19 to LA600-19 have the structure when m is 20, LA1-20 to LA600-20 have the structure when m is 21, LA1-21 to LA600-21 have the structure






when m is 22, LA1-22 to LA600-22 have the structure when m is 23, LA1-23 to LA600-23 have the structure when m is 24, LA1-24 to LA600-24 have the structure






when m is 25, LA1-25 to LA600-25 have the structure when m is 26, LA1-26 to LA600-26 have the structure when m is 27, LA1-27 to LA600-27 have the structure






when m is 28, LA1-28 to LA600-28 have the structure when m is 29, LA1-29 to LA600-29 have the structure when m is 30, LA1-30 to LA600-30 have the structure






when m is 31, LA1-31 to LA600-31 have the structure when m is 32, LA1-32 to LA600-32 have the structure when m is 33, LA1-33 to LA600-33 have the structure






when m is 34, LA1-34 to LA600-34 have the structure when m is 35, LA1-35 to LA600-35 have the structure when m is 36, LA1-36 to LA600-36 have the structure






when m is 37, LA1-37 to LA600-37 have the structure when m is 38, LA1-38 to LA600-38 have the structure when m is 39, LA1-39 to LA600-39 have the structure






when m is 40, LA1-40 to LA600-40 have the structure when m is 41, LA1-41 to LA600-41 have the structure when m is 42, LA1-42 to LA600-42 have the structure




,


,
when m is 43, LA1-43 to LA600-43 have the structure when m is 44, LA1-44 to LA600-44 have the structure when m is 45, LA1-45 to LA600-45 have the structure




,


when m is 46, LA1-46 to LA600-46 have the structure when m is 47, LA1-47 to LA600-47 have the structure when m is 48, LA1-48 to LA600-48 have the structure




,


when m is 49, LA1-49 to LA600-49 have the structure when m is 50, LA1-50 to LA600-50 have the structure when m is 51, LA1-51 to LA600-51 have the structure






when m is 52, LA1-52 to LA600-52 have the structure when m is 53, LA1-53 to LA600-53 have the structure when m is 54, LA1-54 to LA600-54 have the structure






when m is 55, LA1-55 to LA600-55 have the structure when m is 56, LA1-56 to LA600-56 have the structure when m is 57, LA1-57 to LA600-57 have the structure






when m is 58, LA1-58 to LA600-58 have the structure when m is 59, LA1-59 to LA600-59 have the structure when m is 60, LA1-60 to LA600-60 have the structure






when m is 61, LA1-61 to LA600-61 have the structure when m is 62, LA1-62 to LA600-62 have the structure when m is 63, LA1-63 to LA600-63 have the structure






wherein, for each i, RE and G in LAi-1 to LAi-63, have the structures as defined in the following LIST 4:
LigandREGLigandREGLigandREGLigandREG
LA1-m R1 G4 LA151-m R18 G5 LA301-m R1 G14 LA451-m R18 G21
LA2-m R2 G4 LA152-m R20 G5 LA302-m R2 G14 LA452-m R20 G21
LA3-m R3 G4 LA153-m R21 G5 LA303-m R3 G14 LA453-m R21 G21
LA4-m R4 G4 LA154-m R28 G5 LA304-m R4 G14 LA454-m R28 G21
LA5-m R5 G4 LA155-m R29 G5 LA305-m R6 G14 LA455-m R29 G21
LA6-m R6 G4 LA156-m R30 G5 LA306-m R7 G14 LA456-m R30 G21
LA7-m R7 G4 LA157-m R33 G5 LA307-m R8 G14 LA457-m R33 G21
LA8-m R8 G4 LA158-m R35 G5 LA308-m R9 G14 LA458-m R35 G21
LA9-m R9 G4 LA159-m R36 G5 LA309-m R14 G14 LA459-m R36 G21
LA10-m R10 G4 LA160-m R37 G5 LA310-m R15 G14 LA460-m R37 G21
LA11-m R" G4 LA161-m R1 G6 LA311-m R18 G14 LA461-m R1 G22
LA12-m R12 G4 LA162-m R2 G6 LA312-m R20 G14 LA462-m R2 G22
LA13-m R13 G4 LA163-m R3 G6 LA313-m R21 G14 LA463-m R3 G22
LA14-m R14 G4 LA164-m R4 G6 LA314-m R28 G14 LA464-m R4 G22
LA15-m R15 G4 LA165-m R6 G6 LA315-m R29 G14 LA465-m R6 G22
LA16-m R16 G4 LA166-m R7 G6 LA316-m R30 G14 LA466-m R7 G22
LA17-m R17 G4 LA167-m R8 G6 LA317-m R33 G14 LA467-m R8 G22
LA18-m R18 G4 LA168-m R9 G6 LA318-m R35 G14 LA468-m R9 G22
LA19-m R19 G4 LA169-m R14 G6 LA319-m R36 G14 LA469-m R14 G22
LA20-m R20 G4 LA170-m R15 G6 LA320-m R37 G14 LA470-m R15 G22
LA21-m R21 G4 LA171-m R18 G6 LA321-m R1 G15 LA471-m R18 G22
LA22-m R22 G4 LA172-m R20 G6 LA322-m R2 G15 LA472-m R20 G22
LA23-m R23 G4 LA173-m R21 G6 LA323-m R3 G15 LA473-m R21 G22
LA24-m R24 G4 LA174-m R28 G6 LA324-m R4 G15 LA474-m R28 G22
LA25-m R25 G4 LA175-m R29 G6 LA325-m R6 G15 LA475-m R29 G22
LA26-m R26 G4 LA176-m R30 G6 LA326-m R7 G15 LA476-m R30 G22
LA27-m R27 G4 LA177-m R33 G6 LA327-m R8 G15 LA477-m R33 G 22
LA28-m R28 G4 LA178-m R35 G6 LA328-m R9 G15 LA478-m R35 G22
LA29-m R29 G4 LA179-m R36 G6 LA329-m R14 G15 LA479-m R36 G22
LA30-m R30 G4 LA180-m R37 G6 LA330-m R15 G15 LA480-m R37 G22
LA31-m R31 G4 LA181-m R1 G7 LA331-m R18 G15 LA481-m R1 G23
LA32-m R32 G4 LA182-m R2 G7 LA332-m R20 G15 LA482-m R2 G23
LA33-m R33 G4 LA183-m R3 G7 LA333-m R21 G15 LA483-m R3 G23
LA34-m R34 G4 LA184-m R4 G7 LA334-m R28 G15 LA484-m R4 G23
LA35-m R35 G4 LA185-m R6 G7 LA335-m R29 G15 LA485-m R6 G23
LA36-m R36 G4 LA186-m R7 G7 LA336-m R30 G15 LA486-m R7 G23
LA37-m R37 G4 LA187-m R8 G7 LA337-m R33 G15 LA487-m R8 G23
LA38-m R38 G4 LA188-m R9 G7 LA338-m R35 G15 LA488-m R9 G23
LA39-m R39 G4 LA189-m R14 G7 LA339-m R36 G15 LA489-m R14 G23
LA40-m R40 G4 LA190-m R15 G7 LA340-m R37 G15 LA490-m R15 G23
LA41-m R1 G11 LA191-m R18 G7 LA341-m R1 G16 LA491-m R18 G23
LA42-m R2 G11 LA192-m R20 G7 LA342-m R2 G16 LA492-m R20 G23
LA43-m R3 G11 LA193-m R21 G7 LA343-m R3 G16 LA493-m R21 G23
LA44-m R4 G11 LA194-m R28 G7 LA344-m R4 G16 LA494-m R28 G23
LA45-m R5 G11 LA195-m R29 G7 LA345-m R6 G16 LA495-m R29 G23
LA46-m R6 G11 LA196-m R30 G7 LA346-m R7 G16 LA496-m R30 G23
LA47-m R7 G11 LA197-0 R33 G7 LA347-m R8 G16 LA497-m R33 G23
LA48-m R8 G11 LA198-m R35 G7 LA348-m R9 G16 LA498-m R35 G23
LA49-m R9 G11 LA199-m R36 G7 LA349-m R14 G16 LA499-m R36 G23
LA50-m R10 G11 LA200-m R37 G7 LA350-m R15 G16 LA500-m R37 G23
LA51-m R11 G11 LA201-m R1 G8 LA351-m R18 G16 LA501-m R1 G24
LA52-m R12 G11 LA202-m R2 G8 LA352-m R20 G16 LA502-m R2 G24
LA53-m R13 G11 LA203-m R3 G8 LA353-m R21 G16 LA503-m R3 G24
LA54-m R14 G11 LA204-m R4 G8 LA354-m R28 G16 LA504-m R4 G24
LA55-m R15 G11 LA205-m R6 G8 LA355-m R29 G16 LA505-m R6 G24
LA56-m R16 G11 LA206-m R7 G8 LA356-m R30 G16 LA506-m R7 G24
LA57-m R17 G11 LA207-m R8 G8 LA357-m R33 G16 LA507-m R8 G24
LA58-m R18 G11 LA208-m R9 G8 LA358-m R35 G16 LA508-m R9 G24
LA59-m R19 G11 LA209-m R14 G8 LA359-m R36 G16 LA509-m R14 G24
LA60-m R20 G11 LA210-m R15 G8 LA360-m R37 G16 LA510-m R15 G24
LA61-m R21 G11 LA211-m R18 G8 LA361-m R1 G17 LA511-m R18 G24
LA62-m R22 G11 LA212-m R20 G8 LA362-m R2 G17 LA512-m R20 G24
LA63-m R23 G11 LA213-m R21 G8 LA363-m R3 G17 LA513-m R21 G24
LA64-m R24 G11 LA214-m R28 G8 LA364-m R4 G17 LA514-m R28 G24
LA65-m R25 G11 LA215-m R29 G8 LA365-m R6 G17 LA515-m R29 G24
LA66-m R26 G11 LA216-m R30 G8 LA366-m R7 G17 LA516-m R30 G24
LA67-m R27 G11 LA217-m R33 G8 LA367-m R8 G17 LA517-m R33 G24
LA68-m R28 G11 LA218-m R35 G8 LA368-m R9 G17 LA518-m R35 G24
LA69-m R29 G11 LA219-m R36 G8 LA369-m R14 G17 LA519-m R36 G24
LA70-m R30 G11 LA220-m R37 G8 LA370-m R15 G17 LA520-m R37 G24
LA71-m R31 G11 LA221-m R1 G9 LA371-m R18 G17 LA521-m R1 G25
LA72-m R32 G11 LA222-m R2 G9 LA372-m R20 G17 LA522-m R2 G25
LA73-m R33 G11 LA223-m R3 G9 LA373-m R21 G17 LA523-m R3 G25
LA74-m R34 G11 LA224-m R4 G9 LA374-m R28 G17 LA524-m R4 G25
LA75-m R35 G11 LA225-m R6 G9 LA375-m R29 G17 LA525-m R6 G25
LA76-m R36 G11 LA226-m R7 G9 LA376-m R30 G17 LA526-m R7 G25
LA77-m R37 G11 LA227-m R8 G9 LA377-m R33 G17 LA527-m R8 G25
LA78-m R38 G11 LA228-m R9 G9 LA378-m R35 G17 LA528-m R9 G25
LA79-m R39 G11 LA229-m R14 G9 LA379-m R36 G17 LA529-m R14 G25
LA80-m R40 G11 LA230-m R15 G9 LA380-m R37 G17 LA530-m R15 G25
LA81-m R1 G1 LA231-m R18 G9 LA381-m R1 G18 LA531-m R18 G25
LA82-m R2 G1 LA232-m R20 G9 LA382-m R2 G18 LA532-m R20 G25
LA83-m R3 G1 LA233-m R21 G9 LA383-m R3 G18 LA533-m R21 G25
LA84-m R4 G1 LA234-m R28 G9 LA384-m R4 G18 LA534-m R28 G25
LA85-m R6 G1 LA235-m R29 G9 LA385-m R6 G18 LA535-m R29 G25
LA86-m R7 G1 LA236-m R30 G9 LA386-m R7 G18 LA536-m R30 G25
LA87-m R8 G1 LA237-m R33 G9 LA387-m R8 G18 LA537-m R33 G25
LA88-m R9 G1 LA238-m R35 G9 LA388-m R9 G18 LA538-m R35 G25
LA89-m R14 G1 LA239-m R36 G9 LA389-m R14 G18 LA539-m R36 G25
LA90-m R15 G1 LA240-m R37 G9 LA390-m R15 G18 LA540-m R37 G25
LA91-m R18 G1 LA241-m R1 G10 LA391-m R18 G18 LA541-m R1 G26
LA92-m R20 G1 LA242v R2 G10 LA392-m R20 G18 LA542-m R2 G26
LA93-m R21 G1 LA243-m R3 G10 LA393-m R21 G18 LA543-m R3 G26
LA94-m R28 G1 LA244-m R4 G10 LA394-m R28 G18 LA544-m R4 G26
LA95-m R29 G1 LA245-m R6 G10 LA395-m R29 G18 LA545-m R6 G26
LA96-m R30 G1 LA246-m R7 G10 LA396-m R30 G18 LA546-m R7 G26
LA97-m R33 G1 LA247-m R8 G10 LA397-m R33 G18 LA547-m R8 G26
LA98-m R35 G1 LA248-m R9 G10 LA398-m R35 G18 LA548-m R9 G26
LA99-m R36 G1 LA249-m R14 G10 LA399-m R36 G18 LA549-m R14 G26
LA100-m R37 G1 LA250-m R15 G10 LA400-m R37 G18 LA550-m R15 G26
LA101-m R1 G2 LA251-m R18 G10 LA401-m R1 G19 LA551-m R18 G26
LA102-m R2 G2 LA252-m R20 G10 LA402-m R2 G19 LA552-m R20 G26
LA103-m R3 G2 LA253-m R21 G10 LA403-m R3 G19 LA553-m R21 G26
LA104-m R4 G2 LA254-m R28 G10 LA404-m R4 G19 LA554-m R28 G26
LA105-m R6 G2 LA255-m R29 G10 LA405-m R6 G19 LA555-m R29 G26
LA106-m R7 G2 LA256-m R30 G10 LA406-m R7 G19 LA556-m R30 G26
LA107-m R8 G2 LA257-m R33 G10 LA407-m R8 G19 LA557-m R33 G26
LA108-m R9 G2 LA258-m R35 G10 LA408-m R9 G19 LA558-m R35 G26
LA109-m R14 G2 LA259-m R36 G10 LA409-m R14 G19 LA559-m R36 G26
LA110-m R15 G2 LA260-m R37 G10 LA410-m R15 G19 LA560-m R37 G26
LA111-m R18 G2 LA261-m R1 G12 LA411-m R18 G19 LA561-m R1 G27
LA112-m R20 G2 LA262-m R2 G12 LA412-m R20 G19 LA562-m R2 G27
LA113-m R21 G2 LA263-m R3 G12 LA413-m R21 G19 LA563-m R3 G27
LA114-m R28 G2 LA264-m R4 G12 LA414-m R28 G19 LA564-m R4 G27
LA115-m R29 G2 LA265-m R6 G12 LA415-m R29 G19 LA565-m R6 G27
LA116-m R30 G2 LA266-m R7 G12 LA416-m R30 G19 LA566-m R7 G27
LA117-m R33 G2 LA267-m R8 G12 LA417-m R33 G19 LA567-m R8 G27
LA118-m R35 G2 LA268-m R9 G12 LA418-m R35 G19 LA568-m R9 G27
LA119-m R36 G2 LA269-m R14 G12 LA419-m R36 G19 LA569-m R14 G27
LA120-m R37 G2 LA270-m R15 G12 LA420-m R37 G19 LA570-m R15 G27
LA121-m R1 G3 LA271-m R18 G12 LA421-m R1 G20 LA571-m R18 G27
LA122-m R2 G3 LA272-m R20 G12 LA422-m R2 G20 LA572-m R20 G27
LA123-m R3 G3 LA273-m R21 G12 LA423-m R3 G20 LA573-m R21 G27
LA124-m R4 G3 LA274-m R28 G12 LA424-m R4 G20 LA574-m R28 G27
LA125-m R6 G3 LA275-m R29 G12 LA425-m R6 G20 LA575-m R29 G27
LA126-m R7 G3 LA276-m R30 G12 LA426-m R7 G20 LA576-m R30 G27
LA127-m R8 G3 LA277-m R33 G12 LA427-m R8 G20 LA577-m R33 G27
LA128-m R9 G3 LA278-m R35 G12 LA428-m R9 G20 LA578-m R35 G27
LA129-m R14 G3 LA279-m R36 G12 LA429-m R14 G20 LA579-m R36 G27
LA130-m R15 G3 LA280-m R37 G12 LA430-m R15 G20 LA580-m R37 G27
LA131-m R18 G3 LA281-m R1 G13 LA431-m R18 G20 LA581-m R1 G28
LA132-m R20 G3 LA282-m R2 G13 LA432-m R20 G20 LA582-m R2 G28
LA133-m R21 G3 LA283-m R3 G13 LA433-m R21 G20 LA583-m R3 G28
LA134-m R28 G3 LA284-m R4 G13 LA434-m R28 G20 LA584-m R4 G28
LA135-m R29 G3 LA285-m R6 G13 LA435-m R29 G20 LA585-m R6 G28
LA136-m R30 G3 LA286-m R7 G13 LA436-m R30 G20 LA586-m R7 G28
LA137-m R33 G3 LA287-m R8 G13 LA437-m R33 G20 LA587-m R8 G28
LA138-m R35 G3 LA288-m R9 G13 LA438-m R35 G20 LA588-m R9 G28
LA139-m R36 G3 LA289-m R14 G13 LA439-m R36 G20 LA589-m R14 G28
LA140-m R37 G3 LA290-m R15 G13 LA440-m R37 G20 LA590-m R15 G28
LA141-m R1 G5 LA291-m R18 G13 LA441-m R1 G21 LA591-m R18 G28
LA142-m R2 G5 LA292-m R20 G13 LA442-m R2 G21 LA592-m R20 G28
LA143-m R3 G5 LA293-m R21 G13 LA443-m R3 G21 LA593-m R21 G28
LA144-m R4 G5 LA294-m R28 G13 LA444-m R4 G21 LA594-m R28 G28
LA145-m R6 G5 LA295-m R29 G13 LA445-m R6 G21 LA595-m R29 G28
LA146-m R7 G5 LA296-m R30 G13 LA446-m R7 G21 LA596-m R30 G28
LA147-m R8 G5 LA297-m R33 G13 LA447-m R8 G21 LA597-m R33 G28
LA148-m R9 G5 LA298-m R35 G13 LA448-m R9 G21 LA598-m R35 G28
LA149-m R14 G5 LA299-m R36 G13 LA449-m R14 G21 LA599-m R36 G28
LA150-m R15 G5 LA300-m R37 G13 LA450-m R15 G21 LA600-m R37 G28
wherein R1 to R40 have the structures as defined in the following LIST 5:











and
wherein G1 to G28 have the structures in the following LIST 6:













[0071] In some embodiments, the compound has a formula of M(LA)p(LB)q(LC)r wherein LB and LC are each a bidentate ligand; and wherein p is 1, 2, or 3; q is 0, 1, or 2; r is 0, 1, or 2; and p+q+r is the oxidation state of the metal M.

[0072] In some embodiments, the compound has a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(Lc), and Ir(LA)(LB)(LC); and wherein LA, LB, and LC are different from each other.

[0073] In some embodiments, subject to the requirement that LC does not comprise phenylpyridine, LB and LC are each independently selected from the group consisting of the structures of LIST 7:













wherein:

T is selected from the group consisting of B, Al, Ga, and In;

each of Y1 to Y13 is independently selected from the group consisting of carbon and nitrogen;

Y' is selected from the group consisting of BRe, BReRf, NRe, PRe, P(O)Re, O, S, Se, C=O, C=S, C=Se, C=NRe, C=CReRf, S=O, SO2, CReRf, SiReRf, and GeReRf;

Re and Rf can be fused or joined to form a ring;

each Ra, Rb, Rc, and Rd independently represents zero, mono, or up to a maximum allowed number of substitutions to its associated ring;

each Ra1, Rb1, Rc1, Rd1, Ra, Rb, Rc, Rd, Re and Rf is independently a hydrogen or a subsituent selected from the group consisting of the General Substituents defined herein; and

any two adjacent Ra, Rb, Rc, Rd, Re and Rf can be fused or joined to form a ring or form a multidentate ligand.



[0074] In some embodiments, subject to the requirement that LC does not comprise phenylpyridine, LB and LC are each independently selected from the group consisting of the structures of the following LIST 8:























wherein:

Ra', Rb', and Rc' each independently represent zero, mono, or up to a maximum allowed number of substitutions to its associated ring;

each of Ra1, Rb1, Rc1, RN, Ra', Rb', and Rc' is independently hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and

two adjacent Ra', Rb', and Rc' can be fused or joined to form a ring or form a multidentate ligand.



[0075] In some embodiments, the comcound can be selected from the group consisting of

and



[0076] In Formula A, in some embodiments, two Ra are joined together to form a ring, more preferably a benzene ring. In some embodiments, at least one of Y3 and Y7 is not H. In some embodiments, both of Y3 and Y7 are not H. In some embodiments, such substitutions are selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, partially or fully deuterated variants thereof, partially or fully fluorinated variants thereof, and combinations thereof. In some embodiments, at least one RA1 and at least one Rb are not H. In some embodiments, both RA1 and Rb are para substituents comprising 6-membered carbocyclic or heterocyclic ring. In some embodiments, two adjacent RA1 form a single or poly cyclic fused rings, wherein the distal ring is substituted. In some embodiments, such distal ring is substituted by alkyl or cycloalkyl comprising at least 4 carbon atoms.

[0077] In Formula B, in some embodiments, two adjacent Ra are joined together to form a single or poly cyclic fused rings, wherein the distal ring is substituted. In some embodiments, such distal ring is substituted by alkyl or cycloalkyl comprising at least 4 carbon atoms. In some embodiments, two adjacent Rb are joined together to form a single or poly cyclic fused rings. In some embodiments, at least one RA1 and at least one Ra are not H. In some embodiments, both RA1 and Ra are para substituents comprising 6-membered carbocyclic or heterocyclic ring. In some embodiments, two adjacent RA1 form a single or poly cyclic fused rings, wherein the distal ring is substituted. In some embodiments, such distal ring is substituted by alkyl or cycloalkyl comprising at least 4 carbon atoms.

