



(19)

Europäisches Patentamt  
European Patent Office  
Office européen des brevets



(11)

EP 0 782 574 B1

(12)

## EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention  
of the grant of the patent:  
**27.03.2002 Bulletin 2002/13**

(21) Application number: **95929941.3**

(22) Date of filing: **23.08.1995**

(51) Int Cl.<sup>7</sup>: **C07D 451/02, A61K 31/395,**  
**C07D 209/52, C07D 221/24,**  
**C07D 223/14, C07D 403/04,**  
**C07D 209/44**

(86) International application number:  
**PCT/GB95/02001**

(87) International publication number:  
**WO 96/09302 (28.03.1996 Gazette 1996/14)**

## (54) BICYCLIC CARBOXAMIDES AS 5-HT1A RECEPTORS LIGANDS

BICYCLISCHE CARBOXAMIDE ALS 5-HT1A REZEPTOREN LIGANDEN

CARBOXAMIDES BICYCLIQUES EN TANT QUE LIGANDS DES RECEPTEURS 5-HT1A

(84) Designated Contracting States:  
**AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT**

**SE**

Designated Extension States:

**LT LV SI**

(30) Priority: **21.09.1994 GB 9419024**

(43) Date of publication of application:  
**09.07.1997 Bulletin 1997/28**

(73) Proprietors:

- **JOHN WYETH & BROTHER LIMITED**  
Maidenhead Berkshire, SL6 0PH (GB)
- **AMERICAN HOME PRODUCTS CORPORATION**  
Madison, New Jersey 07940-0874 (US)

(72) Inventors:

- **CLIFFE, Ian, Anthony**  
Farnham Common Bucks SL2 3RA (GB)
- **MANSELL, Howard, Langham**  
Burnham Bucks SL1 7AW (GB)

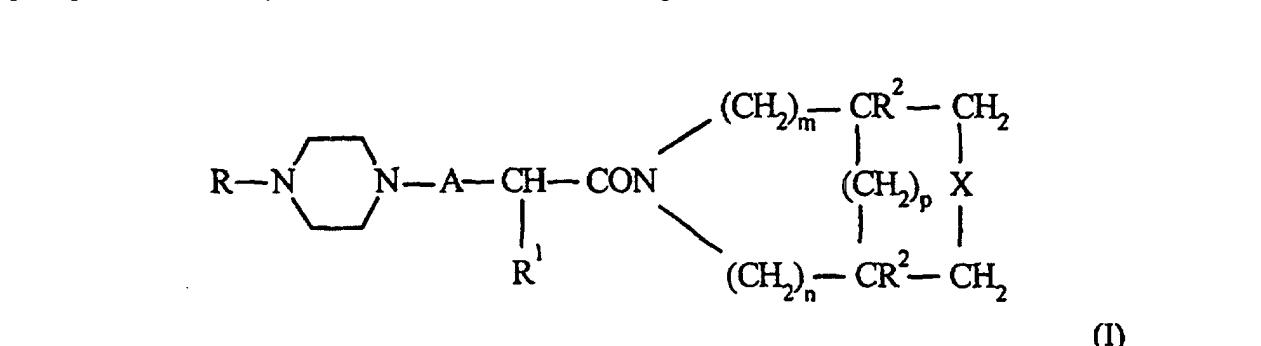
- **WARD, Terence, James**  
Ruscombe Reading Berks RG10 9XH (GB)
- **NELSON, James, Albert**  
Washington Crossing, PA 18977 (US)
- **SHAH, Uresh, Shantilal**  
Cranbury, NJ 08512 (US)
- **KANZELBERGER, Mira, Ana**  
Monmouth Junction, NJ 08852 (US)

(74) Representative:

**Walters, Philip Bernard William et al**  
**Wyeth Laboratories,**  
**Patents & Trade Marks Department,**  
**Huntercombe Lane South,**  
**Taplow**  
**Maidenhead, Berkshire SL6 0PH (GB)**

(56) References cited:

|                        |                        |
|------------------------|------------------------|
| <b>EP-A- 0 481 744</b> | <b>WO-A-93/11122</b>   |
| <b>WO-A-94/15919</b>   | <b>GB-A- 2 262 093</b> |


Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

**Description**

[0001] This invention relates to novel bicyclic carboxamides derivatives, to processes for their preparation, to their use and to pharmaceutical compositions containing them. The novel compounds act on the central nervous system by binding to 5-HT receptors (as more fully explained below) and hence can be used as medicaments for treating humans and other mammals.

