(11) EP 2 992 005 B1 (12) ## **EUROPEAN PATENT SPECIFICATION** (45) Date of publication and mention of the grant of the patent:05.12.2018 Bulletin 2018/49 (21) Application number: 14723470.2 (22) Date of filing: 01.05.2014 (51) Int Cl.: C07K 14/165 (2006.01) C12N 7/00 (2006.01) A61K 39/215 (2006.01) (86) International application number: PCT/GB2014/051353 (87) International publication number: WO 2014/177873 (06.11.2014 Gazette 2014/45) # (54) MUTANT SPIKE PROTEIN EXTENDING THE TISSUE TROPISM OF INFECTIOUS BRONCHITIS VIRUS (IBV) MUTANTES SPIKEPROTEIN ZUR EXTENSION DES GEWEBETROPISMUS DES INFEKTIÖSEN BRONCHITISVIRUS (IBV) PROTÉINE DE SPICULE MUTANTE ÉTENDANT LE TROPISME TISSULAIRE DU VIRUS DE LA BRONCHITE INFECTIEUSE (IBV) (84) Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR - (30) Priority: 03.05.2013 GB 201308057 - (43) Date of publication of application: **09.03.2016 Bulletin 2016/10** - (73) Proprietor: The Pirbright Institute Pirbright Woking Surrey GU24 0NF (GB) - (72) Inventors: - BRITTON, Paul Hungerford Berkshire RG17 7EN (GB) - BICKERTON, Erica Woking Surrey GU24 0NF (GB) - (74) Representative: D Young & Co LLP 120 Holborn London EC1N 2DY (GB) (56) References cited: WO-A1-2011/004146 - Bickerton E J: "Cellular tropism and cell-to-cell fusion properties of the infectious bronchitis virus spike glycoprotein", Thesis, University of Warwick, 1 September 2010 (2010-09-01), pages 1-243, XP055131860, Retrieved from the Internet: URL:http://wrap.warwick.ac.uk/35165/1/WRAP _THESIS_Bickerton_2010.pdf [retrieved on 2014-07-28] - WEI Y-Q ET AL: "Development and characterization of a recombinant infectious bronchitis virus expressing the ectodomain region of S1 gene of H120 strain", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 98, no. 4, 1 February 2014 (2014-02-01), pages 1727-1735, XP055132063, ISSN: 0175-7598, DOI: 10.1007/s00253-013-5352-5 - YAMADA Y ET AL: "Acquisition of Cell-Cell Fusion Activity by Amino Acid Substitutions in Spike Protein Determines the Infectivity of a Coronavirus in Cultured Cells", PLOS ONE, vol. 4, no. 7, 2 July 2009 (2009-07-02), page e6130, XP055132084, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0006130 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). ## Description 15 20 30 35 40 45 50 55 #### FIELD OF THE INVENTION [0001] The present invention relates to a coronavirus spike protein (S protein). In particular an IBV S protein which, when used to produce a virus, causes the virus to have extended tissue tropism. The present invention also relates to nucleotide sequences encoding such an S protein; viral particles comprising such an S protein and their use in a vaccine to prevent and/or treat a disease. #### 10 BACKGROUND TO THE INVENTION #### INFECTIOUS BRONCHITIS VIRUS (IBV) **[0002]** Avian infectious bronchitis virus (IBV) is a highly infectious and contagious pathogen of domestic fowl that replicates primarily in the respiratory tract but also in epithelial cells of the gut, kidney and oviduct. IBV is a member of the *Coronaviridae* and genetically very similar coronaviruses cause disease in turkeys and pheasants. [0003] Clinical signs of IB include sneezing, tracheal rales, nasal discharge and wheezing. Meat-type birds have reduced weight gain, whilst egg-laying birds lay fewer eggs. The respiratory infection predisposes chickens to secondary bacterial infections which can be fatal in chicks. The virus can also cause permanent damage to the oviduct, especially in chicks, leading to reduced egg production and quality; and kidney, sometimes leading to kidney disease which can be fatal. **[0004]** Both live and attenuated vaccines are currently used in IB vaccination. To date, the most efficacious vaccines are live attenuated viruses empirically produced following blind repeated passages through embryonated eggs. **[0005]** A problem with this approach is that, upon serial passaging, the immunogenicity of the virus decreases. It is necessary to achieve a balance between an acceptable degree of attenuation to make the virus safe, and an acceptable loss of immunogenicity such that the virus vaccine is still efficacious. This "balancing" of attenuation is a trial and error approach, rendering the outcome of the attenuation process uncertain. **[0006]** Since attenuation by serial passage is effectively a random event, the resultant vaccine is ill-defined genetically as the molecular basis of the attenuation is unknown. Each batch of attenuated virus will be different, making it difficult to achieve consistency of the resulting vaccine and reproducibility of the protective/therapeutic effect *in vivo*. [0007] A further disadvantage is that embryonated eggs are expensive and cannot be used as a prolonged source of **[0008]** Growth of virus on embryonated eggs is a cumbersome process as each egg must be sterilized, candled, inoculated with virus and incubated before harvesting small volumes of allantoic fluid from each egg and pooling before purification. The lack of reliable supplies of high quality eggs results in limitations in the amount of vaccine which may be produced, particularly in an emergency situation. **[0009]** In addition to these logistic and supply problems, embryonated eggs have other limitations as a host system for vaccine production. For example, there are increasing concerns about the presence of adventitious viruses, particularly retroviruses, in eggs, which would compromise the production of live, attenuated viral vaccines. **[0010]** There is therefore a need for alternative IBV vaccines and methods for their production which do not suffer from the above mentioned drawbacks. **[0011]** IBV is an enveloped virus that replicates in the cell cytoplasm and contains an unsegmented, single-stranded, positive sense RNA genome. [0012] The lipid envelope contains three membrane proteins: the spike glycoprotein (S), integral membrane protein (M), and small membrane protein (E). The IBV S protein is a type I glycoprotein which oligomerizes in the endoplasmic reticulum and is assembled into virion membranes through non-covalent interactions with the membrane protein. Following incorporation into coronavirus particles, the S protein is responsible for binding to the target cell receptor and fusion of the viral and cellular membranes. The S glycoprotein consists of four domains: a signal sequence that is cleaved during synthesis; the ectodomain, which is present on the outside of the virion particle; the transmembrane region responsible for anchoring the S protein into the lipid bilayer of the virion particle; and the cytoplasmic tail. [0013] The IBV S protein (1,162 amino acids) is cleaved into two subunits, S1 (535 amino acids; 90 kDa) comprising the N-terminal half of the S-protein, and S2 (627 amino acids; 84 kDa) comprising the C-terminal half of the S protein. [0014] The S2 subunit associates non-covalently with the S1 subunit and contains the transmembrane and C-terminal cytoplasmic tail domains. [0015] The present inventors have previously shown that the cell tropism of IBV, associated with growth in the mammalian cell line, Vero cells, is determined by theS2 subunit from the Beaudette strain of IBV, and that substitution of an S2 subunit with all or part of the Beaudette S2 subunit can alter (extend or reduce) the Vero cell tropism of the virus, depending on the cell tropism of the virus from which the S2 subunit was derived (WO 2011/004146). **[0016]** They have shown that for an IBV strain such as M41, which has restricted tissue tropism and is unable to grow on Vero cells, the substitution of the S2 subunit with all or part of the S protein from IBV Beaudette results in a virus which is capable of growing on cell lines such as Vero cells. [0017] The extended cell tropism conferred on the virus by the substitution of all or part of their S2 subunits means that virus stock for vaccine production can be produced by growing on cell lines, rather than embryonated eggs or primary cells [0018] The use of cell lines such as Vero cell has many advantages: - (i) it has been previously validated for growth of viruses and diagnostic purposes; - (ii) the cells (and therefore virus) can be grown in suspension, rather than flat beds; and - (iii) it is possible to achieve consistent yields. **[0019]** The present inventors previously identified a "motif' in the IBV strain Beaudette, which is able to confer the ability to grow on Vero cells. [0020] The present inventors have now identified a number of amino acid substitutions which, when used in conjunction with the Beaudette motif, further enhances the ability of the virus to grow on cell lines. #### SUMMARY OF ASPECTS OF THE INVENTION [0021] Thus, in a first aspect, the present invention provides an infectious bronchitis virus (IBV) spike protein (S protein) wherein the sequence of the S2 domain of the S protein has at least 98% sequence identity to the S2 domain of the S protein from an IBV strain with restricted tissue tropism as a whole but ignoring amino acid positions 686-694, 578, 617, 826, 857 and 1000 with reference to the position numbering of SEQ ID No. 2, but which comprises the sequence XBBXBX in the part of the S2 protein at residues 686 to 691 with reference to the position numbering of the sequence given as SEQ ID No. 2, where B is a basic residue and X is any amino acid; and which comprises at least one of the following amino acid substitutions with reference to the position numbering of SEQ ID NO:2: Leucine (L) to Phenylalanine (F) at position 578 Asparagine (N)
to Serine (S) at position 617 Asparagine (N) to Serine (S) at position 826 Leucine (L) to Phenylalanine (F) at position 857 and Isoleucine (I) to Valine (V) at position 1000 such that an IBV virus comprising the S protein has extended tissue tropism and wherein the amino acid position numbering is identified by alignment of the IBV S protein with the sequence of SEQ ID No. 2. [0022] The IBV S protein may comprise the sequence SRRKRS or SRRRRS in the part of the S2 protein corresponding to residues 686 to 691 of the sequence given as SEQ ID No. 2. [0023] The IBV S protein may comprise the sequence SRRKRSLIE or SRRRRSVIE in the part of the S2 protein corresponding to residues 686 to 694 of the sequence given as SEQ ID No. 2. [0024] The IBV S protein may comprise the amino acid substitution Asparagine (N) to Serine (S) at position 617 with reference to the position numbering of SEQ ID NO:2. [0025] The IBV S protein may comprise the following amino acid substitutions with reference to the position numbering of SEQ ID NO:2: Leucine (L) to Phenylalanine (F) position 578 and Asparagine (N) to Serine (S) position 617. [0026] The IBV S protein may comprise the following amino acid substitutions with reference to the position numbering of SEQ ID NO:2: Asparagine (N) to Serine (S) position 826 Leucine (L) to Phenylalanine (F) position 857 and Isoleucine (I) to Valine (V) position 1000. [0027] In a second aspect, the present invention provides a nucleotide sequence capable of encoding an S protein according to the first aspect of the invention. [0028] The invention also provides a plasmid comprising a nucleotide sequence according to the second aspect of the invention. 3 35 40 10 15 20 25 30 50 [0029] In a third aspect, the present invention provides a viral particle comprising an S protein according to the first aspect of the invention, and/or a nucleotide sequence according to the second aspect of the invention. [0030] The viral particle may be a recombinant vaccinia virus (rVV) or a coronavirus. [0031] The viral particle may be capable of growing on a cell line such as Vero cells. [0032] The infection of Vero cells by a viral particle according to the third aspect of the invention may be blocked by soluble heparin. **[0033]** In a fourth aspect, the present invention provides a cell comprising; a nucleotide sequence according to the second aspect of the invention; or a viral particle according to the third aspect of the invention. The cell may, for example, be a cell, such as a primary chick kidney cell, capable of producing recombinant virus using a reverse genetics system, or a cell infected with a viral particle according to the third aspect of the invention. **[0034]** The cell infected with a viral particle according to the third aspect of the invention may be derivable from a cell line, such as a Vero cell. [0035] In a fifth aspect, the present invention provides a vaccine comprising a viral particle of the fourth aspect of the invention. 15 [0036] Further aspects of the invention provide: - (i) a vaccine according to the fifth aspect of the invention for treating and/or preventing a infectious bronchitis in a subject; - (ii) a method for producing a vaccine according to the fifth aspect of the invention, which comprises the step of infecting Vero cells with a viral particle according to the third aspect of the invention; and - (iii) a cell culture comprising a cell or a population of cells according to the fourth aspect of the invention. ## **DESCRIPTION OF THE FIGURES** ## 25 [0037] 20 30 35 40 45 50 55 Figures 1 Growth kinetics of the six variant rIBVs on Vero cells all the rIBVs investigated had been passaged 7 times on Vero cells. Figure 2 - Growth kinetics of the six variant rIBVs on Vero cells without previous passage on Vero cells. Figure 3 - Alignment of amino acid sequences of complete S proteins for IBV Beaudette, M41, H120 and QX. The S1/S2 junction is at position 537. The amino acid positions in the S2 subunit are 2 higher than shown in SEQ ID No. 1 (578 becomes 580) due to the QX S1 sequence being two amino acids longer than the other S1 sequences. Figure 4 - Alignment of amino acid sequences of the S2 subunits, for IBV Beaudette, M41, H120 and QX. The amino acid modifications tested in the six rIBVs described in the Examples are marked with a red arrow. ## **DETAILED DESCRIPTION** IBV **[0038]** Avian infectious bronchitis (IB) is an acute and highly contagious respiratory disease of chickens which causes significant economic losses. The disease is characterized by respiratory signs including gasping, coughing, sneezing, tracheal rales, and nasal discharge. In young chickens, severe respiratory distress may occur. In layers, respiratory distress, nephritis, decrease in egg production, and loss of internal egg quality and egg shell quality are common. **[0039]** In broilers, coughing and rattling are common clinical signs, rapidly spreading in all the birds of the premises. Morbidity is 100 % in non-vaccinated flocks. Mortality varies depending on age, virus strain, and secondary infections but may be up to 60 % in non-vaccinated flocks. **[0040]** The first IBV serotype to be identified was Massachusetts, but in the United States several serotypes, including Arkansas and Delaware, are currently circulating, in addition to the originally identified Massachusetts type. **[0041]** The IBV strain Beaudette was derived following at least 150 passages in chick embryos. IBV Beaudette is no longer pathogenic for adult birds but rapidly kills embryos. **[0042]** H120 is a commercial live IBV Massachusetts serotype vaccine strain, attenuated by approximately 120 passages in embryonated chicken eggs. H52 is another Massachusetts strain, and represents an earlier and slightly more pathogenic passage virus (passage 52) during the development of H120. Vaccines based on H120 and H52 are commonly used. [0043] IB QX is a virulent field isolate of IBV. It is sometimes known as "Chinese QX" as it was originally isolated following outbreaks of disease in the Qingdao region in China. Since that time the virus has crept towards Europe. From 2004, severe egg production issues have been identified with a very similar virus in parts of Western Europe, predominantly in the Netherlands, but also reported from Germany, France, Belgium, Denmark and in the UK. [0044] The virus isolated from the Dutch cases was identified by the Dutch Research Institute at Deventer as a new strain that they called D388. The Chinese connection came from further tests which showed that the virus was 99% similar to the Chinese QX viruses. An attenuated live QX-like infectious bronchitis virus strain has now been developed. ## S PROTEIN 5 15 20 30 40 10 [0045] The IBV S protein comprises a large, heavily glycosylated