[0078] In Formula C, in some embodiments, two adjacent Rb are joined together to form a single or poly cyclic fused rings, wherein the distal ring is substituted. In some embodiments, such distal ring is substituted by alkyl or cycloalkyl comprising at least 4 carbon atoms. In some embodiments, two adjacent Rc are joined together to form a single or poly cyclic fused rings. In some embodiments, at least one RA1 and at least one Rb are not H. In some embodiments, both RA1 and Rb are not H. In some embodiments, RA1 is a para substituent. In some embodiments, two adjacent RA1 form a single or poly cyclic fused rings, wherein the distal ring is substituted. In some embodiments, such distal ring is substituted by alkyl or cycloalkyl comprising at least 4 carbon atoms.

[0079] In some embodiments, when the compound has formula Ir(LA)3, LA is selected from the group consisting of LAi-m, wherein i is an integer from 1 to 600; m is an integer from 1 to 63; and the compound is selected from the group consisting of Ir(LA1-1)3 to Ir(LA600-63)3;
when the compound has formula Ir(LA)(LB)2, LA is selected from the group consisting of LAi-m, and LB is selected from the group consisting of LBk, wherein i is an integer from 1 to 600; m is an integer from 1 to 63; k is an integer from 1 to 360; and the compound is selected from the group consisting of Ir(LA1-1)(LB1)2 to Ir(LA600-63) (LB360)2;
when the compound has formula Ir(LA)2(LB), LA is selected from the group consisting of LAi-m, and LB is selected from the group consisting of LBk, wherein i is an integer from 1 to 600; m is an integer from 1 to 63; k is an integer from 1 to 360; and the compound is selected from the group consisting of Ir(LA1-1)2(LB1) to Ir(LA600-63)2(LB360);
when the compound has formula Ir(LAi-m)2(LCj-I), LA is selected from the group consisting of LAi-m, and LC is selected from the group consisting of LCj-I or LCj-II, wherein i is an integer from 1 to 600; m is an integer from 1 to 63; j is an integer from 1 to 1416; and the compound is selected from the group consisting of Ir(LA1-1)2(LC1-I) to Ir(LA600-63)2(LC1416-I) or Ir(LA1-1)2(LC1-II) to Ir(LA600-63)2(LC1416-II); and
wherein each LBk has the structure defined in the following LIST 9:





























































































































