Description  Claims  Drawing  Cited references 

US2011178017A   [0004] 
US2010256044A   [0004] 
US2014073667A   [0004] 
US4835252A   [0025] 
US4939224A   [0025] 
US5141924A   [0025] 
US4734400A   [0025] 
US4605641A   [0025] 
US6080837A   [0025] 
US6316593B   [0025] 
US5677419A   [0025] 
US5972883A   [0025] 
US6489297B   [0025] 
US7094755B   [0025] 
US6608174B   [0025] 
US7238667B   [0032] 
US7176278B   [0032] 
US5766883A   [0032] 
US2009068656W   [0033] 
US9605186W   [0046]  [0049] 
US20100022455A   [0055] 
US20080286808A   [0056] 
US2008155134A   [0056] 
US20110123487A   [0056]  [0113] 
US20110178017A   [0083]  [0087]  [0113] 
US20010034050A   [0113] 
US20090220455A   [0113] 
US8334257B   [0113] 
US20130310538A   [0113] 
US20130172274A   [0113] 
US20110236384A   [0113] 
US6582926B   [0113] 
US7429458B   [0113] 
US7364859B   [0113] 
US8178495B   [0113] 
US20130079277A   [0113] 
US20130085099A   [0113] 
US20130143802A   [0113] 
US20140024600A   [0113] 
US7709227B   [0113] 
US8729018B   [0113] 
US20140171370A   [0113] 
US20130150291A   [0113] 
WO2014113434A   [0113] 
US20140213516A   [0113] 
US62082945B   [0113] 
US62113943B   [0113] 
US62145770B   [0113] 
US61990425B   [0115] 

World J. of Microbiology and Biotechnology   [0004] 
J. of Pharmacology and Experimental Therapeutics   [0004] 
Physicochemical and pharmacological characterization of novel vasoactive intestinal peptide derivatives with improved stability   [0026] 
The Significance of Vasoactive Intestinal Peptide in Immunomodulation   [0027] 
Blast 2 sequences -a new tool for comparing protein and nucleotide sequences   [0027] 
Methods in Molecular Biology   [0037] 
Techniques in Protein Modification   [0037] 
Selective localization of vasoactive intestinal peptide and substance P in human eosinophils   [0114] 
Am. J. Physiol-Cell Physiol.   [0114] 
VIP increases CFTR levels in the apical membrane of calu-3 cells through a PKC-dependent mechanism   [0114] 
VIP as a Corrector of CFTR Trafficking and membrane stability   [0114] 
Synergistic airway gland mucus secretion in response to vasoactive intestinal peptide and carbachol is lost in cystic fibrosis   [0114] 
Release of vasoactive intestinal polypeptide in mast cells by histamine liberators   [0114] 
Activation of VPAC1 receptors by VIP and PACAP-27 in human bronchial epithelial cells induces CFTR-dependent chloride secretion   [0114] 
Deficient vasoactive intestinal peptide innervation in the sweat glands of cystic fibrosis patients   [0114] 
Receptors for vasoactive intestinal peptide on isolated human sweat glands   [0114] 
Expression of normal and cystic fibrosis phenotypes by continuous airway epithelial cell lines   [0114] 
Absent secretion to vasoactive intestinal peptide in cystic fibrosis airway glands   [0114] 
Hyposecretion of fluid from tracheal submucosal glands of CFTR-deficient pigs   [0114] 
CFTR Chloride Channel in the Apical Compartments: Spatiotemporal Coupling to its Interacting Partners   [0114] 
Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands: Functional significance of coexisting transmitters for vasodilation and secretion   [0114] 
Cigarette smoke induces systemic defects in Cystic Fibrosis Transmembrane Conductance Regulator Function   [0114] 
Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA   [0114] 
Cystic Fibrosis Transmembrane Regulator Correctors and Potentiators   [0114] 
A pharmacologic approach to acquired Cystic Fibrosis transmembrane conductance regulator dysfunction in smoking related lung disease   [0114] 
Chloride impermeability in cystic fibrosis   [0114] 
Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Life   [0114] 
Parasympathetic control of airway submucosal glands: Central reflexes and the airway intrinsic nervous system   [0114] 
Prospect of vasoactive intestinal peptide therapy for COPD/PAH and asthma: A review   [0114]