ectodomain that can be cleaved during biosynthesis into two subunits (S1 and S2) by a furin-like enzyme in the Golgi apparatus. S1 comprises the receptor binding domain and S2 comprises the fusion domain. The S protein of IBV is fully cleaved at the S1/S2 boundary, especially in chicken embryo systems. [0046] The S2 domain contains five domains or functional regions: two domains, HR1 and HR2 form helical structures resulting in the stalk structure of the protein; a transmembrane domain responsible for anchoring the protein to the virion membrane; a cysteine-rich cytoplasmic domain responsible for interacting with other virus structural proteins and a fifth domain, the fusion peptide, responsible for virus-cell fusion or cell-to-cell fusion. [0047] The amino acid sequences for IBV strains Beaudette and M41 are as follows: SEQ ID No. 1: IBV Beaudette S protein. The full Beaudette-specific motif is shown in bold (amino acids 686-694). ``` 1 mlvtplllvt llcalcsavl ydsssyvyyy qsafrppsgw hlqggayavv nissefnnag 61 sssgctvgii hggrvvnass iamtapssgm awsssqfcta hcnfsdttvf vthcykhggc 121 pltgmlqqnl irvsamkngq lfynltvsva kyptfrsfqc vnnltsvyln gdlvytsnet 25 181 idvtsagvyf kaggpitykv mrevkalayf vngtaqdvil cdgsprglla cqyntgnfsd 241 qfypftnssl vkqkfivyre nsvnttctlh nfifhnetga npnpsgvqni qtyqtktaqs 301 gyynfnfsfl ssfvykesnf mygsyhpsck frletinngl wfnslsvsia ygplqggckq 361 svfkgratcc yaysyggpsl ckgvysgeld hnfecgllvy vtksggsriq tateppvitq 421 nnynnitlnt cvdyniygrt gqgfitnvtd savsynylad aglaildtsg sidifvvqge 481 yglnyykvnp cedvnqqfvv sggklvgilt srnetgsqll enqfyikitn gtrrfrrsit 541 envancpyvs ygkfcikpdg siativpkql eqfvaplfnv tenvlipnsf nltvtdeyiq 601 trmdkvqinc lqyvcgssld crklfqqygp vcdnilsvvn svgqkedmel lnfysstkpa 35 661 qfntpvlsnv stqefnisll ltnpssrrkr sliedllfts vesvglptnd ayknctagpl 721 gffkdlacar eyngllvlpp iitaemqaly tsslvasmaf ggitaagaip fatqlqarin 781 hlgitqslll knqekiaasf nkaighmqeg frstslalqq iqdvvskqsa iltetmasln 841 knfgaissvi qeiyqqfdai qanaqvdrli tgrlsslsvl asakqaeyir vsqqrelatq 901 kinecvksqs irysfcqngr hvltipqnap ngivfihfsy tpdsfvnvta ivgfcvkpan 961 asqyaivpan grgifiqvng syyitardmy mpraitagdv vtltscqany vsvnktvitt 1021 fvdnddfdfn delskwwndt khelpdfdkf nytvpildid seidriggvi gglndslidl 1081 eklsilktyi kwpwyywlai afatiifili lqwyffmtgc cgcccqcfqi mplmskcqkk 45 1141 ssyyttfdnd vvtegyrpkk sv ``` SEQ ID No 2: IBV M41 S protein. The amino acids positions 686-691 and 578, 617, 826, 857 and 1000 are shown in bold. 55 1 mlvtplllvt llcvlcsaal ydsssyvyyy qsafrppngw hlhggayavv nissesnnag 61 sspgcivgti hggrvvnass iamtapssgm awsssgfcta hcnfsdttvfvthcykydgc 121 pitgmlqknf lrvsamkngq lfynltvsva kyptfksfqc vnnltsvyln gdlvytsnet 5 181 tdvtsagvyf kaggpitykv mrkvkalayf vngtaqdvil cdgsprglla cqyntgnfsd 241 gfypfinssl vkqkfivyre nsvnttftlh nftfhnetga npnpsgvqni ltyqtqtaqs 301 gyynfnfsfl ssfvykesnf mygsyhpscn frletinngl wfnslsvsia ygplqggckq 361 svfsgratcc yaysyggpsl ckgvysgeld lnfecgllvy vtksggsriq tateppvitr 10 421 hnynnitlnt cvdyniygrt gqgfitnvtd savsynylad aglaildtsg sidifvvqge 481 ygltyykvnp cedvnqqfvv sqqklvqilt srnetqsqll enqfyikitn qtrrfrrsit 541 envancpyvs ygkfcikpdg siativpkql eqfvapllnv tenvlipnsf nltvtdeyiq 601 trmdkvqinc lqyvcgnsld crdlfqqygp vcdnilsvvn
sigqkedmel lnfysstkpa 15 661 gfntpflsnv stgefnisll lttpssprrr sfiedllfts vesvglptdd ayknctagpl 721 gflkdlacar eyngllvlpp iitaemqtly tsslvasmaf ggitaagaip fatqlqarin 781 hlgitqslll knqekiaasf nkaigrmqeg frstslalqq iqdvvnkqsa iltetmasln 20 841 knfgaissvi qeiyqq $\underline{\mathbf{L}}$ dai qanaqvdrli tgrlsslsvl asakqaehir vsqqrelatq 901 kinecvksqs irysfcqngr hvltipqnap ngivfihfsy tpdsfvnvta ivqfcvkpan 961 asqyaivpan grgifiqvng syyitardmy mpraitagd<u>i</u> vtltscqany vsvnktvitt 1021 fydnddfdfn delskwwndt khelpdfdkf nytypildid seidriggyi gglndslidl 25 1081 eklsilktyi kwpwyvwlai afatiifili lgwvffmtgc cgcccgcfgi mplmskcgkk 1141 ssyyttfdnd vvteqnrpkk sv [0048] Figure 3 shows an alignment between IBV strains Beaudette, M41, H120 and QX S proteins. [0049] Figure 4 shows an alignment between IBV strains Beaudette, M41, H120 and QX S2 subunits. ## TISSUE TROPISM 30 35 40 50 **[0050]** Coronaviruses show strong species and tissue tropism. Likewise, clinical isolates of IBV show distinct tropism both *in vivo* and in cell culture. **[0051]** The M41 strain has been adapted for growth on primary chick kidney (CK) cells and is restricted to infection of primary chicken cells, and so needs to be grown on embryonated eggs or CK cells. [0052] The Beaudette strain, on the other hand, is known to be able to infect a range of cells in culture, including Vero and baby hamster kidney (BHK-21) cells. [0053] An IBV strain with restricted tissue tropism is able to infect a smaller number of cell types than a coronavirus with extended tissue tropism. **[0054]** An IBV strain with restricted tissue tropism, may, for example, be restricted to infection of primary cells, whereas an IBV strain with extended tissue tropism may (in addition to being able to infect primary cells) be able to infect one or more cell lines. 45 **[0055]** An IBV strain with extended tissue tropism may, for example, have the capacity to infect Vero cells. **[0056]** The Vero cell lineage was isolated in 1962 from kidney epithelial cells extracted from an African green monkey (*Cercopithecus aethiops*). Vero cells are used for many experimental and clinical purposes, including acting as host cells for growing virus. **[0057]** The Vero cell lineage is continuous in that it can be replicated through many cycles of division and not become senescent. **[0058]** The Vero cell lineage has been licensed for use in the manufacture of vaccines and is currently used for the production of polio and rabies vaccines. **[0059]** An IBV strain with restricted tissue tropism may be immunogenic and capable of inducing a protective or therapeutic immune response *in vivo*. Examples of strains with restricted tissue tropism include the strains currently used for vaccine production. For IBV, this includes strains such as: H52, H120, Ma5, 4/91, D41, D274, W93 and QX. The strain with restricted tissue tropism may be or be derived from an isolate "from the field" such as BJ1, BJ2, or BJ3 (Li and Yang (2001) Avian Pathol 30:535-541). [0060] An example of an IBV strain with extended tissue tropism is IBV Beaudette. **[0061]** Cell tropism may be established experimentally by simply challenging a given cell type with infection by a virus. The cytopathic effect (cpe) and the degree of formation of syncytia may then be analysed after a certain number of passages. Change in morphology of the infected cells may be analysed using microscopy. #### 5 VARIANT S PROTEIN 10 15 20 35 **[0062]** The present invention relates to an infectious bronchitis virus (IBV) spike protein (S protein) which is based on an S protein from an IBV strain with restricted tissue tropism, but which comprises a "Beaudette specific motif' together with one or more Beaudette-specific amino acid substitutions, such that an IBV virus comprising the S protein has extended tissue tropism. **[0063]** The term "based on" indicates that at least the S1 domain is derived or derivable from the strain with restricted tissue tropism. The majority of S2 domain may also be derived or derivable from the strain with restricted tissue tropism. For example, the transmembrane and/or cytoplasmic domains may be derived or derivable from the strain with restricted tissue tropism. The S2 domain may correspond to the sequence of the S2 domain from the strain with restricted tissue tropism, subject to the following changes: - (1) insertion of a "Beaudette-specific motif" in in the part of the S2 protein corresponding to residues 686 to 691 of the sequence given as SEQ ID No. 2; - (2) amino acid substitution in one or more of the following positions, with reference to SEQ ID No. 2: 578, 617, 826, 857, 1000. [0064] The S2 domain may comprise some additional amino acid mutations, such as substitutions, insertions or deletions, as long as they do not significantly affect the capacity of the S2 subunit to extend the tissue tropism of the resultant virus. The additional amino acid mutations may, for example, arise as a result of passage on a cell line such as Vero cells. The S2 domain may, for example comprise an additional mutation at amino acid position 865 (glutamine (Q) to histidine (H)). **[0065]** Considering the entire S2 sequence without amino acid positions 686-694, 578, 617, 826, 857 and 1000, substantially all of the remainder of the sequence may correspond to that of the wild-type S2 sequence from the strain with restricted tissue tropism. [0066] The term "substantially all" means that the S2 protein has at least 90, 95 or 98% of the wild-type sequence as a whole but ignoring amino acid positions 686-694, 578, 617, 826, 857 and 1000. **[0067]** The term "wild type" is used to mean a polypeptide having a primary amino acid sequence which is identical with the native protein (i.e., the viral protein). [0068] Identity comparisons can be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs can calculate % identity between two or more sequences. A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A.; Devereux et al., 1984, Nucleic Acids Research 12:387). Examples of other software that can perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel et al., 1999 ibid - Chapter 18), FASTA (Atschul et al., 1990, J. Mol. Biol., 403-410) and the GENEWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel et al., 1999 ibid, pages 7-58 to 7-60). However, for some applications, it is preferred to use the GCG Bestfit program. A new tool, called BLAST 2 Sequences is also available for comparing protein and nucleotide sequence (see FEMS Microbiol Lett 1999 174(2): 247-50; FEMS Microbiol Lett 1999 177(1): 187-8 and tatiana@ncbi.nlm.nih.gov). **[0069]** The sequence may have one or more deletions, insertions or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent molecule. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the activity is retained. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine, valine, glycine, alanine, asparagine, glutamine, serine, threonine, phenylalanine, and tyrosine. **[0070]** Conservative substitutions may be made, for example according to the Table below. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other: 55 50 | ALIPHATIC | Non-polar | GAP | |-----------|-------------------|------| | | | ILV | | | Polar - uncharged | CSTM | | | | NQ | | | Polar - charged | DE | | | | KR | | AROMATIC | | HFWY | **[0071]** An alignment between S proteins of different strains is straightforward because coronaviruses share a common domain structure and, between strains, should have a relatively high level of sequence identity. Alignment software may be used such as the BLAST™ package described above. ## AMINO ACID POSITIONING 5 10 15 25 30 35 45 50 55 [0072] The S protein of the present invention comprises the sequence XBBXBX in the part of the S2 protein corresponding to residues 686 to 691 of the sequence given as SEQ ID No. 2, where B is a basic residue and X is any amino acid; and comprises at least one of the following amino acid substitutions with reference to the position numbering of SEQ ID NO:2: Leucine (L) to Phenylalanine (F) at position 578 Asparagine (N) to Serine (S) at position 617 Asparagine (N) to Serine (S) at position 826 Leucine (L) to Phenylalanine (F) at position 857 and Isoleucine (I) to Valine (V) at position 1000. [0073] Sequence ID No 2 is the sequence of IBV strain M41 S protein. It may be that the S protein from other IBV strains has slightly different amino acid numbering. For example, the S1 sequence of the QX strain is two amino acids longer than the S1 sequences of strains such as M1, Beaudette and H120. This means that for an S protein according to the invention based on QX, the XBBXBX motif would appear in the section of sequence at position 688-693. The above mentioned mutations would be at positions 580, 619, 828, 859 and 1002. **[0074]** The phrase "with reference to the position numbering of SEQ ID No. 2" indicates that the amino acid position is equivalent to the one shown for the M41 S protein sequence shown in SEQ ID No 2. It will be appreciated that the actual number of the amino acid from the N-terminus of the protein may vary between IBV S proteins of different strains, as it does for QX as explained above. However, it is should be clear from an alignment of
the IBV S protein with the M41 sequence of SEQ ID No. 2 which is the "equivalent" amino acid position. [0075] An alignment of S proteins from various IBV strains is shown in Figure 3. [0076] The position of the motif and mutations can also be given in the context of the S2 subunit. **[0077]** An alignment of the S2 subunits from various IBV strains is shown in Figure 4. The corresponding amino acid positions for the S2 subunit is shown in the following Table: | | M41 S protein position | M41 S2 subunit position | |---------------|------------------------|-------------------------| | XXBBXBX motif | 686-691 | 154-159 | | L→F | 578 | 46 | | N→S | 617 | 85 | | N→S | 826 | 294 | | L→F | 857 | 325 | | l→V | 1000 | 468 | **[0078]** Thus the S protein of the present invention comprises the sequence XBBXBX in the part of the S2 protein corresponding to residues 154 to 159 of the sequence shown in Figure 4, where B is a basic residue and X is any amino acid; and comprises at least one of the following amino acid substitutions with reference to the position numbering of the sequences shown in Figure 4: Leucine (L) to Phenylalanine (F) at position 46 Asparagine (N) to Serine (S) at position 85 Asparagine (N) to Serine (S) at position 294 Leucine (L) to Phenylalanine (F) at position 325 and Isoleucine (I) to Valine (V) at position 468. #### 10 NUCLEOTIDE SEQUENCE [0079] The present invention also provides a nucleotide sequence capable of encoding the S protein of the present invention. **[0080]** The nucleotide sequence may be natural, synthetic or recombinant. It may be double or single stranded, it may be DNA or RNA or combinations thereof. It may, for example, be cDNA, a PCR product, genomic sequence or mRNA. [0081] The nucleotide sequence may be codon optimised for production in the host/host cell of choice. [0082] It may be isolated, or as part of a plasmid, virus or host cell. #### **PLASMID** 20 5 **[0083]** A plasmid is an extra-chromosomal DNA molecule separate from the chromosomal DNA which is capable of replicating independently of the chromosomal DNA. They are usually circular and double-stranded. **[0084]** Plasmids, or vectors (as they are sometimes known), may be used to express a protein in a host cell. For example a bacterial host cell may be transfected with a plasmid capable of encoding a particular protein, in order to express that protein. The term also includes yeast artificial chromosomes and bacterial artificial chromosomes which are capable of accommodating longer portions of DNA. **[0085]** The plasmid of the present invention comprises a nucleotide sequence capable of encoding the S gene. It may also comprise one or more additional coronavirus nucleotide sequence(s), or nucleotide sequence(s) capable of encoding one or more other coronavirus proteins such as the replicase gene and/or gene 3. [0086] The plasmid may also comprise a resistance marker, such as the guanine xanthine phosphoribosyltransferase gene (*gpt*) from *Escherichia coli*, which confers resistance to mycophenolic acid (MPA) in the presence of xanthine and hypoxanthine and is controlled by the vaccinia virus P_{7.5} early/late promoter. ## VIRAL PARTICLE 35 40 55 **[0087]** The present invention also relates to a viral particle with an S gene of the present invention. The viral particle may, for example, be a recombinant vaccinia virus (rVV) or a coronavirus. [0088] The viral particle may be recombinant. **[0089]** The viral particle may be made using a reverse genetics system, such as a vaccinia-virus based reverse genetics system. **[0090]** Suitable reverse genetics systems are known in the art (Casais et al (2001) J. Virol 75:12359-12369; Casais et al (2003) J. Virol. 