wherein each LCj-I has a structure based on formula

; and
each LCj-II has a structure based on formula

, wherein for each LCj in LCj-I and LCj-II, R201 and R202 are each independently defined in the following LIST 10:
LCjR201R202LCjR201R202LCjR201R202LCjR201R202
LC1 RD1 RD1 LC193 RD1 RD3 LC385 RD17 RD40 LC577 RD143 RD120
LC2 RD2 RD2 LC194 RD1 RD4 LC386 RD17 RD41 LC578 RD143 RD133
LC3 RD3 RD3 LC195 RD1 RD5 LC387 RD17 RD42 LC579 RD143 RD134
LC4 RD4 RD4 LC196 RD1 RD9 LC388 RD17 RD43 LC580 RD143 RD135
LC5 RD5 RD5 LC197 RD1 RD10 LC389 RD17 RD48 LC581 RD143 RD136
LC6 RD6 RD6 LC198 RD1 RD17 LC390 RD17 RD49 LC582 RD143 RD144
LC7 RD7 RD7 LC199 RD1 RD18 LC391 RD17 RD50 LC583 RD143 RD145
LC8 RD8 RD8 LC200 RD1 RD20 LC392 RD17 RD54 LC584 RD143 RD146
LC9 RD9 RD9 LC201 RD1 RD22 LC393 RD17 RD55 LC585 RD143 RD147
LC10 RD10 RD10 LC202 RD1 RD37 LC394 RD17 RD58 LC586 RD143 RD149
LC11 RD11 RD11 LC203 RD1 RD40 LC395 RD17 RD59 LC587 RD143 RD151
LC12 RD12 RD12 LC204 RD1 RD41 LC396 RD17 RD78 LC588 RD143 RD154
LC13 RD13 RD13 LC205 RD1 RD42 LC397 RD17 RD79 LC589 RD143 RD155
LC14 RD14 RD14 LC206 RD1 RD43 LC398 RD17 RD81 LC590 RD143 RD161
LC15 RD15 RD15 LC207 RD1 RD48 LC399 RD17 RD87 LC591 RD143 RD175
LC16 RD16 RD16 LC208 RD1 RD49 LC400 RD17 RD88 LC592 RD144 RD3
LC17 RD17 RD17 LC209 RD1 RD50 LC401 RD17 RD89 LC593 RD144 RD5
LC18 RD18 RD18 LC210 RD1 RD54 LC402 RD17 RD93 LC594 RD144 RD17
LC19 RD19 RD19 LC211 RD1 RD55 LC403 RD17 RD116 LC595 RD144 RD18
LC20 RD20 RD20 LC212 RD1 RD58 LC404 RD17 RD117 LC596 RD144 RD20
LC21 RD21 RD21 LC213 RD1 RD59 LC405 RD17 RD118 LC597 RD144 RD22
LC22 RD22 RD22 LC214 RD1 RD78 LC406 RD17 RD119 LC598 RD144 RD37
LC23 RD23 RD23 LC215 RD1 RD79 LC407 RD17 RD120 LC599 RD144 RD40
LC24 RD24 RD24 LC216 RD1 RD81 LC408 RD17 RD133 LC600 RD144 RD41
LC25 RD25 RD25 LC217 RD1 RD87 LC409 RD17 RD134 LC601 RD144 RD42
LC26 RD26 RD26 LC218 RD1 RD88 LC410 RD17 RD135 LC602 RD144 RD43
LC27 RD27 RD27 LC219 RD1 RD89 LC411 RD17 RD136 LC603 RD144 RD48
LC28 RD28 RD28 LC220 RD1 RD93 LC412 RD17 RD143 LC604 RD144 RD49
LC29 RD29 RD29 LC221 RD1 RD116 LC413 RD17 RD144 LC605 RD144 RD54
LC30 RD30 RD30 LC222 RD1 RD117 LC414 RD17 RD145 LC606 RD144 RD58
LC31 RD31 RD31 LC223 RD1 RD118 LC415 RD17 RD146 LC607 RD144 RD59
LC32 RD32 RD32 LC224 RD1 RD119 LC416 RD17 RD147 LC608 RD144 RD78
LC33 RD33 RD33 LC225 RD1 RD120 LC417 RD17 RD149 LC609 RD144 RD79
LC34 RD34 RD34 LC226 RD1 RD133 LC418 RD17 RD151 LC610 RD144 RD81
LC35 RD35 RD35 LC227 RD1 RD134 LC419 RD17 RD154 LC611 RD144 RD87
LC36 RD36 RD36 LC228 RD1 RD135 LC420 RD17 RD155 LC612 RD144 RD88
LC37 RD37 RD37 LC229 RD1 RD136 LC421 RD17 RD161 LC613 RD144 RD89
LC38 RD38 RD38 LC230 RD1 RD143 LC422 RD17 RD175 LC614 RD144 RD93
LC39 RD39 RD39 LC231 RD1 RD144 LC423 RD50 RD3 LC615 RD144 RD116
LC40 RD40 RD40 LC232 RD1 RD145 LC424 RD50 RD5 LC616 RD144 RD117
LC41 RD41 RD41 LC233 RD1 RD146 LC425 RD50 RD18 LC617 RD144 RD118
LC42 RD42 RD42 LC234 RD1 RD147 LC426 RD50 RD20 LC618 RD144 RD119
LC43 RD43 RD43 LC235 RD1 RD149 LC427 RD50 RD22 LC619 RD144 RD120
LC44 RD44 RD44 LC236 RD1 RD151 LC428 RD50 RD37 LC620 RD144 RD133
LC45 RD45 RD45 LC237 RD1 RD154 LC429 RD50 RD40 LC621 RD144 RD134
LC46 RD46 RD46 LC238 RD1 RD155 LC430 RD50 RD41 LC622 RD144 RD135
LC47 RD47 RD47 LC239 RD1 RD161 LC431 RD50 RD42 LC623 RD144 RD136
LC48 RD48 RD48 LC240 RD1 RD175 LC432 RD50 RD43 LC624 RD144 RD145
LC49 RD49 RD49 LC241 RD4 RD3 LC433 RD50 RD48 LC625 RD144 RD146
LC50 RD50 RD50 LC242 RD4 RD5 LC434 RD50 RD49 LC626 RD144 RD147
LC51 RD51 RD51 LC243 RD4 RD9 LC435 RD50 RD54 LC627 RD144 RD149
LC52 RD52 RD52 LC244 RD4 RD10 LC436 RD50 RD55 LC628 RD144 RD151
LC53 RD53 RD53 LC245 RD4 RD17 LC437 RD50 RD58 LC629 RD144 RD154
LC54 RD54 RD54 LC246 RD4 RD18 LC438 RD50 RD59 LC630 RD144 RD155
LC55 RD55 RD55 LC247 RD4 RD20 LC439 RD50 RD78 LC631 RD144 RD161
LC56 RD56 RD56 LC248 RD4 RD22 LC440 RD50 RD79 LC632 RD144 RD175
LC57 RD57 RD57 LC249 RD4 RD37 LC441 RD50 RD81 LC633 RD145 RD3
LC58 RD58 RD58 LC250 RD4 RD40 LC442 RD50 RD87 LC634 RD145 RD5
LC59 RD59 RD59 LC251 RD4 RD41 LC443 RD50 RD88 LC635 RD145 RD17
LC60 RD60 RD60 LC252 RD4 RD42 LC444 RD50 RD89 LC636 RD145 RD18
LC61 RD61 RD61 LC253 RD4 RD43 LC445 RD50 RD93 LC637 RD145 RD20
LC62 RD62 RD62 LC254 RD4 RD48 LC446 RD50 RD116 LC638 RD145 RD22
LC63 RD63 RD63 LC255 RD4 RD49 LC447 RD50 RD117 LC639 RD145 RD37
LC64 RD64 RD64 LC256 RD4 RD50 LC448 RD50 RD118 LC640 RD145 RD40
LC65 RD65 RD65 LC257 RD4 RD54 LC449 RD50 RD119 LC641 RD145 RD41
LC66 RD66 RD66 LC258 RD4 RD55 LC450 RD50 RD120 LC642 RD145 RD42
LC67 RD67 RD67 LC259 RD4 RD58 LC451 RD50 RD133 LC643 RD145 RD43
LC68 RD68 RD68 LC260 RD4 RD59 LC452 RD50 RD134 LC644 RD145 RD48
LC69 RD69 RD69 LC261 RD4 RD78 LC453 RD50 RD135 LC645 RD145 RD49
LC70 RD70 RD70 LC262 RD4 RD79 LC454 RD50 RD136 LC646 RD145 RD54
LC71 RD71 RD71 LC263 RD4 RD81 LC455 RD50 RD143 LC647 RD145 RD58
LC72 RD72 RD72 LC264 RD4 RD87 LC456 RD50 RD144 LC648 RD145 RD59
LC73 RD73 RD73 LC265 RD4 RD88 LC457 RD50 RD145 LC649 RD145 RD78
LC74 RD74 RD74 LC266 RD4 RD89 LC458 RD50 RD146 LC650 RD145 RD79
LC75 RD75 RD75 LC267 RD4 RD93 LC459 RD50 RD147 LC651 RD145 RD81
LC76 RD76 RD76 LC268 RD4 RD116 LC460 RD50 RD149 LC652 RD145 RD87
LC77 RD77 RD77 LC269 RD4 RD117 LC461 RD50 RD151 LC653 RD145 RD88
LC78 RD78 RD78 LC270 RD4 RD118 LC462 RD50 RD154 LC654 RD145 RD89
LC79 RD79 RD79 LC271 RD4 RD119 LC463 RD50 RD155 LC655 RD145 RD93
LC8O RD80 RD80 LC272 RD4 RD120 LC464 RD50 RD161 LC656 RD145 RD116
LC81 RD81 RD81 LC273 RD4 RD133 LC465 RD50 RD175 LC657 RD145 RD117
LC82 RD82 RD82 LC274 RD4 RD134 LC466 RD55 RD3 LC658 RD145 RD118
LC83 RD83 RD83 LC275 RD4 RD135 LC467 RD55 RD5 LC659 RD145 RD119
LC84 RD84 RD84 LC276 RD4 RD136 LC468 RD55 RD18 LC660 RD145 RD120
LC85 RD85 RD85 LC277 RD4 RD143 LC469 RD55 RD20 LC661 RD145 RD133
LC86 RD86 RD86 LC278 RD4 RD144 LC470 RD55 RD22 LC662 RD145 RD134
LC87 RD87 RD87 LC279 RD4 RD145 LC471 RD55 RD37 LC663 RD145 RD135
LC88 RD88 RD88 LC280 RD4 RD146 LC472 RD55 RD40 LC664 RD145 RD136
LC89 RD89 RD89 LC281 RD4 RD147 LC473 RD55 RD41 LC665 RD145 RD146
LC90 RD90 RD90 LC282 RD4 RD149 LC474 RD55 RD42 LC666 RD145 RD147
LC91 RD91 RD91 LC283 RD4 RD151 LC475 RD55 RD43 LC667 RD145 RD149
LC92 RD92 RD92 LC284 RD4 RD154 LC476 RD55 RD48 LC668 RD145 RD151
LC93 RD93 RD93 LC285 RD4 RD155 LC477 RD55 RD49 LC669 RD145 RD154
LC94 RD94 RD94 LC286 RD4 RD161 LC478 RD55 RD54 LC670 RD145 RD155
LC95 RD95 RD95 LC287 RD4 RD175 LC479 RD55 RD58 LC671 RD145 RD161
LC96 RD96 RD96 LC288 RD9 RD3 LC480 RD55 RD59 LC672 RD145 RD175
LC97 RD97 RD97 LC289 RD9 RD5 LC481 RD55 RD78 LC673 RD146 RD3
LC98 RD98 RD98 LC290 RD9 RD10 LC482 RD55 RD79 LC674 RD146 RD5
LC99 RD99 RD99 LC291 RD9 RD17 LC483 RD55 RD81 LC675 RD146 RD17
LC100 RD100 RD100 LC292 RD9 RD18 LC484 RD55 RD87 LC676 RD146 RD18
LC101 RD101 RD101 LC293 RD9 RD20 LC485 RD55 RD88 LC677 RD146 RD20
LC102 RD102 RD102 LC294 RD9 RD22 LC486 RD55 RD89 LC678 RD146 RD22
LC103 RD103 RD103 LC295 RD9 RD37 LC487 RD55 RD93 LC679 RD146 RD37
LC104 RD104 RD104 LC296 RD9 RD40 LC488 RD55 RD116 LC680 RD146 RD40
LC105 RD105 RD105 LC297 RD9 RD41 LC489 RD55 RD117 LC681 RD146 RD41
LC106 RD106 RD106 LC298 RD9 RD42 LC490 RD55 RD118 LC682 RD146 RD42
LC107 RD107 RD107 LC299 RD9 RD43 LC491 RD55 RD119 LC683 RD146 RD43
LC108 RD108 RD108 LC300 RD9 RD48 LC492 RD55 RD120 LC684 RD146 RD48
LC109 RD109 RD109 LC301 RD9 RD49 LC493 RD55 RD133 LC685 RD146 RD49
LC110 RD110 RD110 LC302 RD9 RD50 LC494 RD55 RD134 LC686 RD146 RD54
LC111 RD111 RD111 LC303 RD9 RD54 LC495 RD55 RD135 LC687 RD146 RD58
LC112 RD112 RD112 LC304 RD9 RD55 LC496 RD55 RD136 LC688 RD146 RD59
LC113 RD113 RD113 LC305 RD9 RD58 LC497 RD55 RD143 LC689 RD146 RD78
LC114 RD114 RD114 LC306 RD9 RD59 LC498 RD55 RD144 LC690 RD146 RD79
LC115 RD115 RD115 LC307 RD9 RD78 LC499 RD55 RD145 LC691 RD146 RD81
LC116 RD116 RD116 LC308 RD9 RD79 LC500 RD55 RD146 LC692 RD146 RD87
LC117 RD117 RD117 LC309 RD9 RD81 LC501 RD55 RD147 LC693 RD146 RD88
LC118 RD118 RD118 LC310 RD9 RD87 LC502 RD55 RD149 LC694 RD146 RD89
LC119 RD119 RD119 LC311 RD9 RD88 LC503 RD55 RD151 LC695 RD146 RD93
LC120 RD120 RD120 LC312 RD9 RD89 LC504 RD55 RD154 LC696 RD146 RD117
LC121 RD121 RD121 LC313 RD9 RD93 LC505 RD55 RD155 LC697 RD146 RD118
LC122 RD122 RD122 LC314 RD9 RD116 LC506 RD55 RD161 LC698 RD146 RD119
LC123 RD123 RD123 LC315 RD9 RD117 LC507 RD55 RD175 LC699 RD146 RD120
LC124 RD124 RD124 LC316 RD9 RD118 LC508 RD116 RD3 LC700 RD146 RD133
LC125 RD125 RD125 LC317 RD9 RD119 LC509 RD116 RD5 LC701 RD146 RD134
LC126 RD126 RD126 LC318 RD9 RD120 LC510 RD116 RD17 LC702 RD146 RD135
LC127 RD127 RD127 LC319 RD9 RD133 LC511 RD116 RD18 LC703 RD146 RD136
LC128 RD128 RD128 LC320 RD9 RD134 LC512 RD116 RD20 LC704 RD146 RD146
LC129 RD129 RD129 LC321 RD9 RD135 LC513 RD116 RD22 LC705 RD146 RD147
LC130 RD130 RD130 LC322 RD9 RD136 LC514 RD116 RD37 LC706 RD146 RD149
LC131 RD131 RD131 LC323 RD9 RD143 LC515 RD116 RD40 LC707 RD146 RD151
LC132 RD132 RD132 LC324 RD9 RD144 LC516 RD116 RD41 LC708 RD146 RD154
LC133 RD133 RD133 LC325 RD9 RD145 LC517 RD116 RD42 LC709 RD146 RD155
LC134 RD134 RD134 LC326 RD9 RD146 LC518 RD116 RD43 LC710 RD146 RD161
LC135 RD135 RD135 LC327 RD9 RD147 LC519 RD116 RD48 LC711 RD146 RD175
LC136 RD136 RD136 LC328 RD9 RD149 LC520 RD116 RD49 LC712 RD133 RD3
LC137 RD137 RD137 LC329 RD9 RD151 LC521 RD116 RD54 LC713 RD133 RD5
LC138 RD138 RD138 LC330 RD9 RD154 LC522 RD116 RD58 LC714 RD133 RD3
LC139 RD139 RD139 LC331 RD9 RD155 LC523 RD116 RD59 LC715 RD133 RD18
LC140 RD140 RD140 LC332 RD9 RD161 LC524 RD116 RD78 LC716 RD133 RD20
LC141 RD141 RD141 LC333 RD9 RD175 LC525 RD116 RD79 LC717 RD133 RD22
LC142 RD142 RD142 LC334 RD10 RD3 LC526 RD116 RD81 LC718 RD133 RD37
LC143 RD143 RD143 LC335 RD10 RD5 LC527 RD116 RD87 LC719 RD133 RD40
LC144 RD144 RD144 LC336 RD10 RD17 LC528 RD116 RD88 LC720 RD133 RD41
LC145 RD145 RD145 LC337 RD10 RD18 LC529 RD116 RD89 LC721 RD133 RD42
LC146 RD146 RD146 LC338 RD10 RD20 LC530 RD116 RD93 LC722 RD133 RD43
LC147 RD147 RD147 LC339 RD10 RD22 LC531 RD116 RD117 LC723 RD133 RD48
LC148 RD148 RD148 LC340 RD10 RD37 LC532 RD116 RD118 LC724 RD133 RD49
LC149 RD149 RD149 LC341 RD10 RD40 LC533 RD116 RD119 LC725 RD133 RD54
LC150 RD150 RD150 LC342 RD10 RD41 LC534 RD116 RD120 LC726 RD133 RD58
LC151 RD151 RD151 LC343 RD10 RD42 LC535 RD116 RD133 LC727 RD133 RD59
LC152 RD152 RD152 LC344 RD10 RD43 LC536 RD116 RD134 LC728 RD133 RD78
LC153 RD153 RD153 LC345 RD10 RD48 LC537 RD116 RD135 LC729 RD133 RD79
LC154 RD154 RD154 LC346 RD10 RD49 LC538 RD116 RD136 LC730 RD133 RD81
LC155 RD155 RD155 LC347 RD10 RD50 LC539 RD116 RD143 LC731 RD133 RD87
LC156 RD156 RD156 LC348 RD10 RD54 LC540 RD116 RD144 LC732 RD133 RD88
LC157 RD157 RD157 LC349 RD10 RD55 LC541 RD116 RD145 LC733 RD133 RD89
LC158 RD158 RD158 LC350 RD10 RD58 LC542 RD116 RD146 LC734 RD133 RD93
LC159 RD159 RD159 LC351 RD10 RD59 LC543 RD116 RD147 LC735 RD133 RD117
LC160 RD160 RD160 LC352 RD10 RD78 LC544 RD116 RD149 LC736 RD133 RD118
LC161 RD161 RD161 LC353 RD10 RD79 LC545 RD116 RD151 LC737 RD133 RD119
LC162 RD162 RD162 LC354 RD10 RD81 LC546 RD116 RD154 LC738 RD133 RD120
LC163 RD163 RD163 LC355 RD10 RD87 LC547 RD116 RD155 LC739 RD133 RD133
LC164 RD164 RD164 LC356 RD10 RD88 LC548 RD116 RD161 LC740 RD133 RD134
LC165 RD165 RD165 LC357 RD10 RD89 LC549 RD116 RD175 LC741 RD133 RD135
LC166 RD166 RD166 LC358 RD10 RD93 LC550 RD143 RD3 LC742 RD133 RD136
LC167 RD167 RD167 LC359 RD10 RD116 LC551 RD143 RD5 LC743 RD133 RD146
LC168 RD168 RD168 LC360 RD10 RD117 LC552 RD143 RD17 LC744 RD133 RD147
LC169 RD169 RD169 LC361 RD10 RD118 LC553 RD143 RD18 LC745 RD133 RD149
LC170 RD170 RD170 LC362 RD10 RD119 LC554 RD143 RD20 LC746 RD133 RD151
LC171 RD171 RD171 LC363 RD10 RD120 LC555 RD143 RD22 LC747 RD133 RD154
LC172 RD172 RD172 LC364 RD10 RD133 LC556 RD143 RD37 LC748 RD133 RD155
LC173 RD173 RD173 LC365 RD10 RD134 LC557 RD143 RD40 LC749 RD133 RD161
LC174 RD174 RD174 LC366 RD10 RD135 LC558 RD143 RD41 LC750 RD133 RD175
LC175 RD175 RD175 LC367 RD10 RD136 LC559 RD143 RD42 LC751 RD175 RD3
LC176 RD176 RD176 LC368 RD10 RD143 LC560 RD143 RD43 LC752 RD175 RD5
LC177 RD177 RD177 LC369 RD10 RD144 LC561 RD143 RD48 LC753 RD175 RD18
LC178 RD178 RD178 LC370 RD10 RD145 LC562 RD143 RD49 LC754 RD175 RD20
LC179 RD179 RD179 LC371 RD10 RD146 LC563 RD143 RD54 LC755 RD175 RD22
LC180 RD180 RD180 LC372 RD10 RD147 LC564 RD143 RD58 LC756 RD175 RD37
LC181 RD181 RD181 LC373 RD10 RD149 LC565 RD143 RD59 LC757 RD175 RD40
LC182 RD182 RD182 LC374 RD10 RD151 LC566 RD143 RD78 LC758 RD175 RD41
LC183 RD183 RD183 LC375 RD10 RD154 LC567 RD143 RD79 LC759 RD175 RD42
LC184 RD184 RD184 LC376 RD10 RD155 LC568 RD143 RD81 LC760 RD175 RD43
LC185 RD185 RD185 LC377 RD10 RD161 LC569 RD143 RD87 LC761 RD175 RD48
LC186 RD186 RD186 LC378 RD10 RD175 LC570 RD143 RD88 LC762 RD175 RD49
LC187 RD187 RD187 LC379 RD17 RD3 LC571 RD143 RD89 LC763 RD175 RD54
LC188 RD188 RD188 LC380 RD17 RD5 LC572 RD143 RD93 LC764 RD175 RD58
LC189 RD189 RD189 LC381 RD17 RD18 LC573 RD143 RD116 LC765 RD175 RD59
LC190 RD190 RD190 LC382 RD17 RD20 LC574 RD143 RD117 LC766 RD175 RD78
LC191 RD191 RD191 LC383 RD17 RD22 LC575 RD143 RD118 LC767 RD175 RD79
LC192 RD192 RD192 LC384 RD17 RD37 LC576 RD143 RD119 LC768 RD175 RD81
LC769 RD193 RD193 LC877 RD1 RD193 LC985 RD4 RD193 LC1093 RD9 RD193
LC770 RD194 RD194 LC878 RD1 RD194 LC986 RD4 RD194 LC1094 RD9 RD194
LC771 RD195 RD195 LC879 RD1 RD195 LC987 RD4 RD195 LC1095 RD9 RD195
LC772 RD196 RD196 LC880 RD1 RD196 LC988 RD4 RD196 LC1096 RD9 RD196
LC773 RD197 RD197 LC881 RD1 RD197 LC989 RD4 RD197 LC1097 RD9 RD197
LC774 RD198 RD198 LC882 RD1 RD198 LC990 RD4 RD198 LC1098 RD9 RD198
LC775 RD199 RD199 LC883 RD1 RD199 LC991 RD4 RD199 LC1099 RD9 RD199
LC776 RD200 RD200 LC884 RD1 RD200 LC992 RD4 RD200 LC1100 RD9 RD200
LC777 RD201 RD201 LC885 RD1 RD201 LC993 RD4 RD201 LC1101 RD9 RD201
LC778 RD202 RD202 LC886 RD1 RD202 LC994 RD4 RD202 LC1102 RD9 RD202
LC779 RD203 RD203 LC887 RD1 RD203 LC995 RD4 RD203 LC1103 RD9 RD203
LC780 RD204 RD204 LC888 RD1 RD204 LC996 RD4 RD204 LC1104 RD9 RD204
LC781 RD205 RD205 LC889 RD1 RD205 LC997 RD4 RD205 LC1105 RD9 RD205
LC782 RD206 RD206 LC890 RD1 RD206 LC998 RD4 RD206 LC1106 RD9 RD206
LC783 RD207 RD207 LC891 RD1 RD207 LC999 RD4 RD207 LC1107 RD9 RD207
LC784 RD208 RD208 LC892 RD1 RD208 LC1000 RD4 RD208 LC1108 RD9 RD208
LC785 RD209 RD209 LC893 RD1 RD209 LC1001 RD4 RD209 LC1109 RD9 RD209
LC786 RD210 RD210 LC894 RD1 RD210 LC1002 RD4 RD210 LC1110 RD9 RD210
LC787 RD211 RD211 LC895 RD1 RD211 LC1003 RD4 RD211 LC1111 RD9 RD211
LC788 RD212 RD212 LC896 RD1 RD212 LC1004 RD4 RD212 LC1112 RD9 RD212
LC789 RD213 RD213 LC897 RD1 RD213 LC1005 RD4 RD213 LC1113 RD9 RD213
LC790 RD214 RD214 LC898 RD1 RD214 LC1006 RD4 RD214 LC1114 RD9 RD214
LC791 RD215 RD215 LC899 RD1 RD215 LC1007 RD4 RD215 LC1115 RD9 RD215
LC792 RD216 RD216 LC900 RD1 RD216 LC1008 RD4 RD216 LC1116 RD9 RD216
LC793 RD217 RD217 LC901 RD1 RD217 LC1009 RD4 RD217 LC1117 RD9 RD217
LC794 RD218 RD218 LC902 RD1 RD218 LC1010 RD4 RD218 LC1118 RD9 RD218
LC795 RD219 RD219 LC903 RD1 RD219 LC1011 RD4 RD219 LC1119 RD9 RD219
LC796 RD220 RD220 LC904 RD1 RD220 LC1012 RD4 RD220 LC1120 RD9 RD220
LC797 RD221 RD221 LC905 RD1 RD221 LC1013 RD4 RD221 LC1121 RD9 RD221
LC798 RD222 RD222 LC906 RD1 RD222 LC1014 RD4 RD222 LC1122 RD9 RD222
LC799 RD223 RD223 LC907 RD1 RD223 LC1015 RD4 RD223 LC1123 RD9 RD223
LC800 RD224 RD224 LC908 RD1 RD224 LC1016 RD4 RD224 LC1124 RD9 RD224
LC801 RD225 RD225 LC909 RD1 RD225 LC1017 RD4 RD225 LC1125 RD9 RD225
LC802 RD226 RD226 LC910 RD1 RD226 LC1018 RD4 RD226 LC1126 RD9 RD226
LC803 RD227 RD227 LC911 RD1 RD227 LC1019 RD4 RD227 LC1127 RD9 RD227
LC804 RD228 RD228 LC912 RD1 RD228 LC1020 RD4 RD228 LC1128 RD9 RD228
LC805 RD229 RD229 LC913 RD1 RD229 LC1021 RD4 RD229 LC1129 RD9 RD229
LC806 RD230 RD230 LC914 RD1 RD230 LC1022 RD4 RD230 LC1130 RD9 RD230
LC807 RD231 RD231 LC915 RD1 RD231 LC1023 RD4 RD231 LC1131 RD9 RD231
LC808 RD232 RD232 LC916 RD1 RD232 LC1024 RD4 RD232 LC1132 RD9 RD232
LC809 RD233 RD233 LC917 RD1 RD233 LC1025 RD4 RD233 LC1133 RD9 RD233
LC810 RD234 RD234 LC918 RD1 RD234 LC1026 RD4 RD234 LC1134 RD9 RD234
LC811 RD235 RD235 LC919 RD1 RD235 LC1027 RD4 RD235 LC1135 RD9 RD235
LC812 RD236 RD236 LC920 RD1 RD236 LC1028 RD4 RD236 LC1136 RD9 RD236
LC813 RD237 RD237 LC921 RD1 RD237 LC1029 RD4 RD237 LC1137 RD9 RD237
LC814 RD238 RD238 LC922 RD1 RD238 LC1030 RD4 RD238 LC1138 RD9 RD238
LC815 RD239 RD239 LC923 RD1 RD239 LC1031 RD4 RD239 LC1139 RD9 RD239
LC8116 RD240 RD240 LC924 RD1 RD240 LC1032 RD4 RD240 LC1140 RD9 RD240
LC817 RD241 RD241 LC925 RD1 RD241 LC1033 RD4 RD241 LC1141 RD9 RD241
LC818 RD242 RD242 LC926 RD1 RD242 LC1034 RD4 RD242 LC1142 RD9 RD242
LC819 RD243 RD243 LC927 RD1 RD243 LC1035 RD4 RD243 LC1143 RD9 RD243
LC820 RD244 RD244 LC928 RD1 RD244 LC1036 RD4 RD244 LC1144 RD9 RD244
LC821 RD245 RD245 LC929 RD1 RD245 LC1037 RD4 RD245 LC1145 RD9 RD245
LC822 RD246 RD246 LC930 RD1 RD246 LC1038 RD4 RD246 LC1146 RD9 RD246
LC823 RD17 RD193 LC931 RD50 RD193 LC1039 RD145 RD193 LC1147 RD168 RD193
LC824 RD17 RD194 LC932 RD50 RD194 LC1040 RD145 RD194 LC1148 RD168 RD194
LC825 RD17 RD195 LC933 RD50 RD195 LC1041 RD145 RD195 LC1149 RD168 RD195
LC826 RD17 RD196 LC934 RD50 RD196 LC1042 RD145 RD196 LC1150 RD168 RD196
LC827 RD17 RD197 LC935 RD50 RD197 LC1043 RD145 RD197 LC1151 RD168 RD197
LC828 RD17 RD198 LC936 RD50 RD198 LC1044 RD145 RD198 LC1152 RD168 RD198
LC829 RD17 RD199 LC937 RD50 RD199 LC1045 RD145 RD199 LC1153 RD168 RD199
LC830 RD17 RD200 LC938 RD50 RD200 LC1046 RD145 RD200 LC1154 RD168 RD200
LC831 RD17 RD201 LC939 RD50 RD201 LC1047 RD145 RD201 LC1155 RD168 RD201
LC832 RD17 RD202 LC940 RD50 RD202 LC1048 RD145 RD202 LC1156 RD168 RD202
LC833 RD17 RD203 LC941 RD50 RD203 LC1049 RD145 RD203 LC1157 RD168 RD203
LC834 RD17 RD204 LC942 RD50 RD204 LC1050 RD145 RD204 LC1158 RD168 RD204
LC835 RD17 RD205 LC943 RD50 RD205 LC1051 RD145 RD205 LC1159 RD168 RD205
LC836 RD17 RD206 LC944 RD50 RD206 LC1052 RD145 RD206 LC1160 RD168 RD206
LC837 RD17 RD207 LC945 RD50 RD207 LC1053 RD145 RD207 LC1161 RD168 RD207
LC838 RD17 RD208 LC946 RD50 RD208 LC1054 RD145 RD208 LC1162 RD168 RD208
LC839 RD17 RD209 LC947 RD50 RD209 LC1055 RD145 RD209 LC1163 RD168 RD209
LC840 RD17 RD210 LC948 RD50 RD210 LC1056 RD145 RD210 LC1164 RD168 RD210
LC841 RD17 RD211 LC949 RD50 RD211 LC1057 RD145 RD211 LC1165 RD168 RD211
LC842 RD17 RD212 LC950 RD50 RD212 LC1058 RD145 RD212 LC1166 RD168 RD212
LC843 RD17 RD213 LC951 RD50 RD213 LC1059 RD145 RD213 LC1167 RD168 RD213
LC844 RD17 RD214 LC952 RD50 RD214 LC1060 RD145 RD214 LC1168 RD168 RD214
LC845 RD17 RD215 LC953 RD50 RD215 LC1061 RD145 RD215 LC1169 RD168 RD215
LC846 RD17 RD216 LC954 RD50 RD216 LC1062 RD145 RD216 LC1170 RD168 RD216
LC847 RD17 RD217 LC955 RD50 RD217 LC1063 RD145 RD217 LC1171 RD168 RD217
LC848 RD17 RD218 LC956 RD50 RD218 LC1064 RD145 RD218 LC1172 RD168 RD218
LC849 RD17 RD219 LC957 RD50 RD219 LC1065 RD145 RD219 LC1173 RD168 RD219
LC850 RD17 RD220 LC958 RD50 RD220 LC1066 RD145 RD220 LC1174 RD168 RD220
LC851 RD17 RD221 LC959 RD50 RD221 LC1067 RD145 RD221 LC1175 RD168 RD221
LC852 RD17 RD222 LC960 RD50 RD222 LC1068 RD145 RD222 LC1176 RD168 RD222
LC853 RD17 RD223 LC961 RD50 RD223 LC1069 RD145 RD223 LC1177 RD168 RD223
LC854 RD17 RD224 LC962 RD50 RD224 LC1070 RD145 RD224 LC1178 RD168 RD224
LC855 RD17 RD225 LC963 RD50 RD225 LC1071 RD145 RD225 LC1179 RD168 RD225
LC856 RD17 RD226 LC964 RD50 RD226 LC1072 RD145 RD226 LC1180 RD168 RD226
LC857 RD17 RD227 LC965 RD50 RD227 LC1073 RD145 RD227 LC1181 RD168 RD227
LC858 RD17 RD228 LC966 RD50 RD228 LC1074 RD145 RD228 LC1182 RD168 RD228
LC859 RD17 RD229 LC967 RD50 RD229 LC1075 RD145 RD229 LC1183 RD168 RD229
LC860 RD17 RD230 LC968 RD50 RD230 LC1076 RD145 RD230 LC1184 RD168 RD230
LC861 RD17 RD231 LC969 RD50 RD231 LC1077 RD145 RD231 LC1185 RD168 RD231
LC862 RD17 RD232 LC970 RD50 RD232 LC1078 RD145 RD232 LC1186 RD168 RD232
LC863 RD17 RD233 LC971 RD50 RD233 LC1079 RD145 RD233 LC1187 RD168 RD233
LC864 RD17 RD234 LC972 RD50 RD234 LC1080 RD145 RD234 LC1188 RD168 RD234
LC865 RD17 RD235 LC973 RD50 RD235 LC1081 RD145 RD235 LC1189 RD168 RD235
LC866 RD17 RD236 LC974 RD50 RD236 LC1082 RD145 RD236 LC1190 RD168 RD236
LC867 RD17 RD237 LC975 RD50 RD237 LC1083 RD145 RD237 LC1191 RD168 RD237
LC868 RD17 RD238 LC976 RD50 RD238 LC1084 RD145 RD238 LC1192 RD168 RD238
LC869 RD17 RD239 LC977 RD50 RD239 LC1085 RD145 RD239 LC1193 RD168 RD239
LC870 RD17 RD240 LC978 RD50 RD240 LC1086 RD145 RD240 LC1194 RD168 RD240
LC871 RD17 RD241 LC979 RD50 RD241 LC1087 RD145 RD241 LC1195 RD168 RD241
LC872 RD17 RD242 LC980 RD50 RD242 LC1088 RD145 RD242 LC1196 RD168 RD242
LC873 RD17 RD243 LC981 RD50 RD243 LC1089 RD145 RD243 LC1197 RD168 RD243
LC874 RD17 RD244 LC982 RD50 RD244 LC1090 RD145 RD244 LC1198 RD168 RD244
LC875 RD17 RD245 LC983 RD50 RD245 LC1091 RD145 RD245 LC1199 RD168 RD245
LC876 RD17 RD246 LC984 RD50 RD246 LC1092 RD145 RD246 LC1200 RD168 RD246
LC1201 RD10 RD193 LC1255 RD55 RD193 LC1309 RD37 RD193 LC1363 RD143 RD193
LC1202 RD10 RD194 LC1256 RD55 RD194 LC1310 RD37 RD194 LC1364 RD143 RD194
LC1203 RD10 RD195 LC1257 RD55 RD195 LC1311 RD37 RD195 LC1365 RD143 RD195
LC1204 RD10 RD196 LC1258 RD55 RD196 LC1312 RD37 RD196 LC1366 RD143 RD196
LC1205 RD10 RD197 LC1259 RD55 RD197 LC1313 RD37 RD197 LC1367 RD143 RD197
LC1206 RD10 RD198 LC1260 RD55 RD198 LC1314 RD37 RD198 LC1368 RD143 RD198
LC1207 RD10 RD199 LC1261 RD55 RD199 LC1315 RD37 RD199 LC1369 RD143 RD199
LC1208 RD10 RD200 LC1262 RD55 RD200 LC1316 RD37 RD200 LC1370 RD143 RD200
LC1209 RD10 RD201 LC1263 RD55 RD201 LC1317 RD37 RD201 LC1371 RD143 RD201
LC1210 RD10 RD202 LC1264 RD55 RD202 LC1318 RD37 RD202 LC1372 RD143 RD202
LC1211 RD10 RD203 LC1265 RD55 RD203 LC1319 RD37 RD203 LC1373 RD143 RD203
LC1212 RD10 RD204 LC1266 RD55 RD204 LC1320 RD37 RD204 LC1374 RD143 RD204
LC1213 RD10 RD205 LC1267 RD55 RD205 LC1321 RD37 RD205 LC1375 RD143 RD205
LC1214 RD10 RD206 LC1268 RD55 RD206 LC1322 RD37 RD206 LC1376 RD143 RD206
LC1215 RD10 RD207 LC1269 RD55 RD207 LC1323 RD37 RD207 LC1377 RD143 RD207
LC1216 RD10 RD208 LC1270 RD55 RD208 LC1324 RD37 RD208 LC1378 RD143 RD208
LC1217 RD10 RD209 LC1271 RD55 RD209 LC1325 RD37 RD209 LC1379 RD143 RD209
LC1218 RD10 RD210 LC1272 RD55 RD210 LC1326 RD37 RD210 LC1380 RD143 RD210
LC1219 RD10 RD211 LC1273 RD55 RD211 LC1327 RD37 RD211 LC1381 RD143 RD211
LC1220 RD10 RD212 LC1274 RD55 RD212 LC1328 RD37 RD212 LC1382 RD143 RD212
LC1221 RD10 RD213 LC1275 RD55 RD213 LC1329 RD37 RD213 LC1383 RD143 RD213
LC1222 RD10 RD214 LC1276 RD55 RD214 LC1330 RD37 RD214 LC1384 RD143 RD214
LC1223 RD10 RD215 LC1277 RD55 RD215 LC1331 RD37 RD215 LC1385 RD143 RD215
LC1224 RD10 RD216 LC1278 RD55 RD216 LC1332 RD37 RD216 LC1386 RD143 RD216
LC1225 RD10 RD217 LC1279 RD55 RD217 LC1333 RD37 RD217 LC1387 RD143 RD217
LC1226 RD10 RD218 LC1280 RD55 RD218 LC1334 RD37 RD218 LC1388 RD143 RD218
LC1227 RD10 RD219 LC1281 RD55 RD219 LC1335 RD37 RD219 LC1389 RD143 RD219
LC1228 RD10 RD220 LC1282 RD55 RD220 LC1336 RD37 RD220 LC1390 RD143 RD220
LC1229 RD10 RD221 LC1283 RD55 RD221 LC1337 RD37 RD221 LC1391 RD143 RD221
LC1230 RD10 RD222 LC1284 RD55 RD222 LC1338 RD37 RD222 LC1392 RD143 RD222
LC1231 RD10 RD223 LC1285 RD55 RD223 LC1339 RD37 RD223 LC1393 RD143 RD223
LC1232 RD10 RD224 LC1286 RD55 RD224 LC1340 RD37 RD224 LC1394 RD143 RD224
LC1233 RD10 RD225 LC1287 RD55 RD225 LC1341 RD37 RD225 LC1395 RD143 RD225
LC1234 RD10 RD226 LC1288 RD55 RD226 LC1342 RD37 RD226 LC1396 RD143 RD226
LC1235 RD10 RD227 LC1289 RD55 RD227 LC1343 RD37 RD227 LC1397 RD143 RD227
LC1236 RD10 RD228 LC1290 RD55 RD228 LC1344 RD37 RD228 LC1398 RD143 RD228
LC1237 RD10 RD229 LC1291 RD55 RD229 LC1345 RD37 RD229 LC1399 RD143 RD229
LC1238 RD10 RD230 LC1292 RD55 RD230 LC1346 RD37 RD230 LC1400 RD143 RD230
LC1239 RD10 RD231 LC1293 RD55 RD231 LC1347 RD37 RD231 LC1401 RD143 RD231
LC1240 RD10 RD232 LC1294 RD55 RD232 LC1348 RD37 RD232 LC1402 RD143 RD232
LC1241 RD10 RD233 LC1295 RD55 RD233 LC1349 RD37 RD233 LC1403 RD143 RD233
LC1242 RD10 RD234 LC1296 RD55 RD234 LC1350 RD37 RD234 LC1404 RD143 RD234
LC1243 RD10 RD235 LC1297 RD55 RD235 LC1351 RD37 RD235 LC1405 RD143 RD235
LC1244 RD10 RD236 LC1298 RD55 RD236 LC1352 RD37 RD236 LC1406 RD143 RD236
LC1245 RD10 RD237 LC1299 RD55 RD237 LC1353 RD37 RD237 LC1407 RD143 RD237
LC1246 RD10 RD238 LC1300 RD55 RD238 LC1354 RD37 RD238 LC1408 RD143 RD238
LC1247 RD10 RD239 LC1301 RD55 RD239 LC1355 RD37 RD239 LC1409 RD143 RD239
LC1248 RD10 RD240 LC1302 RD55 RD240 LC1356 RD37 RD240 LC1410 RD143 RD240
LC1249 RD10 RD241 LC1303 RD55 RD241 LC1357 RD37 RD241 LC1411 RD143 RD241
LC1250 RD10 RD242 LC1304 RD55 RD242 LC1358 RD37 RD242 LC1412 RD143 RD242
LC1251 RD10 RD243 LC1305 RD55 RD243 LC1359 RD37 RD243 LC1413 RD143 RD243
LC1252 RD10 RD244 LC1306 RD55 RD244 LC1360 RD37 RD244 LC1414 RD143 RD244
LC1253 RD10 RD245 LC1307 RD55 RD245 LC1361 RD37 RD245 LC1415 RD143 RD245
LC1254 RD10 RD246 LC1308 RD55 RD246 LC1362 RD37 RD246 LC1416 RD143 RD246
wherein RD1 to RD246 have the structures in the following LIST 11:

































































[0080] In some embodiments, the compound has the formula Ir(LAi-m)(LBk)2 or Ir(LAi-m)2(LBk), wherein the compound is selected from the group consisting of only those compounds having one of the following structures for the LBk ligand: LB1, LB2, LB18, LB28, LB38, LB108, LB118, LB122, LB124, LB126, LB128, LB130, LB32, LB134, LB136, LB138, LB140, LB142, LB144, LB156, LB58, LB160, LB162, LB164, LB168, LB172, LB175, LB204, LB206, LB214, LB216, LB218, LB220, LB222, LB231, LB233, LB235, LB237, LB240, LB242, LB244, LB246, LB248, LB250, LB252, LB254, LB256, LB258, LB260, LB262, LB263, LB264, LB265, LB266, LB267, LB268, LB269, and LB270.