[0002] WO-A-93/11122, WO-A-94/15919 and EP-A-481744 all disclose 5-HT<sub>1A</sub> receptor binding agents based on a piperazine ring. However, these documents do not disclose bicyclic amide structure.

[0003] The novel compounds of the invention are those of general formula



and the pharmaceutically acceptable acid addition salts thereof.

[0004] In formula I

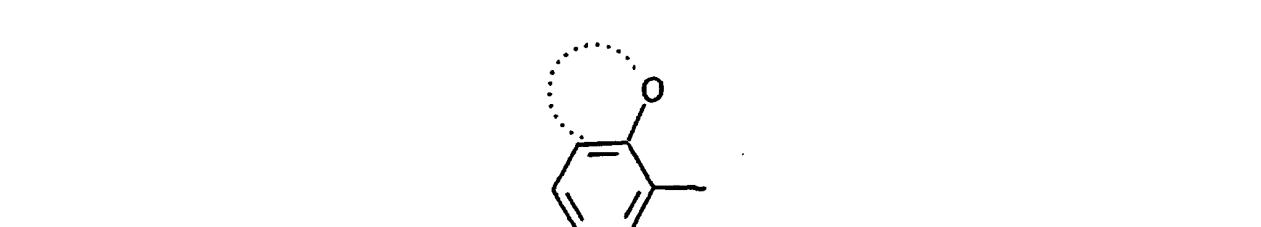
25

X represents  $-\text{CR}^2 = \text{CR}^2-$  or  $-(\text{CR}^2)_q-$ ;

m represents 0, 1 or 2; n represents 0, 1 or 2; p represents 0, 1, 2 or 3 and q represents 0, 1, 2 or 3

30

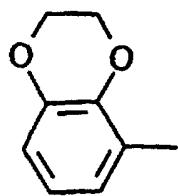
A is an alkylene chain of 1 or 2 carbon atoms optionally substituted by one or more lower alkyl groups,


R is an aryl or heteroaryl radical,

$\text{R}^1$  is an aryl or aryl(lower)alkyl radical and each  $\text{R}^2$  is independently hydrogen or lower alkyl.

35

[0005] The term "lower" as used herein means that the radical referred to contains 1 to 4 carbon atoms. Examples of "lower alkyl" radicals are methyl, ethyl, propyl, isopropyl, butyl, tert.-butyl.


[0006] When used herein "aryl" means a phenyl or naphthyl radical which optionally may be substituted by one or more substituents selected from lower alkyl, lower alkenyl, lower alkynyl, lower alkoxy (e.g. methoxy, ethoxy, propoxy, butoxy), halogen, halo(lower)alkyl (e.g. trifluoromethyl), hydroxy, nitrile, (lower)alkylcarbonyl, (lower)alkoxycarbonyl, amino, (lower)alkylamino, di(lower)alkylamino, aminocarbonyl, (lower)alkylaminocarbonyl, di(lower)alkylaminocarbonyl, nitro, -CHO or thio(lower)alkyl substituents. Additionally "aryl" means an optionally substituted tetrahydronaphthyl radical (e.g. 5-tetralinyl) or a bicyclic oxygen-containing radical of the formula



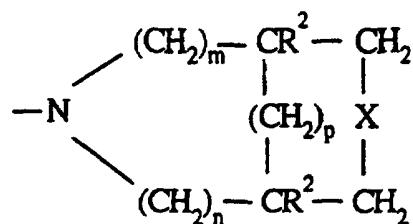
55

wherein the heterocyclic ring containing the oxygen atom contains a total of 5 to 7 ring members, said heterocyclic ring being non-aromatic and optionally containing one further oxygen atom in addition to the oxygen atom illustrated and the bicyclic oxygen radical being optionally substituted by one or more of the substituents mentioned above. A preferred example of such a bicyclic oxygen radical is 8-chromanyl or an optionally substituted radical of the formula

5



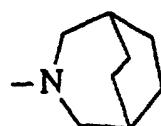
10 [0007] The term "heteroaryl" refers to an aromatic radical which may be optionally substituted by one or more of the substituents given above in connection with "aryl" radicals and which is selected from a monocyclic radical containing 5 to 7 ring atoms or a bicyclic radical containing 8 to 12 ring atoms, one or two hetero ring atoms being selected from nitrogen, oxygen and sulphur.