77:9084-9089; Britton et al (2005) J. Virological Methods 123:203-211; Armesto et al (2008) Methods in Molecular Biology 454:255-273). #### 45 CELL [0091] The viral particle may be used to infect a cell. [0092] Since the viral particle comprising the S gene of the present invention has extended tissue tropism, the cell may be derivable from or a part of a cell line. 50 [0093] The cell may, for example, be a baby hamster kidney cell (e.g. BHK-21) or a Vero cell. **[0094]** The cell may be used to produce the viral particle. [0095] Thus the present invention also provides a method for producing a viral particle which comprises the following steps: - (i) infection of a cell with a viral particle according to the sixth aspect of the invention; - (ii) allowing the virus to replicate in the cell; and - (iii) harvesting the progeny virus. **[0096]** The cell may be from or part of a cell line, such as a Vero cell. Viral particles may be harvested, for example from the supernatant by methods known in the art, and optionally purified. **[0097]** The present invention also provides a cell comprising a nucleotide sequence according to the invention and/or a viral particle according to the invention. The cell may be capable of producing a recombinant viral particle according to the fourth aspect of the invention using a reverse genetics system. For example, the cell may comprise a recombining virus genome comprising a nucleotide sequence capable of encoding the S gene of the present invention. **[0098]** The cell may be able to produce recombinant recombining virus (e.g. vaccinia virus) containing the S gene. The cell may be a Vero cell. **[0099]** Alternatively the cell may be capable of producing recombinant coronavirus by a reverse genetics system. The cell may express or be induced to express T7 polymerase in order to rescue the recombinant viral particle. The cell may be a CK cell. #### VACCINE 10 20 30 35 40 45 50 55 [0100] The viral particle may be used to produce a vaccine. [0101] The vaccine may by a live attenuated form of the viral particle. **[0102]** The present invention also relates to a method for producing such a vaccine which comprises the step of infecting cells, for example Vero cells, with a viral particle comprising a chimaeric protein according to the first aspect of the invention. #### VACCINATION METHOD [0103] The viral particle of the present invention may be used to treat and/or prevent infectious bronchitis in a subject. **[0104]** To "treat" means to administer the vaccine to a subject having an existing disease in order to lessen, reduce or improve at least one symptom associated with the disease and/or to slow down, reduce or block the progression of the disease. **[0105]** To "prevent" means to administer the vaccine to a subject who has not yet contracted the disease and/or who is not showing any symptoms of the disease to prevent or impair the cause of the disease (e.g. infection) or to reduce or prevent development of at least one symptom associated with the disease. **[0106]** The vaccine may be administered to hatched chicks or chickens, for example by eye drop or intranasal administration. Although accurate, these methods can be expensive e.g. for large broiler flocks. Alternatives include spray inoculation of administration to drinking water but it can be difficult to ensure uniform vaccine application using such methods. [0107] The vaccine may be provided in a form suitable for its administration, such as an eye-dropper for intra-ocular use. [0108] The vaccine may be administered by the *in ovo* inoculation, for example by injection of embryonated eggs. In ovo vaccination has the advantage that is provides an early stage resistance to the disease. It also facilitates the administration of a uniform dose per subject, unlike spray inoculation and administration via drinking water. **[0109]** The vaccine may be administered to any suitable compartment of the egg, including allantoic fluid, yolk sac, amnion, air cell or embryo. It may be administered below the shell (aircell) membrane and chorioallantoic membrane. **[0110]** Usually the vaccine is injected into embryonated eggs during late stages of embryonic development, generally during the final quarter of the incubation period, such as 3-4 days prior to hatch. In chickens, the vaccine may be administered between day 15-19 of the 21-day incubation period, for example at day 17 or 18. [0111] The process can be automated using a robotic injection process, such as those described in WO 2004/078203. **[0112]** The vaccine may be administered together with one or more other vaccines, for example, vaccines for other diseases, such as Newcastle disease virus (NDV). The present invention also provides a vaccine composition comprising a vaccine according to the invention together with one or more other vaccine(s). Also described herein is a kit comprising a vaccine according to the invention together with one or more other vaccine(s) for separate, sequential or simultaneous administration. **[0113]** The vaccine of the invention may be used to treat an avian subject. For example, the subject may be a chick or chicken. **[0114]** Typically, a physician or veterinarian will determine the actual dosage which will be most suitable for an individual subject or group of subjects and it will vary with the age, weight and response of the particular subject(s). [0115] The composition may optionally comprise a pharmaceutically acceptable carrier, diluent, excipient or adjuvant. The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice. The pharmaceutical compositions may comprise as (or in addition to) the carrier, excipient or diluent, any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s), and other carrier agents that may aid or increase the delivery or immunogenicity of the virus. #### **EXAMPLES** ### Example 1 - Generation of recombinant IBVs comprising Beaudette-derived amino acids [0116] The present inventors have previously shown that the Beaudette-specific motif was able to confer the ability to grow on Vero cells but not to the same extent as
the complete Beaudette S2 subunit. In the present inventors' previous work, they replaced the equivalent Beaudette-specific motif sequence in the M41 S2 subunit in BeauR-M41(S) with the Beaudette-specific motif. The resultant rIBV, BeauR-M41-S-BeauR-Hep, was able to grow on Vero cells, however, kinetic studies showed that it did not grow to the same extent as the rIBV expressing an S protein comprising S1 from M41 and a complete S2 from Beaudette. **[0117]** In the present study, the present inventors investigated whether other Beaudette-specific amino acids may be involved in the acquisition of the ability to grow on Vero cells. **[0118]** To this end, a series of rIBVs were generated based on BeauR-M41-S-BeauR-Hep in which other Beaudette-derived amino acids were introduced. This was achieved by generating BeauR-M41-S-BeauR-Hep based cDNAs that had the Beaudette-specific amino acids, $_{578}$ F, $_{617}$ S, $_{826}$ S, $_{857}$ F and $_{1000}$ I, identified in the Beaudette S2, introduced into the S glycoprotein of rIBV BeauR-M41-S-BeauR-Hep to replace the corresponding M41 amino acids $_{578}$ L, $_{617}$ N, $_{826}$ N, $_{857}$ L and $_{1000}$ V. [0119] The changes (M41 to Beaudette) were:- Leucine (L) to Phenylalanine (F) position 578 Asparagine (N) to Serine (S) position 617 Asparagine (N) to Serine (S) position 826 Leucine (L) to Phenylalanine (F) position 857 and Isoleucine (I) to Valine (V) position 1000 25 30 35 20 10 [0120] Two separate regions of the M41 S glycoprotein containing the desired amino acid changes were synthesised by Geneart and cloned into the transfer/recombination vector pGPTNEB193. These were used to introduce the mutations into the BeauR-M41-S-BeauR-Hep full-length cDNA cloned into the vaccinia virus genome using a transient dominant selection (TDS) method for modifying the IBV genome. Recombinant vaccinia viruses were screened to identify isolates containing different combinations of the Beaudette-specific S2 amino acids. A further TDS was carried out to introduce all five Beaudette-specific amino acids into the BeauR-M41-S-BeauR-Hep full-length cDNA. Resultant recombinant vaccinia viruses were screened by sequence analysis to identify IBV cDNA sequences that contained all the Beaudette-specific amino acids. **[0121]** Infectious rIBVs with different combinations of the Beaudette-specific amino acids in the S2 subunit of the BeauR-M41-S-BeauR-Hep S glycoprotein were then rescued. In order to do this, the recombinant vaccinia viruses containing the BeauR-M41-S-BeauR-Hep cDNA with the modified S2 sequences were semipurified and the DNA was extracted. Primary CK cells were transfected with the recombinant vaccinia virus DNA to recover the infectious rIBVs, which were subsequently serially passaged three times on CK cells. [0122] Six different rIBVs were rescued with different combinations of mutations as follows: 40 45 50 55 MSBH-NS - N to S at position 617 MSBH-LFNS - L to F at 578 and N to S at 617 MSBH-IV - I to V at 1000 MSBH-LFIV - L to F at 857 and I to V at 1000 MSBH-NSLFIV - N to S at 826, L to F at 857 and I to V at 1000 MSBH-LFNSNSLFIV - L to F at 578, N to S at 617, N to S at 826, L to F at 857 & I to V at 1000 **[0123]** The growth kinetics of the six rIBVs described above were analysed on CK cells and it was found that variants grew with kinetics similar to the parent virus, rIBV BeauR-M41-S-BeauR-Hep (data not shown). [0124] The rIBVs were serially passaged seven times on Vero cells and the S genes were sequenced. [0125] Sequence analysis showed that, after passage on Vero cells, all six rIBVs had additional amino acid changes when compared to the P3 CKC parental virus, with one amino acid at amino acid position 865 (glutamine (Q) to histidine (H)) common to three viruses. This mutation also occurs in some other viruses, so is thought not to be directly responsible for enhancing growth in Vero cells but it may interact with the other substitutions which were engineered into the M41 S2. The Q to H mutations are thought to have arisen due to growth on Vero cells. ## Example 2 - Analysing the growth kinetics of the rIBVs of Vero cells **[0126]** The growth characteristics of the variants on Vero cells were analysed using brightfield microscopy. Growth of the rIBV isolates were compared to rIBV BeauR-M41-S-BeauR-Hep (M41 with the Beaudette motif but no other Beaudette-derived mutations) to determine whether the five amino acids from Beaudette improve the growth kinetics. The results are shown in Figure 1. All five Beaudette-specific S2 amino acids in the six combinations isolated in the six rIBVs improved the growth of BeauR-M41-S-BeauR-Hep on Vero cells. [0127] The variant rIBV, MSBH-LFNSNSLFIV, that had all five Beaudette-specific amino acids introduced was found to grow the best. **[0128]** These results show that other S2 Beaudette-specific amino acids in addition to the Beaudette-specific motif are involved in the ability of IBV Beaudette to grow on Vero cells. The introduction of these amino acids can be used to generate rIBVs with an S2 subunit from the parental virus but with relatively few amino acid changes. [0129] In this experiment the rIBVs investigated had been passed 7 times on Vero cells (Figure 1). **[0130]** The growth kinetics was also investigated for the rIBVs in Vero cells without previous passage on Vero cells. The results are shown in Figure 2. **[0131]** BeauR-M41(S), which comprises the M41 S gene without any Beaudette S2 specific amino acids, does not grow on Vero cells. The IBV strain Beaudette was found to grow the best in this experiment. However, as shown in Figure 1 following passage on Vero cells some of the rIBVs grow better than Beau-R. The rIBV with the Beaudette-specific motif site only, BeauR-M41-S-BeauR-Hep, does grow Vero cells, but to a lesser extent than Beaudette, even after passage on Vero cells. **[0132]** However, the variant rIBVs with amino acid mutations showed improved growth after seven passages on Vero cells, most notably: MSBH-LFNS, MSBH-NSLFIV and MSBH-NS. **[0133]** Interestingly, these three variants at P7-Vero (MSBH-LFNS MSBH-NSLFIV and MSBH-NS) produce a much higher titre than Beau-R at 24 hours post infection. The titre is almost 2 logs (x100 fold) better than Beau-R at 24 hours post infection. The variant sequences therefore offer an added advantage for a vaccine production as they would lead to a greatly increased yield. #### SEQUENCE LISTING ## 30 [0134] 5 10 15 20 25 <110> The Pirbright Institute <120> PROTEIN 35 <130> P101995PCT <150> GB 1308057.7 <151> 2013-05-03 <160> 14 <170> PatentIn version 3.5 ⁴⁵ <210> 1 <211> 1162 <212> PRT <213> Infectious bronchitis virus (IBV) 50 <400> 1 55 | | Met
1 | Leu | Val | Thr | Pro
5 | Leu | Leu | Leu | Val | Thr
10 | Leu | Leu | Cys | Ala | Leu
15 | Cys | |----|------------|------------|------------|------------|-----------|--------------------|------------|------------|------------|-----------|------------|------------|------------|------------|-----------|------------| | 5 | Ser | Ala | Val | Leu
20 | Tyr | Asp | Ser | Ser | Ser
25 | Tyr | Val | Tyr | Tyr | Tyr
30 | Gln | Ser | | 10 | Ala | Phe | Arg
35 | Pro | Pro | Ser | Gly | Trp
40 | His | Leu | Gln | Gly | Gly
45 | Ala | Tyr | Ala | | 15 | Val | Val
50 | Asn | Ile | Ser | Ser | Glu
55 | Phe | Asn | Asn | Ala | Gly
60 | Ser | Ser | Ser | Gly | | | Cys
65 | Thr | Val | Gly | Ile | Ile
70 | His | Gly | Gly | Arg | Val
75 | Val | Asn | Ala | Ser | Ser
80 | | 20 | Ile | Ala | Met | Thr | Ala
85 | Pro | Ser | Ser | Gly | Met
90 | Ala | Trp | Ser | Ser | Ser
95 | Gln | | 25 | Phe | Cys | Thr | Ala
100 | His | Cys | Asn | Phe | Ser
105 | Asp | Thr | Thr | Val | Phe
110 | Val | Thr | | 30 | His | Cys | Tyr
115 | Lys | His | Gly | Gly | Cys
120 | Pro | Leu | Thr | Gly | Met
125 | Leu | Gln | Gln | | | Asn | Leu
130 | Ile | Arg | Val | Ser | Ala
135 | Met | Lys | Asn | Gly | Gln
140 | Leu | Phe | Tyr | Asn | | 35 | Leu
145 | Thr | Val | Ser | Val | A la
150 | Lys | Tyr | Pro | Thr | Phe
155 | Arg | Ser | Phe | Gln | Cys
160 | | 40 | Val | Asn | Asn | Leu | Thr | Ser | Val | Tyr | Leu | Asn | Gly | Asp | Leu | Val | Tyr | Thr | | 45 | | | | | | | | | | | | | | | | | | 45 | | | | | | | | | | | | | | | | | | 50 | | | | | | | | | | | | | | | | | | 55 | 165 | | | | | 170 | | | | | 175 | | |----|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|-------------------|------------|------------| | 5 | Ser | Asn | Glu | Thr
180 | Ile | Asp | Val | Thr | Ser
185 | Ala | Gly | Val | Tyr | Phe
190 | Lys | Ala | | 10 | Gly | Gly | Pro
195 | Ile | Thr | Tyr | Lys | Val
200 | Met | Arg | Glu | Val | Lys
205 | Ala | Leu | Ala | | 10 | Tyr | Phe
210 | Val | Asn | Gly | Thr | Ala
215 | Gln | Asp | Val | Ile | Leu
220 | Cys | Asp | Gly | Ser | | 15 | Pro
225 | Arg | Gly | Leu | Leu | Ala
230 | Cys | Gln | Tyr | Asn | Thr
235 | Gly | Asn | Phe | Ser | Asp
240 | | 20 | Gly | Phe | Tyr | Pro | Phe
245 | Thr | Asn | Ser | Ser | Leu
250 | Val | Lys | Gln | Lys | Phe
255 | Ile | | | Val | Tyr | Arg | Glu
260 | Asn | Ser | Val | Asn | Thr
265 | Thr | Cys | Thr | Leu | His
270 | Asn | Phe | | 25 | Ile | Phe | His
275 | Asn | Glu | Thr | Gly | Ala
280 | Asn | Pro | Asn | Pro | Ser
285 | Gly | Val | Gln | | 30 | Asn | Ile
290 | Gln | Thr | Tyr | Gln | Thr
295 | Lys | Thr | Ala | Gln | Ser
300 | Gly | Tyr | Tyr | Asn | | 35 | Phe
305 | Asn | Phe | Ser | Phe | Leu
310 | Ser | Ser | Phe | Val | Tyr
315 | Lys | Glu | Ser | Asn | Phe
320 | | | Met | Tyr | Gly | Ser | Tyr
325 | His | Pro | Ser | Cys | Lys
330 | Phe | Arg | Leu | Glu | Thr
335 | Ile | | 40 | Asn | Asn | Gly |
Leu
340 | Trp | Phe | Asn | Ser | Leu
345 | Ser | Val | Ser | Ile | Ala
350 | Tyr | Gly | | 45 | Pro | Leu | Gln
355 | Gly | Gly | Cys | Lys | Gln
360 | Ser | Val | Phe | Lys | Gly
365 | Arg | Ala | Thr | | 50 | Суз | Cys
370 | Tyr | Ala | Tyr | Ser | Tyr
375 | Gly | Gly | Pro | Ser | Leu
380 | Cys | Lys | Gly | Val | | | Tyr
385 | Ser | Gly | Glu | Leu | Asp
390 | His | Asn | Phe | Glu | Cys
395 | Gly | Leu | Leu | Val | Tyr
400 | | 55 | Val | Thr | Lys | Ser | Gly
405 | Gly | Ser | Arg | Ile | Gln
410 | Thr | Ala | Thr | Glu | Pro
415 | Pro | | | Val | Ile | Thr | Gln
420 | Asn | Asn | Tyr | Asn | Asn
425 | Ile | Thr | Leu | Asn | Thr
430 | Cys | Val | |----|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|-------------------|------------| | 5 | Asp | Tyr | Asn
435 | Ile | Tyr | Gly | Arg | Thr
440 | Gly | Gln | Gly | Phe | Ile