[0081] In some embodiments, the compound has the formula Ir(LAi-m)(LBk)2 or Ir(LAi-m)2(LBk), wherein the compound is selected from the group consisting of only those compounds having one of the following structures for the LBk ligand: LB1, LB2, LB18, LB28, LB38, LB108, LB118, LB122, LB124, LB126, LB128, LB132, LB136, LB138, LB142, LB156, LB162, LB204, LB206, LB214, LB216, LB218, LB220, LB231, LB233, LB237, LB265, LB266, LB267, LB268, LB269, and LB270.

[0082] In some embodiments, the compound has the formula Ir(LAi-m)2(LCj-I) or Ir(LAi-m)2(LCj-II), wherein the compound is selected from the group consisting of only those compounds having LCj-I or LCj-II ligand whose corresponding R201 and R202 are defined to be one the structures of the following LIST 12:





















[0083] In some embodiments, the compound has the formula Ir(LAi-m)2(LCj-I) or Ir(LAi-m)2(LCj-II), wherein the compound is selected from the group consisting of only those compounds having LCj-I or LCj-II ligand whose corresponding R201 and R202 are defined to be one of the structures in the following LIST 13:











[0084] In some embodiments, the compound has the formula Ir(LAi-m)2(LCj-I), and the compound is selected from the group consisting of only those compounds having one of the structures in the following LIST 14 for the LCj-I ligand:





















[0085] In some embodiments, the compound is selected from the group consisting of the structures of the following LIST 15:





































































































and



[0086] In some embodiments, the compound having a Formula Ir(LA)(LB)(LC) described herein can be at least 30% deuterated, at least 40% deuterated, at least 50% deuterated, at least 60% deuterated, at least 70% deuterated, at least 80% deuterated, at least 90% deuterated, at least 95% deuterated, at least 99% deuterated, or 100% deuterated. As used herein, percent deuteration has its ordinary meaning and includes the percent of possible hydrogen atoms (e.g., positions that are hydrogen, deuterium, or halogen) that are replaced by deuterium atoms.

C. The OLEDs and the Devices of the Present Disclosure



[0087] In another aspect, the present disclosure also provides an OLED device comprising a first organic layer that contains a compound as disclosed in the above compounds section of the present disclosure.

[0088] In some embodiments, the OLED comprises an anode, a cathode, and a first organic layer disposed between the anode and the cathode. The first organic layer can comprise a compound of Formula Ir(LA)(LB)(LC) as described herein.

[0089] In some embodiments, the organic layer may be an emissive layer and the compound as described herein may be an emissive dopant or a non-emissive dopant.

[0090] In some embodiments, the organic layer may further comprise a host, wherein the host comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan, wherein any substituent in the host is an unfused substituent independently selected from the group consisting of CnH2n+1, OCnH2n+1, OAr1, N(CnH2n+1)2, N(Ar1)(Ar2), CH=CH-CnH2n+1, C≡CCnH2n+1, Ar1, Ar1-Ar2, CnH2n-Ar1, or no substitution, wherein n is from 1 to 10; and wherein Ar1 and Ar2 are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof.

[0091] In some embodiments, the organic layer may further comprise a host, wherein host comprises at least one chemical group selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiophene, dibenzofuran, dibenzoselenophene, 5λ2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, triazine, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, aza-5λ2-benzo[d]benzo[4,5]imidazo[3,2-a]imidazole, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).

[0092] In some embodiments, the host may be selected from the HOST Group consisting of:























, and combinations thereof.

[0093] In some embodiments, the organic layer may further comprise a host, wherein the host comprises a metal complex.

[0094] In some embodiments, the compound as described herein may be a sensitizer; wherein the device may further comprise an acceptor; and wherein the acceptor may be selected from the group consisting of fluorescent emitter, delayed fluorescence emitter, and combination thereof.

[0095] In yet another aspect, the OLED of the present disclosure may also comprise an emissive region containing a compound as disclosed in the above compounds section of the present disclosure.

[0096] In some embodiments, the emissive region can comprise a compound of Formula Ir(LA)(LB)(LC) as described herein.

[0097] In some embodiments, at least one of the anode, the cathode, or a new layer disposed over the organic emissive layer functions as an enhancement layer. The enhancement layer comprises a plasmonic material exhibiting surface plasmon resonance that non-radiatively couples to the emitter material and transfers excited state energy from the emitter material to non-radiative mode of surface plasmon polariton. The enhancement layer is provided no more than a threshold distance away from the organic emissive layer, wherein the emitter material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant. In some embodiments, the OLED further comprises an outcoupling layer. In some embodiments, the outcoupling layer is disposed over the enhancement layer on the opposite side of the organic emissive layer. In some embodiments, the outcoupling layer is disposed on opposite side of the emissive layer from the enhancement layer but still outcouples energy from the surface plasmon mode of the enhancement layer. The outcoupling layer scatters the energy from the surface plasmon polaritons. In some embodiments this energy is scattered as photons to free space. In other embodiments, the energy is scattered from the surface plasmon mode into other modes of the device such as but not limited to the organic waveguide mode, the substrate mode, or another waveguiding mode. If energy is scattered to the non-free space mode of the OLED other outcoupling schemes could be incorporated to extract that energy to free space. In some embodiments, one or more intervening layer can be disposed between the enhancement layer and the outcoupling layer. The examples for interventing layer(s) can be dielectric materials, including organic, inorganic, perovskites, oxides, and may include stacks and/or mixtures of these materials.

[0098] The enhancement layer modifies the effective properties of the medium in which the emitter material resides resulting in any or all of the following: a decreased rate of emission, a modification of emission line-shape, a change in emission intensity with angle, a change in the stability of the emitter material, a change in the efficiency of the OLED, and reduced efficiency roll-off of the OLED device. Placement of the enhancement layer on the cathode side, anode side, or on both sides results in OLED devices which take advantage of any of the above-mentioned effects. In addition to the specific functional layers mentioned herein and illustrated in the various OLED examples shown in the figures, the OLEDs according to the present disclosure may include any of the other functional layers often found in OLEDs.

[0099] The enhancement layer can be comprised of plasmonic materials, optically active metamaterials, or hyperbolic metamaterials. As used herein, a plasmonic material is a material in which the real part of the dielectric constant crosses zero in the visible or ultraviolet region of the electromagnetic spectrum. In some embodiments, the plasmonic material includes at least one metal. In such embodiments the metal may include at least one of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca alloys or mixtures of these materials, and stacks of these materials. In general, a metamaterial is a medium composed of different materials where the medium as a whole acts differently than the sum of its material parts. In particular, we define optically active metamaterials as materials which have both negative permittivity and negative permeability. Hyperbolic metamaterials, on the other hand, are anisotropic media in which the permittivity or permeability are of different sign for different spatial directions. Optically active metamaterials and hyperbolic metamaterials are strictly distinguished from many other photonic structures such as Distributed Bragg Reflectors ("DBRs") in that the medium should appear uniform in the direction of propagation on the length scale of the wavelength of light. Using terminology that one skilled in the art can understand: the dielectric constant of the metamaterials in the direction of propagation can be described with the effective medium approximation. Plasmonic materials and metamaterials provide methods for controlling the propagation of light that can enhance OLED performance in a number of ways.

[0100] In some embodiments, the enhancement layer is provided as a planar layer. In other embodiments, the enhancement layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the wavelength-sized features and the sub-wavelength-sized features have sharp edges.

[0101] In some embodiments, the outcoupling layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the outcoupling layer may be composed of a plurality of nanoparticles and in other embodiments the outcoupling layer is composed of a pluraility of nanoparticles disposed over a material. In these embodiments the outcoupling may be tunable by at least one of varying a size of the plurality of nanoparticles, varying a shape of the plurality of nanoparticles, changing a material of the plurality of nanoparticles, adjusting a thickness of the material, changing the refractive index of the material or an additional layer disposed on the plurality of nanoparticles, varying a thickness of the enhancement layer , and/or varying the material of the enhancement layer. The plurality of nanoparticles of the device may be formed from at least one of metal, dielectric material, semiconductor materials, an alloy of metal, a mixture of dielectric materials, a stack or layering of one or more materials, and/or a core of one type of material and that is coated with a shell of a different type of material. In some embodiments, the outcoupling layer is composed of at least metal nanoparticles wherein the metal is selected from the group consisting of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca, alloys or mixtures of these materials, and stacks of these materials. The plurality of nanoparticles may have additional layer disposed over them. In some embodiments, the polarization of the emission can be tuned using the outcoupling layer. Varying the dimensionality and periodicity of the outcoupling layer can select a type of polarization that is preferentially outcoupled to air. In some embodiments the outcoupling layer also acts as an electrode of the device.

[0102] In yet another aspect, the present disclosure also provides a consumer product comprising an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound as disclosed in the above compounds section of the present disclosure.

[0103] In some embodiments, the consumer product comprises an OLED having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer can comprise a compound of Formula Ir(LA)(LB)(LC) as described herein.

[0104] In some embodiments, the consumer product can be one of a flat panel display, a computer monitor, a medical monitor, a television, a billboard, a light for interior or exterior illumination and/or signaling, a heads-up display, a fully or partially transparent display, a flexible display, a laser printer, a telephone, a cell phone, tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro-display that is less than 2 inches diagonal, a 3-D display, a virtual reality or augmented reality display, a vehicle, a video wall comprising multiple displays tiled together, a theater or stadium screen, a light therapy device, and a sign.

[0105] Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an "exciton," which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.

[0106] Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.

[0107] The initial OLEDs used emissive molecules that emitted light from their singlet states ("fluorescence") as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.

[0108] More recently, OLEDs having emissive materials that emit light from triplet states ("phosphorescence") have been demonstrated. Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, 151-154, 1998; ("Baldo-I") and Baldo et al., "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) ("Baldo-II"), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.

[0109] FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in US 7,279,704 at cols. 6-10, which are incorporated by reference.

[0110] More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.

[0111] FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an "inverted" OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.

[0112] The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the present disclosure may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an "organic layer" disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.

[0113] Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve outcoupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.

[0114] Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP , also referred to as organic vapor jet deposition (OVJD)), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons are a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.

[0115] Devices fabricated in accordance with embodiments of the present disclosure may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a "mixture", the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.

[0116] Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present disclosure, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 °C), but could be used outside this temperature range, for example, from -40 degree C to + 80 °C.

[0117] More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.

[0118] The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.

[0119] In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.

[0120] In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.

[0121] In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. Application No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others). When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least one ligand is different from the other ligands. In some embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, pentadentate, or hexadentate ligands. Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments.

[0122] In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter.

[0123] According to another aspect, a formulation comprising the compound described herein is also disclosed.

[0124] The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.

[0125] In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.

[0126] The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a "monovalent variant of a compound" refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a "polyvalent variant of a compound" refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.

D. Combination of the Compounds of the Present Disclosure with Other Materials



[0127] The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.

a) Conductivity Dopants:



[0128] A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.

[0129] Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012.










b) HIL/HTL:



[0130] A hole injecting/transporting material to be used in the present disclosure is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.

[0131] Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:



[0132] Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

[0133] In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:



wherein k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.

[0134] Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:

wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is an ancillary ligand; k' is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k'+k" is the maximum number of ligands that may be attached to the metal.

[0135] In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.

[0136] Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP07-073529, JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898, KR20130077473, TW201139402, US06517957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, US5061569, US5639914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.





















































and


c) EBL:



[0137] An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.

d) Hosts:



[0138] The light emitting layer of the organic EL device of the present disclosure preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.

[0139] Examples of metal complexes used as host are preferred to have the following general formula:

wherein Met is a metal; (Y103-Y104) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is an another ligand; k' is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k'+k" is the maximum number of ligands that may be attached to the metal.

[0140] In one aspect, the metal complexes are:

wherein (O-N) is a bidentate ligand, having metal coordinated to atoms O and N.

[0141] In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y104) is a carbene ligand.

[0142] In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

[0143] In one aspect, the host compound contains at least one of the following groups in the molecule:









wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X101 to X108 are independently selected from C (including CH) or N. Z101 and Z102 are independently selected from NR101, O, or S.

[0144] Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733, KR20130115564, TW201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, US7154114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126, WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, US9466803,




























































e) Additional Emitters:



[0145] One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.

[0146] Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, US06699599, US06916554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359, US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, US6303238, US6413656, US6653654, US6670645, US6687266, US6835469, US6921915, US7279704, US7332232, US7378162, US7534505, US7675228, US7728137, US7740957, US7759489, US7951947, US8067099, US8592586, US8871361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO08035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2012163471, WO2013094620, WO2013107487, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.




























































f) HBL:



[0147] A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.

[0148] In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.

[0149] In another aspect, compound used in HBL contains at least one of the following groups in the molecule:

wherein k is an integer from 1 to 20; L101 is another ligand, k' is an integer from 1 to 3.

g) ETL:



[0150] Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.

[0151] In one aspect, compound used in ETL contains at least one of the following groups in the molecule:



wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar3 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.

[0152] In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:

wherein (O-N) or (N-N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k' is an integer value from 1 to the maximum number of ligands that may be attached to the metal.

[0153] Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, US6656612, US8415031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,
























h) Charge generation layer (CGL)



[0154] In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.

[0155] In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. The minimum amount of hydrogen of the compound being deuterated is selected from the group consisting of 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, and 100%. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.

[0156] It is understood that the various embodiments described herein are by way of example only and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

E. Experimental Data



[0157] 


Inventive example [4-([1,1'-Biphenyl]-4-yl)-2-((3,5-dimethylphenyl)-2'-yl)pyridin-1-yl]-[1-((4-(tert-butyl)naphthalen-2-yl)-1'-yl)-8-isobutylbenzo[4,5]thieno[2,3-c]pyridin-1-yl]-[3,7-diethylnonane-4,6-dionato-k2O,O']iridium(III)


(Inventive example)



[0158] Iridium(III) chloride hydrate (1.51 g, 5.1 mmol, 1.0 equiv) was added to a solution of 1-(4-(tert-butyl)naphthalen-2-yl)-8-isobutylbenzo[4,5]thieno[2,3-c]pyridine (2.11 g, 4.98 mmol, 1.0 equiv) and 4-([1,1'-biphenyl]-4-yl)-2-(3,5-dimethylphenyl)-pyridine (1.88 g, 5.6 mmol, 1.1 equiv). The reaction mixture was heated at 95 °C for 2 days. The reaction mixture was cooled to room temperature and 3,7-diethylnonane-4,6-dione (4.5 g, 21.2 mmol, 4.2 equiv) added. The reaction mixture was sparged with nitrogen for 10 minutes then powdered potassium carbonate (4.6 g, 33.3 mmol, 6.6 equiv) added. The reaction mixture was stirred for 18 hours in a flask wrapped in foil to exclude light. DIUF water (50 mL) was added and the slurry stirred for 10 minutes. The solid was filtered, washed with DIUF water (2 × 100 mL) and methanol (2 × 30 mL) then dried under vacuum at 45 °C for 3 hours. The crude red solid (6.7 g) was purified on silica gel chromatography, eluting with 35-40% dichloromethane in hexanes. Purest product fractions were concentrated under reduced pressure to give [4-([1,1'-biphenyl]-4-yl)-2-((3,5-dimethylphenyl)-2'-yl) pyridin-1-yl]-[1-((4-(tert-butyl)naph-thalen-2-yl)-1'-yl)-8-isobutylbenzo[4,5]thieno [2,3-c]pyridin-1-yl]-[3,7-diethyl-nonane-4,6-dionato-k2O,O']iridium(III) (1.8 g, 31% yield) as a red solid.


Comparative example [(1-(4-(tert-Butyl)phenyl-2-yl)-1'-yl)-8-isobutylbenzo[4,5] thieno[2,3-c]pyridin-1-yl] [4-([1,1'-biphenyl]-4-yl)-2-(3,5-dimethylphenyl-2'-yl)pyridin-1-yl]-(3,7-diethylnonane-4,6-dionato-k2O,O')iridium(III)


(Comparative example)



[0159] Iridium(III) chloride hydrate (1.6 g, 4.9 mmol, 1.0 equiv) was added to a nitrogen sparged solution of 1-(3-(tert-butyl)phenyl)-8-isobutylbenzo[4,5]thieno[2,3-c]pyridine (1.75 g, 4.7 mmol, 0.95 equiv) and 4-([1,1'-biphenyl]-4-yl)-2-(3,5-dimethylphenyl)pyridine (1.7 g, 4.9 mmol, 1.0 equiv) in a 3 to 1 mixture of 2-ethoxyethanol and DIUF water (130 mL). The reaction mixture was heated at 103 °C for 72 hours then cooled to room temperature. The mixture was poured into DIUF water (300 mL) and the orange suspension filtered. The orange solid was washed with DIUF water (200 mL) and methanol (150 mL), then air dried on the funnel for 30 minutes to give di-µ-chloro-tetrakis-[(1-(4-(tert-butyl)phenyl-2-yl)-1'-yl)-8-isobutylbenzo[4,5] thieno[2,3-c]pyridin-1-yl] [4-([1,1'-biphenyl]-4-yl)-2-(3,5-dimethylphenyl-2'-yl)pyridin-1-yl]diiridium(III) (3.75 g, 82% yield) as an orange solid. The resulting solid was dissolved in a 1 to 1 mixture of dichloromethane and methanol (100 mL), then 3,7-diethylnonane-4,6-dione (1.7 g, 7.9 mmol, 3.9 equiv) was added via syringe. Powdered potassium carbonate (1.75 g, 12.7 mmol, 6.3 equiv) was added and the reaction mixture heated at 40 °C in a flask wrapped in foil to exclude light. After 48 hours, the reaction mixture was cooled to room temperature and diluted with methanol (300 mL). The resulting orange solid was filtered, washed with DIUF water (200 mL) then methanol (200 mL) and air-dried. The crude product (4.83 g) was purified by silica gel chromatography system, eluting with 25% dichloromethane in hexanes. Purest product fractions were combined and concentrated under reduced pressure to give [(1-(4-(tert-butyl)phenyl-2-yl)-1'-yl)-8-isobutylbenzo[4,5] thieno[2,3-c]pyridin-1-yl] [4-([1,1'-biphenyl]-4-yl)-2-(3,5-dimethylphenyl-2'-yl)pyridin-1-yl]-(3,7-diethylnonane-4,6-dionato-k2O,O') iridium(III) (0.275 g, 6% yield) as an orange solid.

[0160] FIG. 3 shows photoluminescence (PL) spectra of one inventive example compound and one comparative example compound taken in PMMA. The PL intensities are normalized to the maximum of the first emission peaks. The emission maximum of the inventive example compound is 620 nm, which is a saturated red color. In comparison, the emission maximum of the comparative example compound is only 573 nm.

[0161] Table 1 shows that the inventive example has narrower line shape with the full width at half maximum of 45 nm. In comparison, the comparative example has broader line shape with the full width at half maximum of 71 nm. Overall, due to the naphthalene as the bottom ring in the ligand structure, the inventive compound provides more saturated red color with narrower line shape, which shows the great potentials of the inventive compound as a saturated red emitter for application in organic light emitting diodes (OLED).
Table 1.
Compoundλ max (nm)FWHM (nm)
Inventive Example 620 45
Comparative Example 573 71



Claims

1. A compound of Formula Ir(LA)(LB)(LC);

wherein LA has Formula I,

wherein LB has Formula II,

wherein LC is a monoanionic bidentate ligand;

wherein LC does not comprise a phenylpyridine ligand;

wherein LA, LB, and LC are each different;

wherein each of moieties A, C, and D is independently a monocyclic ring or a polycyclic fused ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings;

wherein each of X1 to X6 is independently C or N;

wherein each of Z1 and Z2 is independently C or N;

wherein at least one of Z1 and Z2 is N;

wherein the maximum number of N atoms that can connect to each other within a ring is two;

wherein each RA, RB, RC, and RD independently represents mono to the maximum allowable substitution, or no substitution;

wherein each RA, RB, RC, and RD is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, selenyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and

wherein any two adjacent RA, RB, RC, and RD can be joined or fused together to form a ring.


 
2. The compound of claim 1, wherein each RA, RB, RC, and RD is independently a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.
 