15 [0008] When R is a heteroaryl radical it is preferably an optionally substituted pyrimidyl (particularly 2-pyrimidyl), optionally substituted pyridyl (e.g. pyrid-2-yl), optionally substituted indolyl (particularly indol-4-yl and indol-7-yl), optionally substituted pyrazinyl (particularly 2-pyrazinyl), optionally substituted quinolinyl or isoquinolinyl (particularly 1-isoquinolinyl) or optionally substituted benzofuran (particularly 4 and 7-benzofuranyl) where the optional substituents are given above in connection with aryl radicals.

20 [0009] Preferred compounds of formula I have the following characteristics either singly or in any possible combination:

(a) the ring system

25

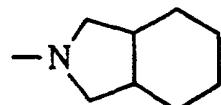

30



35 represents

(i)

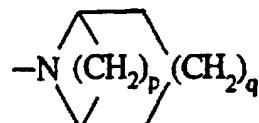
40




45

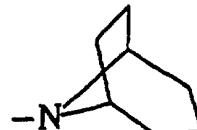
or

(ii)


50



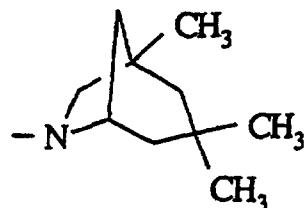
55


or (iii) a radical of formula

5



where p is 2 or 3 and q is 0, 1, 2, 3, for example a radical of formula


10



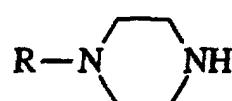
15

or (iv)

20



25

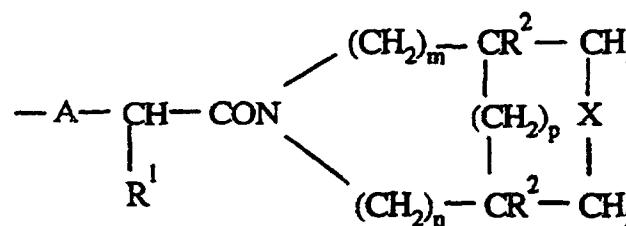

(b) A is  $-\text{CH}_2\text{CH}_2-$

(c) R is an optionally substituted phenyl radical e.g. 2-(lower)alkoxyphenyl (for example 2-methoxyphenyl), an optionally substituted pyridyl radical or an optionally substituted indolyl radical (e.g. an optionally substituted indol-4-yl radical) and

(d) R<sup>1</sup> is substituted or unsubstituted phenyl

35 [0010] The compounds of the invention may be prepared by methods known in the art from known starting or starting materials that may be prepared by conventional methods. One method comprises alkylation of a compound of formula

40



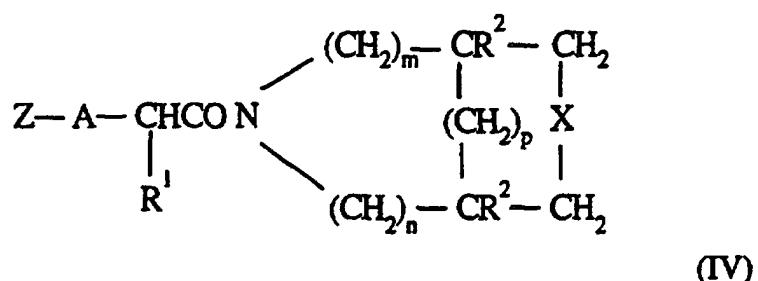

(II)

45

(where R is as defined above) with an alkylating agent providing the group

50




55

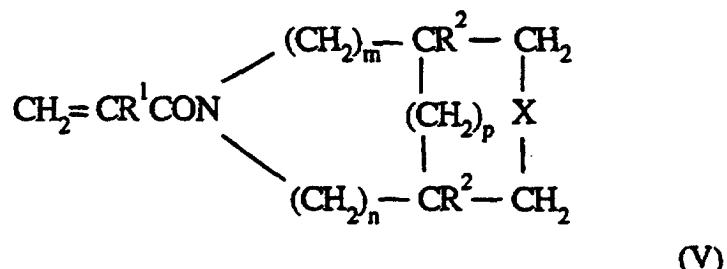
(III)

(where X, m, n, p, A, R<sup>1</sup> and R<sup>2</sup> have the meanings given above)