445 | Thr | Asn | Val | | 10 | Thr | Asp
450 | Ser | Ala | Val | Ser | Tyr
455 | Asn | Tyr | Leu | Ala | Asp
460 | Ala | Gly | Leu | Ala | | | Ile
465 | Leu | Asp | Thr | Ser | Gly
470 | Ser | Ile | Asp | Ile | Phe
475 | Val | Val | Gln | Gly | Glu
480 | | 15 | Tyr | Gly | Leu | Asn | Tyr
485 | Tyr | Lys | Val | Asn | Pro
490 | Cys | Glu | Asp | Val | Asn
495 | Gln | | 20 | Gln | Phe | Val | Val
500 | Ser | Gly | Gly | Lys | Leu
505 | Val | Gly | Ile | Leu | Thr
510 | Ser | Arg | | 25 | Asn | Glu | Thr
515 | Gly | Ser | Gln | Leu | Leu
520 | Glu | Asn | Gln | Phe | Tyr
525 | Ile | Lys | Ile | | | Thr | Asn
530 | Gly | Thr | Arg | Arg | Phe
535 | Arg | Arg | Ser | Ile | Thr
540 | Glu | Asn | Val | Ala | | 30 | Asn
545 | Cys | Pro | Tyr | Val | Ser
550 | Tyr | Gly | Lys | Phe | Cys
555 | Ile | Lys | Pro | Asp | Gly
560 | | 35 | Ser | Ile | Ala | Thr | Ile
565 | Val | Pro | Lys | Gln | Leu
570 | Glu | Gln | Phe | Val | Ala
575 | Pro | | 40 | Leu | Phe | Asn | Val
580 | Thr | Glu | Asn | Val | Leu
585 | Ile | Pro | Asn | Ser | Phe
590 | Asn | Leu | | 70 | Thr | Val | Thr
595 | Asp | Glu | Tyr | Ile | Gln
600 | Thr | Arg | Met | Asp | Lys
605 | Val | Gln | Ile | | 45 | Asn | Cys
610 | Leu | Gln | Tyr | Val | Cys
615 | Gly | Ser | Ser | Leu | Asp
620 | Cys | Arg | Lys | Leu | | 50 | Phe
625 | Gln | Gln | Tyr | Gly | Pro
630 | Val | Cys | Asp | Asn | Ile
635 | Leu | Ser | Val | Val | Asn
640 | | | Ser | Val | Gly | Gln | Lys
645 | Glu | Asp | Met | Glu | Leu
650 | Leu | Asn | Phe | Tyr | Ser
655 | Ser | | 55 | Thr | Lys | Pro | Ala
660 | Gly | Phe | Asn | Thr | Pro
665 | Val | Leu | Ser | Asn | Val
670 | Ser | Thr | | | GTĀ | Glu | 675 | Asn | TTE | Ser | Leu | 680 | Leu | Thr | Asn | Pro | 685 | Ser | Arg | Arg | |----------------|------------|------------|------------|------------|------------|-------------------|------------|------------|---------------------|--------------------|-------------------|-------------------|------------|-------------------|------------|------------| | 5 | Lys | Arg
690 | Ser | Leu | Ile | Glu | Asp
695 | Leu | Leu | Phe | Thr | Ser
700 | Val | Glu | Ser | Val | | 10 | Gly
705 | Leu | Pro | Thr | Asn | Asp
710 | Ala | Tyr | Lys | Asn | Cys
715 | Thr | Ala | Gly | Pro | Leu
720 | | | Gly | Phe | Phe | Lys | Asp
725 | Leu | Ala | Cys | Ala | A rg
730 | Glu | Tyr | Asn | Gly | Leu
735 | Leu | | 15 | Val | Leu | Pro | Pro
740 | Ile | Ile | Thr | Ala | Glu
7 4 5 | Met | Gln | Ala | Leu | Tyr
750 | Thr | Ser | | 20 | Ser | Leu | Val
755 | Ala | Ser | Met | Ala | Phe
760 | Gly | Gly | Ile | Thr | Ala
765 | Ala | Gly | Ala | | 25 | Ile | Pro
770 | Phe | Ala | Thr | Gln | Leu
775 | Gln | Ala | Arg | Ile | Asn
780 | His | Leu | Gly | Ile | | | Thr
785 | Gln | Ser | Leu | Leu | Leu
790 | Lys | Asn | Gln | Glu | Lys
795 | Ile | Ala | Ala | Ser | Phe
800 | | 30 | Asn | Lys | Ala | Ile | Gly
805 | His | Met | Gln | Glu | Gly
810 | Phe | Arg | Ser | Thr | Ser
815 | Leu | | 35 | Ala | Leu | Gln | Gln
820 | Ile | Gln | Asp | Val | Val
825 | Ser | Lys | Gln | Ser | Ala
830 | Ile | Leu | | 40 | Thr | Glu | Thr
835 | Met | Ala | Ser | Leu | Asn
840 | Lys | Asn | Phe | Gly | Ala
845 | Ile | Ser | Ser | | 4 0 | Val | Ile
850 | Gln | Glu | Ile | Tyr | Gln
855 | Gln | Phe | Asp | Ala | Ile
860 | Gln | Ala | Asn | Ala | | 45 | Gln
865 | Val | Asp | Arg | Leu | Ile
870 | Thr | Gly | Arg | Leu | Ser
875 | Ser | Leu | Ser | Val | Leu
880 | | 50 | Ala | Ser | Ala | Lys | Gln
885 | Ala | Glu | Tyr | Ile | Arg
890 | Val | Ser | Gln | Gln | Arg
895 | Glu | | | Leu | Ala | Thr | Gln
900 | Lys | Ile | Asn | Glu | Cys
905 | Val | Lys | Ser | Gln | Ser
910 | Ile | Arg | | 55 | Tyr | Ser | Phe
915 | Cys | Gly | Asn | Gly | Arg
920 | His | Val | Leu | Thr | Ile
925 | Pro | Gln | Asn | | | Ala | 930 | Asn | GIY | ITe | | Phe
935 | Ile | His I | ?he S | | yr Thi
40 | r Pro | Asp | Ser | |----|------------|-------------|------------|------------|------------|-------------------|------------|-------------|---------------------|--------------|-------------|--------------|--------------|-------|------------| | 5 | Phe
945 | Val | Asn | Val | | Ala
950 | Ile | Val | Gly I | | ys Va
55 | al Ly: | s Pro | Ala | Asn
960 | | 10 | Ala | Ser | Gln | Tyr | Ala
965 | Ile | Val | Pro | | Asn G
970 | ly A | rg Gly | y Ile | 975 | | | | Gln | Val | Asn | Gly
980 | Ser | Tyr | Tyr | | Thr <i>1</i>
985 | Ala A | rg A | sp Met | t Туі
990 | | Pro | | 15 | Arg | | Ile
995 | Thr | Ala | Gly | _ | Val
1000 | | Thr | Leu ' | | er (| Cys (| Gln Ala | | 20 | Asn | Tyr
1010 | | . Ser | Val | Asn | Lys
101 | | r Val | l Ile | Thr | Thr
1020 | Phe | Val | Asp | | 25 | Asn | Asp
1025 | |) Phe | Asp | Phe | Asn
103 | | p Glı | ı Leu | Ser | Lys
1035 | Trp | Trp | Asn | | | Asp | Thr
1040 | _ | His | Glu | Leu | Pro
104 | | p Phe | a Asp | Lys | Phe
1050 | Asn | Tyr | Thr | | 30 | Val | Pro
1055 | | e Leu | Asp | Ile | Asp
106 | | r Glı | ı Ile | Asp | Arg
1065 | Ile | Gln | Gly | | 35 | Val | Ile
1070 | | Gly | Leu | Asn | Asp
107 | | r Leı | ı Ile | Asp | Leu
1080 | Glu | Lys | Leu | | 40 | Ser | Ile
1085 | | ı Lys | Thr | Tyr | Ile
109 | | s Tr <u>r</u> | Pro | Trp | Tyr
1095 | Val | Trp | Leu | | | Ala | Ile
1100 | | . Phe | Ala | Thr | Ile
110 | | e Phe | e Ile | Leu | Ile
1110 | Leu | Gly | Trp | | 45 | Val | Phe
1115 | | Met | Thr | Gly | Cys
112 | _ | s Gly | y Cys | Cys | Cys
1125 | Gly | Cys | Phe | | 50 | Gly | Ile
1130 | | . Pro | Leu | Met | Ser
113 | | s Cys | s Gly | Lys | Lys
1140 | Ser | Ser | Tyr | | | Tyr | Thr
1145 | | Phe | Asp | Asn | Asp
115 | | l Val | l Thr | Glu | Gln
1155 | Tyr | Arg | Pro | | 55 | Lys | Lys | Ser | · Val | | | | | | | | | | | | | 5 | <210> 2
<211> 1162
<212> PRT
<213> Infectious bronchitis virus (IBV) | |----|---| | 10 | <400> 2 | | 15 | | | 20 | | | 25 | | | 30 | | | 35 | | | 40 | | | 45 | | | 50 | | | | Met
1 | Leu | Val | Thr | Pro
5 | Leu | Leu | Leu | Val | Thr
10 | Leu | Leu | Cys | Val | Leu
15 | Cys | |----|------------|------------|------------|------------|------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | 5 | Ser | Ala | Ala | Leu
20 | Tyr | Asp | Ser | Ser | Ser
25 | Tyr | Val | Tyr | Tyr | Tyr
30 | Gln | Ser | | 10 | Ala | Phe | Arg
35 | Pro | Pro | Asn | Gly | Trp
40 | His | Leu | His | Gly | Gly
45 | Ala | Tyr | Ala | | 15 | Val | Val
50 | Asn | Ile | Ser | Ser | Glu
55 | Ser | Asn | Asn | Ala | Gly
60 | Ser | Ser | Pro | Gly | | | Cys
65 | Ile | Val | Gly | Thr | Ile
70 | His | Gly | Gly | Arg | Val
75 | Val | Asn | Ala | Ser | Ser
80 | | 20 | Ile | Ala | Met | Thr | Ala
85 | Pro | Ser | Ser | Gly | Met
90 | Ala | Trp | Ser | Ser | Ser
95 | Gln | | 25 | Phe | Cys | Thr | Ala
100 | His | Cys | Asn | Phe | Ser
105 | Asp | Thr | Thr | Val | Phe
110 | Val | Thr | | 30 | His | Cys | Tyr
115 | Lys | Tyr | Asp | Gly | Cys
120 | Pro | Ile | Thr | Gly | Met
125 | Leu | Gln | Lys | | | Asn | Phe
130 | Leu | Arg | Val | Ser | Ala
135 | Met | Lys | Asn | Gly | Gln
140 | Leu | Phe | Tyr | Asn | | 35 | Leu
145 | Thr | Val | Ser | Val | Ala
150 | Lys | Tyr | Pro | Thr | Phe
155 | Lys | Ser | Phe | Gln | Cys
160 | | 40 | Val | Asn | Asn | Leu | Thr
165 | Ser | Val | Tyr | Leu | Asn
170 | Gly | Asp | Leu | Val | Tyr
175 | Thr | | 45 | Ser | Asn | Glu | Thr
180 | Thr | Asp | Val | Thr | Ser
185 | Ala | Gly | Val | Tyr | Phe
190 | Lys | Ala | | 40 | Gly | Gly | Pro
195 | Ile | Thr | Tyr | Lys | Val
200 | Met | Arg | Lys | Val | Lys
205 | Ala | Leu | Ala | | 50 | Tyr | Phe | Val | Asn | Gly | Thr | Ala | Gln | Asp | Val | Ile | Leu | Cys | Asp | Gly | Ser | | 5 | Pro
225 | Arg | Gly | Leu | Leu | Ala
230 | Cys | Gln | Tyr | Asn | Thr
235 | Gly | Asn | Phe | Ser | Asp
240 | |----|------------|------------|------------|------------|------------|----------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | 10 | Gly | Phe | Tyr | Pro | Phe
245 | Ile | Asn | Ser | Ser | Leu
250 | Val | Lys | Gln | Lys | Phe
255 | Ile | | 10 | Val | Tyr | Arg | Glu
260 | Asn | Ser | Val | Asn | Thr
265 | Thr | Phe | Thr | Leu | His
270 | Asn |
Phe | | 15 | Thr | Phe | His
275 | Asn | Glu | Thr | Gly | Ala
280 | Asn | Pro | Asn | Pro | Ser
285 | Gly | Val | Gln | | 20 | Asn | Ile
290 | Leu | Thr | Tyr | Gln | Thr
295 | Gln | Thr | Ala | Gln | Ser
300 | Gly | Tyr | Tyr | Asn | | | Phe
305 | Asn | Phe | Ser | Phe | Leu
310 | Ser | Ser | Phe | Val | Tyr
315 | Lys | Glu | Ser | Asn | Phe
320 | | 25 | Met | Tyr | Gly | Ser | Tyr
325 | His | Pro | Ser | Cys | Asn
330 | Phe | Arg | Leu | Glu | Thr
335 | Ile | | 30 | Asn | Asn | Gly | Leu
340 | Trp | Phe | Asn | Ser | Leu
345 | Ser | Val | Ser | Ile | Ala
350 | Tyr | Gly | | 35 | Pro | Leu | Gln
355 | Gly | Gly | Cys | Lys | Gln
360 | Ser | Val | Phe | Ser | Gly
365 | Arg | Ala | Thr | | | Cys | Cys
370 | Tyr | Ala | Tyr | Ser | Tyr
375 | Gly | Gly | Pro | Ser | Leu
380 | Cys | Lys | Gly | Val | | 40 | Tyr
385 | Ser | Gly | Glu | Leu | Asp 390 | Leu | Asn | Phe | Glu | Cys
395 | Gly | Leu | Leu | Val | Tyr
400 | | 45 | Val | Thr | Lys | Ser | Gly
405 | Gly | Ser | Arg | Ile | Gln
410 | Thr | Ala | Thr | Glu | Pro
415 | Pro | | 50 | Val | Ile | Thr | Arg
420 | His | Asn | Tyr | Asn | Asn
425 | Ile | Thr | Leu | Asn | Thr
430 | Cys | Val | | | Asp | Tyr | Asn
435 | Ile | Tyr | Gly | Arg | Thr
440 | Gly | Gln | Gly | Phe | Ile
445 | Thr | Asn | Val | | 55 | Thr | Asp
450 | Ser | Ala | Val | Ser | Tyr
455 | Asn | Tyr | Leu | Ala | Asp
460 | Ala | Gly | Leu | Ala | | | Ile
465 | Leu | Asp | Thr | Ser | Gly
470 | Ser | Ile | Asp | Ile | Phe
475 | Val | Val | Gln | Gly | Glu
480 | |----|------------|------------|------------|------------|------------|------------|----------------|------------|------------|----------------|------------|------------|-------------------|------------|------------|------------| | 5 | Tyr | Gly | Leu | Thr | Tyr
485 | Tyr | Lys | Val | Asn | Pro
490 | Cys | Glu | Asp | Val | Asn
495 | Gln | | 10 | Gln | Phe | Val | Val
500 | Ser | Gly | Gly | Lys | Leu
505 | Val | Gly | Ile | Leu | Thr
510 | Ser | Arg | | | Asn | Glu | Thr
515 | Gly | Ser | Gln | Leu | Leu
520 | Glu | Asn | Gln | Phe | Tyr
525 | Ile | Lys | Ile | | 15 | Thr | Asn
530 | Gly | Thr | Arg | Arg | Phe
535 | Arg | Arg | Ser | Ile | Thr
540 | Glu | Asn | Val | Ala | | 20 | Asn
545 | Cys | Pro | Tyr | Val | Ser
550 | Tyr | Gly | Lys | Phe | Cys
555 | Ile | Lys | Pro | Asp | Gly
560 | | 25 | Ser | Ile | Ala | Thr | Ile
565 | Val | Pro | Lys | Gln | Leu
570 | Glu | Gln | Phe | Val | Ala
575 | Pro | | | Leu | Leu | Asn | Val
580 | Thr | Glu | Asn | Val | Leu
585 | Ile | Pro | Asn | Ser | Phe
590 | Asn | Leu | | 30 | Thr | Val | Thr
595 | Asp | Glu | Tyr | Ile | Gln
600 | Thr | Arg | Met | Asp | Lys
605 | Val | Gln | Ile | | 35 | Asn | Cys
610 | Leu | Gln | Tyr | Val | Cys
615 | Gly | Asn | Ser | Leu | Asp
620 | Cys | Arg | Asp | Leu | | 40 | Phe
625 | Gln | Gln | Tyr | Gly | Pro
630 | Val | Cys | Asp | Asn | Ile
635 | Leu | Ser | Val | Val | Asn
640 | | | Ser | Ile | Gly | Gln | Lys
645 | Glu | Asp | Met | Glu | Leu 650 | Leu | Asn | Phe | Tyr | Ser
655 | Ser | | 45 | Thr | Lys | Pro | Ala
660 | Gly | Phe | Asn | Thr | Pro
665 | Phe | Leu | Ser | Asn | Val
670 | Ser | Thr | | 50 | Gly | Glu | Phe
675 | Asn | Ile | Ser | Leu | Leu
680 | Leu | Thr | Thr | Pro | Ser
685 | Ser | Pro | Arg | | | Arg | Arg
690 | Ser | Phe | Ile | Glu | Asp 695 | Leu | Leu | Phe | Thr | Ser
700 | Val | Glu | Ser | Val | | 55 | Gly
705 | Leu | Pro | Thr | Asp | Asp
710 | Ala | Tyr | Lys | Asn | Cys
715 | Thr | Ala | Gly | Pro | Leu
720 | | | Gly | Phe | Leu | Lys | Asp
725 | Leu | Ala | Cys | Ala | Arg
730 | Glu | Tyr | Asn | Gly | Leu
735 | Leu | |----|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|--------------------|------------|-------------------|------------|-------------------| | 5 | Val | Leu | Pro | Pro
740 | Ile | Ile | Thr | Ala | Glu
745 | Met | Gln | Thr | Leu | Tyr
750 | Thr | Ser | | 10 | Ser | Leu | Val
755 | Ala | Ser | Met | Ala | Phe
760 | Gly | Gly | Ile | Thr | Ala
765 | Ala | Gly | Ala | | | Ile | Pro
770 | Phe | Ala | Thr | Gln | Leu
775 | Gln | Ala | Arg | Ile | A sn
780 | His | Leu | Gly | Ile | | 15 | Thr
785 | Gln | Ser | Leu | Leu | Leu
790 | Lys | Asn | Gln | Glu | Lys
795 | Ile | Ala | Ala | Ser | Phe
800 | | 20 | Asn | Lys | Ala | Ile | Gly
805 | Arg | Met | Gln | Glu | Gly
810 | Phe | Arg | Ser | Thr | Ser
815 | Leu | | 25 | Ala | Leu | Gln | Gln
820 | Ile | Gln | Asp | Val | Val
825 | Asn | Lys | Gln | Ser | Ala
830 | Ile | Leu | | | Thr | Glu | Thr
835 | Met | Ala | Ser | Leu | Asn
840 | Lys | Asn | Phe | Gly | Ala
845 | Ile | Ser | Ser | | 30 | Val | Ile
850 | Gln | Glu | Ile | Tyr | Gln
855 | Gln | Leu | Asp | Ala | Ile
860 | Gln | Ala | Asn | Ala | | 35 | Gln
865 | Val | Asp | Arg | Leu | Ile
870 | Thr | Gly | Arg | Leu | Ser
875 | Ser | Leu | Ser | Val | Leu
880 | | 40 | Ala | Ser | Ala | Lys | Gln
885 | Ala | Glu | His | Ile | Arg
890 | Val | Ser | Gln | Gln | Arg
895 | Glu | | 40 | Leu | Ala | Thr | Gln
900 | Lys | Ile | Asn | Glu | Cys
905 | Val | Lys | Ser | Gln | Ser
910 | Ile | Arg | | 45 | Tyr | Ser | Phe
915 | Cys | Gly | Asn | Gly | Arg
920 | His | Val | Leu | Thr | Ile
925 | Pro | Gln | Asn | | 50 | Ala | Pro
930 | Asn | Gly | Ile | Val | Phe
935 | Ile | His | Phe | Ser | Tyr
940 | Thr | Pro | Asp | Ser | | | Phe
945 | Val | Asn | Val | Thr | Ala
950 | Ile | Val | Gly | Phe | Cys
955 | Val | Lys | Pro | Ala | Asn
960 | | 55 | Ala | Ser | Gln | Tyr | Ala
965 | Ile | Val | Pro | Ala | Asn
970 | Gly | Arg | Gly | Ile | Phe
975 | Ile | | | Gln | Val | | Gly
980 | Ser | Tyr | Tyr 1 | | hr A
985 | la A | rg A | sp Met | 99) | | t Pro | |----|--|-------------|------------|------------|-----|-----|---------------|-------------|-------------|------|-------|-------------|------|-------|---------| | 5 | Arg | | Ile
995 | Thr | Ala | Gly | _ | Ile
1000 | Val | Thr | Leu ' | | er (| Cys (| Gln Ala | | 10 | Asn | Tyr
1010 | | Ser | Val | Asn | Lys
1015 | | · Val | Ile | Thr | Thr
1020 | Phe | Val | Asp | | 15 | Asn | Asp
1025 | | Phe | Asp | Phe | Asn
1030 | | Glu | Leu | Ser | Lys
1035 | Trp | Trp | Asn | | 73 | Asp | Thr
1040 | | His | Glu | Leu | Pro
1045 | _ | Phe | Asp | Lys | Phe
1050 | Asn | Tyr | Thr | | 20 | Val | Pro
1055 | | Leu | Asp | Ile | Asp
1060 | | Glu | Ile | Asp | Arg
1065 | Ile | Gln | Gly | | 25 | Val | Ile
1070 | | Gly | Leu | Asn | Asp
1075 | | . Leu | Ile | Asp | Leu
1080 | Glu | Lys | Leu | | 00 | Ser | Ile
1085 | | Lys | Thr | Tyr | : Ile
1090 | _ | Trp | Pro | Trp | Tyr
1095 | Val | Trp | Leu | | 30 | Ala | Ile
1100 | | Phe | Ala | Thr | : Ile
1105 | | Phe | Ile | Leu | Ile
1110 | Leu | Gly | Trp | | 35 | Val | Phe
1115 | | Met | Thr | Gly | Cys
1120 | | s Gly | Cys | Cys | Cys
1125 | Gly | Cys | Phe | | 40 | Gly | Ile
1130 | | Pro | Leu | Met | Ser
1135 | | s Cys | Gly | Lys | Lys
1140 | Ser | Ser | Tyr | | | Tyr | Thr
1145 | | Phe | Asp | Asn | 1150 | | . Val | Thr | Glu | Gln
1155 | Asn | Arg | Pro | | 45 | Lys | Lys
1160 | | Val | | | | | | | | | | | | | 50 | <210> 3
<211> 6
<212> PRT
<213> Artific | cial Seq | uence | | | | | | | | | | | | | | 55 | <220>
<223> Sequ | ence m | otif | | | | | | | | | | | | | | | <220>
<221> misc_ | _feature | ; | | | | | | | | | | | | | ``` <222> (1)..(1) <223> Xaa can be any naturally occurring amino acid <220> 5 <221> MISC_FEATURE <222> (2)..(3) <223> Xaa is a basic amino acid residue (Arg, His, Lys) <220> 10 <221> misc_feature <222> (4)..(4) <223> Xaa can be any naturally occurring amino acid <220> <221> MISC_FEATURE 15 <222> (5)..(5) <223> Xaa is a basic amino acid residue (Arg, His, Lys) <220> 20 <221> misc_feature <222> (6)..(6) <223> Xaa can be any naturally occurring amino acid <400> 3 25 Xaa Xaa Xaa Xaa Xaa 5 <210> 4 30 <211> 6 <212> PRT <213> Infectious bronchitis virus (IBV) <400> 4 35 Ser Arg Arg Lys Arg Ser 5 <210> 5 40 <211> 6 <212> PRT <213> Infectious bronchitis virus (IBV) <400> 5 45 Ser Arg Arg Arg Ser 5 <210> 6 50 <211>9 <212> PRT <213> Infectious bronchitis virus (IBV) <400> 6 55 Ser Arg Arg Lys Arg Ser Leu Ile Glu 1 5 ``` <210> 7 | | <211> 9
<212> P
<213> Ir | PRT | us bro | nchitis | s virus | (IBV) | | | | | | | | | | | | |-----|--------------------------------|------------|------------|---------------|------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | 5 | <400> 7 | | | | | | | | | | | | | | | | | | 40 | | | | | Se
1 | er Ai | rg Aı | rg Aı | rg Aı
5 | rg Se | er Va | al I | Le G | Lu | | | | | 10 | <210> 8
<211> 1
<212> P | 153