3. The compound of claim 1, wherein:

at least one of moiety A and moiety C is a polycyclic fused ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings;

at least one of moiety A and moiety C is a polycyclic fused ring structure comprising 5-membered and/or 6-membered aryl or heteroaryl rings;

at least one of moiety A and moiety C is a polycyclic fused ring structure comprising at least one 5-membered ring and at least one 6-membered ring;

at least one of moiety A and moiety C is a polycyclic fused ring structure and is coordinated to Ir by a N;

at least one of moiety A and moiety C is a polycyclic fused ring structure comprising a combination of at least three rings fused together, wherein each of the at least three rings is independently aryl or heteroaryl;

at least one of moiety A and moiety C is a polycyclic fused ring structure comprising a combination of at least four rings fused together, wherein each of the at least four rings is independently aryl or heteroaryl;

at least one of moiety A and moiety C is a polycyclic ring structure comprising a distal ring, wherein the distal ring is substituted by alkyl or cycloalkyl comprising at least 4 carbon atoms; or

Z1 is N and Z2 is C; and/or wherein moiety D is phenyl or naphthyl.


 
4. The compound of claim 1, wherein moiety C is a monocyclic ring and RC para to Ir comprises (i) at least two unfused RC rings each of which is a 5-membered and/or 6-membered carbocyclic or heterocyclic rings, or (ii) at least one unfused ring that is substituted by alkyl or cycloalkyl comprising at least 4 carbon atoms; and/or

wherein at least one of X1 to X6 is N; and/or

wherein at least one of RA and the substituent of RC or RD of which the associated ring is trans to moiety A comprises a para-substituted 6-membered carbocyclic or heterocyclic ring.


 
5. The compound of claim 1, wherein LC is selected from the group consisting of



, wherein each of Ra2, Rb2, Rc2, Rd2, and Re2 is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, selenyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and
wherein any two adjacent Ra2, Rb2, Rc2, Rd2, and Re2 can be joined or fused together to form a ring.
 
6. The compound of claim 1, wherein the ligand LA is selected from the group consisting of the structures in LIST 1 defined herein,
wherein:

Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11,Z12, Z13, and Z14 are each independently C or N;

YY1 for each occurrence is independently BR, BRR', NR, PR, O, S, Se, C=O, S=O, SO2, CRR', SiRR', and GeRR';

RA1 represents mono to the maximum allowable substitution, or no substitution;

each RA1, RA2, R, and R' is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, selenyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.


 
7. The compound of claim 1, wherein the ligand LA is selected from the group consisting of:

















and

wherein RA1 represents mono to the maximum allowable substitution, or no substitution; and each RA1, RA2, R, and R' is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, selenyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.
 
8. The compound of claim 1, wherein the ligand LA is selected from the group consisting of LAi-m, wherein i = 1 to 600, m = 1 to 63, wherein each structure of LAi-1 through LAi-63 is defined as follows:
when m is 1, LA1-1 to LA600-1 have when m is 2, LA1-2 to LA600-2 have when m is 3, LA1-3 to LA600-3 have






the structure the structure the structure
when m is 4, LA1-4 to LA600-4 have when m is 5, LA1-5 to LA600-5 have when m is 6, LA1-6 to LA600-6 have the structure






the structure the structure
when m is 7, LA1-7 to LA600-7 have the structure when m is 8, LA1-8 to LA600-8 have the structure when m is 9, LA1-9 to LA600-9 have the structure






when m is 10, LA1-10 to LA600-10 have the structure when m is 11, LA1-11 to LA600-11 have the structure when m is 12, LA1-12 to LA600-12 have the structure






when m is 13, LA1-13 to LA600-13 have the structure when m is 14, LA1-14 to LA600-14 have the structure when m is 15, LA1-15 to LA600-15 have the structure






when m is 16, LA1-16 to LA600-16 have the structure when m is 17, LA1-17 to LA600-17 have the structure when m is 18, LA1-18 to LA600-18 have the structure






when m is 19, LA1-19 to LA600-19 have the structure when m is 20, LA1-20 to LA600-20 have the structure when m is 21, LA1-21 to LA600-21 have the structure






when m is 22, LA1-22 to LA600-22 have the structure when m is 23, LA1-23 to LA600-23 have the structure when m is 24, LA1-24 to LA600-24 have the structure






when m is 25, LA1-25 to LA600-25 have the structure when m is 26, LA1-26 to LA600-26 have the structure when m is 27, LA1-27 to LA600-27 have the structure






when m is 28, LA1-28 to LA600-28 have the structure when m is 29, LA1-29 to LA600-29 have the structure when m is 30, LA1-30 to LA600-30 have the structure






when m is 31, LA1-31 to LA600-31 have the structure when m is 32, LA1-32 to LA600-32 have the structure when m is 33, LA1-33 to LA600-33 have the structure






when m is 34, LA1-34 to LA600-34 have the structure when m is 35, LA1-35 to LA600-35 have the structure when m is 36, LA1-36 to LA600-36 have the structure






when m is 37, LA1-37 to LA600-37 have the structure when m is 38, LA1-38 to LA600-38 have the structure when m is 39, LA1-39 to LA600-39 have the structure






when m is 40, LA1-40 to LA600-40 have the structure when m is 41, LA1-41 to LA600-41 have the structure when m is 42, LA1-42 to LA600-42 have the structure






when m is 43, LA1-43 to LA600-43 have the structure when m is 44, LA1-44 to LA600-44 have the structure when m is 45, LA1-45 to LA600-45 have the structure






when m is 46, LA1-46 to LA600-46 have the structure when m is 47, LA1-47 to LA600-47 have the structure when m is 48, LA1-48 to LA600-48 have the structure






when m is 49, LA1-49 to LA600-49 have the structure when m is 50, LA1-50 to LA600-50 have the structure when m is 51, LA1-51 to LA6OO-51 have the structure






when m is 52, LA1-52 to LA600-52 have the structure when m is 53, LA1-53 to LA600-53 have the structure when m is 54, LA1-54 to LA600-54 have the structure






when m is 55, LA1-55 to LA600-55 have the structure when m is 56, LA1-56 to LA600-56 have the structure when m is 57, LA1-57 to LA600-57 have the structure






when m is 58, LA1-58 to LA600-58 have the structure when m is 59, LA1-59 to LA600-59 have the structure when m is 60, LA1-60 to LA600-60 have the structure






when m is 61, LA1-61 to LA600-61 have the structure when m is 62, LA1-62 to LA600-62 have the structure when m is 63, LA1-63 to LA600-63 have the structure






wherein, for each i, RE and G in LAi-1 to LAi-63, have the following structures:

LigandREGLigandREGLigandREGLigandREG
LA1-m R1 G4 LA151-m R18 G5 LA301-m R1 G14 LA451-m R18 G21
LA2-m R2 G4 LA152-m R20 G5 LA302-m R2 G14 LA452-m R20 G21
LA3-m R3 G4 LA153-m R21 G5 LA303-m R3 G14 LA453-m R21 G21
LA4-m R4 G4 LA154-m R28 G5 LA304-m R4 G14 LA454-m R28 G21
LA5-m R5 G4 LA155-m R29 G5 LA305-m R6 G14 LA455-m R29 G21
LA6-m R6 G4 LA156-m R30 G5 LA306-m R7 G14 LA456-m R30 G21
LA7-m R7 G4 LA157-m R33 G5 LA307-m R8 G14 LA457-m R33 G21
LA8-m R8 G4 LA158-m R35 G5 LA308-m R9 G14 LA458-m R35 G21
LA9-m R9 G4 LA159-m R36 G5 LA309-m R14 G14 LA459-m R36 G21
LA10-m R!0 G4 LA160-m R37 G5 LA30-m R15 G14 LA460-m R37 G21
LA11-m R11 G4 LA161-m R1 G6 LA311-m R18 G4 LA461-m R1 G22
LA12-m R12 G4 LA162-m R2 G6 LA312-m R20 G14 LA462-m R2 G22
LA13-m R13 G4 LA163-m R3 G6 LA313-m R21 G14 LA463-m R3 G22
LA14-m R14 G4 LA164-m R4 G6 LA314-m R28 G14 LA464-m R4 G22
LA15-m R15 G4 LA165-m R6 G6 LA315-m R29 G14 LA465-m R6 G22
LA16-m R16 G4 LA166-m R7 G6 LA316-m R30 G14 LA466-m R7 G22
LA17-m R17 G4 LA167-m R8 G6 LA317-m R33 G14 LA467-m R8 G22
LA18-m R18 G4 LA168-m R9 G6 LA318-m R35 G14 LA468-m R9 G22
LA19-m R19 G4 LA169-m R14 G6 LA319-m R36 G14 LA469-m R14 G22
LA20-m R20 G4 LA170-m R15 G6 LA320-m R37 G14 LA470-m R15 G22
LA21-m R21 G4 LA171-m R18 G6 LA321-m R1 G15 LA471-m R18 G22
LA22-m R22 G4 LA172-m R20 G6 LA322-m R2 G15 LA472-m R20 G22
LA23-m R23 G4 LA173-m R21 G6 LA323-m R3 G15 LA473-m R21 G22
LA24-m R24 G4 LA174-m R28 G6 LA324-m R4 G15 LA474-m R28 G22
LA25-m R25 G4 LA175-m R29 G6 LA325-m R6 G15 LA475-m R29 G22
LA26-m R26 G4 LA176-m R30 G6 LA326-m R7 G15 LA476-m R30 G22
LA27-m R27 G4 LA177-m R33 G6 LA327-m R8 G15 LA477-m R33 G22
LA28-m R28 G4 LA178-m R35 G6 LA328-m R9 G15 LA478-m R35 G22
LA29-m R29 G4 LA179-m R36 G6 LA329-m R14 G15 LA479-m R36 G22
LA30-m R30 G4 LA180-m R37 G6 LA330-m R15 G15 LA480-m R37 G22
LA31-m R31 G4 LA181-m R1 G7 LA331-m R18 G15 LA481-m R1 G23
LA32-m R32 G4 LA182-m R2 G7 LA332-m R20 G15 LA482-m R2 G23
LA33-m R33 G4 LA1S3-m R3 G7 LA333-m R21 G15 LA483-m R3 G23
LA34-m R34 G4 LA184-m R4 G7 LA334-m R28 G15 LA484-m R4 G23
LA35-m R35 G4 LA185-m R6 G7 LA335-m R29 G15 LA485-m R6 G23
LA36-m R36 G4 LA186-m R7 G7 LA336-m R30 G15 LA486-m R7 G23
LA37-m R37 G4 LA187-m R8 G7 LA337-m R33 G15 LA487-m R8 G23
LA38-m R38 G4 LA188-m R9 G7 LA338-m R35 G15 LA488-m R9 G23
LA39-m R39 G4 LA189-m R14 G7 LA339-m R36 G15 LA489-m R14 G23
LA40-m R40 G4 LA190-m R15 G7 LA340-m R37 G15 LA490-m R15 G23
LA41-m R1 G11 LA191-m R18 G7 LA341-m R1 G16 LA491-m R18 G23
LA42-m R2 G11 LA192-m R20 G7 LA342-m R2 G16 LA492-m R20 G23
LA43-m R3 G11 LA193-m R21 G7 LA343-m R3 G16 LA493-m R21 G23
LA44-m R4 G11 LA194-m R28 G7 LA344-m R4 G16 LA494-m R28 G23
LA45-m R5 G11 LA195-m R29 G7 LA345-m R6 G16 LA495-m R29 G23
LA46-m R6 G11 LA196-m R30 G7 LA346-m R7 G16 LA496-m R30 G23
LA47-m R7 G11 LA197-m R33 G7 LA347-m R8 G16 LA497-m R33 G23
LA48-m R8 G11 LA198-m R35 G7 LA348-m R9 G16 LA498-m R35 G23
LA49-m R9 G11 LA199-m R36 G7 LA349-m R14 G16 LA499-m R36 G23
LA50-m R10 G11 LA200-m R37 G7 LA350-m R15 G16 LA500-m R37 G23
LA51-m R11 G11 LA201-m R1 G5 LA351-m R18 G16 LA501-m R1 G24
LA52-m R12 G11 LA202-m R2 G8 LA352-m R20 G16 LA502-m R2 G24
LA53-m R13 G11 LA203-m R3 G5 LA353-m R21 G16 LA503-m R3 G24
LA54-m R14 G11 LA204-m R4 G8 LA354-m R28 G16 LA504-m R4 G24
LA55-m R15 G11 LA205-m R6 G8 LA355-m R29 G16 LA505-m R6 G24
LA56-m R16 G11 LA206-m R7 G8 LA356-m R30 G16 LA506-m R7 G24
LA57-m R17 G11 LA207-m R8 G8 LA357-m R33 G16 LA507-m R8 G24
LA58-m R18 G11 LA208-m R9 G8 LA358-m R35 G16 LA508-m R9 G24
LA59-m R19 G11 LA209-m R14 G5 LA359-m R36 G16 LA509-m R14 G24
LA60-m R20 G11 LA210-m R15 G5 LA360-m R37 G16 LA510-m R15 G24
LA61-m R21 G11 LA211-m R18 G5 LA361-m R1 G17 LA511-m R18 G24
LA62-m R22 G11 LA212-m R20 G5 LA362-m R2 G17 LA512-m R20 G24
LA63-m R23 G11 LA213-m R21 G5 LA363-m R3 G17 LA513-m R21 G24
LA64-m R24 G11 LA214-m R28 G5 LA364-m R4 G17 LA514-m R28 G24
LA65-m R25 G11 LA215-m R29 G5 LA365-m R6 G17 LA515-m R29 G24
LA66-m R26 G11 LA216-m R30 G5 LA366-m R7 G17 LA516-m R30 G24
LA67-m R27 G11 LA217-m R33 G5 LA367-m R8 G17 LA517-m R33 G24
LA68-m R28 G11 LA218-m R35 G5 LA368-m R9 G17 LA518-m R35 G24
LA69-m R29 G11 LA219-m R36 G5 LA369-m R14 G17 LA519-m R36 G24
LA70-m R30 G11 LA220-m R37 G5 LA370-m R15 G17 LA520-m R37 G24
LA71-m R31 G11 LA221-m R1 G9 LA371-m R18 G17 LA521-m R1 G25
LA72-m R32 G11 LA222-m R2 G9 LA372-m R20 G17 LA522-m R2 G25
LA73-m R33 G11 LA223-m R3 G9 LA373-m R21 G17 LA523-m R3 G25
LA74-m R34 G11 LA224-m R4 G9 LA374-m R28 G17 LA524-m R4 G25
LA75-m R35 G11 LA225-m R6 G9 LA375-m R29 G17 LA525-m R6 G25
LA76-m R36 G11 LA226-m R7 G9 LA376-m R30 G17 LA526-m R7 G25
LA77-m R37 G11 LA227-m R8 G9 LA377-m R33 G17 LA527-m R8 G25
LA78-m R38 G11 LA228-m R9 G9 LA378-m R35 G17 LA528-m R9 G25
LA79-m R39 G11 LA229-m R14 G9 LA379-m R36 G17 LA529-m R14 G25
LA80-m R40 G11 LA230-m R15 G9 LA380-m R37 G17 LA530-m R15 G25
LA81-m R1 G1 LA231-m R18 G9 LA381-m R1 G18 LA531-m R18 G25
LA82-m R2 G1 LA232-m R20 G9 LA382-m R2 G18 LA532-m R20 G25
LA83-m R3 G1 LA233-m R21 G9 LA383-m R3 G18 LA533-m R21 G25
LA84-m R4 G1 LA234-m R28 G9 LA384-m R4 G18 LA534-m R28 G25
LA85-m R6 G1 LA235-m R29 G9 LA385-m R6 G18 LA535-m R29 G25
LA86-m R7 G1 LA236-m R30 G9 LA386-m R7 G18 LA536-m R30 G25
LA87-m R8 G1 LA237-m R33 G9 LA387-m R8 G18 LA537-m R33 G25
LA88-m R9 G1 LA238-m R35 G9 LA388-m R9 G18 LA538-m R35 G25
LA89-m R14 G1 LA239-m R36 G9 LA389-m R14 G18 LA539-m R36 G25
LA90-m R15 G1 LA240-m R37 G9 LA390-m R15 G18 LA540-m R37 G25
LA91-m R18 G1 LA241-m R1 G10 LA391-m R18 G18 LA541-m R1 G26
LA92-m R20 G1 LA242v R2 G10 LA392-m R20 G18 LA542-m R2 G26
LA93-m R21 G1 LA243-m R3 G10 LA393-m R21 G18 LA543-m R3 G26
LA94-m R28 G1 LA244-m R4 G10 LA394-m R28 G18 LA544-m R4 G26
LA95-m R29 G1 LA245-m R6 G10 LA395-m R29 G18 LA545-m R6 G26
LA96-m R30 G1 LA246-m R7 G10 LA396-m R30 G18 LA546-m R7 G26
LA97-m R33 G1 LA247-m R8 G10 LA397-m R33 G18 LA547-m R8 G26
LA98-m R35 G1 LA248-m R9 G10 LA398-m R35 G18 LA548-m R9 G26
LA99-m R36 G1 LA249-m R14 G10 LA399-m R36 G18 LA549-m R14 G26
LA100-m R37 G1 LA250-m R15 G10 LA400-m R37 G18 LA550-m R15 G26
LA101-m R1 G2 LA251-m R18 G10 LA401-m R1 G19 LA551-m R18 G26
LA102-m R2 G2 LA252-m R20 G10 LA402-m R2 G19 LA552-m R20 G26
LA103-m R3 G2 LA253-m R21 G10 LA403-m R3 G19 LA553-m R21 G26
LA104-m R4 G2 LA254-m R28 G10 LA404-m R4 G19 LA554-m R28 G26
LA105-m R6 G2 LA255-m R29 G10 LA405-m R6 G19 LA555-m R29 G26
LA106-m R7 G2 LA256-m R30 G10 LA406-m R7 G19 LA556-m R30 G26
LA107-m R8 G2 LA257-m R33 G10 LA407-m R8 G19 LA557-m R33 G26
LA108-m R9 G2 LA258-m R35 G10 LA408-m R9 G19 LA558-m R35 G26
LA109-m R14 G2 LA259-m R36 G10 LA409-m R14 G19 LA559-m R36 G26
LA110-m R15 G2 LA260-m R37 G10 LA410-m R15 G19 LA560-m R37 G26
LA111-m R18 G2 LA261-m R1 G12 LA411-m R18 G19 LA561-m R1 G27
LA112-m R20 G2 LA262-m R2 G12 LA412-m R20 G19 LA562-m R2 G27
LA113-m R21 G2 LA263-m R3 G12 LA413-m R21 G19 LA563-m R3 G27
LA114-m R28 G2 LA264-m R4 G12 LA414-m R28 G19 LA564-m R4 G27
LA115-m R29 G2 LA265-m R6 G12 LA415-m R29 G19 LA565-m R6 G27
LA116-m R30 G2 LA266-m R7 G12 LA416-m R30 G19 LA566-m R7 G27
LA117-m R33 G2 LA267-m R8 G12 LA417-m R33 G19 LA567-m R8 G27
LA118-m R35 G2 LA268-m R9 G12 LA418-m R35 G19 LA568-m R9 G27
LA119-m R36 G2 LA269-m R14 G12 LA419-m R36 G19 LA569-m R14 G27
LA120-m R37 G2 LA270-m R15 G12 LA420-m R37 G19 LA570-m R15 G27
LA121-m R1 G3 LA271-m R18 G12 LA421-m R1 G20 LA571-m R18 G27
LA122-m R2 G3 LA272-m R20 G12 LA422-m R2 G20 LA572-m R20 G27
LA123-m R3 G3 LA273-m R21 G12 LA423-m R3 G20 LA573-m R21 G27
LA124-m R4 G3 LA274-m R28 G12 LA424-m R4 G20 LA574-m R28 G27
LA125-m R6 G3 LA275-m R29 G12 LA425-m R6 G20 LA575-m R29 G27
LA126-m R7 G3 LA276-m R30 G12 LA426-m R7 G20 LA576-m R30 G27
LA127-m R8 G3 LA277-m R33 G12 LA427-m R8 G20 LA577-m R33 G27
LA128-m R9 G3 LA278-m R35 G12 LA428-m R9 G20 LA578-m R35 G27
LA129-m R14 G3 LA279-m R36 G12 LA429-m R14 G20 LA579-m R36 G27
LA130-m R15 G3 LA280-m R37 G12 LA430-m R15 G20 LA580-m R37 G27
LA131-m R18 G3 LA281-m R1 G13 LA431-m R18 G20 LA581-m R1 G28
LA132-m R20 G3 LA282-m R2 G13 LA432-m R20 G20 LA582-m R2 G28
LA133-m R21 G3 LA283-m R3 G13 LA433-m R21 G20 LA583-m R3 G28
LA134-m R28 G3 LA284-m R4 G13 LA434-m R28 G20 LA584-m R4 G28
LA135-m R29 G3 LA285-m R6 G13 LA435-m R29 G20 LA585-m R6 G28
LA136-m R30 G3 LA286-m R7 G13 LA436-m R30 G20 LA586-m R7 G28
LA137-m R33 G3 LA287-m R8 G13 LA437-m R33 G20 LA587-m R8 G28
LA138-m R35 G3 LA288-m R9 G13 LA438-m R35 G20 LA588-m R9 G28
LA139-m R36 G3 LA289-m R14 G13 LA439-m R36 G20 LA589-m R14 G28
LA140-m R37 G3 LA290-m R15 G13 LA440-m R37 G20 LA590-m R15 G28
LA141-m R1 G5 LA291-m R18 G13 LA441-m R1 G21 LA591-m R18 G28
LA142-m R2 G5 LA292-m R20 G13 LA442-m R2 G21 LA592-m R20 G28
LA143-m R3 G5 LA293-m R21 G13 LA443-m R3 G21 LA593-m R21 G28
LA144-m R4 G5 LA294-m R28 G13 LA444-m R4 G21 LA594-m R28 G28
LA145-m R6 G5 LA295-m R29 G13 LA445-m R6 G21 LA595-m R29 G28
LA146-m R7 G5 LA296-m R30 G13 LA446-m R7 G21 LA596-m R30 G28
LA147-m R8 G5 LA297-m R33 G13 LA447-m R8 G21 LA597-m R33 G28
LA148-m R9 G5 LA298-m R35 G13 LA448-m R9 G21 LA598-m R35 G28
LA149-m R14 G5 LA299-m R36 G13 LA449-m R14 G21 LA599-m R36 G28
LA150-m R15 G5 LA300-m R37 G13 LA450-m R15 G21 LA600-m R37 G28

wherein R1 to R40 have the followng structures:









and

and wherein G1 to G28 have the following structures:












 
9. The compound of claim 1, wherein the compound has a formula of M(LA)p(LB)q(LC)r wherein LB and LC are each a bidentate ligand; and wherein p is 1, 2, or 3; q is 0, 1, or 2; r is 0, 1, or 2; and p+q+r is the oxidation state of the metal M.
 