PRT | | . n a h iti d | | (IDV) | | | | | | | | | | | | | 15 | <213> Ir
<400> 8 | | us bro | momus | s viius | (IDV) | | | | | | | | | | | | | 20 | | Met
1 | Leu | Val | Thr | Pro
5 | Leu | Leu | Leu | Val | Thr
10 | Leu | Leu | Суз | Val | Leu
15 | Cys | | 0.5 | | Ser | Ala | Ala | Leu
20 | Tyr | Asp | Ser | Ser | Ser
25 | Tyr | Val | Tyr | Tyr | Tyr
30 | Gln | Ser | | 25 | | Ala | Phe | Arg
35 | Pro | Pro | Asn | Gly | Trp
40 | His | Leu | His | Gly | Gly
45 | Ala | Tyr | Ala | | 30 | | Val | Val
50 | Asn | Ile | Ser | Ser | Glu
55 | Ser | Asn | Asn | Ala | Gly
60 | Ser | Ser | Pro | Gly | | 35 | | Cys
65 | Ile | Val | Gly | Thr | Ile
70 | His | Gly | Gly | Arg | Val
75 |
Val | Asn | Ala | Ser | Ser
80 | | | | Ile | Ala | Met | Thr | Ala
85 | Pro | Ser | Ser | Gly | Met
90 | Ala | Trp | Ser | Ser | Ser
95 | Gln | | 40 | | Phe | Cys | Thr | Ala
100 | His | Суѕ | Asn | Phe | Ser
105 | Asp | Thr | Thr | Val | Phe
110 | Val | Thr | | 45 | | His | Cys | Tyr
115 | Lys | Tyr | Asp | Gly | Cys
120 | Pro | Ile | Thr | Gly | Met
125 | Leu | Gln | Lys | | 50 | | Asn | Phe
130 | Leu | Arg | Val | Ser | Ala
135 | Met | Lys | Asn | Gly | Gln
140 | Leu | Phe | Tyr | Asn | | | | Leu
145 | Thr | Val | Ser | Val | Ala
150 | Lys | Tyr | Pro | Thr | Phe
155 | Lys | Ser | Phe | Gln | Cys
160 | | 55 | | Val | Asn | Asn | Leu | Thr
165 | Ser | Val | Tyr | Leu | Asn
170 | Gly | Asp | Leu | Val | Tyr
175 | Thr | | | Ser | Asn | Glu | Thr
180 | Thr | Asp | Val | Thr | Ser
185 | Ala | Gly | Val | Tyr | Phe
190 | Lys | Ala | |----|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|-------------------|------------|------------|-------------------|------------|------------| | 5 | Gly | Gly | Pro
195 | Ile | Thr | Tyr | Lys | Val
200 | Met | Arg | Glu | Val | Lys
205 | Ala | Leu | Ala | | 10 | Tyr | Phe
210 | Val | Asn | Gly | Thr | Ala
215 | Gln | Asp | Val | Ile | Leu
220 | Cys | Asp | Gly | Ser | | | Pro
225 | Arg | Gly | Leu | Leu | Ala
230 | Cys | Gln | Tyr | Asn | Thr
235 | Gly | Asn | Phe | Ser | Asp
240 | | 15 | Gly | Phe | Tyr | Pro | Phe
245 | Ile | Asn | Ser | Ser | Leu
250 | Val | Lys | Gln | Lys | Phe
255 | Ile | | 20 | Val | Tyr | Arg | Glu
260 | Asn | Ser | Val | Asn | Thr
265 | Thr | Phe | Thr | Leu | His
270 | Asn | Phe | | 25 | Thr | Phe | His
275 | Asn | Glu | Thr | Gly | Ala
280 | Asn | Pro | Asn | Pro | Ser
285 | Gly | Val | Gln | | | Asn | Ile
290 | Gln | Thr | Tyr | Gln | Thr
295 | Gln | Thr | Ala | Gln | Ser
300 | Gly | Tyr | Tyr | Asn | | 30 | Phe
305 | Asn | Phe | Ser | Phe | Leu
310 | Ser | Ser | Phe | Val | Tyr
315 | Lys | Glu | Ser | Asn | Phe
320 | | 35 | Met | Tyr | Gly | Ser | Tyr
325 | His | Pro | Ser | Cys | Asn 330 | Phe | Arg | Leu | Glu | Thr
335 | Ile | | | Asn | Asn | Gly | Leu
340 | Trp | Phe | Asn | Ser | Leu
345 | Ser | Val | Ser | Ile | Ala
350 | Tyr | Gly | | 40 | Pro | Leu | Gln
355 | Gly | Gly | Cys | Lys | Gln
360 | Ser | Val | Phe | Ser | Gly
365 | Arg | Ala | Thr | | 45 | Cys | Cys
370 | Tyr | Ala | Tyr | Ser | Tyr
375 | Gly | Gly | Pro | Ser | Leu
380 | Cys | Lys | Gly | Val | | 50 | Tyr
385 | Ser | Gly | Glu | Leu | Asp
390 | Leu | Asn | Phe | Glu | Cys
395 | Gly | Leu | Leu | Val | Tyr
400 | | | Val | Thr | Lys | Ser | Gly
405 | Gly | Ser | Arg | Ile | Gln
410 | Thr | Ala | Thr | Glu | Pro
415 | Pro | | 55 | Val | Ile | Thr | Arg
420 | His | Asn | Tyr | Asn | Asn
425 | Ile | Thr | Leu | Asn | Thr
430 | Cys | Val | | | Asp | Tyr | 435 | TTE | Tyr | GТĀ | Arg | 440 | СТА | GIn | GТĀ | Pne | 11e
445 | Thr | Asn | Val | |----|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------| | 5 | Thr | Asp
450 | Ser | Ala | Val | Ser | Tyr
455 | Asn | Tyr | Leu | Ala | Asp
460 | Ala | Gly | Leu | Ala | | 10 | Ile
465 | Leu | Asp | Thr | Ser | Gly
470 | Ser | Ile | Asp | Ile | Phe
475 | Val | Val | Gln | Gly | Glu
480 | | | Tyr | Gly | Leu | Thr | Tyr
485 | Tyr | Lys | Val | Tyr | Pro
490 | Cys | Glu | Asp | Val | Asn
495 | Gln | | 15 | Gln | Phe | Val | Val
500 | Ser | Gly | Gly | Lys | Leu
505 | Val | Gly | Ile | Leu | Thr
510 | Ser | Arg | | 20 | Asn | Glu | Thr
515 | Gly | Ser | Gln | Leu | Leu
520 | Glu | Asn | Gln | Phe | Tyr
525 | Ile | Lys | Ile | | 25 | Thr | As n
530 | Gly | Thr | Arg | Arg | Phe
535 | Arg | Arg | Ser | Ile | Thr
540 | Glu | Asn | Val | Ala | | | Asn
545 | Cys | Pro | Tyr | Val | Ser
550 | Tyr | Gly | Lys | Phe | Cys
555 | Ile | Lys | Pro | Asp | Gly
560 | | 30 | Ser | Ile | Ala | Thr | Ile
565 | Val | Pro | Lys | Gln | Leu
570 | Glu | Gln | Phe | Val | Ala
575 | Pro | | 35 | Leu | Leu | Asn | Val
580 | Thr | Glu | Asn | Val | Leu
585 | Ile | Pro | Asn | Ser | Phe
590 | Asn | Leu | | 40 | Thr | Val | Thr
595 | Asp | Glu | Tyr | Ile | Gln
600 | Thr | Arg | Met | Asp | Lys
605 | Val | Gln | Ile | | 40 | Asn | Cys
610 | Met | Gln | Tyr | Val | Cys
615 | Gly | Asn | Ser | Leu | Asp
620 | Cys | Arg | Asp | Leu | | 45 | Phe
625 | Gln | Gln | Tyr | Gly | Pro
630 | Val | Cys | Asp | Asn | Ile
635 | Leu | Ser | Val | Val | Asn
640 | | 50 | Ser | Ile | Gly | Gln | Lys
645 | Glu | Asp | Met | Glu | Leu
650 | Leu | Asn | Phe | Tyr | Ser
655 | Ser | | | Thr | Lys | Pro | Ala
660 | Gly | Phe | Asn | Thr | Pro
665 | Phe | Leu | Ser | Asn | Val
670 | Ser | Thr | | 55 | Gly | Glu | Phe
675 | Asn | Ile | Ser | Leu | Leu
680 | Leu | Thr | Thr | Pro | Ser
685 | Ser | Pro | Arg | | | Arg | Arg
690 | Ser | Phe | Ile | Glu | Asp 695 | Leu | Leu | Phe | Thr | Ser
700 | Val | Glu | Ser | Val | |----|------------|------------|-------------------|------------|------------|----------------|----------------|------------|------------|--------------------|-------------------|--------------------|------------|-------------------|-------------------|------------| | 5 | Gly
705 | Leu | Pro | Thr | Asp | Asp 710 | Ala | Tyr | Lys | Asn | Cys
715 | Thr | Ala | Gly | Pro | Leu
720 | | 10 | Gly | Phe | Leu | Lys | Asp
725 | Leu | Ala | Cys | Ala | A rg
730 | Glu | Tyr | Asn | Gly | Leu
735 | Leu | | | Val | Leu | Pro | Pro
740 | Ile | Ile | Thr | Ala | Glu
745 | Met | Gln | Thr | Leu | Tyr
750 | Thr | Ser | | 15 | Ser | Leu | Val
755 | Ala | Ser | Met | Ala | Phe
760 | Gly | Gly | Ile | Thr | Ala
765 | Ala | Gly | Ala | | 20 | Ile | Pro
770 | Phe | Ala | Thr | Gln | Leu
775 | Gln | Ala | Arg | Ile | As n
780 | His | Leu | Gly | Ile | | 25 | Thr
785 | Gln | Ser | Leu | Leu | Leu
790 | Lys | Asn | Gln | Glu | Lys
795 | Ile | Ala | Ala | Ser | Phe
800 | | | Asn | Lys | Ala | Ile | Gly
805 | Arg | Met | Gln | Glu | Gly
810 | Phe | Arg | Ser | Thr | Ser
815 | Leu | | 30 | Ala | Leu | Gln | Gln
820 | Ile | Gln | Asp | Val | Val
825 | Asn | Lys | Gln | Ser | Ala
830 | Ile | Leu | | 35 | Thr | Glu | Thr
835 | Met | Ala | Ser | Leu | Asn
840 | Lys | Asn | Phe | Gly | Ala
845 | Ile | Ser | Ser | | 40 | Met | Ile
850 | Gln | Glu | Ile | Tyr | Gln
855 | Gln | Leu | Asp | Ala | Ile
860 | Gln | Ala | Asn | Ala | | | Gln
865 | Val | Asp | Arg | Leu | Ile
870 | Thr | Gly | Arg | Leu | Ser
875 | Ser | Leu | Ser | Val | Leu
880 | | 45 | Ala | Ser | Ala | Lys | Gln
885 | Ala | Glu | His | Ile | Arg
890 | Val | Ser | Gln | Gln | Arg
895 | Glu | | 50 | Leu | Ala | Thr | Gln
900 | Lys | Ile | Asn | Glu | Cys
905 | Val | Lys | Ser | Gln | Ser
910 | Ile | Arg | | 55 | Tyr | Ser | Phe
915 | Cys | Gly | Asn | Gly | Arg
920 | His | Val | Leu | Thr | Ile
925 | Pro | Gln | Asn | | | Ala | Pro | Asn | Gly | Ile | Val | Phe | Ile | His | Phe | Ser | Tyr | Thr | Pro | Asp | Ser | | | | 930 | 93. | J | 340 | |----|------------------------------------|---------------------|--------------------|-------------------------|----------------------------------| | 5 | Phe
945 | Val Asn Val | Thr Ala Ile
950 | e Val Gly Phe Cy
95 | ys Val Lys Pro Ala Asn
55 960 | | 10 | Ala | Ser Gln Tyr | Ala Ile Vai
965 | l Pro Ala Asn Gl
970 | y Arg Gly Ile Phe Ile
975 | | | Gln | Val Asn Gly
980 | Ser Tyr Ty | r Ile Thr Ala Ar
985 | rg Asp Met Tyr Met Pro
990 | | 15 | Arg | Ala Ile Thr
995 | Ala Gly Asp | p Ile Val Thr I
1000 | Leu Thr Ser Cys Gln Ala
1005 | | 20 | Asn | Tyr Val Ser
1010 | | ys Thr Val Ile
015 | Thr Thr Phe Val Asp
1020 | | 25 | Asn | Asp Asp Phe | | sn Asp Glu Leu
030 | Ser Lys Trp Trp Asn
1035 | | | Asp | Thr Lys His | | ro Asp Phe Asp
045 | Lys Phe Asn Tyr Thr
1050 | | 30 | Val | Pro Ile Leu
1055 | _ | sp Ser Glu Ile
060 | Asp Arg Ile Gln Gly
1065 | | 35 | Val | Ile Gln Gly | | sp Ser Leu Ile
075 | Asp Leu Glu Lys Leu
1080 | | 40 | Ser | Ile Leu Lys
1085 | | le Lys Trp Pro
090 | Trp Tyr Val Trp Leu
1095 | | | Ala | Ile Ala Phe
1100 | | le Ile Phe Ile
105 | Leu Ile Leu Gly Trp
1110 | | 45 | Val | Phe Phe Met | | ys Cys Gly Cys
120 | Cys Cys Gly Cys Phe
1125 | | 50 | Gly | Ile Met Pro | | er Lys Cys Gly
135 | Lys Lys Ser Ser Tyr
1140 | | 55 | Tyr | Thr Thr Phe | | sp Val Val Thr
150 | | | | <210> 9
<211> 1162
<212> PRT | | | | | <213> Infectious bronchitis virus (IBV) <400> 9 | 5 | | | | |----|--|--|--| | | | | | | 10 | | | | | | | | | | 15 | | | | | | | | | | 20 | | | | | | | | | | 25 | | | | | | | | | | 30 | | | | | | | | | | 35 | | | | | | | | | | 40 | | | | | | | | | | 45 | | | | | | | | | | 50 | | | | | | | | | | 55 | | | | | | Met
1 | Leu | Val | Thr | Pro
5 | Leu | Leu | Leu | Val | Thr
10 | Leu | Leu | Cys | Ala | Leu
15 | Cys | |----------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------| | 5 | Ser | Ala | Ala | Leu
20 | Tyr | Asp | Ser | Ser | Ser
25 | Tyr | Val | Tyr | Tyr | Tyr
30 | Gln | Ser | | 10 | Ala | Phe | Arg
35 | Pro | Pro | Asp | Gly | Trp
40 | His | Leu | His | Gly | Gly
45 | Ala | Tyr | Ala | | 15 | Val | Val
50 | Asn | Ile | Ser |
Ser | Glu
55 | Ser | Asn | Asn | Ala | Gly
60 | Ser | Ser | Ser | Gly | | | Cys
65 | Thr | Val | Gly | Ile | Ile
70 | His | Gly | Gly | Arg | Val
75 | Val | Asn | Ala | Ser | Ser
80 | | 20 | Ile | Ala | Met | Thr | Ala
85 | Pro | Ser | Ser | Gly | Met
90 | Ala | Trp | Ser | Ser | Ser
95 | Gln | | 25 | Phe | Cys | Thr | Ala
100 | Tyr | Cys | Asn | Phe | Ser
105 | Asp | Thr | Thr | Val | Phe
110 | Val | Thr | | 30 | His | Cys | Tyr
115 | Lys | His | Val | Gly | Cys
120 | Pro | Ile | Thr | Gly | Met
125 | Leu | Gln | Gln | | | His | Ser
130 | Ile | Arg | Val | Ser | Ala
135 | Met | Lys | Asn | Gly | Gln
140 | Leu | Phe | Tyr | Asn | | 35 | Leu
145 | Thr | Val | Ser | Val | Ala
150 | Lys | Tyr | Pro | Thr | Phe
155 | Lys | Ser | Phe | Gln | Cys
160 | | 40 | Val | Asn | Asn | Leu | Thr
165 | Ser | Val | Tyr | Leu | Asn
170 | Gly | Asp | Leu | Val | Tyr
175 | Thr | | 45 | Ser | Asn | Glu | Thr
180 | Thr | Asp | Val | Thr | Ser
185 | Ala | Gly | Val | Tyr | Phe
190 | Lys | Ala | | 7 0 | Gly | Gly | Pro
195 | Ile | Thr | Tyr | Lys | Val
200 | Met | Arg | Glu | Val | Arg
205 | Ala | Leu | Ala | | 50 | Tyr | Phe
210 | Val | Asn | Gly | Thr | Ala
215 | Gln | Asp | Val | Ile | Leu
220 | Cys | Asp | Gly | Ser | | 55 | Pro
225 | Arg | Gly | Leu | Leu | Ala
230 | Cys | Gln | Tyr | Asn | Thr
235 | Gly | Asn | Phe | Ser | Asp
240 | | | Gly | Phe | Tyr | Pro | Phe
245 | Thr | Asn | Ser | Ser | Leu
250 | Val | Lys | Gln | Lys | Phe
255 | Ile | |----|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|----------------|------------|------------|------------|-------------------|------------|------------| | 5 | Val | Tyr | Arg | Glu
260 | Asn | Ser | Val | Asn | Thr
265 | Thr | Phe | Thr | Leu | His
270 | Asn | Phe | | 10 | Thr | Phe | His
275 | Asn | Glu | Thr | Gly | Ala
280 | Asn | Pro | Asn | Pro | Ser
285 | Gly | Val | Gln | | | Asn | Ile
290 | Gln | Thr | Tyr | Gln | Thr
295 | Gln | Thr | Ala | Gln | Ser
300 | Gly | Tyr | Tyr | Asn | | 15 | Phe
305 | Asn | Phe | Ser | Phe | Leu
310 | Ser | Ser | Phe | Val | Tyr
315 | Lys | Glu | Ser | Asn | Phe
320 | | 20 | Met | Tyr | Gly | Ser | Tyr
325 | Tyr | Pro | Ser | Cys | Asn 330 | Phe | Arg | Leu | Glu | Thr
335 | Ile | | 25 | Asn | Asn | Gly | Leu
340 | Trp | Phe | Asn | Ser | Leu
345 | Ser | Val | Ser | Ile | Ala
350 | Tyr | Gly | | | Pro | Leu | Gln
355 | Gly | Gly | Cys | Lys | Gln
360 | Ser | Val | Phe | Ser | Gly
365 | Arg | Ala | Thr | | 30 | Cys | Cys
370 | Tyr | Ala | Tyr | Ser | Tyr
375 | Gly | Gly | Pro | Leu | Leu
380 | Cys | Lys | Gly | Val | | 35 | Tyr
385 | Ser | Gly | Glu | Leu | Asp
390 | His | Asn | Phe | Glu | Cys
395 | Gly | Leu | Leu | Val | Tyr
400 | | 40 | Val | Thr | Lys | Ser | Gly
405 | Gly | Ser | Arg | Ile | Gln
410 | Thr | Ala | Thr | Glu | Pro
415 | Pro | | | Val | Ile | Thr | Gln
420 | His | Asn | Tyr | Asn | Asn
425 | Ile | Thr | Leu | Asn | Thr
430 | Cys | Val | | 45 | Asp | Tyr | Asn
435 | Ile | Tyr | Gly | Arg | Thr
440 | Gly | Gln | Gly | Phe | Ile
445 | Thr | Asn | Val | | 50 | Thr | Asp
450 | Ser | Ala | Val | Ser | Tyr
455 | Asn | Tyr | Leu | Ala | Asp
460 | Ala | Gly | Leu | Ala | | | Ile
465 | Leu | Asp | Thr | Ser | Gly
470 | Ser | Ile | Asp | Ile | Phe
475 | Val | Val | Gln | Ser | Glu
480 | | 55 | Tyr | Gly | Leu | Asn | Tyr
485 | Tyr | Lys | Val | Asn | Pro
490 | Cys | Glu | Asp | Val | Asn
495 | Gln | | | Gln | Phe | Val | Val
500 | Ser | Gly | Gly | Lys | Leu
505 | Val | Gly | Ile | Leu | Thr
510 | Ser | Arg | |----|------------|--------------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|--------------------|------------|------------|------------|-------------------|-------------------|------------| | 5 | Asn | Glu | Thr
515 | Gly | Ser | Gln | Leu | Leu
520 | Glu | Asn | Gln | Phe | Tyr
525 | Ile | Lys | Ile | | 10 | Thr | Asn
530 | Gly | Thr | Arg | Arg | Phe
535 | Arg | Arg | Ser | Ile | Thr
540 | Glu | Ser | Val | Glu | | | Asn
545 | Cys | Pro | Tyr | Val | Ser
550 | Tyr | Gly | Lys | Phe | Cys
555 | Ile | Lys | Pro | Asp | Gly
560 | | 15 | Ser | Ile | Ala | Thr | Ile
565 | Val | Pro | Lys | Gln | Leu
570 | Glu | Gln | Phe | Val | Ala
575 | Pro | | 20 | Leu | Leu | Asn | Val
580 | Thr | Glu | Asn | Val | Leu
585 | Ile | Pro | Asn | Ser | Phe
590 | Asn | Leu | | 25 | Thr | Val | Thr
595 | Asp | Glu | Tyr | Ile | Gln
600 | Thr | Arg | Met | Asp | Lys
605 | Val | Gln | Ile | | | Asn | Cys
610 | Leu | Gln | Tyr | Ile | Cys
615 | Gly | Asn | Ser | Leu | Glu
620 | Cys | Arg | Asn | Leu | | 30 | Phe
625 | Gln | Gln | Tyr | Gly | Pro
630 | Val | Cys | Asp | Asn | Ile
635 | Leu | Ser | Val | Val | Asn
640 | | 35 | Ser | Val | Gly | Gln | Lys
645 | Glu | Asp | Met | Glu | Leu
650 | Leu | Asn | Phe | Tyr | Ser
655 | Ser | | 40 | Thr | Lys | | Ala
660 | | | | | | | Leu | Ser | Asn | Val
670 | Ser | Thr | | 40 | Gly | Glu | Phe
675 | Asn | Ile | Ser | Leu | Phe
680 | Leu | Thr | Thr | Pro | Ser
685 | Ser | Pro | Arg | | 45 | Arg | A rg
690 | Ser | Phe | Ile | Glu | Asp
695 | Leu | Leu | Phe | Thr | Ser
700 | Val | Glu | Ser | Val | | 50 | Gly
705 | Leu | Pro | Thr | Asp | Asp
710 | Ala | Tyr | Lys | Asn | Cys
715 | Thr | Ala | Gly | Pro | Leu
720 | | | Gly | Phe | Leu | Lys | Asp
725 | Leu | Val | Cys | Ala | A rg
730 | Glu | Tyr | Asn | Gly | Leu
735 | Leu | | 55 | Val | Leu | Pro | Pro
740 | Ile | Ile | Thr | Ala | Glu
745 | Met | Gln | Thr | Leu | Tyr
750 | Thr | Ser | | | Ser | Leu | Val
755 | Ala | Ser | Met | Ala | Phe
760 | Gly | Gly | Ile | Thr | Ala
765 | Ala | Gly | Ala | |----|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|-------------------|--------------------|------------|-------------------|------------|------------| | 5 | Ile | Pro
770 | Phe | Ala | Thr | Gln | Leu
775 | Gln | Ala | Arg | Ile | A sn
780 | His | Leu | Gly | Ile | | 10 | Thr
785 | Gln | Ser | Leu | Leu | Leu
790 | Lys | Asn | Gln | Glu | Lys
795 | Ile | Ala | Ala | Ser | Phe
800 | | | Asn | Lys | Ala | Ile | Gly
805 | His | Met | Gln | Glu | Gly
810 | Phe | Arg | Ser | Thr | Ser
815 | Leu | | 15 | Ala | Leu | Gln | Gln
820 | Ile | Gln | Asp | Val | Val
825 | Asn | Lys | Gln | Ser | Ala
830 | Ile | Leu | | 20 | Thr | Glu | Thr
835 | Met | Ala | Ser | Leu | Asn
840 | Lys | Asn | Phe | Gly | Ala
845 | Ile | Ser | Ser | | 25 | Val | Ile
850 | Gln | Glu | Ile | Tyr | Gln
855 | Gln | Leu | Asp | Ala | Ile
860 | Gln | Ala | Asn | Ala | | | Gln
865 | Val | Asp | Arg | Leu | Ile
870 | Thr | Gly | Arg | Leu | Ser
875 | Ser | Leu | Ser | Val | Leu
880 | | 30 | Ala | Ser | Ala | Lys | Gln
885 | Ala | Glu | Tyr | Ile | Arg
890 | Val | Ser | Gln | Gln | Arg
895 | Glu | | 35 | Leu | Ala | Thr | Gln
900 | Lys | Ile | Asn | Glu | Cys
905 | Val | Lys | Ser | Gln | Ser
910 | Ile | Arg | | 40 | Tyr | Ser | Phe
915 | _ | Gly | | _ | | | Val | | Thr | Ile
925 | Pro | Gln | Asn | | | Ala | Pro
930 | Asn | Gly | Ile | Val | Phe
935 | Ile | His | Phe | Ser | Tyr
940 | Thr | Pro | Asp | Ser | | 45 | Phe
945 | Val | Asn | Val | Thr | Ala
950 | Ile | Val | Gly | Phe | Cys
955 | Val | Lys | Pro | Ala | Asn
960 | | 50 | Ala | Ser | Gln | Tyr | Ala
965 | Ile | Val | Pro | Ala | Asn
970 | Gly | Arg | Gly | Ile | Phe
975 | Ile | | | Gln | Val | Asn | Gly
980 | Ser | Tyr | Tyr | Ile | Thr
985 | Ala | Arg | Asp | Met | Tyr
990 | Met | Pro | | 55 | Arg | Ala | Ile | Thr | Ala | Gly | Asp | Ile | Va] | L Thi | : Leu | ı Thi | s Sei | c Cy | zs Gl | .n Val | | | | 9 | 95 | | | | 10 | 000 | | | | 10 | 005 | | | |----|--|-------------|---------|----------|-----|-----|--------------------|-----|-----|-----|-----|-------------|-----|-----|-----| | 5 | Asn | Tyr
1010 | Val | Ser | Val | Asn | Lys
1015 | Thr | Val | Ile | Thr | Thr
1020 | Phe | Val | Asp | | 10 | Asn | Asp
1025 | Asp | Phe | Asp | Phe | Asn
1030 | Asp | Glu | Leu | Ser | Lys
1035 | Trp | Trp | Asn | | | Asp | Thr
1040 | Lys | His | Glu | Leu | Pro
1045 | Asp | Phe | Asp | Lys | Phe
1050 | Asn | Tyr | Thr | | 15 | Val | Pro
1055 | Ile | Leu | Asp | Ile | Asp
1060 | Ser | Glu | Ile | Asp | Arg
1065 | Ile | Gln | Gly | | 20 | Val | Ile
1070 | Gln | Gly | Leu | Asn | Asp
1075 | Ser | Leu | Ile | Asp | Leu
1080 | Glu | Lys | Leu | | 25 | Ser | Ile
1085 | Leu | Lys | Thr | Tyr | Ile
1090 | Lys | Trp | Pro | Trp | Tyr
1095 | Val | Trp | Leu | | | Ala | Ile
1100 | Ala | Phe | Ala | Thr | Ile
1105 | Ile | Phe | Ile | Leu | Ile
1110 | Leu | Gly | Trp | | 30 | Val | Phe
1115 | Phe | Met | Thr | Gly | Cys
1120 | Cys | Gly | Cys | Cys | Cys
1125 | Gly | Cys | Phe | | 35 | Gly | Ile
1130 | Met | Pro | Leu | Met | Ser
1135 | Lys | Cys | Gly | Lys | Lys
1140 | Ser | Ser | Tyr | | 40 | Tyr | Thr
1145 | Thr | Phe | Asp | Asn | Asp
1150 | Val | Val | Thr | Glu | Gln
1155 | Tyr | Arg | Pro | | | Lys | Lys
1160 | Ser | Val | | | | | | | | | | | | | 45 | <210> 10
<211> 1164
<212> PRT
<213> Infection | ıs bronc | hitis v | irus (II | BV) | | | | | | | | | | | | 50 | <400> 10 | | | | | | | | | | | | | | | | | Met
1 | Leu | Val | Lys | Ser
5 | Leu | Phe | Leu | Val | Thr
10 | Ile | Leu | Cys |
Ala | Leu
15 | Cys | |----|----------|-----|-----|-----------|----------|-----|-----|-----|-----------|-----------|-----|-----|-----|-----------|-----------|-----| | 5 | Ser | Ala | Asn | Leu
20 | Phe | Asp | Ser | Asp | Asn
25 | Asn | Tyr | Val | Tyr | Tyr
30 | Tyr | Gln | | 10 | Ser | Ala | Phe | Arg | Pro | Pro | Asn | Gly | Trp | His | Leu | Gln | Gly | Gly | Ala | Tyr | | 15 | | | | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | | | | | 35 | | | | | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | | | | | 45 | | | | | | | | | | | | | | | | | | 50 | | | | | | | | | | | | | | | | | | 55 | | | | | | | | | | | | | | | | | | 5 | Ala | Val
50 | Val | Asn | Ser | Thr | Asn
55 | Tyr | Thr | Asn | Asn | Ala
60 | Gly | Ser | Ala | His | |----|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|-------------------|------------|------------|------------|------------|------------|------------| | 10 | Gln
65 | Cys | Thr | Val | Gly | Val
70 | Ile | Lys | Asp | Val | Tyr
75 | Asn | Gln | Ser | Val | Ala
80 | | | Ser | Ile | Ala | Met | Thr
85 | Ala | Pro | Leu | Gln | Gly
90 | Met | Ala | Trp | Ser | Lys
95 | Ser | | 15 | Gln | Phe | Cys | Ser
100 | Ala | His | Cys | Asn | Phe
105 | Ser | Glu | Ile | Thr | Val
110 | Phe | Val | | 20 | Thr | His | Cys
115 | Tyr | Ser | Ser | Gly | Ser
120 | Ser | Cys | Pro | Ile | Thr
125 | Gly | Met | Ile | | | Pro | Arg
130 | Asp | His | Ile | Arg | Ile
135 | Ser | Ala | Met | Lys | Asn
140 | Gly | Ser | Leu | Phe | | 25 | Tyr
145 | Asn | Leu | Thr | Val | Ser
150 | Val | Ser | Lys | Tyr | Pro
155 | Asn | Phe | Lys | Ser | Phe
160 | | 30 | Gln | Cys | Val | Asn | Asn
165 | Phe | Thr | Ser | Val | Tyr
170 | Leu | Asn | Gly | Asp | Leu
175 | Val | | 35 | Phe | Thr | Ser | Asn
180 | Lys | Thr | Thr | Asp | Val
185 | Thr | Ser | Ala | Gly | Val
190 | Tyr | Phe | | | Lys | Ala | Gly
195 | Gly | Pro | Val | Asn | Tyr
200 | Ser | Ile | Met | Lys | Glu
205 | Phe | Lys | Val | | 40 | Leu | Ala
210 | Tyr | Phe | Val | Asn | Gly
215 | Thr | Ala | Gln | Asp | Val
220 | Val | Leu | Cys | Asp | | 45 | Asn
225 | Ser | Pro | Lys | Gly | Leu
230 | Leu | Ala | Cys | Gln | Tyr
235 | Asn | Thr | Gly | Asn | Phe
240 | | 50 | Ser | Asp | Gly | Phe | Tyr
245 | Pro | Phe | Thr | Asn | Ser
250 | Thr | Leu | Val | Arg | Glu
255 | Lys | | | Phe | Ile | Val | Tyr
260 | Arg | Glu | Ser | Ser | Val
265 | Asn | Thr | Thr | Leu | Ala
270 | Leu | Thr | | 55 | Asn | Phe | Thr
275 | Phe | Thr | Asn | Val | Ser
280 | Asn | Ala | Gln | Pro | Asn
285 | Ser | Gly | Gly | | | Val | Asn
290 | Thr | Phe | His | Leu | Tyr
295 | Gln | Thr | Gln | Thr | Ala
300 | Gln | Ser | Gly | Tyr | |----|------------|------------|------------|------------|------------|------------|-------------------|------------|-------------------|------------|----------------|-------------------|------------|------------|------------|------------| | 5 | Tyr
305 | Asn | Phe | Asn | Leu | Ser
310 | Phe | Leu | Ser | Gln | Phe
315 | Val | Tyr | Lys | Ala | Ser
320 | | 10 | Asp | Phe | Met | Tyr | Gly
325 | Ser | Tyr | His | Pro | Ser
330 | Cys | Ser | Phe | Arg | Pro
335 | Glu | | | Thr | Ile | Asn | Ser
340 | Gly | Leu | Trp | Phe | Asn
345 | Ser | Leu | Ser | Val | Ser
350 | Leu | Thr | | 15 | Tyr | Gly | Pro
355 | Leu | Gln | Gly | Gly | Cys
360 | Lys | Gln | Ser | Val | Phe
365 | Ser | Gly | Lys | | 20 | Ala | Thr
370 | Cys | Cys | Tyr | Ala | Tyr
375 | Ser | Tyr | Lys | Gly | Pro
380 | Met | Ala | Cys | Lys | | 25 | Gly
385 | Val | Tyr | Ser | Gly | Glu
390 | Leu | Ser | Thr | Asn | Phe
395 | Glu | Cys | Gly | Leu | Leu
400 | | | Val | Tyr | Val | Thr | Lys
405 | Ser | Asp | Gly | Ser | Arg
410 | Ile | Gln | Thr | Arg | Thr
415 | Glu | | 30 | Pro | Leu | Val | Leu
420 | Thr | Gln | Tyr | Asn | Tyr
425 | Asn | Asn | Ile | Thr | Leu
430 | Asp | Lys | | 35 | Cys | Val | Ala
435 | Tyr | Asn | Ile | Tyr | Gly
440 | Arg | Val | Gly | Gln | Gly
445 | Phe | Ile | Thr | | 40 | Asn | Val
450 | Thr | Asp | Ser | Ala | Ala
455 | Asn | Phe | Ser | Tyr | Leu
460 | Ala | Asp | Gly | Gly | | | Leu
465 | Ala | Ile | Leu | Asp | Thr
470 | Ser | Gly | Ala | Ile | Asp 475 | Val | Phe | Val | Val | Gln
480 | | 45 | Gly | Ile | Tyr | Gly | Leu
485 | Asn | Tyr | Tyr | Lys | Val
490 | Asn | Pro | Cys | Glu | Asp
495 | Val | | 50 | Asn | Gln | Gln | Phe
500 | Val | Val | Ser | Gly | Gly
505 | Asn | Ile | Val | Gly | Ile
510 | Leu | Thr | | | Ser | Arg | Asn
515 | Glu | Thr | Gly | Ser | Glu
520 | Gln | Val | Glu | Asn | Gln
525 | Phe | Tyr | Val | | 55 | Lys | Leu
530 | Thr | Asn | Ser | Ser | His
535 | Arg | Arg | Arg | Arg | Ser
540 | Ile | Gly | Gln | Asn | | | Val
545 | Thr | Ser | Cys | Pro | Tyr
550 | Val | Ser | Tyr | Gly | Arg
555 | Phe | Cys | Ile | Glu | Pro
560 | |----|------------|-------------------|------------|------------|-------------------|-------------------|------------|-------------------|------------|------------|-------------------|--------------------|------------|------------|------------|-------------------| | 5 | Asp | Gly | Ser | Leu | Lys
565 | Met | Ile | Val | Pro | Glu
570 | Glu | Leu | Lys | Gln | Phe
575 | Val | | 10 | Ala | Pro | Leu | Leu
580 | Asn | Ile | Thr | Glu | Ser
585 | Val | Leu | Ile | Pro | Asn
590 | Ser | Phe | | | Asn | Leu | Thr
595 | Val | Thr | Asp | Glu | Tyr
600 | Ile | Gln | Thr | Arg | Met
605 | Asp | Lys | Val | | 15 | Gln | Ile
610 | Asn | Cys | Leu | Gln | Tyr
615 | Val | Cys | Gly | Asn | Ser
620 | Leu | Glu | Cys | Arg | | 20 | Lys
625 | Leu | Phe | Gln | Gln | Tyr
630 | Gly | Pro | Val | Cys | Asp 635 | Asn | Ile | Leu | Ser | Val
640 | | 25 | Val | Asn | Ser | Val | Ser
645 | Gln | Lys | Glu | Asp | Met
650 | Glu | Leu | Leu | Ser | Phe
655 | Tyr | | | Ser | Ser | Thr | Lys
660 | Pro | Lys | Gly | Tyr | Asp
665 | Thr | Pro | Val | Leu | Ser
670 | Asn | Val | | 30 | Ser | Thr | Gly
675 | Glu | Phe | Asn | Ile | Ser
680 | Leu | Leu | Leu | Lys | Pro
685 | Pro | Ser | Ser | | 35 | Pro | Ser
690 | Gly | Arg | Ser | Phe | Ile
695 | Glu | Asp | Leu | Leu | Phe
700 | Thr | Ser | Val | Glu | | 40 | Thr
705 | Val | Gly | Leu | Pro | Thr
710 | Asp | Ala | Glu | Tyr | Lys
715 | Lys | Cys | Thr | Ala | Gly
720 | | 40 | Pro | Leu | Gly | Thr | Leu
725 | Lys | Asp | Leu | Ile | Cys
730 | Ala | Arg | Glu | Tyr | Asn
735 | Gly | | 45 | Leu | Leu | Val | Leu
740 | Pro | Pro | Ile | Ile | Thr
745 | Ala | Asp | Met | Gln | Thr
750 | Met | Tyr | | 50 | Thr | Ala | Ser
755 | Leu | Val | Gly | Ala | Met
760 | Ala | Phe | Gly | Gly | Ile
765 | Thr | Ser | Ala | | | Ala | Ala
770 | Ile | Pro | Phe | Ala | Thr
775 | Gln | Ile | Gln | Ala | A rg
780 | Ile | Asn | His | Leu | | 55 | Gly
785 | Ile | Thr | Gln | Ser | Leu
790 | Leu | Met | Lys | Asn | Gln
795 | Glu | Lys | Ile | Ala | Ala
800 | | | Ser | Phe | Asn | Lys | 805 | ITe | GTĀ | His | Met | 810 | GLu | GTÀ | Phe | Arg | Ser
815 | Thr | |----|------------|-------------------|------------|-------------------|-------------------|--------------------|--------------|-------------|-------------------|-------------------|--------------------|-------------------|-------------|------------|------------|------------| | 5 | Ser | Leu | Ala | Leu
820 | Gln | Gln | Ile | Gln | Asp
825 | Val | Val | Asn | Lys | Gln
830 | Ser | Ala | | 10 | Ile | Leu | Thr
835 | Glu | Thr | Met | Asn | Ser
840 | Leu | Asn | Lys | Asn | Phe
845 | Gly | Ala | Ile | | | Thr | Ser
850 | Val | Ile | Gln | Asp | Ile
855 | Tyr | Ala | Gln | Leu | Asp
860 | Ala | Ile | Gln | Ala | | 15 | Asp
865 | Ala | Gln | Val | Asp | A rg
870 | Leu | Ile | Thr | Gly | A rg
875 | Leu | Ser | Ser | Leu | Ser
880 | | 20 | Val | Leu | Ala | Ser | Ala
885 | Lys | Gln | Ser | Glu | Tyr
890 | Ile | Arg | Val | Ser | Gln
895 | Gln | | 25 | Arg | Glu | Leu | Ala
900 | Thr | Gln | Lys | Ile | Asn
905 | Glu | Cys | Val | Lys | Ser
910 | Gln | Ser | | | Asn | Arg | Tyr
915 | Gly | Phe | Cys | Gly | Ser
920 | Gly | Arg | His | Val | Leu
925 | Ser | Ile | Pro | | 30 | Gln | Asn
930 | Ala | Pro | Asn | Gly | Ile
935 | Val | Phe | Ile | His | Phe
940 | Thr | Tyr | Thr | Pro | | 35 | Glu
945 | Ser | Phe | Val | Asn | Val
950 | Thr | Ala | Ile | Val | Gly
955 | Phe | Cys | Val | Asn | Pro
960 | | 40 | Ala | Asn | Ala | Ser | Gln
965 | Tyr | Ala | Ile | Val | Pro
970 | Ala | Asn | Gly | Arg | Gly
975 | Ile | | | Phe | Ile | Gln | Val
980 | Asn | Gly | Thr | Tyr | Tyr
985 | Ile | Thr | Ala | Arg | Asp
990 | Met | Tyr | | 45 | Met | Pro | Arg
995 | Asp | Ile | Thr | Ala | Gly
1000 | _ | o Ile | e Val | . Thi | 100 | | nr Se | er Cys | | 50 | Gln | Ala
1010 | Asr
) | туг | . Val | L Asr | n Val
101 | | sn Ly | ys Tł | nr Va | | Le 1 | Chr 1 | Chr I | Phe | | | Val | Glu
1025 | Asp | Asp | Asp | Phe | Asp
103 | | ne As | sp As | sp Gl | | eu 8
035 | Ser I | Lys : | ſrp | | 55 | Trp | Asn | Asp | Thr | Lys | s His | s Glr | ı Le | eu Pi | co As | sp Pl | ne As | sp <i>I</i> | Asp I | Phe A | Asn | | | | 1040 | | | | | 1045 | | | | | 1050 | | | | |----|--|---------------|----------|----------|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----| | 5 | Ту | r
Thr
1055 | | Pro | Ile | Leu | Asn
1060 | Ile | Ser | Gly | Glu | Ile
1065 | Asp | Tyr | Ile | | 10 | G1 | n Gly
1070 | | Ile | Gln | Gly | Leu
1075 | Asn | Asp | Ser | Leu | Ile
1080 | Asn | Leu | Glu | | | Gl | u Leu
1085 | | Ile | Ile | Lys | Thr
1090 | Tyr | Ile | Lys | Trp | Pro
1095 | Trp | Tyr | Val | | 15 | Tr | p Leu
1100 | | Ile | Gly | Phe | Ala
1105 | Ile | Ile | Ile | Phe | Ile
1110 | Leu | Ile | Leu | | 20 | Gl | y Trp
1115 | | Phe | Phe | Met | Thr
1120 | Gly | Cys | Cys | Gly | Cys
1125 | Cys | Cys | Gly | | 25 | Су | s Phe
1130 | | Ile | Ile | Pro | Leu
1135 | Met | Ser | Lys | Cys | Gly
1140 | Lys | Lys | Ser | | | Se | r Tyr
1145 | | Thr | Thr | Phe | Asp
1150 | Asn | Asp | Val | Val | Thr
1155 | Glu | Gln | Tyr | | 30 | Ar | g Pro
1160 | _ | Lys | Ser | Val | | | | | | | | | | | 35 | <210> 11
<211> 630
<212> PRT
<213> Infect | ous bron | chitis v | virus (I | BV) | | | | | | | | | | | | | <400> 11 | | | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | | | | 45 | | | | | | | | | | | | | | | | | | Arg
1 | Arg | Phe | Arg | Arg
5 | Ser | Ile | Thr | Glu | Asn
10 | Val | Ala | Asn | Cys | Pro
15 | Tyr | |----|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | 5 | Val | Ser | Tyr | Gly
20 | Lys | Phe | Cys | Ile | Lys
25 | Pro | Asp | Gly | Ser | Ile
30 | Ala | Thr | | 10 | Ile | Val | Pro
35 | Lys | Gln | Leu | Glu | Gln
40 | Phe | Val | Ala | Pro | Leu
45 | Phe | Asn | Val | | 15 | Thr | Glu
50 | Asn | Val | Leu | Ile | Pro
55 | Asn | Ser | Phe | Asn | Leu
60 | Thr | Val | Thr | Asp | | | Glu
65 | Tyr | Ile | Gln | Thr | Arg
70 | Met | Asp | Lys | Val | Gln
75 | Ile | Asn | Cys | Leu | Gln
80 | | 20 | Tyr | Val | Cys | Gly | Ser | Ser | Leu | Asp | Cys | Arg | Lys | Leu | Phe | Gln | Gln | Tyr | | 25 | | | | | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | | | | | 35 | | | | | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | | | | | 45 | | | | | | | | | | | | | | | | | | 50 | | | | | | | | | | | | | | | | | | 55 | 85 | | | | | 90 | | | | | 95 | | |----|------------|------------|-------------------|------------|------------|--------------------|------------|----------------|------------|------------|-------------------|------------|------------|------------|----------------|------------| | 5 | Gly | Pro | Val | Cys
100 | Asp | Asn | Ile | Leu | Ser
105 | Val | Val | Asn | Ser | Val
110 | Gly | Gln | | 10 | Lys | Glu | Asp
115 | Met | Glu | Leu | Leu | Asn
120 | Phe | Tyr | Ser | Ser | Thr
125 | Lys | Pro | Ala | | | Gly | Phe
130 | Asn | Thr | Pro | Val | Leu
135 | Ser | Asn | Val | Ser | Thr
140 | Gly | Glu | Phe | Asn | | 15 | Ile
145 | Ser | Leu | Leu | Leu | Thr
150 | Asn | Pro | Ser | Ser | Arg
155 | Arg | Lys | Arg | Ser | Leu
160 | | 20 | Ile | Glu | Asp | Leu | Leu
165 | Phe | Thr | Ser | Val | Glu
170 | Ser | Val | Gly | Leu | Pro
175 | Thr | | | Asn | Asp | Ala | Tyr
180 | Lys | Asn | Cys | Thr | Ala
185 | Gly | Pro | Leu | Gly | Phe
190 | Phe | Lys | | 25 | Asp | Leu | Ala
195 | Cys | Ala | Arg | Glu | Tyr 200 | Asn | Gly | Leu | Leu | Val
205 | Leu | Pro | Pro | | 30 | Ile | Ile
210 | Thr | Ala | Glu | Met | Gln
215 | Ala | Leu | Tyr | Thr | Ser
220 | Ser | Leu | Val | Ala | | 35 | Ser
225 | Met | Ala | Phe | Gly | Gly
230 | Ile | Thr | Ala | Ala | Gly
235 | Ala | Ile | Pro | Phe | Ala
240 | | | Thr | Gln | Leu | Gln | | _ | Ile | | | | | | Thr | | Ser
255 | Leu | | 40 | Leu | Leu | Lys | Asn
260 | Gln | Glu | Lys | Ile | Ala
265 | Ala | Ser | Phe | Asn | Lys
270 | Ala | Ile | | 45 | Gly | His | Met
275 | Gln | Glu | Gly | Phe | Arg
280 | Ser | Thr | Ser | Leu | Ala
285 | Leu | Gln | Gln | | 50 | Ile | Gln
290 | Asp | Val | Val | Ser | Lys
295 | Gln | Ser | Ala | Ile | Leu
300 | Thr | Glu | Thr | Met | | | Ala
305 | Ser | Leu | Asn | Lys | As n
310 | Phe | Gly | Ala | Ile | Ser
315 | Ser | Val | Ile | Gln | Glu
320 | | 55 | Ile | Tyr | Gln | Gln | Phe
325 | Asp | Ala | Ile | Gln | Ala
330 | Asn | Ala | Gln | Val | Asp 335 | Arg | | | Leu | Ile | Thr | Gly
340 | Arg | Leu | Ser | Ser | Leu
345 | Ser | Val | Leu | Ala | Ser
350 | Ala | Lys | |----|------------|------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|--------------------|------------|------------|------------|------------| | 5 | Gln | Ala | Glu
355 | Tyr | Ile | Arg | Val | Ser
360 | Gln | Gln | Arg | Glu | Leu
365 | Ala | Thr | Gln | | 10 | Lys | Ile
370 | Asn | Glu | Cys | Val | Lys
375 | Ser | Gln | Ser | Ile | A rg
380 | Tyr | Ser | Phe | Cys | | | Gly
385 | Asn | Gly | Arg | His | Val
390 | Leu | Thr | Ile | Pro | Gln
395 | Asn | Ala | Pro | Asn | Gly
400 | | 15 | Ile | Val | Phe | Ile | His
405 | Phe | Ser | Tyr | Thr | Pro
410 | Asp | Ser | Phe | Val | Asn
415 | Val | | 20 | Thr | Ala | Ile | Val
420 | Gly | Phe | Cys | Val | Lys
425 | Pro | Ala | Asn | Ala | Ser
430 | Gln | Tyr | | 25 | Ala | Ile | Val
435 | Pro | Ala | Asn | Gly | Arg
440 | Gly | Ile | Phe | Ile | Gln
445 | Val | Asn | Gly | | | Ser | Tyr
450 | Tyr | Ile | Thr | Ala | Arg
455 | Asp | Met | Tyr | Met | Pro
460 | Arg | Ala | Ile | Thr | | 30 | Ala
465 | Gly | Asp | Val | Val | Thr
470 | Leu | Thr | Ser | Cys | Gln
475 | Ala | Asn | Tyr | Val | Ser
480 | | 35 | Val | Asn | Lys | Thr | Val
485 | Ile | Thr | Thr | Phe | Val
490 | Asp | Asn | Asp | Asp | Phe
495 | Asp | | 40 | Phe | Asn | Asp | Glu
500 | Leu | Ser | Lys | Trp | Trp
505 | Asn | Asp | Thr | Lys | His