10. The compound of claim 9, wherein the compound has a formula selected from the group consisting of Ir(LA)3, Ir(LA)(LB)2, Ir(LA)2(LB), Ir(LA)2(LC), and Ir(LA)(LB)(LC); and wherein LA, LB, and LC are different from each other.
 
11. The compound of claim 9, wherein, subject to the requirement that LC does not comprise phenylpyridine, LB and LC are each independently selected from the group consisting of:











wherein:

T is selected from the group consisting of B, Al, Ga, and In;

each of Y1 to Y13 is independently selected from the group consisting of carbon and nitrogen;

Y' is selected from the group consisting of BRe, BReRf, NRe, PRe, P(O)Re, O, S, Se, C=O, C=S, C=Se, C=NRe, C=CReRf, S=O, SO2, CReRf, SiReRf, and GeReRf;

Re and Rf can be fused or joined to form a ring;

each Ra, Rb, Rc, and Rd independently represent zero, mono, or up to a maximum allowed number of substitutions to its associated ring;

each Ra1 Rb1, Rc1, Rd1, Ra, Rb, Rc, Rd, Re and Rf is independently a hydrogen or a subsituent selected from the group consisting of deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acid, ester, nitrile, isonitrile, sulfanyl, selenyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; the general substituents defined herein; and

any two adjacent Ra, Rb, Rc, Rd, Re and Rf can be fused or joined to form a ring or form a multidentate ligand.


 
12. The compound of claim 10, wherein: when the compound has formula Ir(LA)3, LA is selected from the group consisting of LAi-m, wherein i is an integer from 1 to 600; m is an integer from 1 to 63; wherein each structure of LAi-1 through LAi-63 is defined as follows:
when m is 1, LA1-1 to LA600-1 have when m is 2, LA1-2 to LA600-2 have when m is 3, LA1-3 to LA600-3 have






the structure the structure the structure
when m is 4, LA1-4 to LA600-4 have when m is 5, LA1-5 to LA600-5 have when m is 6, LA1-6 to LA600-6 have






the structure the structure the structure
when m is 7, LA1-7 to LA600-7 have the structure when m is 8, LA1-8 to LA600-8 have the structure when m is 9, LA1-9 to LA600-9 have the structure






when m is 10, LA1-10 to LA600-10 have the structure when m is 11, LA1-11 to LA600-11 have the structure when m is 12, LA1-12 to LA600-12 have the structure






when m is 13, LA1-13 to LA600-13 have the structure when m is 14, LA1-14 to LA600-14 have the structure when m is 15, LA1-15 to LA600-15 have the structure






when m is 16, LA1-16 to LA600-16 have the structure when m is 17, LA1-17 to LA600-17 have the structure when m is 18, LA1-18 to LA600-18 have the structure






when m is 19, LA1-19 to LA600-19 have the structure when m is 20, LA1-20 to LA600-20 have the structure when m is 21, LA1-21 to LA600-21 have the structure






when m is 22, LA1-22 to LA600-22 have the structure when m is 23, LA1-23 to LA600-23 have the structure when m is 24, LA1-24 to LA600-24 have the structure






when m is 25, LA1-25 to LA600-25 have the structure when m is 26, LA1-26 to LA600-26 have the structure when m is 27, LA1-27 to LA600-27 have the structure






when m is 28, LA1-28 to LA600-28 have the structure when m is 29, LA1-29 to LA600-29 have the structure when m is 30, LA1-30 to LA600-30 have the structure


,




when m is 31, LA1-31 to LA600-31 have the structure when m is 32, LA1-32 to LA600-32 have the structure when m is 33, LA1-33 to LA600-33 have the structure






when m is 34, LA1-34 to LA600-34 have the structure when m is 35, LA1-35 to LA600-35 have the structure when m is 36, LA1-36 to LA600-36 have the structure






when m is 37, LA1-37 to LA600-37 have the structure when m is 38, LA1-38 to LA600-38 have the structure when m is 39, LA1-39 to LA600-39 have the structure






when m is 40, LA1-40 to LA600-40 have the structure when m is 41, LA1-41 to LA600-41 have the structure when m is 42, LA1-42 to LA600-42 have the structure




,


when m is 43, LA1-43 to LA600-43 have the structure when m is 44, LA1-44 to LA600-44 have the structure when m is 45, LA1-45 to LA600-45 have the structure






,
when m is 46, LA1-46 to LA600-46 have the structure when m is 47, LA1-47 to LA600-47 have the structure when m is 48, LA1-48 to LA600-48 have the structure






when m is 49, LA1-49 to LA600-49 have the structure when m is 50, LA1-50 to LA600-50 have the structure when m is 51, LA1-51 to LA600-51 have the structure




,


when m is 52, LA1-52 to LA600-52 have the structure when m is 53, LA1-53 to LA600-53 have the structure when m is 54, LA1-54 to LA600-54 have the structure






when m is 55, LA1-55 to LA600-55 have the structure when m is 56, LA1-56 to LA600-56 have the structure when m is 57, LA1-57 to LA600-57 have the structure






when m is 58, LA1-58 to LA600-58 have the structure when m is 59, LA1-59 to LA600-59 have the structure when m is 60, LA1-60 to LA600-60 have the structure






when m is 61, LA1-61 to LA600-61 have the structure when m is 62, LA1-62 to LA600-62 have the structure when m is 63, LA1-63 to LA600-63 have the structure






wherein, for each i, RE and G in LAi-1 to LAi-63, have the following structures:

LigandREGLigandREGLigandREGLigandREG
LA1-m R1 G4 LA151-m R18 G5 LA301-m R1 G14 LA451-m R18 G21
LA2-m R2 G4 LA152-m R20 G5 LA302-m R2 G14 LA452-m R20 G21
LA3-m R3 G4 LA153-m R21 G5 LA303-m R3 G14 LA453-m R21 G21
LA4-m R4 G4 LA154-m R28 G5 LA304-m R4 G14 LA454-m R28 G21
LA5-m R5 G4 LA155-m R29 G5 LA305-m R6 G14 LA455-m R29 G21
LA6-m R6 G4 LA156-m R30 G5 LA306-m R7 G14 LA456-m R30 G21
LA7-m R7 G4 LA157-m R33 G5 LA307-m R8 G14 LA457-m R33 G21
LA8-m R8 G4 LA158-m R35 G5 LA308-m R9 G14 LA458-m R35 G21
LA9-m R9 G4 LA159-m R36 G5 LA309-m R14 G14 LA459-m R36 G21
LA10-m R10 G4 LA160-m R37 G5 LA310-m R15 G14 LA460-m R37 G21
LA11-m R11 G4 LA161-m R1 G6 LA311-m R18 G14 LA461-m R1 G22
LA12-m R12 G4 LA162-m R2 G6 LA312-m R20 G14 LA462-m R2 G22
LA13-m R13 G4 LA163-m R3 G6 LA313-m R21 G14 LA463-m R3 G22
LA14-m R14 G4 LA164-m R4 G6 LA314-m R28 G14 LA464-m R4 G22
LA15-m R15 G4 LA165-m R6 G6 LA315-m R29 G14 LA465-m R6 G22
LA16-m R16 G4 LA166-m R7 G6 LA316-m R30 G14 LA466-m R7 G22
LA17-m R17 G4 LA167-m R8 G6 LA317-m R33 G14 LA467-m R8 G22
LA18-m R18 G4 LA168-m R9 G6 LA318-m R35 G14 LA468-m R9 G22
LA19-m R19 G4 LA169-m R14 G6 LA319-m R36 G14 LA469-m R14 G22
LA20-m R20 G4 LA170-m R15 G6 LA320-m R37 G14 LA470-m R15 G22
LA21-m R21 G4 LA171-m R18 G6 LA321-m R1 G15 LA471-m R18 G22
LA22-m R22 G4 LA172-m R20 G6 LA322-m R2 G15 LA472-m R20 G22
LA23-m R23 G4 LA173-m R21 G6 LA323-m R3 G15 LA473-m R21 G22
LA24-m R24 G4 LA174-m R28 G6 LA324-m R4 G15 LA474-m R28 G22
LA25-m R25 G4 LA175-m R29 G6 LA325-m R6 G15 LA475-m R29 G22
LA26-m R26 G4 LA176-m R30 G6 LA326-m R7 G15 LA476-m R30 G22
LA27-m R27 G4 LA177-m R33 G6 LA327-m R8 G15 LA477-m R33 G22
LA28-m R28 G4 LA178-m R35 G6 LA328-m R9 G15 LA478-m R35 G22
LA29-m R29 G4 LA179-m R36 G6 LA329-m R14 G15 LA479-m R36 G22
LA30-m R30 G4 LA180-m R37 G6 LA330-m R15 G15 LA480-m R37 G22
LA31-m R31 G4 LA181-m R1 G7 LA331-m R18 G15 LA481-m R1 G23
LA32-m R32 G4 LA182-m R2 G7 LA332-m R20 G15 LA482-m R2 G23
LA33-m R33 G4 LA183-m R3 G7 LA333-m R21 G15 LA483-m R3 G23
LA34-m R34 G4 LA184-m R4 G7 LA334-m R28 G15 LA484-m R4 G23
LA35-m R35 G4 LA185-m R6 G7 LA335-m R29 G15 LA485-m R6 G23
LA36-m R36 G4 LA186-m R7 G7 LA336-m R30 G15 LA486-m R7 G23
LA37-m R37 G4 LA187-m R8 G7 LA337-m R33 G15 LA487-m R8 G23
LA38-m R38 G4 LA188-m R9 G7 LA338-m R35 G15 LA488-m R9 G23
LA39-m R39 G4 LA189-m R14 G7 LA339-m R36 G15 LA489-m R14 G23
LA40-m R40 G4 LA190-m R15 G7 LA340-m R37 G15 LA490-m R15 G23
LA41-m R1 G11 LA191-m R18 G7 LA341-m R1 G16 LA491-m R18 G23
LA42-m R2 G11 LA192-m R20 G7 LA342-m R2 G16 LA492-m R20 G23
LA43-m R3 G11 LA193-m R21 G7 LA343-m R3 G16 LA493-m R21 G23
LA44-m R4 G11 LA194-m R28 G7 LA344-m R4 G16 LA494-m R28 G23
LA45-m R5 G11 LA195-m R29 G7 LA345-m R6 G16 LA495-m R29 G23
LA46-m R6 G11 LA196-m R30 G7 LA346-m R7 G16 LA496-m R30 G23
LA47-m R7 G11 LA197-m R33 G7 LA347-m R8 G16 LA497-m R33 G23
LA48-m R8 G11 LA198-m R35 G7 LA348-m R9 G16 LA498-m R35 G23
LA49-m R9 G11 LA199-m R36 G7 LA349-m R14 G16 LA499-m R36 G23
LA50-m R10 G11 LA200-m R37 G7 LA350-m R15 G16 LA500-m R37 G23
LA51-m R11 G11 LA201-m R1 G8 LA351-m R18 G16 LA501-m R1 G24
LA52-m R12 G11 LA202-m R2 G8 LA352-m R20 G16 LA502-m R2 G24
LA53-m R13 G11 LA203-m R3 G8 LA353-m R21 G16 LA503-m R3 G24
LA54-m R14 G11 LA204-m R4 G8 LA354-m R28 G16 LA504-m R4 G24
LA55-m R15 G11 LA205-m R6 G8 LA355-m R29 G16 LA505-m R6 G24
LA56-m R16 G11 LA206-m R7 G8 LA356-m R30 G16 LA506-m R7 G24
LA57-m R17 G11 LA207-m R8 G8 LA357-m R33 G16 LA507-m R8 G24
LA58-m R18 G11 LA208-m R9 G8 LA358-m R35 G16 LA508-m R9 G24
LA59-m R19 G11 LA209-m R14 G8 LA359-m R36 G16 LA509-m R14 G24
LA60-m R20 G11 LA210-m R15 G8 LA360-m R37 G16 LA510-m R15 G24
LA61-m R21 G11 LA211-m R18 G8 LA361-m R1 G17 LA511-m R18 G24
LA62-m R22 G11 LA212-m R20 G8 LA362-m R2 G17 LA512-m R20 G24
LA63-m R23 G11 LA213-m R21 G8 LA363-m R3 G17 LA513-m R21 G24
LA64-m R24 G11 LA214-m R28 G8 LA364-m R4 G17 LA514-m R28 G24
LA65-m R25 G11 LA215-m R29 G8 LA365-m R6 G17 LA515-m R29 G24
LA66-m R26 G11 LA216-m R30 G8 LA366-m R7 G17 LA516-m R30 G24
LA67-m R27 G11 LA217-m R33 G8 LA367-m R8 G17 LA517-m R33 G24
LA68-m R28 G11 LA218-m R35 G8 LA368-m R9 G17 LA518-m R35 G24
LA69-m R29 G11 LA219-m R36 G8 LA369-m R14 G17 LA519-m R36 G24
LA70-m R30 G11 LA220-m R37 G8 LA370-m R15 G17 LA520-m R37 G24
LA71-m R31 G11 LA221-m R1 G9 LA371-m R18 G17 LA521-m R1 G25
LA72-m R32 G11 LA222-m R2 G9 LA372-m R20 G17 LA522-m R2 G25
LA73-m R33 G11 LA223-m R3 G9 LA373-m R21 G17 LA523-m R3 G25
LA74-m R34 G11 LA224-m R4 G9 LA374-m R28 G17 LA524-m R4 G25
LA75-m R35 G11 LA225-m R6 G9 LA375-m R29 G17 LA525-m R6 G25
LA76-m R36 G11 LA226-m R7 G9 LA376-m R30 G17 LA526-m R7 G25
LA77-m R37 G11 LA227-m R8 G9 LA377-m R33 G17 LA527-m R8 G25
LA78-m R38 G11 LA228-m R9 G9 LA378-m R35 G17 LA528-m R9 G25
LA79-m R39 G11 LA229-m R14 G9 LA379-m R36 G17 LA529-m R14 G25
LA80-m R40 G11 LA230-m R15 G9 LA380-m R37 G17 LA530-m R15 G25
LA81-m R1 G1 LA231-m R18 G9 LA381-m R1 G18 LA531-m R18 G25
LA82-m R2 G1 LA232-m R20 G9 LA382-m R2 G18 LA532-m R20 G25
LA83-m R3 G1 LA233-m R21 G9 LA383-m R3 G18 LA533-m R21 G25
LA84-m R4 G1 LA234-m R28 G9 LA384-m R4 G18 LA534-m R28 G25
LA85-m R6 G1 LA235-m R29 G9 LA385-m R6 G18 LA535-m R29 G25
LA86-m R7 G1 LA236-m R30 G9 LA386-m R7 G18 LA536-m R30 G25
LA87-m R8 G1 LA237-m R33 G9 LA387-m R8 G18 LA537-m R33 G25
LA88-m R9 G1 LA238-m R35 G9 LA388-m R9 G18 LA538-m R35 G25
LA89-m R14 G1 LA239-m R36 G9 LA389-m R14 G18 LA539-m R36 G25
LA90-m R15 G1 LA240-m R37 G9 LA390-m R15 G18 LA540-m R37 G25
LA91-m R18 G1 LA241-m R1 G10 LA391-m R18 G18 LA541-m R1 G26
LA92-m R20 G1 LA242v R2 G10 LA392-m R20 G18 LA542-m R2 G26
LA93-m R21 G1 LA243-m R3 G10 LA393-m R21 G18 LA543-m R3 G26
LA94-m R28 G1 LA244-m R4 G10 LA394-m R28 G18 LA544-m R4 G26
LA95-m R29 G1 LA245-m R6 G10 LA395-m R29 G18 LA545-m R6 G26
LA96-m R30 G1 LA246-m R7 G10 LA396-m R30 G18 LA546-m R7 G26
LA97-m R33 G1 LA247-m R8 G10 LA397-m R33 G18 LA547-m R8 G26
LA98-m R35 G1 LA248-m R9 G10 LA398-m R35 G18 LA548-m R9 G26
LA99-m R36 G1 LA249-m R14 G10 LA399-m R36 G18 LA549-m R14 G26
LA100-m R37 G1 LA250-m R15 G10 LA400-m R37 G18 LA550-m R15 G26
LA101-m R1 G2 LA251-m R18 G10 LA401-m R1 G19 LA551-m R18 G26
LA102-m R2 G2 LA252-m R20 G10 LA402-m R2 G19 LA552-m R20 G26
LA103-m R3 G2 LA253-m R21 G10 LA403-m R3 G19 LA553-m R21 G26
LA104-m R4 G2 LA254-m R28 G10 LA404-m R4 G19 LA554-m R28 G26
LA105-m R6 G2 LA255-m R29 G10 LA405-m R6 G19 LA555-m R29 G26
LA106-m R7 G2 LA256-m R30 G10 LA406-m R7 G19 LA556-m R30 G26
LA107-m R8 G2 LA257-m R33 G10 LA407-m R8 G19 LA557-m R33 G26
LA108-m R9 G2 LA258-m R35 G10 LA408-m R9 G19 LA558-m R35 G26
LA109-m R14 G2 LA259-m R36 G10 LA409-m R14 G19 LA559-m R36 G26
LA110-m R15 G2 LA260-m R37 G10 LA410-m R15 G19 LA560-m R37 G26
LA111-m R18 G2 LA261-m R1 G12 LA411-m R18 G19 LA561-m R1 G27
LA112-m R20 G2 LA262-m R2 G12 LA412-m R20 G19 LA562-m R2 G27
LA113-m R21 G2 LA263-m R3 G12 LA413-m R21 G19 LA563-m R3 G27
LA114-m R28 G2 LA264-m R4 G12 LA414-m R28 G19 LA564-m R4 G27
LA115-m R29 G2 LA265-m R6 G12 LA415-m R29 G19 LA565-m R6 G27
LA116-m R30 G2 LA266-m R7 G12 LA416-m R30 G19 LA566-m R7 G27
LA117-m R33 G2 LA267-m R8 G12 LA417-m R33 G19 LA567-m R8 G27
LA118-m R35 G2 LA268-m R9 G12 LA418-m R35 G19 LA568-m R9 G27
LA119-m R36 G2 LA269-m R14 G12 LA419-m R36 G19 LA569-m R14 G27
LA120-m R37 G2 LA270-m R15 G12 LA420-m R37 G19 LA570-m R15 G27
LA121-m R1 G3 LA271-m R18 G12 LA421-m R1 G20 LA571-m R18 G27
LA122-m R2 G3 LA272-m R20 G12 LA422-m R2 G20 LA572-m R20 G27
LA123-m R3 G3 LA273-m R21 G12 LA423-m R3 G20 LA573-m R21 G27
LA124-m R4 G3 LA274-m R28 G12 LA424-m R4 G20 LA574-m R28 G27
LA125-m R6 G3 LA275-m R29 G12 LA425-m R6 G20 LA575-m R29 G27
LA126-m R7 G3 LA276-m R30 G12 LA426-m R7 G20 LA576-m R30 G27
LA127-m R8 G3 LA277-m R33 G12 LA427-m R8 G20 LA577-m R33 G27
LA128-m R9 G3 LA278-m R35 G12 LA428-m R9 G20 LA578-m R35 G27
LA129-m R14 G3 LA279-m R36 G12 LA429-m R14 G20 LA579-m R36 G27
LA130-m R15 G3 LA280-m R37 G12 LA430-m R15 G20 LA580-m R37 G27
LA131-m R18 G3 LA281-m R1 G13 LA431-m R18 G20 LA581-m R1 G28
LA132-m R20 G3 LA282-m R2 G13 LA432-m R20 G20 LA582-m R2 G28
LA133-m R21 G3 LA283-m R3 G13 LA433-m R21 G20 LA583-m R3 G28
LA134-m R28 G3 LA284-m R4 G13 LA434-m R28 G20 LA584-m R4 G28
LA135-m R29 G3 LA285-m R6 G13 LA435-m R29 G20 LA585-m R6 G28
LA136-m R30 G3 LA286-m R7 G13 LA436-m R30 G20 LA586-m R7 G28
LA137-m R33 G3 LA287-m R8 G13 LA437-m R33 G20 LA587-m R8 G28
LA138-m R35 G3 LA288-m R9 G13 LA438-m R35 G20 LA588-m R9 G28
LA139-m R36 G3 LA289-m R14 G13 LA439-m R36 G20 LA589-m R14 G28
LA140-m R37 G3 LA290-m R15 G13 LA440-m R37 G20 LA590-m R15 G28
LA141-m R1 G5 LA291-m R18 G13 LA441-m R1 G21 LA591-m R18 G28
LA142-m R2 G5 LA292-m R20 G13 LA442-m R2 G21 LA592-m R20 G28
LA143-m R3 G5 LA293-m R21 G13 LA443-m R3 G21 LA593-m R21 G28
LA144-m R4 G5 LA294-m R28 G13 LA444-m R4 G21 LA594-m R28 G28
LA145-m R6 G5 LA295-m R29 G13 LA445-m R6 G21 LA595-m R29 G28
LA146-m R7 G5 LA296-m R30 G13 LA446-m R7 G21 LA596-m R30 G28
LA147-m R8 G5 LA297-m R33 G13 LA447-m R8 G21 LA597-m R33 G28
LA148-m R9 G5 LA298-m R35 G13 LA448-m R9 G21 LA598-m R35 G28
LA149-m R14 G5 LA299-m R36 G13 LA449-m R14 G21 LA599-m R36 G28
LA150-m R15 G5 LA300-m R37 G13 LA450-m R15 G21 LA600-m R37 G28

wherein R1 to R40 have the followng structures:









and

and wherein G1 to G28 have the following structures:











and the compound is selected from the group consisting of Ir(LA1-1)3 to Ir(LA600-63)3;

when the compound has formula Ir(LAi-m)(LBk)2, LA is selected from the group consisting of LA1-1 to LA600-63 and LB is selected from the group consisting of LBk, wherein k is an integer from 1 to 360, and LB1 to LB360 have the following structures:

























































































