510 | Glu | Leu | | | Pro | Asp | Phe
515 | Asp | Lys | Phe | Asn | Tyr
520 | Thr | Val | Pro | Ile | Leu
525 | Asp | Ile | Asp | | 45 | Ser | Glu
530 | Ile | Asp | Arg | Ile | Gln
535 | Gly | Val | Ile | Gln | Gly
540 | Leu | Asn | Asp | Ser | | 50 | Leu
545 | Ile | Asp | Leu | Glu | Lys
550 | Leu | Ser | Ile | Leu | Lys
555 | Thr | Tyr | Ile | Lys | Trp
560 | | | Pro | Trp | Tyr | Val | Trp
565 | Leu | Ala | Ile | Ala | Phe
570 | Ala | Thr | Ile | Ile | Phe
575 | Ile | | 55 | Leu | Ile | Leu | Gly
580 | Trp | Val | Phe | Phe | Met
585 | Thr | Gly | Cys | Cys | Gly
590 | Cys | Cys | | | Cy | s Gly | Cys
595 | Phe | Gly | Ile | Met | Pro
600 | Leu | Met | Ser | Lys | Cys
605 | Gly | Lys | Lys | |----|---|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | 5 | Se | r Ser
610 | _ | Tyr | Thr | Thr | Phe
615 | Asp | Asn | Asp | Val | Val
620 | Thr | Glu | Gln | Tyr | | 10 | Ar
62 | g Pro | Lys | Lys | Ser | Val
630 | | | | | | | | | | | | 15 | <210> 12
<211> 621
<212> PRT
<213> Infec | tious bro | onchitis | s virus | (IBV) | | | | | | | | | | | | | | <400> 12 | | | | | | | | | | | | | | | | | 20 | Ar
1 | g Arg | Phe | Arg | Arg
5 | Ser | Ile | Thr | Glu | Asn
10 | Val | Ala | Asn | Cys | Pro
15 | Tyr | | 25 | Va | l Ser | Tyr | Gly
20 | Lys | Phe | Cys | Ile | Lys
25 | Pro | Asp | Gly | Ser | Ile
30 | Ala | Thr | | | 11 | e Val | Pro
35 | Lys | Gln | Leu | Glu | Gln
40 | Phe | Val | Ala | Pro | Leu
45 | Leu | Asn | Val | | 30 | Th | r Glu
50 | Asn | Val | Leu | Ile | Pro
55 | Asn | Ser | Phe | Asn | Leu
60 | Thr | Val | Thr | Asp | | 35 | G1
65 | u Tyr | Ile | Gln | Thr | Arg
70 | Met | Asp | Lys | Val | Gln
75 | Ile | Asn | Cys | Met | Gln
80 | | 40 | Ту | r Val | Cys | Gly | Asn
85 | Ser | Leu | Asp | Cys | Arg
90 | Asp | Leu | Phe | Gln | Gln
95 | Tyr | | | Gl | y Pro | Val | Cys
100 | Asp | Asn | Ile | Leu | Ser
105 | Val | Val | Asn | Ser | Ile
110 | Gly | Gln | | 45 | Ly | s Glu | Asp
115 | Met | Glu | Leu | Leu | Asn
120 | Phe | Tyr | Ser | Ser | Thr
125 | Lys | Pro | Ala | | 50 | G1 | y Phe
130 | | Thr | Pro | Phe | Leu
135 | Ser | Asn | Val | Ser | Thr
140 | Gly | Glu | Phe | Asn | | 55 | I1
14 | e Ser
5 | Leu | Leu | Leu | Thr
150 | Thr | Pro | Ser | Ser | Pro
155 | Arg | Arg | Arg | Ser | Phe
160 | | | 11 | e Glu | Asp | Leu | Leu
165 | Phe | Thr | Ser | Val | Glu
170 | Ser | Val | Gly | Leu | Pro
175 | Thr | | | Asp | Asp | Ala | Tyr
180 | Lys | Asn | Cys | Thr | Ala
185 | Gly | Pro | Leu | Gly | Phe
190 | Leu | Lys | |----|------------|------------|------------|------------|------------|------------|-------------------|-------------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|------------| | 5 | Asp | Leu | Ala
195 | Cys | Ala | Arg | Glu | Tyr
200 | Asn | Gly | Leu | Leu | Val
205 | Leu | Pro | Pro | | 10 | Ile | Ile
210 | Thr | Ala | Glu | Met | Gln
215 | Thr | Leu | Tyr | Thr | Ser
220 | Ser | Leu | Val | Ala | | | Ser
225 | Met | Ala | Phe | Gly | Gly
230 | Ile | Thr | Ala | Ala | Gly
235 | Ala | Ile | Pro | Phe | Ala
240 | | 15 | Thr | Gln | Leu | Gln | Ala
245 | Arg | Ile | Asn | His | Leu
250 | Gly | Ile | Thr | Gln | Ser
255 | Leu | | 20 | Leu | Leu | Lys | Asn
260 | Gln | Glu | Lys | Ile | Ala
265 | Ala | Ser | Phe | Asn | Lys
270 | Ala | Ile | | 25 | Gly | Arg | Met
275 | Gln | Glu | Gly | Phe | Arg
280 | Ser | Thr | Ser | Leu | Ala
285 | Leu | Gln | Gln | | | Ile | Gln
290 | Asp | Val | Val | Asn | Lys
295 | Gln |
Ser | Ala | Ile | Leu
300 | Thr | Glu | Thr | Met | | 30 | Ala
305 | Ser | Leu | Asn | Lys | Asn
310 | Phe | Gly | Ala | Ile | Ser
315 | Ser | Met | Ile | Gln | Glu
320 | | 35 | Ile | Tyr | Gln | Gln | Leu
325 | Asp | Ala | Ile | Gln | Ala
330 | Asn | Ala | Gln | Val | Asp
335 | Arg | | | Leu | Ile | Thr | Gly
340 | Arg | Leu | Ser | Ser | Leu
345 | Ser | Val | Leu | Ala | Ser
350 | Ala | Lys | | 40 | Gln | Ala | Glu
355 | His | Ile | Arg | Val | Ser
360 | Gln | Gln | Arg | Glu | Leu
365 | Ala | Thr | Gln | | 45 | Lys | Ile
370 | Asn | Glu | Cys | Val | Lys
375 | Ser | Gln | Ser | Ile | Arg
380 | Tyr | Ser | Phe | Cys | | 50 | Gly
385 | Asn | Gly | Arg | His | Val
390 | Leu | Thr | Ile | Pro | Gln
395 | Asn | Ala | Pro | Asn | Gly
400 | | | Ile | Val | Phe | Ile | His
405 | Phe | Ser | Tyr | Thr | Pro
410 | Asp | Ser | Phe | Val | Asn
415 | Val | | 55 | Thr | Ala | Ile | Val
420 | Gly | Phe | Cys | Val | Lys
425 | Pro | Ala | Asn | Ala | Ser
430 | Gln | Tyr | | | Ala | Ile | Val
435 | Pro | Ala | Asn | Gly | Arg
440 | Gly | Ile | Phe | Ile | Gln
445 | Val | Asn | Gly | |----|---|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | 5 | Ser | Tyr
450 | Tyr | Ile | Thr | Ala | Arg
455 | Asp | Met | Tyr | Met | Pro
460 | Arg | Ala | Ile | Thr | | 10 | Ala
465 | Gly | Asp | Ile | Val | Thr
470 | Leu | Thr | Ser | Cys | Gln
475 | Ala | Asn | Tyr | Val | Ser
480 | | 15 | Val | Asn | Lys | Thr | Val
485 | Ile | Thr | Thr | Phe | Val
490 | Asp | Asn | Asp | Asp | Phe
495 | Asp | | 10 | Phe | Asn | Asp | Glu
500 | Leu | Ser | Lys | Trp | Trp
505 | Asn | Asp | Thr | Lys | His
510 | Glu | Leu | | 20 | Pro | Asp | Phe
515 | Asp | Lys | Phe | Asn | Tyr
520 | Thr | Val | Pro | Ile | Leu
525 | Asp | Ile | Asp | | 25 | Ser | Glu
530 | Ile | Asp | Arg | Ile | Gln
535 | Gly | Val | Ile | Gln | Gly
540 | Leu | Asn | Asp | Ser | | 20 | Leu
545 | Ile | Asp | Leu | Glu | Lys
550 | Leu | Ser | Ile | Leu | Lys
555 | Thr | Tyr | Ile | Lys | Trp
560 | | 30 | Pro | Trp | Tyr | Val | Trp
565 | Leu | Ala | Ile | Ala | Phe
570 | Ala | Thr | Ile | Ile | Phe
575 | Ile | | 35 | Leu | Ile | Leu | Gly
580 | Trp | Val | Phe | Phe | Met
585 | Thr | Gly | Cys | Cys | Gly
590 | Cys | Cys | | 40 | Cys | Gly | Cys
595 | Phe | Gly | Ile | Met | Pro
600 | Leu | Met | Ser | Lys | Cys
605 | Gly | Lys | Lys | | | Ser | Ser
610 | Tyr | Tyr | Thr | Thr | Phe
615 | Asp | Asn | Asp | Val | Val
620 | Thr | | | | | 45 | <210> 13
<211> 630
<212> PRT
<213> Infection | us broi | nchitis | s virus | (IBV) | | | | | | | | | | | | | 50 | <400> 13 | | | | | | | | | | | | | | | | | | Arg
1 | Arg | Phe | Arg | Arg
5 | Ser | Ile | Thr | Glu | Ser
10 | Val | Glu | Asn | Cys | Pro
15 | Tyr | | 55 | Val | Ser | Tyr | Gly
20 | Lys | Phe | Cys | Ile | Lys
25 | Pro | Asp | Gly | Ser | Ile
30 | Ala | Thr | | | Ile | Val | Pro
35 | Lys | GIn | Leu | GLu | GIn
40 | Phe | Val | Ala | Pro | Leu
45 | Leu | Asn | Val | |----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | 5 | Thr | Glu
50 | Asn | Val | Leu | Ile | Pro
55 | Asn | Ser | Phe | Asn | Leu
60 | Thr | Val | Thr | Asp | | 10 | Glu
65 | Tyr | Ile | Gln | Thr | Arg
70 | Met | Asp | Lys | Val | Gln
75 | Ile | Asn | Cys | Leu | Gln
80 | | | Tyr | Ile | Cys | Gly | Asn
85 | Ser | Leu | Glu | Cys | Arg
90 | Asn | Leu | Phe | Gln | Gln
95 | Tyr | | 15 | Gly | Pro | Val | Cys
100 | Asp | Asn | Ile | Leu | Ser
105 | Val | Val | Asn | Ser | Val
110 | Gly | Gln | | 20 | Lys | Glu | Asp
115 | Met | Glu | Leu | Leu | Asn
120 | Phe | Tyr | Ser | Ser | Thr
125 | Lys | Pro | Ala | | 25 | Gly | Phe
130 | Asn | Thr | Pro | Val | Leu
135 | Ser | Asn | Val | Ser | Thr
140 | Gly | Glu | Phe | Asn | | | Ile
145 | Ser | Leu | Phe | Leu | Thr
150 | Thr | Pro | Ser | Ser | Pro
155 | Arg | Arg | Arg | Ser | Phe
160 | | 30 | Ile | Glu | Asp | Leu | Leu
165 | Phe | Thr | Ser | Val | Glu
170 | Ser | Val | Gly | Leu | Pro
175 | Thr | | 35 | Asp | Asp | Ala | Tyr
180 | Lys | Asn | Cys | Thr | Ala
185 | Gly | Pro | Leu | Gly | Phe
190 | Leu | Lys | | 40 | Asp | Leu | Val
195 | Cys | Ala | Arg | Glu | Tyr
200 | Asn | Gly | Leu | Leu | Val
205 | Leu | Pro | Pro | | | Ile | Ile
210 | Thr | Ala | Glu | Met | Gln
215 | Thr | Leu | Tyr | Thr | Ser
220 | Ser | Leu | Val | Ala | | 45 | Ser
225 | Met | Ala | Phe | Gly | Gly
230 | Ile | Thr | Ala | Ala | Gly
235 | Ala | Ile | Pro | Phe | Ala
240 | | 50 | Thr | Gln | Leu | Gln | Ala
245 | Arg | Ile | Asn | His | Leu
250 | Gly | Ile | Thr | Gln | Ser
255 | Leu | | | Leu | Leu | Lys | Asn
260 | Gln | Glu | Lys | Ile | Ala
265 | Ala | Ser | Phe | Asn | Lys
270 | Ala | Ile | | 55 | Gly | His | Met | Gln | Glu | Gly | Phe | Arg | Ser | Thr | Ser | Leu | Ala | Leu | Gln | Gln | | 5 | Ile | Gln
290 | Asp | Val | Val | Asn | Lys
295 | Gln | Ser | Ala | Ile | Leu
300 | Thr | Glu | Thr | Met | |----|-------------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|------------|-------------------|------------|----------------|----------------|------------| | | Ala
305 | Ser | Leu | Asn | Lys | Asn
310 | Phe | Gly | Ala | Ile | Ser
315 | Ser | Val | Ile | Gln | Glu
320 | | 10 | Ile | Tyr | Gln | Gln | Leu
325 | Asp | Ala | Ile | Gln | Ala
330 | Asn | Ala | Gln | Val | Asp 335 | Arg | | 15 | Leu | Ile | Thr | Gly
340 | Arg | Leu | Ser | Ser | Leu
345 | Ser | Val | Leu | Ala | Ser 350 | Ala | Lys | | 20 | Gln | Ala | Glu
355 | Tyr | Ile | Arg | Val | Ser
360 | Gln | Gln | Arg | Glu | Leu
365 | Ala | Thr | Gln | | | Lys | Ile
370 | Asn | Glu | Cys | Val | Lys
375 | Ser | Gln | Ser | Ile | Arg
380 | Tyr | Ser | Phe | Cys | | 25 | Gly
385 | Asn | Gly | Arg | His | Val
390 | Leu | Thr | Ile | Pro | Gln
395 | Asn | Ala | Pro | Asn | Gly
400 | | 30 | Ile | Val | Phe | Ile | His
405 | Phe | Ser | Tyr | Thr | Pro
410 | Asp | Ser | Phe | Val | Asn
415 | Val | | 35 | Thr | Ala | Ile | Val
420 | Gly | Phe | Cys | Val | Lys
425 | Pro | Ala | Asn | Ala | Ser
430 | Gln | Tyr | | | Ala | Ile | Val
435 | Pro | Ala | Asn | Gly | Arg
440 | Gly | Ile | Phe | Ile | Gln
445 | Val | Asn | Gly | | 40 | Ser | Tyr
450 | Tyr | Ile | Thr | Ala | Arg
455 | Asp | Met | Tyr | Met | Pro
460 | Arg | Ala | Ile | Thr | | 45 | Ala
465 | Gly | Asp | Ile | Val | Thr
470 | Leu | Thr | Ser | Cys | Gln
475 | Val | Asn | Tyr | Val | Ser
480 | | 50 | Val | Asn | Lys | Thr | Val
485 | Ile | Thr | Thr | Phe | Val
490 | Asp | Asn | Asp | Asp | Phe
495 | Asp | | | Phe | Asn | Asp | Glu
500 | Leu | Ser | Lys | Trp | Trp
505 | Asn | Asp | Thr | Lys | His
510 | Glu | Leu | | 55 | Pro | Asp | Phe
515 | Asp | Lys | Phe | Asn | Tyr
520 | Thr | Val | Pro | Ile | Leu
525 | Asp | Ile | Asp | | | Ser | Glu
530 | Ile | Asp | Arg | Ile | Gln
535 | Gly | Val | Ile | Gln | Gly
540 | Leu | Asn | Asp | Ser | |----------------|------------------------------------|--------------------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|-------------------------|--------------------------------|------------------|--------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------| | 5 | Leu
5 4 5 | Ile | Asp | Leu | Glu | Lys
550 | Leu | Ser | Ile | Leu | Lys
555 | Thr | Tyr | Ile | Lys | Trp
560 | | 10 | Pro | Trp | Tyr | Val | Trp
565 | Leu | Ala | Ile | Ala | Phe
570 | Ala | Thr | Ile | Ile | Phe
575 | Ile | | 15 | Leu | Ile | Leu | Gly
580 | Trp | Val | Phe | Phe | Met
585 | Thr | Gly | Cys | Cys | Gly
590 | Cys | Cys | | | Cys | Gly | Cys
595 | Phe | Gly | Ile | Met | Pro
600 | Leu | Met | Ser | Lys | Cys
605 | Gly | Lys | Lys | | 20 | Ser | Ser
610 | Tyr | Tyr | Thr | Thr | Phe
615 | Asp | Asn | Asp | Val | Val
620 | Thr | Glu | Gln | Tyr | | 25 | A rg
625 | Pro | Lys | Lys | Ser | Val
630 | | | | | | | | | | | | | <210> 14
<211> 630
<212> PRT | | | | | | | | | | | | | | | | | 30 | <213> Infection | ous bro | nchitis | s virus | (IBV) | | | | | | | | | | | | | 30
35 | <400> 14 | ous bro | | | | Ser | Ile | Gly | Gln | Asn
10 | Val | Thr | Ser | Cys | Pro
15 | Tyr | | | <400> 14 His | | Arg | Arg | Arg
5 | | | | | 10 | | | | _ | 15 | _ | | 35 | <400> 14 His 1 Val | Arg | Arg
Tyr | Arg
Gly
20 | Arg
5 | Phe | Cys | Ile | Glu
25 | 10
Pro | Asp | Gly | Ser | Leu
30 | 15
Lys | Met | | 35 | <400>14 His 1 Val | Arg | Arg
Tyr
Pro
35 | Arg
Gly
20
Glu | Arg
5
Arg | Phe
Leu | Cys
Lys | Ile
Gln
40 | Glu
25
Phe | 10
Pro
Val | Asp
Ala | Gly
Pro | Ser
Leu
45 | Leu
30 | 15
Lys
Asn | Met
Ile | | 35
40 | <400>14 His 1 Val Thr | Arg
Ser
Val | Arg
Tyr
Pro
35 | Arg
Gly
20
Glu
Val | Arg
5
Arg
Glu
Leu | Phe
Leu
Ile | Cys
Lys
Pro
55 | Ile
Gln
40
Asn | Glu
25
Phe
Ser | 10
Pro
Val | Asp
Ala
Asn |
Gly
Pro
Leu
60 | Ser
Leu
45 | Leu
30
Leu
Val | 15
Lys
Asn
Thr | Met
Ile
Asp | | 35
40
45 | <400>14 His 1 Val Thr Glu 65 | Arg
Ser
Val
Glu
50 | Arg Tyr Pro 35 Ser | Arg Gly 20 Glu Val | Arg
5
Arg
Glu
Leu | Phe
Leu
Ile
Arg
70 | Cys
Lys
Pro
55
Met | Ile
Gln
40
Asn | Glu
25
Phe
Ser
Lys | Pro Val Phe Val | Asp
Ala
Asn
Gln
75 | Gly
Pro
Leu
60 | Ser
Leu
45
Thr | Leu
30
Leu
Val | 15
Lys
Asn
Thr | Met Ile Asp Gln 80 | | | Lys | Glu | Asp
115 | Met | Glu | Leu | Leu | Ser
120 | Phe | Tyr | Ser | Ser | Thr
125 | Lys | Pro | Lys | |----|------------|------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|------------|------------|------------|----------------|------------| | 5 | Gly | Tyr
130 | Asp | Thr | Pro | Val | Leu
135 | Ser | Asn | Val | Ser | Thr
140 | Gly | Glu | Phe | Asn | | 10 | Ile
145 | Ser | Leu | Leu | Leu | Lys
150 | Pro | Pro | Ser | Ser | Pro
155 | Ser | Gly | Arg | Ser | Phe
160 | | | Ile | Glu | Asp | Leu | Leu
165 | Phe | Thr | Ser | Val | Glu
170 | Thr | Val | Gly | Leu | Pro
175 | Thr | | 15 | Asp | Ala | Glu | Tyr
180 | Lys | Lys | Cys | Thr | Ala
185 | Gly | Pro | Leu | Gly | Thr
190 | Leu | Lys | | 20 | Asp | Leu | Ile
195 | Cys | Ala | Arg | Glu | Tyr
200 | Asn | Gly | Leu | Leu | Val
205 | Leu | Pro | Pro | | 25 | Ile | Ile
210 | Thr | Ala | Asp | Met | Gln
215 | Thr | Met | Tyr | Thr | Ala
220 | Ser | Leu | Val | Gly | | | Ala
225 | Met | Ala | Phe | Gly | Gly
230 | Ile | Thr | Ser | Ala | Ala
235 | Ala | Ile | Pro | Phe | Ala
240 | | 30 | Thr | Gln | Ile | Gln | Ala
245 | Arg | Ile | Asn | His | Leu
250 | Gly | Ile | Thr | Gln | Ser
255 | Leu | | 35 | Leu | Met | Lys | Asn
260 | Gln | Glu | Lys | Ile | Ala
265 | Ala | Ser | Phe | Asn | Lys
270 | Ala | Ile | | 40 | Gly | His | Met
275 | Gln | Glu | Gly | Phe | Arg
280 | Ser | Thr | Ser | Leu | Ala
285 | Leu | Gln | Gln | | 40 | Ile | Gln
290 | Asp | Val | Val | Asn | Lys
295 | Gln | Ser | Ala | Ile | Leu
300 | Thr | Glu | Thr | Met | | 45 | Asn
305 | Ser | Leu | Asn | Lys | Asn
310 | Phe | Gly | Ala | Ile | Thr
315 | Ser | Val | Ile | Gln | Asp
320 | | 50 | Ile | Tyr | Ala | Gln | Leu
325 | Asp | Ala | Ile | Gln | Ala
330 | Asp | Ala | Gln | Val | Asp 335 | Arg | | | Leu | Ile | Thr | Gly
340 | Arg | Leu | Ser | Ser | Leu
345 | Ser | Val | Leu | Ala | Ser
350 | Ala | Lys | | 55 | Gln | Ser | Glu
355 | Tyr | Ile | Arg | Val | Ser
360 | Gln | Gln | Arg | Glu | Leu
365 | Ala | Thr | Gln | | | Lys | Ile
370 | Asn | Glu | Cys | Val | Lys
375 | Ser | Gln | Ser | Asn | Arg
380 | Tyr | Gly | Phe | Cys | |----|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|-------------------|------------|------------|------------|------------| | 5 | Gly
385 | Ser | Gly | Arg | His | Val
390 | Leu | Ser | Ile | Pro | Gln
395 | Asn | Ala | Pro | Asn | Gly
400 | | 10 | Ile | Val | Phe | Ile | His
405 | Phe | Thr | Tyr | Thr | Pro
410 | Glu | Ser | Phe | Val | Asn
415 | Val | | | Thr | Ala | Ile | Val
420 | Gly | Phe | Cys | Val | Asn
425 | Pro | Ala | Asn | Ala | Ser
430 | Gln | Tyr | | 15 | Ala | Ile | Val
435 | Pro | Ala | Asn | Gly | Arg
440 | Gly | Ile | Phe | Ile | Gln
445 | Val | Asn | Gly | | 20 | Thr | Tyr
450 | Tyr | Ile | Thr | Ala | Arg
455 | Asp | Met | Tyr | Met | Pro
460 | Arg | Asp | Ile | Thr | | 25 | Ala
465 | Gly | Asp | Ile | Val | Thr
470 | Leu | Thr | Ser | Cys | Gln
475 | Ala | Asn | Tyr | Val | Asn
480 | | | Val | Asn | Lys | Thr | Val
485 | Ile | Thr | Thr | Phe | Val
490 | Glu | Asp | Asp | Asp | Phe
495 | Asp | | 30 | Phe | Asp | Asp | Glu
500 | Leu | Ser | Lys | Trp | Trp
505 | Asn | Asp | Thr | Lys | His
510 | Gln | Leu | | 35 | Pro | Asp | Phe
515 | Asp | Asp | Phe | Asn | Tyr
520 | Thr | Val | Pro | Ile | Leu
525 | Asn | Ile | Ser | | | Gly | Glu
530 | Ile | Asp | Tyr | Ile | Gln
535 | Gly | Val | Ile | Gln | Gly
540 | Leu | Asn | Asp | Ser | | 40 | Leu
545 | Ile | Asn | Leu | Glu | Glu
550 | Leu | Ser | Ile | Ile | Lys
555 | Thr | Tyr | Ile | Lys | Trp
560 | | 45 | Pro | Trp | Tyr | Val | Trp
565 | Leu | Ala | Ile | Gly | Phe
570 | Ala | Ile | Ile | Ile | Phe
575 | Ile | | 50 | Leu | Ile | Leu | Gly
580 | Trp | Val | Phe | Phe | Met
585 | Thr | Gly | Cys | Cys | Gly
590 | Cys | Cys | | | Cys | Gly | Cys
595 | Phe | Gly | Ile | Ile | Pro
600 | Leu | Met | Ser | Lys | Cys
605 | Gly | Lys | Lys | | 55 | Ser | Ser
610 | Tyr | Tyr | Thr | Thr | Phe
615 | Asp | Asn | Asp | Val | Val
620 | Thr | Glu | Gln | Tyr | #### Arg Pro Lys Lys Ser Val 625 630 #### 5 Claims 10 15 20 25 30 35 40 50 55 1. An infectious bronchitis virus (IBV) spike protein (S protein) wherein the sequence of the S2 domain of the S protein has at least 98% sequence identity to the S2 domain of the S protein from an IBV strain with restricted tissue tropism as a whole but ignoring amino acid positions 686-694, 578, 617, 826, 857 and 1000 with reference to the position numbering of SEQ ID No. 2, but which comprises the sequence XBBXBX in the part of the S2 protein at residues 686 to 691 with reference to the position numbering of the sequence given as SEQ ID No. 2, where B is a basic residue and X is any amino acid; and which comprises at least one of the following amino acid substitutions with reference to the position numbering of SEQ ID NO:2: Leucine (L) to Phenylalanine (F) at position 578 Asparagine (N) to Serine (S) at position 617 Asparagine (N) to Serine (S) at position 826 Leucine (L) to Phenylalanine (F) at position 857 and Isoleucine (I) to Valine (V) at position 1000 such that an IBV virus comprising the S protein has extended tissue tropism and wherein the amino acid position numbering is identified by alignment of the IBV S protein with the sequence of SEQ ID No. 2. - 2. An IBV S protein according to claim 1, which comprises: - (a) the sequence SRRKRS or SRRRRS in the part of the S2 protein corresponding to residues 686 to 691 of the sequence given as SEQ ID No. 2; or - (b) the sequence SRRKRSLIE or SRRRRSVIE in the part of the S2 protein corresponding to residues 686 to 694 of the sequence given as SEQ ID No. 2. - 3. An IBV S protein according to claim 1 or 2, which comprises: - (a) the amino acid substitution Asparagine (N) to Serine (S) at position 617 with reference to the position numbering of SEQ ID NO: 2; or - (b) Leucine (L) to Phenylalanine (F) at position 578 and Asparagine (N) to Serine (S) at position 617 with reference to the position numbering of SEQ ID NO: 2. - 4. An IBV S protein according to claim 1 or 2, which comprises the following amino acid substitutions with reference to the position numbering of SEQ ID NO: 2: Asparagine (N) to Serine (S) position 826; Leucine (L) to Phenylalanine (F) position 857; and Isoleucine (I) to Valine (V) position 1000. - 45 5. A nucleotide sequence encoding an IBV S protein according to any preceding claim. - A plasmid comprising a nucleotide sequence according to claim 5. - 7. A viral particle comprising an IBV S protein according to any of claims 1 to 4, and/or a nucleotide sequence according to claim 5. - 8. A cell comprising a nucleotide sequence according to claim 5 and/or a viral particle according to claim 7. - 9. A cell according to claim 8 which is a Vero cell. - **10.** A vaccine comprising a viral particle according to claim 7. - 11. A vaccine according to claim 10 for use in treating and/or preventing infectious bronchitis in a subject. **12.** A method for producing a vaccine according to claim 10, which comprises the step of infecting Vero cells with a viral particle according to claim 7. ### 5 Patentansprüche 1. IBV(Infectious Bronchitis Virus)-S-Protein (Spike Protein), wobei die Sequenz der S2-Domäne des S-Proteins eine Sequenzidentität von wenigstens 98% mit der S2-Domäne des S-Proteins aus einem IBV-Stamm mit eingeschränktem Gewebetropismus im Ganzen aufweist, jedoch ohne Berücksichtigung der Aminosäurepositionen 686-694, 578, 617, 826, 857 und 1000 mit Bezug auf die Positionsnummerierung von SEQ ID Nr. 2, die jedoch die Sequenz XBBXBX im Teil des S2-Proteins an Rest 686 bis 691 mit Bezug auf die Positionsnummerierung der Sequenz gemäß SEQ ID Nr. 2 umfasst, wo B für einen basischen Rest und X für eine beliebige Aminosäure steht; und die wenigstens eine der folgenden Aminosäuresubstitutionen mit Bezug auf die Positionsnummerierung von SEQ ID NO: 2 umfasst: 15 20 30 35 10 Leucin (L) zu Phenylalanin (F) an Position 578, Asparagin (N) zu Serin (S) an Position 617, Asparagin (N) zu Serin (S) an Position 826, Leucin (L) zu Phenylalanin (F) an Position 857 und Isoleucin (I) zu Valin (V) an Position 1000, so dass ein das S-Protein umfassendes IBV Virus einen erweiterten Gewebetropismus aufweist, und wobei die Aminosäurepositionsnummerierung durch Ausrichtung des IBV-S-Proteins an der Sequenz unter SEQ ID Nr. 2 identifiziert wird. - 25 **2.** IBV-S-Protein nach Anspruch 1, das Folgendes umfasst: - (a) die Sequenz SRRKRS oder SRRRRS im Teil des S2-Proteins, der Resten 686 bis 691 der Sequenz gemäß SEQ ID Nr. 2 entspricht; oder - (b) die Sequenz SRRKRSLIE oder SRRRRSVIE im Teil des S2-Proteins, der Resten 686 bis 694 der Sequenz gemäß SEQ ID Nr. 2 entspricht. - 3. IBV-S-Protein nach Anspruch 1 oder 2, das Folgendes umfasst: - (a) die Aminosäuresubstitution Asparagin (N) zu Serin (S) an Position 617 mit Bezug auf die Positionsnummerierung von SEQ ID NO: 2; oder - (b) Leucin (L) zu Phenylalanin (F) an
Position 578 und Asparagin (N) zu Serin (S) an Position 617 mit Bezug auf die Positionsnummerierung von SEQ ID NO: 2. - **4.** IBV-S-Protein nach Anspruch 1 oder 2, das die folgenden Aminosäuresubstitutionen mit Bezug auf die Positionsnummerierung von SEQ ID NO: 2 umfasst: Asparagin (N) zu Serin (S), Position 826; Leucin (L) zu Phenylalanin (F), Position 857; und Isoleucin (I) zu Valin (V), Position 1000. 45 - 5. Nukleotidsequenz, codierend ein IBV-S-Protein nach einem vorhergehenden Anspruch. - 6. Plasmid, umfassend eine Nukleotidsequenz nach Anspruch 5. - Viruspartikel, umfassend ein IBV-S-Protein nach einem der Ansprüche 1 bis 4 und/oder eine Nukleotidsequenz nach Anspruch 5. - 8. Zelle, umfassend eine Nukleotidsequenz nach Anspruch 5 und/oder ein Viruspartikel nach Anspruch 7. - ⁵⁵ **9.** Zelle nach Anspruch 8, bei der es sich um eine Vero-Zelle handelt. - 10. Impfstoff, umfassend ein Viruspartikel nach Anspruch 7. - 11. Impfstoff nach Anspruch 10 zur Verwendung bei Behandlung und/oder Vorbeugung von infektiöser Bronchitis bei einem Individuum. - **12.** Verfahren zur Herstellung eines Impfstoffs nach Anspruch 10, das den Schritt des Infizierens von Vero-Zellen mit einem Viruspartikel nach Anspruch 7 umfasst. ### Revendications 5 20 25 30 40 50 55 1. Protéine spiculaire (protéine S) du virus de la bronchite infectieuse (VBI) où la séquence du domaine S2 de la protéine S présente une identité de séquence d'au moins 98 % vis-à-vis du domaine S2 de la protéine S à partir d'une souche de VBI de tropisme tissulaire restreint dans son ensemble mais en ignorant les positions des acides aminés 686-694, 578, 617, 826, 857 et 1000 par rapport à la numérotation des positions de SEQ ID No. 2, mais qui comprend la séquence XBBXBX dans la partie de la protéine S2 au niveau des résidus 686 à 691 par rapport à la numérotation des positions de la séquence donnée en tant que SEQ ID No. 2, où B est un résidu basique et X représente n'importe quel acide aminé ; et qui comprend au moins l'une des substitutions d'acides aminés suivantes par rapport à la numérotation des positions de SEQ ID NO:2 : Leucine (L) en Phénylalanine (F) en position 578 Asparagine (N) en Sérine (S) en position 617 Asparagine (N) en Sérine (S) en position 826 Leucine (L) en Phénylalanine (F) en position 857 et Isoleucine (I) en Valine (V) en position 1000 de sorte qu'un virus VBI comprenant la protéine S présente un tropisme tissulaire supérieur et où la numérotation des positions d'acides aminés est identifiée par alignement de la protéine S du VBI sur la séquence de SEQ ID No. 2. - 2. Protéine S de VBI selon la revendication 1, qui comprend : - (a) la séquence SRRKRS ou SRRRRS dans la partie de la protéine S2 correspondant aux résidus 686 à 691 de la séquence donnée dans SEQ ID No. 2 ; ou - (b) la sequence SRRKRSLIE ou SRRRRSVIE dans la partie de la protéine S2 correspondant aux résidus 686 à 694 de la séquence donnée dans SEQ ID No. 2. - 35 **3.** Protéine S de VBI selon la revendication 1 ou 2, qui comprend : - (a) la substitution d'acides aminés Asparagine (N) en Sérine (S) en position 617 par rapport à la numérotation des positions de SEQ ID NO: 2 ; ou - (b) Leucine (L) en Phénylalanine (F) en position 578 et Asparagine (N) en Sérine (S) en position 617 par rapport au numéro de position de SEQ ID NO: 2. - **4.** Protéine S de VBI selon la revendication 1 ou 2, qui comprend les substitutions d'acides aminés suivantes par rapport à la numérotation des positions de SEQ ID NO: 2: - Asparagine (N) en Sérine (S) en position 826 ; Leucine (L) en Phénylalanine (F) en position 857 ; et Isoleucine (I) en Valine (V) en position 1000. - 5. Séquence nucléotidique codant une protéine S de VBI selon l'une quelconque des revendications précédentes. - **6.** Plasmide comprenant une séquence nucléotidique selon la revendication 5. - 7. Particule virale comprenant une protéine S de VBI selon l'une quelconque des revendications 1 à 4, et/ou une séquence nucléotidique selon la revendication 5. - **8.** Cellule comprenant une séquence nucléotidique selon la revendication 5 et/ou une particule virale selon la revendication 7. | | 9. | Cellule selon la revendication 8 qui est une cellule Vero. | |----|-----|--| | | 10. | Vaccin comprenant une particule virale selon la revendication 7. | | 5 | 11. | Vaccin selon la revendication 10 pour utilisation dans le traitement prophylactique et/ou thérapeutique de la bronchite infectieuse chez un sujet. | | 10 | | Procédé de production d'un vaccin selon la revendication 10, qui comprend l'étape d'infection des cellules Vero par une particule virale selon la revendication 7. | | 15 | | | | 20 | | | | 25 | | | | 30 | | | | 35 | | | | 40 | | | | 45 | | | | 50 | | | | 55 | | | # Figure 3 | Beau-CK
M41-CK
H120-Liverpool
QX-Liverpool | * 20 * 40 * 60 * 80 : MLVTPLLLVTLLCALCSAVLYDS-SSYVYYYQSAFRPPSGWHLQGGAYAVVNISSEFNNAGSSSGCTVGIIHGGRVVNAS : MLVTPLLLVTLLCVLCSAALYDS-SSYVYYYQSAFRPPNGWHLHGGAYAVVNISSESNNAGSSPGCIVGTIHGGRVVNAS : MLVTPLLLVTLLCALCSAALYDS-SSYVYYYQSAFRPPDGWHLHGGAYAVVNISSESNNAGSSSGCTVGIIHGGRVVNAS : MLVKSLFLVTILCALCSANLFDSDNNYVYYYQSAFRPPNGWHLQGGAYAVVNSTNYTNNAGSAHQCTVGVIKDVYNQSVA | |---|---| | Beau-CK
M41-CK
H120-Liverpool
QX-Liverpool | * 100 * 120 * 140 * 160 : SIAMTAPSSGMAWSSSQFCTAHCNFSDTTVFVTHCYKHGG-CPLTGMLQQNLIRVSAMKNGQLFYNLTVSVAKYPTFRSF : SIAMTAPSSGMAWSSQFCTAHCNFSDTTVFVTHCYKYDG-CPITGMLQKNFLRVSAMKNGQLFYNLTVSVAKYPTFKSF : SIAMTAPSSGMAWSSQFCTAYCNFSDTTVFVTHCYKHVG-CPITGMLQQHSIRVSAMKNGQLFYNLTVSVAKYPTFKSF : SIAMTAPLQGMAWSKSQFCSAHCNFSEITVFVTHCYSSGSSCPITGMIPRDHIRISAMKNGSLFYNLTVSVSKYPNFKSF | | Beau-CK
M41-CK
H120-Liverpool
QX-Liverpool | * 180 * 200 * 220 * 240 : QCVNNLTSVYLNGDLVYTSNETIDVTSAGVYFKAGGPITYKVMREVKALAYFVNGTAQDVILCDGSPRGLLACQYNTGNF : QCVNNLTSVYLNGDLVYTSNETTDVTSAGVYFKAGGPITYKVMREVKALAYFVNGTAQDVILCDGSPRGLLACQYNTGNF : QCVNNLTSVYLNGDLVYTSNETTDVTSAGVYFKAGGPITYKVMREVRALAYFVNGTAQDVILCDGSPRGLLACQYNTGNF : QCVNNFTSVYLNGDLVFTSNKTTDVTSAGVYFKAGGPVNYSIMKEFKVLAYFVNGTAQDVVLCDNSPKGLLACQYNTGNF | | Beau-CK
M41-CK
H120-Liverpool
QX-Liverpool | * 260 * 280 * 300 * 320 : SDGFYPFTNSSLVKQKFIVYRENSVNTTCTLHNFIFHNETGANPNPSGVQNIQTYQTKTAQSGYYNFNFSFLSSFVYKES : SDGFYPFINSSLVKQKFIVYRENSVNTTFTLHNFTFHNETGANPNPSGVQNIQTYQTQTAQSGYYNFNFSFLSSFVYKES : SDGFYPFTNSSLVKQKFIVYRENSVNTTFTLHNFTFHNETGANPNPSGVQNIQTYQTQTAQSGYYNFNFSFLSSFVYKES : SDGFYPFTNSTLVREKFIVYRESSVNTTLALTNFTFTNVSNAQPNSGGVNTFHLYQTQTAQSGYYNFNLSFLSQFVYKAS | | Beau-CK
M41-CK
H120-Liverpool
QX-Liverpool | * 340 * 360 * 380 * 400 : NFMYGSYHPSCKFRLETINNGLWFNSLSVSIAYGPLQGGCKQSVFKGRATCCYAYSYGGPSLCKGVYSGELDHNFECGLL : NFMYGSYHPSCNFRLETINNGLWFNSLSVSIAYGPLQGGCKQSVFSGRATCCYAYSYGGPSLCKGVYSGELDLNFECGLL : NFMYGSYYPSCNFRLETINNGLWFNSLSVSIAYGPLQGGCKQSVFSGRATCCYAYSYGGPLLCKGVYSGELDHNFECGLL : DFMYGSYHPSCSFRPETINSGLWFNSLSVSLTYGPLQGGCKQSVFSGKATCCYAYSYKGPMACKGVYSGELSTNFECGLL | | Beau-CK
M41-CK
H120-Liverpool
QX-Liverpool | * 420 * 440 * 460 * 480 : VYVTKSGGSRIQTATEPPVITQNNYNNITLNTCVDYNIYGRTGQGFITNVTDSAVSYNYLADAGLAILDTSGSIDIFVVQ : VYVTKSGGSRIQTATEPPVITRHNYNNITLNTCVDYNIYGRTGQGFITNVTDSAVSYNYLADAGLAILDTSGSIDIFVVQ : VYVTKSGGSRIQTATEPPVITQHNYNNITLNTCVDYNIYGRTGQGFITNVTDSAVSYNYLADAGLAILDTSGSIDIFVVQ : VYVTKSDGSRIQTRTEPLVLTQYNYNNITLDKCVAYNIYGRVGQGFITNVTDSAANFSYLADGGLAILDTSGAIDVFVVQ | | Beau-CK
M41-CK
H120-Liverpool
QX-Liverpool | * 500 * 520 * 540 * 560 : GEYGLNYYKVNPCEDVNQQFVVSGGKLVGILTSRNETGSQLLENQFYIKITNGTRRFRRSITENVANCPYVSYGKFCIKP : GEYGLTYYKVYPCEDVNQQFVVSGGKLVGILTSRNETGSQLLENQFYIKITNGTRRFRRSITENVANCPYVSYGKFCIKP : SEYGLNYYKVNPCEDVNQQFVVSGGKLVGILTSRNETGSQLLENQFYIKITNGTRRFRRSITESVENCPYVSYGKFCIKP : GIYGLNYYKVNPCEDVNQQFVVSGGNIVGILTSRNETGSEQVENQFYVKLTNSSHRRRRSIGQNVTSCPYVSYGRFCIEP | | Beau-CK
M41-CK
H120-Liverpool
QX-Liverpool | * 580 * 600 * 620 * 640 : DGSIATIVPKQLEQFVAPLFNVTENVLIPNSFNLTVTDEYIQTRMDKVQINCLQYVCGSSLDCRKLFQQYGPVCDNILSV : DGSIATIVPKQLEQFVAPLLNVTENVLIPNSFNLTVTDEYIQTRMDKVQINCMQYVCGNSLDCRDLFQQYGPVCDNILSV : DGSIATIVPKQLEQFVAPLLNVTENVLIPNSFNLTVTDEYIQTRMDKVQINCLQYICGNSLECRNLFQQYGPVCDNILSV : DGSLKMIVPEELKQFVAPLLNITESVLIPNSFNLTVTDEYIQTRMDKVQINCLQYVCGNSLECRKLFQQYGPVCDNILSV | | Beau-CK
M41-CK
H120-Liverpool
QX-Liverpool | * 660 * 680 * 700 * 720 : VNSVGQKEDMELLNFYSSTKPAGFNTPVLSNVSTGEFNISLLLTNPSSRRKRSLIEDLLFTSVESVGLPTNDAYKNCTAG : VNSIGQKEDMELLNFYSSTKPAGFNTPFLSNVSTGEFNISLLLTTPSSPRRRSFIEDLLFTSVESVGLPTDDAYKNCTAG : VNSVGQKEDMELLNFYSSTKPAGFNTPVLSNVSTGEFNISLFLTTPSSPRRRSFIEDLLFTSVESVGLPTDDAYKNCTAG : VNSVSQKEDMELLSFYSSTKPKGYDTPVLSNVSTGEFNISLFLKPPSSPSGRSFIEDLLFTSVETVGLPTDAEYKKCTAG | | Beau-CK
M41-CK
H120-Liverpool
QX-Liverpool | * 740 * 760 * 780 * 800 : PLGFFKDLACAREYNGLLVLPPIITAEMQALYTSSLVASMAFGGITAAGAIPFATQLQARINHLGITQSLLLKNQEKIAA : PLGFLKDLACAREYNGLLVLPPIITAEMQTLYTSSLVASMAFGGITAAGAIPFATQLQARINHLGITQSLLLKNQEKIAA : PLGFLKDLVCAREYNGLLVLPPIITAEMQTLYTSSLVASMAFGGITAAGAIPFATQLQARINHLGITQSLLLKNQEKIAA : PLGTLKDLICAREYNGLLVLPPIITADMQTMYTASLVGAMAFGGITSAAAIPFATQIQARINHLGITQSLLMKNQEKIAA | # * 820 * 840 * 860 * 880 **Figure 3 continued** : SFNKAIGHMOEGFRSTSLALOOIODVVSKOSAILTETMASLNKNFGAISSVIOEIYOOFDAIOANAOVDRLITGRLSSLS Beau-CK : SFNKAIGRMQEGFRSTSLALQQIQDVVNKQSAILTETMASLNKNFGAISSMIQEIYQQLDAIQANAQVDRLITGRLSSLS M41-CK H120-Liverpool: SFNKAIGHMQEGFRSTSLALQQIQDVVNKQSAILTETMASLNKNFGAISSVIQEIYQQLDAIQANAQVDRLITGRLSSLS QX-Liverpool : SFNKAIGHMQEGFRSTSLALQQIQDVVNKQSAILTETMNSLNKNFGAITSVIQDIYAQLDAIQADAQVDRLITGRLSSLS 900 920 940 Beau-CK : VLASAKQAEYIRVSQQRELATQKINECVKSQSIRYSFCGNGRHVLTIPQNAPNGIVFIHFSYTPDSFVNVTAIVGFCVKP M41-CK :
VLASAKQAEHIRVSQQRELATQKINECVKSQSIRYSFCGNGRHVLTIPQNAPNGIVFIHFSYTPDSFVNVTAIVGFCVKP H120-Liverpool: VLASAKQAEYIRVSQQRELATQKINECVKSQSIRYSFCGNGRHVLTIPQNAPNGIVFIHFSYTPDSFVNVTAIVGFCVKP QX-Liverpool : VLASAKQSEYIRVSQQRELATQKINECVKSQSNRYGFCGSGRHVLSIPQNAPNGIVFIHFTYTPESFVNVTAIVGFCVNP : ANASQYAIVPANGRGIFIQVNGSYYITARDMYMPRAITAGDVVTLTSCQANYVSVNKTVITTFVDNDDFDFNDELSKWWN Beau-CK : ANASQYAIVPANGRGIFIQVNGSYYITARDMYMPRAITAGDIVTLTSCQANYVSVNKTVITTFVDNDDFDFNDELSKWWN M41-CK H120-Liverpool: ANASQYAIVPANGRGIFIQVNGSYYITARDMYMPRAITAGDIVTLTSCQVNYVSVNKTVITTFVDNDDFDFNDELSKWWN QX-Liverpool : ANASQYAIVPANGRGIFIQVNGTYYITARDMYMPRDITAGDIVTLTSCQANYVNVNKTVITTFVEDDDFDFDDELSKWWN 1080 1100 1060 1120 : DTKHELPDFDKFNYTVPILDIDSEIDRIQGVIQGLNDSLIDLEKLSILKTYIKWPWYVWLAIAFATIIFILILGWVFFMT Beau-CK M41-CK : DTKHELPDFDKFNYTVPILDIDSEIDRIQGVIQGLNDSLIDLEKLSILKTYIKWPWYVWLAIAFATIIFILILGWVFFMT H120-Liverpool: DTKHELPDFDKFNYTVPILDIDSEIDRIQGVIQGLNDSLIDLEKLSILKTYIKWPWYVWLAIAFATIIFILILGWVFFMT QX-Liverpool : DTKHQLPDFDDFNYTVPILNISGEIDYIQGVIQGLNDSLINLEELSIIKTYIKWPWYVWLAIGFAIIIFILILGWVFFMT 1140 1160 : GCCGCCCGCFGIMPLMSKCGKKSSYYTTFDNDVVTEQYRPKKSV Beau-CK M41-CK : GCCGCCCGCFGIMPLMSKCGKKSSYYTTFDNDVVT-----H120-Liverpool : GCCGCCCGCFGIMPLMSKCGKKSSYYTTFDNDVVTEQYRPKKSV QX-Liverpool : GCCGCCCGCFGIIPLMSKCGKKSSYYTTFDNDVVTEQYRPKKSV # Figure 4 ### REFERENCES CITED IN THE DESCRIPTION This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard. ### Patent documents cited in the description - WO 2011004146 A [0015] - WO 2004078203 A [0111] ### • GB 1308057 A [0134] ### Non-patent literature cited in the description - LI; YANG. Avian Pathol, 2001, vol. 30, 535-541 [0059] - DEVEREUX et al. Nucleic Acids Research, 1984, vol. 12, 387 [0068] - AUSUBEL et al. NUCLEIC ACIDS RESEARCH. 1999 [0068] - ATSCHUL et al. J. Mol. Biol., 1990, 403-410 [0068] - AUSUBEL et al. J. MOL. BIOL., 1999, 7-58-7-60 [0068] - FEMS Microbiol Lett, 1999, vol. 174 (2), 247-50 [0068] - FEMS Microbiol Lett, 1999, vol. 177 (1), 187-8 [0068] - CASAIS et al. J. Virol, 2001, vol. 75, 12359-12369 [0090] - CASAIS et al. J. Virol., 2003, vol. 77, 9084-9089 [0090] - **BRITTON et al.** *J. Virological Methods*, 2005, vol. 123, 203-211 **[0090]** - ARMESTO et al. Methods in Molecular Biology, 2008, vol. 454, 255-273 [0090]