; and the compound is selected from the group consisting of Ir(LA1-1)(LB1)2 to Ir(LA600-63)(LB360)2;

when the compound has formula Ir(LA)2(LB), LA is selected from the group consisting of LA1-1 to LA600- 63, LB is selected from the group consisting of LB1 to LB360; and the compound is selected from the group consisting of Ir(LA1-1)2(LB1) to Ir(LA600-63)2(LB360);

when the compound has formula Ir(LAi-m)2(LCj-I), LA is selected from the group consisting of LA1-1 to LA600-63, LC is LCj-I or LCj-II, wherein j is an integer from 1 to 1416; and the compound is selected from the group consisting of Ir(LA1-1)2(LC1-I) to Ir(LA600-63)2(LC1416-I) or Ir(LA1-1)2(LC1-II) to Ir(LA600-63)2(LC1416-II); and

wherein each LCj-I has a structure based on formula

and each LCj-II has a structure based on formula are each independently defined as follows:

, wherein for each LCj in LCj-I and LCj-II, R201 and R202

LCjR201R202LCjR201R202LCjR201R202LCjR201R202
LC1 RD1 RD1 LC193 RD1 RD3 LC385 RD17 RD40 LC577 RD143 RD120
LC2 RD2 RD2 LC194 RD1 RD4 LC386 RD17 RD41 LC578 RD143 RD133
LC3 RD3 RD3 LC195 RD1 RD5 LC387 RD17 RD42 LC579 RD143 RD134
LC4 RD4 RD4 LC196 RD1 RD9 LC388 RD17 RD43 LC580 RD143 RD135
LC5 RD5 RD5 LC197 RD1 RD10 LC389 RD17 RD48 LC581 RD143 RD136
LC6 RD6 RD6 LC198 RD1 RD17 LC390 RD17 RD49 LC582 RD143 RD144
LC7 RD7 RD7 LC199 RD1 RD18 LC391 RD17 RD50 LC583 RD143 RD145
LC8 RD8 RD8 LC200 RD1 RD20 LC392 RD17 RD54 LC584 RD143 RD146
LC9 RD9 RD9 LC201 RD1 RD22 LC393 RD17 RD55 LC585 RD143 RD147
LC10 RD10 RD10 LC202 RD1 RD37 LC394 RD17 RD58 LC586 RD143 RD149
LC11 RD11 RD11 LC203 RD1 RD40 LC395 RD17 RD59 LC587 RD143 RD151
LC12 RD12 RD12 LC204 RD1 RD41 LC396 RD17 RD78 LC588 RD143 RD154
LC13 RD13 RD13 LC205 RD1 RD42 LC397 RD17 RD79 LC589 RD143 RD155
LC14 RD14 RD14 LC206 RD1 RD43 LC398 RD17 RD81 LC590 RD143 RD161
LC15 RD15 RD15 LC207 RD1 RD48 LC399 RD17 RD87 LC591 RD143 RD175
LC16 RD16 RD16 LC208 RD1 RD49 LC400 RD17 RD88 LC592 RD144 RD3
LC17 RD17 RD17 LC209 RD1 RD50 LC401 RD17 RD89 LC593 RD144 RD5
LC18 RD18 RD18 LC210 RD1 RD54 LC402 RD17 RD93 LC594 RD144 RD17
LC19 RD19 RD19 LC211 RD1 RD55 LC403 RD17 RD116 LC595 RD144 RD18
LC20 RD20 RD20 LC212 RD1 RD58 LC404 RD17 RD117 LC596 RD144 RD20
LC21 RD21 RD21 LC213 RD1 RD59 LC405 RD17 RD118 LC597 RD144 RD22
LC22 RD22 RD22 LC214 RD1 RD78 LC406 RD17 RD119 LC598 RD144 RD37
LC23 RD23 RD23 LC215 RD1 RD79 LC407 RD17 RD120 LC599 RD144 RD40
LC24 RD24 RD24 LC216 RD1 RD81 LC408 RD17 RD133 LC600 RD144 RD41
LC25 RD25 RD25 LC217 RD1 RD87 LC409 RD17 RD134 LC601 RD144 RD42
LC26 RD26 RD26 LC218 RD1 RD88 LC410 RD17 RD135 LC602 RD144 RD43
LC27 RD27 RD27 LC219 RD1 RD89 LC411 RD17 RD136 LC603 RD144 RD48
LC28 RD28 RD28 LC220 RD1 RD93 LC412 RD17 RD143 LC604 RD144 RD49
LC29 RD29 RD29 LC221 RD1 RD116 LC413 RD17 RD144 LC605 RD144 RD54
LC30 RD30 RD30 LC222 RD1 RD117 LC414 RD17 RD145 LC606 RD144 RD58
LC31 RD31 RD31 LC223 RD1 RD118 LC415 RD17 RD146 LC607 RD144 RD59
LC32 RD32 RD32 LC224 RD1 RD119 LC416 RD17 RD147 LC608 RD144 RD78
LC33 RD33 RD33 LC225 RD1 RD120 LC417 RD17 RD149 LC609 RD144 RD79
LC34 RD34 RD34 LC226 RD1 RD133 LC418 RD17 RD151 LC610 RD144 RD81
LC35 RD35 RD35 LC227 RD1 RD134 LC419 RD17 RD154 LC611 RD144 RD87
LC36 RD36 RD36 LC228 RD1 RD135 LC420 RD17 RD155 LC612 RD144 RD88
LC37 RD37 RD37 LC229 RD1 RD136 LC421 RD17 RD161 LC613 RD144 RD89
LC38 RD38 RD38 LC230 RD1 RD143 LC422 RD17 RD175 LC614 RD144 RD93
LC39 RD39 RD39 LC231 RD1 RD144 LC423 RD50 RD3 LC615 RD144 RD116
LC40 RD40 RD40 LC232 RD1 RD145 LC424 RD50 RD5 LC616 RD144 RD117
LC41 RD41 RD41 LC233 RD1 RD146 LC425 RD50 RD18 LC617 RD144 RD118
LC42 RD42 RD42 LC234 RD1 RD147 LC426 RD50 RD20 LC618 RD144 RD119
LC43 RD43 RD43 LC235 RD1 RD149 LC427 RD50 RD22 LC619 RD144 RD120
LC44 RD44 RD44 LC236 RD1 RD151 LC428 RD50 RD37 LC620 RD144 RD133
LC45 RD45 RD45 LC237 RD1 RD154 LC429 RD50 RD40 LC621 RD144 RD134
LC46 RD46 RD46 LC238 RD1 RD155 LC430 RD50 RD41 LC622 RD144 RD135
LC47 RD47 RD47 LC239 RD1 RD161 LC431 RD50 RD42 LC623 RD144 RD136
LC48 RD48 RD48 LC240 RD1 RD175 LC432 RD50 RD43 LC624 RD144 RD145
LC49 RD49 RD49 LC241 RD4 RD3 LC433 RD50 RD48 LC625 RD144 RD146
LC50 RD50 RD50 LC242 RD4 RD5 LC434 RD50 RD49 LC626 RD144 RD147
LC51 RD51 RD51 LC243 RD4 RD9 LC435 RD50 RD54 LC627 RD144 RD149
LC52 RD52 RD52 LC244 RD4 RD10 LC436 RD50 RD55 LC628 RD144 RD151
LC53 RD53 RD53 LC245 RD4 RD17 LC437 RD50 RD58 LC629 RD144 RD154
LC54 RD54 RD54 LC246 RD4 RD18 LC438 RD50 RD59 LC630 RD144 RD155
LC55 RD55 RD55 LC247 RD4 RD20 LC439 RD50 RD78 LC631 RD144 RD161
LC56 RD56 RD56 LC248 RD4 RD22 LC440 RD50 RD79 LC632 RD144 RD175
LC57 RD57 RD57 LC249 RD4 RD37 LC441 RD50 RD81 LC633 RD145 RD3
LC58 RD58 RD58 LC250 RD4 RD40 LC442 RD50 RD87 LC634 RD145 RD5
LC59 RD59 RD59 LC251 RD4 RD41 LC443 RD50 RD88 LC635 RD145 RD17
LC60 RD60 RD60 LC252 RD4 RD42 LC444 RD50 RD89 LC636 RD145 RD18
LC61 RD61 RD61 LC253 RD4 RD43 LC445 RD50 RD93 LC637 RD145 RD20
LC62 RD62 RD62 LC254 RD4 RD48 LC446 RD50 RD116 LC638 RD145 RD22
LC63 RD63 RD63 LC255 RD4 RD49 LC447 RD50 RD117 LC639 RD145 RD37
LC64 RD64 RD64 LC256 RD4 RD50 LC448 RD50 RD118 LC640 RD145 RD40
LC65 RD65 RD65 LC257 RD4 RD54 LC449 RD50 RD119 LC641 RD145 RD41
LC66 RD66 RD66 LC258 RD4 RD55 LC450 RD50 RD120 LC642 RD145 RD42
LC67 RD67 RD67 LC259 RD4 RD58 LC451 RD50 RD133 LC643 RD145 RD43
LC68 RD68 RD68 LC260 RD4 RD59 LC452 RD50 RD134 LC644 RD145 RD48
LC69 RD69 RD69 LC261 RD4 RD78 LC453 RD50 RD135 LC645 RD145 RD49
LC70 RD70 RD70 LC262 RD4 RD79 LC454 RD50 RD136 LC646 RD145 RD54
LC71 RD71 RD71 LC263 RD4 RD81 LC455 RD50 RD143 LC647 RD145 RD58
LC72 RD72 RD72 LC264 RD4 RD87 LC456 RD50 RD144 LC648 RD145 RD59
LC73 RD73 RD73 LC265 RD4 RD88 LC457 RD50 RD145 LC649 RD145 RD78
LC74 RD74 RD74 LC266 RD4 RD89 LC458 RD50 RD146 LC650 RD145 RD79
LC75 RD75 RD75 LC267 RD4 RD93 LC459 RD50 RD147 LC651 RD145 RD81
LC76 RD76 RD76 LC268 RD4 RD116 LC460 RD50 RD149 LC652 RD145 RD87
LC77 RD77 RD77 LC269 RD4 RD117 LC461 RD50 RD151 LC653 RD145 RD88
LC78 RD78 RD78 LC270 RD4 RD118 LC462 RD50 RD154 LC654 RD145 RD89
LC79 RD79 RD79 LC271 RD4 RD119 LC463 RD50 RD155 LC655 RD145 RD93
LC80 RD80 RD80 LC272 RD4 RD120 LC464 RD50 RD161 LC656 RD145 RD116
LC81 RD81 RD81 LC273 RD4 RD133 LC465 RD50 RD175 LC657 RD145 RD117
LC82 RD82 RD82 LC274 RD4 RD134 LC466 RD55 RD3 LC658 RD145 RD118
LC83 RD83 RD83 LC275 RD4 RD135 LC467 RD55 RD5 LC659 RD145 RD119
LC84 RD84 RD84 LC276 RD4 RD136 LC468 RD55 RD18 LC660 RD145 RD120
LC85 RD85 RD85 LC277 RD4 RD143 LC469 RD55 RD20 LC661 RD145 RD133
LC86 RD86 RD86 LC278 RD4 RD144 LC470 RD55 RD22 LC662 RD145 RD134
LC87 RD87 RD87 LC279 RD4 RD145 LC471 RD55 RD37 LC663 RD145 RD135
LC88 RD88 RD88 LC280 RD4 RD146 LC472 RD55 RD40 LC664 RD145 RD136
LC89 RD89 RD89 LC281 RD4 RD147 LC473 RD55 RD41 LC665 RD145 RD146
LC90 RD90 RD90 LC282 RD4 RD149 LC474 RD55 RD42 LC666 RD145 RD147
LC91 RD91 RD91 LC283 RD4 RD151 LC475 RD55 RD43 LC667 RD145 RD149
LC92 RD92 RD92 LC284 RD4 RD154 LC476 RD55 RD48 LC668 RD145 RD151
LC93 RD93 RD93 LC285 RD4 RD155 LC477 RD55 RD49 LC669 RD145 RD154
LC94 RD94 RD94 LC286 RD4 RD161 LC478 RD55 RD54 LC670 RD145 RD155
LC95 RD95 RD95 LC287 RD4 RD175 LC479 RD55 RD58 LC671 RD145 RD161
LC96 RD96 RD96 LC288 RD9 RD3 LC480 RD55 RD59 LC672 RD145 RD175
LC97 RD97 RD97 LC289 RD9 RD5 LC481 RD55 RD78 LC673 RD146 RD3
LC98 RD98 RD98 LC290 RD9 RD10 LC482 RD55 RD79 LC674 RD146 RD5
LC99 RD99 RD99 LC291 RD9 RD17 LC483 RD55 RD81 LC675 RD146 RD17
LC100 RD100 RD100 LC292 RD9 RD18 LC484 RD55 RD87 LC676 RD146 RD18
LC101 RD101 RD101 LC293 RD9 RD20 LC485 RD55 RD88 LC677 RD146 RD20
LC102 RD102 RD102 LC294 RD9 RD22 LC486 RD55 RD89 LC678 RD146 RD22
LC103 RD103 RD103 LC295 RD9 RD37 LC487 RD55 RD93 LC679 RD146 RD37
LC104 RD104 RD104 LC296 RD9 RD40 LC488 RD55 RD116 LC680 RD146 RD40
LC105 RD105 RD105 LC297 RD9 RD41 LC489 RD55 RD117 LC681 RD146 RD41
LC106 RD106 RD106 LC298 RD9 RD42 LC490 RD55 RD118 LC682 RD146 RD42
LC107 RD107 RD107 LC299 RD9 RD43 LC491 RD55 RD119 LC683 RD146 RD43
LC108 RD108 RD108 LC300 RD9 RD48 LC492 RD55 RD120 LC684 RD146 RD48
LC109 RD109 RD109 LC301 RD9 RD49 LC493 RD55 RD133 LC685 RD146 RD49
LC110 RD110 RD110 LC302 RD9 RD50 LC494 RD55 RD134 LC686 RD146 RD54
LC111 RD111 RD111 LC303 RD9 RD54 LC495 RD55 RD135 LC687 RD146 RD58
LC112 RD112 RD112 LC304 RD9 RD55 LC496 RD55 RD136 LC688 RD146 RD59
LC113 RD113 RD113 LC305 RD9 RD58 LC497 RD55 RD143 LC689 RD146 RD78
LC114 RD114 RD114 LC306 RD9 RD59 LC498 RD55 RD144 LC690 RD146 RD79
LC115 RD115 RD115 LC307 RD9 RD78 LC499 RD55 RD145 LC691 RD146 RD81
LC116 RD116 RD116 LC308 RD9 RD79 LC500 RD55 RD146 LC692 RD146 RD87
LC117 RD117 RD117 LC309 RD9 RD81 LC501 RD55 RD147 LC693 RD146 RD88
LC118 RD118 RD118 LC310 RD9 RD87 LC502 RD55 RD149 LC694 RD146 RD89
LC119 RD119 RD119 LC311 RD9 RD88 LC503 RD55 RD151 LC695 RD146 RD93
LC120 RD120 RD120 LC312 RD9 RD89 LC504 RD55 RD154 LC696 RD146 RD117
LC121 RD121 RD121 LC313 RD9 RD93 LC505 RD55 RD155 LC697 RD146 RD118
LC122 RD122 RD122 LC314 RD9 RD116 LC506 RD55 RD161 LC698 RD146 RD119
LC123 RD123 RD123 LC315 RD9 RD117 LC507 RD55 RD175 LC699 RD146 RD120
LC124 RD124 RD124 LC316 RD9 RD118 LC508 RD116 RD3 LC700 RD146 RD133
LC125 RD125 RD125 LC317 RD9 RD119 LC509 RD116 RD5 LC701 RD146 RD134
LC126 RD126 RD126 LC318 RD9 RD120 LC510 RD116 RD17 LC702 RD146 RD135
LC127 RD127 RD127 LC319 RD9 RD133 LC511 RD116 RD18 LC703 RD146 RD136
LC128 RD128 RD128 LC320 RD9 RD134 LC512 RD116 RD20 LC704 RD146 RD146
LC129 RD129 RD129 LC321 RD9 RD135 LC513 RD116 RD22 LC705 RD146 RD147
LC130 RD130 RD130 LC322 RD9 RD136 LC514 RD116 RD37 LC706 RD146 RD149
LC131 RD131 RD131 LC323 RD9 RD143 LC515 RD116 RD40 LC707 RD146 RD151
LC132 RD132 RD132 LC324 RD9 RD144 LC516 RD116 RD41 LC708 RD146 RD154
LC133 RD133 RD133 LC325 RD9 RD145 LC517 RD116 RD42 LC709 RD146 RD155
LC134 RD134 RD134 LC326 RD9 RD146 LC518 RD116 RD43 LC710 RD146 RD161
LC135 RD135 RD135 LC327 RD9 RD147 LC519 RD116 RD48 LC711 RD146 RD175
LC136 RD136 RD136 LC328 RD9 RD149 LC520 RD116 RD49 LC712 RD133 RD3
LC137 RD137 RD137 LC329 RD9 RD151 LC521 RD116 RD54 LC713 RD133 RD5
LC138 RD138 RD138 LC330 RD9 RD154 LC522 RD116 RD58 LC714 RD133 RD3
LC139 RD139 RD139 LC331 RD9 RD155 LC523 RD116 RD59 LC715 RD133 RD18
LC140 RD140 RD140 LC332 RD9 RD161 LC524 RD116 RD78 LC716 RD133 RD20
LC141 RD141 RD141 LC333 RD9 RD175 LC525 RD116 RD79 LC717 RD133 RD22
LC142 RD142 RD142 LC334 RD10 RD3 LC526 RD116 RD81 LC718 RD133 RD37
LC143 RD143 RD143 LC335 RD10 RD5 LC527 RD116 RD87 LC719 RD133 RD40
LC144 RD144 RD144 LC336 RD10 RD17 LC528 RD116 RD88 LC720 RD133 RD41
LC145 RD145 RD145 LC337 RD10 RD18 LC529 RD116 RD89 LC721 RD133 RD42
LC146 RD146 RD146 LC338 RD10 RD20 LC530 RD116 RD93 LC722 RD133 RD43
LC147 RD147 RD147 LC339 RD10 RD22 LC531 RD116 RD117 LC723 RD133 RD48
LC148 RD148 RD148 LC340 RD10 RD37 LC532 RD116 RD118 LC724 RD133 RD49
LC149 RD149 RD149 LC341 RD10 RD40 LC533 RD116 RD119 LC725 RD133 RD54
LC150 RD150 RD150 LC342 RD10 RD41 LC534 RD116 RD120 LC726 RD133 RD58
LC151 RD151 RD151 LC343 RD10 RD42 LC535 RD116 RD133 LC727 RD133 RD59
LC152 RD152 RD152 LC344 RD10 RD43 LC536 RD116 RD134 LC728 RD133 RD78
LC153 RD153 RD153 LC345 RD10 RD48 LC537 RD116 RD135 LC729 RD133 RD79
LC154 RD154 RD154 LC346 RD10 RD49 LC538 RD116 RD136 LC730 RD133 RD81
LC155 RD155 RD155 LC347 RD10 RD50 LC539 RD116 RD143 LC731 RD133 RD87
LC156 RD156 RD156 LC348 RD10 RD54 LC540 RD116 RD144 LC732 RD133 RD88
LC157 RD157 RD157 LC349 RD10 RD55 LC541 RD116 RD145 LC733 RD133 RD89
LC158 RD158 RD158 LC350 RD10 RD58 LC542 RD116 RD146 LC734 RD133 RD93
LC159 RD159 RD159 LC351 RD10 RD59 LC543 RD116 RD147 LC735 RD133 RD117
LC160 RD160 RD160 LC352 RD10 RD78 LC544 RD116 RD149 LC736 RD133 RD118
LC161 RD161 RD161 LC353 RD10 RD79 LC545 RD116 RD151 LC737 RD133 RD119
LC162 RD162 RD162 LC354 RD10 RD81 LC546 RD116 RD154 LC738 RD133 RD120
LC163 RD163 RD163 LC355 RD10 RD87 LC547 RD116 RD155 LC739 RD133 RD133
LC164 RD164 RD164 LC356 RD10 RD88 LC548 RD116 RD161 LC740 RD133 RD134
LC165 RD165 RD165 LC357 RD10 RD89 LC549 RD116 RD175 LC741 RD133 RD135
LC166 RD166 RD166 LC358 RD10 RD93 LC550 RD143 RD3 LC742 RD133 RD136
LC167 RD167 RD167 LC359 RD10 RD116 LC551 RD143 RD5 LC743 RD133 RD146
LC168 RD168 RD168 LC360 RD10 RD117 LC552 RD143 RD17 LC744 RD133 RD147
LC169 RD169 RD169 LC361 RD10 RD118 LC553 RD143 RD18 LC745 RD133 RD149
LC170 RD170 RD170 LC362 RD10 RD119 LC554 RD143 RD20 LC746 RD133 RD151
LC171 RD171 RD171 LC363 RD10 RD120 LC555 RD143 RD22 LC747 RD133 RD154
LC172 RD172 RD172 LC364 RD10 RD133 LC556 RD143 RD37 LC748 RD133 RD155
LC173 RD173 RD173 LC365 RD10 RD134 LC557 RD143 RD40 LC749 RD133 RD161
LC174 RD174 RD174 LC366 RD10 RD135 LC558 RD143 RD41 LC750 RD133 RD175
LC175 RD175 RD175 LC367 RD10 RD136 LC559 RD143 RD42 LC751 RD175 RD3
LC176 RD176 RD176 LC368 RD10 RD143 LC560 RD143 RD43 LC752 RD175 RD5
LC177 RD177 RD177 LC369 RD10 RD144 LC561 RD143 RD48 LC753 RD175 RD18
LC178 RD178 RD178 LC370 RD10 RD145 LC562 RD143 RD49 LC754 RD175 RD20
LC179 RD179 RD179 LC371 RD10 RD146 LC563 RD143 RD54 LC755 RD175 RD22
LC180 RD180 RD180 LC372 RD10 RD147 LC564 RD143 RD58 LC756 RD175 RD37
LC181 RD181 RD181 LC373 RD10 RD149 LC565 RD143 RD59 LC757 RD175 RD40
LC182 RD182 RD182 LC374 RD10 RD151 LC566 RD143 RD78 LC758 RD175 RD41
LC183 RD183 RD183 LC375 RD10 RD154 LC567 RD143 RD79 LC759 RD175 RD42
LC184 RD184 RD184 LC376 RD10 RD155 LC568 RD143 RD81 LC760 RD175 RD43
LC185 RD185 RD185 LC377 RD10 RD161 LC569 RD143 RD87 LC761 RD175 RD48
LC186 RD186 RD186 LC378 RD10 RD175 LC570 RD143 RD88 LC762 RD175 RD49
LC187 RD187 RD187 LC379 RD17 RD3 LC571 RD143 RD89 LC763 RD175 RD54
LC188 RD188 RD188 LC380 RD17 RD5 LC572 RD143 RD93 LC764 RD175 RD58
LC189 RD189 RD189 LC381 RD17 RD18 LC573 RD143 RD116 LC765 RD175 RD59
LC190 RD190 RD190 LC382 RD17 RD20 LC574 RD143 RD117 LC766 RD175 RD78
LC191 RD191 RD191 LC383 RD17 RD22 LC575 RD143 RD118 LC767 RD175 RD79
LC192 RD192 RD192 LC384 RD17 RD37 LC576 RD143 RD119 LC768 RD175 RD81
LC769 RD193 RD193 LC877 RD1 RD193 LC985 RD4 RD193 LC1093 RD9 RD193
LC770 RD194 RD194 LC878 RD1 RD194 LC986 RD4 RD194 LC1094 RD9 RD194
LC771 RD195 RD195 LC879 RD1 RD195 LC987 RD4 RD195 LC1095 RD9 RD195
LC772 RD196 RD196 LC880 RD1 RD196 LC988 RD4 RD196 LC1096 RD9 RD196
LC773 RD197 RD197 LC881 RD1 RD197 LC989 RD4 RD197 LC1097 RD9 RD197
LC774 RD198 RD198 LC882 RD1 RD198 LC990 RD4 RD198 LC1098 RD9 RD198
LC775 RD199 RD199 LC883 RD1 RD199 LC991 RD4 RD199 LC1099 RD9 RD199
LC776 RD200 RD200 LC884 RD1 RD200 LC992 RD4 RD200 LC1100 RD9 RD200
LC777 RD201 RD201 LC885 RD1 RD201 LC993 RD4 RD201 LC1101 RD9 RD201
LC778 RD202 RD202 LC886 RD1 RD202 LC994 RD4 RD202 LC1102 RD9 RD202
LC779 RD203 RD203 LC887 RD1 RD203 LC995 RD4 RD203 LC1103 RD9 RD203
LC780 RD204 RD204 LC888 RD1 RD204 LC996 RD4 RD204 LC1104 RD9 RD204
LC781 RD205 RD205 LC889 RD1 RD205 LC997 RD4 RD205 LC1105 RD9 RD205
LC782 RD206 RD206 LC890 RD1 RD206 LC998 RD4 RD206 LC1106 RD9 RD206
LC783 RD207 RD207 LC891 RD1 RD207 LC999 RD4 RD207 LC1107 RD9 RD207
LC784 RD208 RD208 LC892 RD1 RD208 LC1000 RD4 RD208 LC1108 RD9 RD208
LC785 RD209 RD209 LC893 RD1 RD209 LC1001 RD4 RD209 LC1109 RD9 RD209
LC786 RD210 RD210 LC894 RD1 RD210 LC1002 RD4 RD210 LC1110 RD9 RD210
LC787 RD211 RD211 LC895 RD1 RD211 LC1003 RD4 RD211 LC1111 RD9 RD211
LC788 RD212 RD212 LC896 RD1 RD212 LC1004 RD4 RD212 LC1112 RD9 RD212
LC789 RD213 RD213 LC897 RD1 RD213 LC1005 RD4 RD213 LC1113 RD9 RD213
LC790 RD214 RD214 LC898 RD1 RD214 LC1006 RD4 RD214 LC1114 RD9 RD214
LC791 RD215 RD215 LC899 RD1 RD215 LC1007 RD4 RD215 LC1115 RD9 RD215
LC792 RD216 RD216 LC900 RD1 RD216 LC1008 RD4 RD216 LC1116 RD9 RD216
LC793 RD217 RD217 LC901 RD1 RD217 LC1009 RD4 RD217 LC1117 RD9 RD217
LC794 RD218 RD218 LC902 RD1 RD218 LC1010 RD4 RD218 LC1118 RD9 RD218
LC795 RD219 RD219 LC903 RD1 RD219 LC1011 RD4 RD219 LC1119 RD9 RD219
LC796 RD220 RD220 LC904 RD1 RD220 LC1012 RD4 RD220 LC1120 RD9 RD220
LC797 RD221 RD221 LC905 RD1 RD221 LC1013 RD4 RD221 LC1121 RD9 RD221
LC798 RD222 RD222 LC906 RD1 RD222 LC1014 RD4 RD222 LC1122 RD9 RD222
LC799 RD223 RD223 LC907 RD1 RD223 LC1015 RD4 RD223 LC1123 RD9 RD223
LC800 RD224 RD224 LC908 RD1 RD224 LC1016 RD4 RD224 LC1124 RD9 RD224
LC801 RD225 RD225 LC909 RD1 RD225 LC1017 RD4 RD225 LC1125 RD9 RD225
LC802 RD226 RD226 LC910 RD1 RD226 LC1018 RD4 RD226 LC1126 RD9 RD226
LC803 RD227 RD227 LC911 RD1 RD227 LC1019 RD4 RD227 LC1127 RD9 RD227
LC804 RD228 RD228 LC912 RD1 RD228 LC1020 RD4 RD228 LC1128 RD9 RD228
LC805 RD229 RD229 LC913 RD1 RD229 LC1021 RD4 RD229 LC1129 RD9 RD229
LC806 RD230 RD230 LC914 RD1 RD230 LC1022 RD4 RD230 LC1130 RD9 RD230
LC807 RD231 RD231 LC915 RD1 RD231 LC1023 RD4 RD231 LC1131 RD9 RD231
LC808 RD232 RD232 LC916 RD1 RD232 LC1024 RD4 RD232 LC1132 RD9 RD232
LC809 RD233 RD233 LC917 RD1 RD233 LC1025 RD4 RD233 LC1133 RD9 RD233
LC810 RD234 RD234 LC918 RD1 RD234 LC1026 RD4 RD234 LC1134 RD9 RD234
LC811 RD235 RD235 LC919 RD1 RD235 LC1027 RD4 RD235 LC1135 RD9 RD235
LC812 RD236 RD236 LC920 RD1 RD236 LC1028 RD4 RD236 LC1136 RD9 RD236
LC813 RD237 RD237 LC921 RD1 RD237 LC1029 RD4 RD237 LC1137 RD9 RD237
LC814 RD238 RD238 LC922 RD1 RD238 LC1030 RD4 RD238 LC1138 RD9 RD238
LC815 RD239 RD239 LC923 RD1 RD239 LC1031 RD4 RD239 LC1139 RD9 RD239
LC816 RD240 RD240 LC924 RD1 RD240 LC1032 RD4 RD240 LC1140 RD9 RD240
LC817 RD241 RD241 LC925 RD1 RD241 LC1033 RD4 RD241 LC1141 RD9 RD241
LC818 RD242 RD242 LC926 RD1 RD242 LC1034 RD4 RD242 LC1142 RD9 RD242
LC819 RD243 RD243 LC927 RD1 RD243 LC1035 RD4 RD243 LC1143 RD9 RD243
LC820 RD244 RD244 LC928 RD1 RD244 LC1036 RD4 RD244 LC1144 RD9 RD244
LC821 RD245 RD245 LC929 RD1 RD245 LC1037 RD4 RD245 LC1145 RD9 RD245
LC822 RD246 RD246 LC930 RD1 RD246 LC1038 RD4 RD246 LC1146 RD9 RD246
LC823 RD17 RD193 LC931 RD50 RD193 LC1039 RD145 RD193 LC1147 RD168 RD193
LC824 RD17 RD194 LC932 RD50 RD194 LC1040 RD145 RD194 LC1148 RD168 RD194
LC825 RD17 RD195 LC933 RD50 RD195 LC1041 RD145 RD195 LC1149 RD168 RD195
LC826 RD17 RD196 LC934 RD50 RD196 LC1042 RD145 RD196 LC1150 RD168 RD196
LC827 RD17 RD197 LC935 RD50 RD197 LC1043 RD145 RD197 LC1151 RD168 RD197
LC828 RD17 RD198 LC936 RD50 RD198 LC1044 RD145 RD198 LC1152 RD168 RD198
LC829 RD17 RD199 LC937 RD50 RD199 LC1045 RD145 RD199 LC1153 RD168 RD199
LC830 RD17 RD200 LC938 RD50 RD200 LC1046 RD145 RD200 LC1154 RD168 RD200
LC831 RD17 RD201 LC939 RD50 RD201 LC1047 RD145 RD201 LC1155 RD168 RD201
LC832 RD17 RD202 LC940 RD50 RD202 LC1048 RD145 RD202 LC1156 RD168 RD202
LC833 RD17 RD203 LC941 RD50 RD203 LC1049 RD145 RD203 LC1157 RD168 RD203
LC834 RD17 RD204 LC942 RD50 RD204 LC1050 RD145 RD204 LC1158 RD168 RD204
LC835 RD17 RD205 LC943 RD50 RD205 LC1051 RD145 RD205 LC1159 RD168 RD205
LC836 RD17 RD206 LC944 RD50 RD206 LC1052 RD145 RD206 LC1160 RD168 RD206
LC837 RD17 RD207 LC945 RD50 RD207 LC1053 RD145 RD207 LC1161 RD168 RD207
LC838 RD17 RD208 LC946 RD50 RD208 LC1054 RD145 RD208 LC1162 RD168 RD208
LC839 RD17 RD209 LC947 RD50 RD209 LC1055 RD145 RD209 LC1163 RD168 RD209
LC840 RD17 RD210 LC948 RD50 RD210 LC1056 RD145 RD210 LC1164 RD168 RD210
LC841 RD17 RD211 LC949 RD50 RD211 LC1057 RD145 RD211 LC1165 RD168 RD211
LC842 RD17 RD212 LC950 RD50 RD212 LC1058 RD145 RD212 LC1166 RD168 RD212
LC843 RD17 RD213 LC951 RD50 RD213 LC1059 RD145 RD213 LC1167 RD168 RD213
LC844 RD17 RD214 LC952 RD50 RD214 LC1060 RD145 RD214 LC1168 RD168 RD214
LC845 RD17 RD215 LC953 RD50 RD215 LC1061 RD145 RD215 LC1169 RD168 RD215
LC846 RD17 RD216 LC954 RD50 RD216 LC1062 RD145 RD216 LC1170 RD168 RD216
LC847 RD17 RD217 LC955 RD50 RD217 LC1063 RD145 RD217 LC1171 RD168 RD217
LC848 RD17 RD218 LC956 RD50 RD218 LC1064 RD145 RD218 LC1172 RD168 RD218
LC849 RD17 RD219 LC957 RD50 RD219 LC1065 RD145 RD219 LC1173 RD168 RD219
LC850 RD17 RD220 LC958 RD50 RD220 LC1066 RD145 RD220 LC1174 RD168 RD220
LC851 RD17 RD221 LC959 RD50 RD221 LC1067 RD145 RD221 LC1175 RD168 RD221
LC852 RD17 RD222 LC960 RD50 RD222 LC1068 RD145 RD222 LC1176 RD168 RD222
LC853 RD17 RD223 LC961 RD50 RD223 LC1069 RD145 RD223 LC1177 RD168 RD223
LC854 RD17 RD224 LC962 RD50 RD224 LC1070 RD145 RD224 LC1178 RD168 RD224
LC855 RD17 RD225 LC963 RD50 RD225 LC1071 RD145 RD225 LC1179 RD168 RD225
LC856 RD17 RD226 LC964 RD50 RD226 LC1072 RD145 RD226 LC1180 RD168 RD226
LC857 RD17 RD227 LC965 RD50 RD227 LC1073 RD145 RD227 LC1181 RD168 RD227
LC858 RD17 RD228 LC966 RD50 RD228 LC1074 RD145 RD228 LC1182 RD168 RD228
LC859 RD17 RD229 LC967 RD50 RD229 LC1075 RD145 RD229 LC1183 RD168 RD229
LC860 RD17 RD230 LC968 RD50 RD230 LC1076 RD145 RD230 LC1184 RD168 RD230
LC861 RD17 RD231 LC969 RD50 RD231 LC1077 RD145 RD231 LC1185 RD168 RD231
LC862 RD17 RD232 LC970 RD50 RD232 LC1078 RD145 RD232 LC1186 RD168 RD232
LC863 RD17 RD233 LC971 RD50 RD233 LC1079 RD145 RD233 LC1187 RD168 RD233
LC864 RD17 RD234 LC972 RD50 RD234 LC1080 RD145 RD234 LC1188 RD168 RD234
LC865 RD17 RD235 LC973 RD50 RD235 LC1081 RD145 RD235 LC1189 RD168 RD235
LC866 RD17 RD236 LC974 RD50 RD236 LC1082 RD145 RD236 LC1190 RD168 RD236
LC867 RD17 RD237 LC975 RD50 RD237 LC1083 RD145 RD237 LC1191 RD168 RD237
LC868 RD17 RD238 LC976 RD50 RD238 LC1084 RD145 RD238 LC1192 RD168 RD238
LC869 RD17 RD239 LC977 RD50 RD239 LC1085 RD145 RD239 LC1193 RD168 RD239
LC870 RD17 RD240 LC978 RD50 RD240 LC1086 RD145 RD240 LC1194 RD168 RD240
LC871 RD17 RD241 LC979 RD50 RD241 LC1087 RD145 RD241 LC1195 RD168 RD241
LC872 RD17 RD242 LC980 RD50 RD242 LC1088 RD145 RD242 LC1196 RD168 RD242
LC873 RD17 RD243 LC981 RD50 RD243 LC1089 RD145 RD243 LC1197 RD168 RD243
LC874 RD17 RD244 LC982 RD50 RD244 LC1090 RD145 RD244 LC1198 RD168 RD244
LC875 RD17 RD245 LC983 RD50 RD245 LC1091 RD145 RD245 LC1199 RD168 RD245
LC876 RD17 RD246 LC984 RD50 RD246 LC1092 RD145 RD246 LC1200 RD168 RD246
LC1201 RD10 RD193 LC1255 RD55 RD193 LC1309 RD37 RD193 LC1363 RD143 RD193
LC1202 RD10 RD194 LC1256 RD55 RD194 LC1310 RD37 RD194 LC1364 RD143 RD194
LC1203 RD10 RD195 LC1257 RD55 RD195 LC1311 RD37 RD195 LC1365 RD143 RD195
LC1204 RD10 RD196 LC1258 RD55 RD196 LC1312 RD37 RD196 LC1366 RD143 RD196
LC1205 RD10 RD197 LC1259 RD55 RD197 LC1313 RD37 RD197 LC1367 RD143 RD197
LC1206 RD10 RD198 LC1260 RD55 RD198 LC1314 RD37 RD198 LC1368 RD143 RD198
LC1207 RD10 RD199 LC1261 RD55 RD199 LC1315 RD37 RD199 LC1369 RD143 RD199
LC1208 RD10 RD200 LC1262 RD55 RD200 LC1316 RD37 RD200 LC1370 RD143 RD200
LC1209 RD10 RD201 LC1263 RD55 RD201 LC1317 RD37 RD201 LC1371 RD143 RD201
LC1210 RD10 RD202 LC1264 RD55 RD202 LC1318 RD37 RD202 LC1372 RD143 RD202
LC1211 RD10 RD203 LC1265 RD55 RD203 LC1319 RD37 RD203 LC1373 RD143 RD203
LC1212 RD10 RD204 LC1266 RD55 RD204 LC1320 RD37 RD204 LC1374 RD143 RD204
LC1213 RD10 RD205 LC1267 RD55 RD205 LC1321 RD37 RD205 LC1375 RD143 RD205
LC1214 RD10 RD206 LC1268 RD55 RD206 LC1322 RD37 RD206 LC1376 RD143 RD206
LC1215 RD10 RD207 LC1269 RD55 RD207 LC1323 RD37 RD207 LC1377 RD143 RD207
LC1216 RD10 RD208 LC1270 RD55 RD208 LC1324 RD37 RD208 LC1378 RD143 RD208
LC1217 RD10 RD209 LC1271 RD55 RD209 LC1325 RD37 RD209 LC1379 RD143 RD209
LC1218 RD10 RD210 LC1272 RD55 RD210 LC1326 RD37 RD210 LC1380 RD143 RD210
LC1219 RD10 RD211 LC1273 RD55 RD211 LC1327 RD37 RD211 LC1381 RD143 RD211
LC1220 RD10 RD212 LC1274 RD55 RD212 LC1328 RD37 RD212 LC1382 RD143 RD212
LC1221 RD10 RD213 LC1275 RD55 RD213 LC1329 RD37 RD213 LC1383 RD143 RD213
LC1222 RD10 RD214 LC1276 RD55 RD214 LC1330 RD37 RD214 LC1384 RD143 RD214
LC1223 RD10 RD215 LC1277 RD55 RD215 LC1331 RD37 RD215 LC1385 RD143 RD215
LC1224 RD10 RD216 LC1278 RD55 RD216 LC1332 RD37 RD216 LC1386 RD143 RD216
LC1225 RD10 RD217 LC1279 RD55 RD217 LC1333 RD37 RD217 LC1387 RD143 RD217
LC1226 RD10 RD218 LC1280 RD55 RD218 LC1334 RD37 RD218 LC1388 RD143 RD218
LC1227 RD10 RD219 LC1281 RD55 RD219 LC1335 RD37 RD219 LC1389 RD143 RD219
LC1228 RD10 RD220 LC1282 RD55 RD220 LC1336 RD37 RD220 LC1390 RD143 RD220
LC1229 RD10 RD221 LC1283 RD55 RD221 LC1337 RD37 RD221 LC1391 RD143 RD221
LC1230 RD10 RD222 LC1284 RD55 RD222 LC1338 RD37 RD222 LC1392 RD143 RD222
LC1231 RD10 RD223 LC1285 RD55 RD223 LC1339 RD37 RD223 LC1393 RD143 RD223
LC1232 RD10 RD224 LC1286 RD55 RD224 LC1340 RD37 RD224 LC1394 RD143 RD224
LC1233 RD10 RD225 LC1287 RD55 RD225 LC1341 RD37 RD225 LC1395 RD143 RD225
LC1234 RD10 RD226 LC1288 RD55 RD226 LC1342 RD37 RD226 LC1396 RD143 RD226
LC1235 RD10 RD227 LC1289 RD55 RD227 LC1343 RD37 RD227 LC1397 RD143 RD227
LC1236 RD10 RD228 LC1290 RD55 RD228 LC1344 RD37 RD228 LC1398 RD143 RD228
LC1237 RD10 RD229 LC1291 RD55 RD229 LC1345 RD37 RD229 LC1399 RD143 RD229
LC1238 RD10 RD230 LC1292 RD55 RD230 LC1346 RD37 RD230 LC1400 RD143 RD230
LC1239 RD10 RD231 LC1293 RD55 RD231 LC1347 RD37 RD231 LC1401 RD143 RD231
LC1240 RD10 RD232 LC1294 RD55 RD232 LC1345 RD37 RD232 LC1402 RD143 RD232
LC1241 RD10 RD233 LC1295 RD55 RD233 LC1345 RD37 RD233 LC1403 RD143 RD233
LC1242 RD10 RD234 LC1296 RD55 RD234 LC1350 RD37 RD234 LC1404 RD143 RD234
LC1243 RD10 RD235 LC1297 RD55 RD235 LC1351 RD37 RD235 LC1405 RD143 RD235
LC1244 RD10 RD236 LC1298 RD55 RD236 LC1352 RD37 RD236 LC1406 RD143 RD236
LC1245 RD10 RD237 LC1299 RD55 RD237 LC1353 RD37 RD237 LC1407 RD143 RD237
LC1246 RD10 RD238 LC1300 RD55 RD238 LC1354 RD37 RD238 LC1408 RD143 RD238
LC1247 RD10 RD239 LC1301 RD55 RD239 LC1355 RD37 RD239 LC1409 RD143 RD239
LC1248 RD10 RD240 LC1302 RD55 RD240 LC1356 RD37 RD240 LC1410 RD143 RD240
LC1249 RD10 RD241 LC1303 RD55 RD241 LC1357 RD37 RD241 LC1411 RD143 RD241
LC1250 RD10 RD242 LC1304 RD55 RD242 LC1358 RD37 RD242 LC1412 RD143 RD242
LC1251 RD10 RD243 LC1305 RD55 RD243 LC1359 RD37 RD243 LC1413 RD143 RD243
LC1252 RD10 RD244 LC1306 RD55 RD244 LC1360 RD37 RD244 LC1414 RD143 RD244
LC1253 RD10 RD245 LC1307 RD55 RD245 LC1361 RD37 RD245 LC1415 RD143 RD245
LC1254 RD10 RD246 LC1308 RD55 RD246 LC1362 RD37 RD246 LC1416 RD143 RD246

wherein RD1 to RD246 have the following structures:
































































 
13. The compound of claim 1, wherein the compound is selected from the group consisting of:





































































































and


 
14. An organic light emitting device comprising:

an anode;

a cathode; and

an organic layer disposed between the anode and the cathode,

wherein the organic layer comprises a compound according to claim 1.


 
15. A consumer product comprising an organic light-emitting device comprising:

an anode;

a cathode; and

an organic layer disposed between the anode and the cathode, wherein the organic layer comprises a compound according to claim 1.


 




Drawing













Search report









Search report




Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description