[0011] The alkylating agent may be, for example a compound of formula

5




10

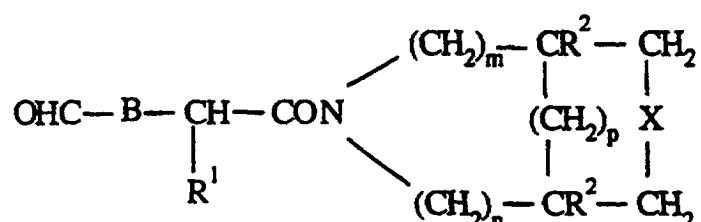
15

where m, n, p, X, A, R<sup>1</sup> and R<sup>2</sup> are as defined above and Z is a leaving group such as halogen or an alkyl- or aryl-sulphonyloxy group. Alternatively for preparing compounds where -A- is -CH<sub>2</sub>- the alkylating agent may be an unsaturated compound of formula

20

25




30

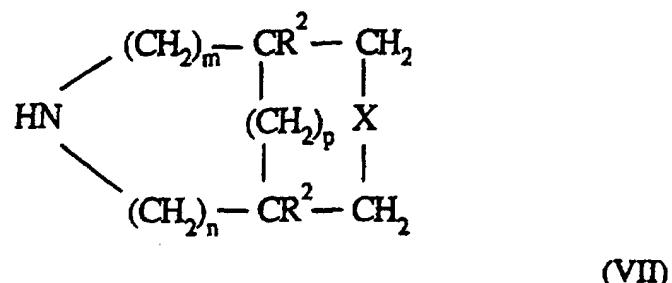
(where X, m, n, p, R<sup>1</sup> and R<sup>2</sup> are as defined above) and the compound of formula (V) is reacted with the piperazine of formula (II) by means of a Michael reaction.

[0012] The alkylation may also be effected by condensing an aldehyde of formula

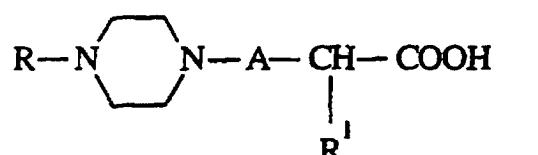
35

40




45

(where X, m, n, p, R<sup>2</sup> and R<sup>1</sup> are as defined above and B is a direct bond or a methylene group optionally substituted by one or two lower alkyl groups) with the piperazine of formula (II). The condensation may be carried out with a reducing agent such as sodium triacetoxyborohydride or sodium cyanoborohydride.


[0013] In an alternative method of preparing the compound of the invention an amine of formula

50

55



(where X, m, n, p and R<sup>2</sup> are as defined above) is acylated with an acid of formula



VIII

(where A, R and R<sup>1</sup> are as defined above) or with an acylating derivative thereof. Examples of acylating derivatives include the acid halides (e.g. acid chlorides), azides, anhydrides, imidazolides (e.g. obtained from carbonyldiimidazole), activated esters or O-acyl ureas obtained from a carbodiimide such as a dialkylcarbodiimide particularly dicyclohexylcarbodiimide. Preferably the amine is acylated with the acid by the use of a coupling agent such as 1,1'-carbonyldiimidazole, iso-butylchloroformate or diphenylphosphinyl chloride.

[0014] The processes described above may be carried out to give a compound of the invention in the form of a free base or as an acid addition salt. If the compound of the invention is obtained as an acid addition salt, the free base can be obtained by basifying a solution of the acid addition salt. Conversely, if the product of the process is a free base an acid addition salt, particularly a pharmaceutically acceptable acid addition salt, may be obtained by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds.

**[0015]** Examples of acid addition salts are those formed from inorganic and organic acids, such as sulphuric, hydrochloric, hydrobromic, phosphoric, tartaric, fumaric, maleic, citric, acetic, formic, lactic, methanesulphonic, malonic, p-toluenesulphonic, oxalic and succinic acids.

**[0016]** The compounds of the invention contain one or more asymmetric carbon atoms, so that the compounds can exist in different stereoisomeric forms. All stereoisomeric forms are included within the invention. The compounds can be, for example, racemates or optically active forms. The optically active forms can be obtained by resolution of the racemates or by asymmetric synthesis.

[0017] The compounds of the present invention possess pharmacological activity. In particular, they act on the central nervous system by binding to 5-HT receptors, particularly receptors of the 5-HT<sub>1A</sub> type. In general, the compounds selectively bind to receptors of the 5-HT<sub>1A</sub> type to a much greater extent than they bind to other receptors such as  $\alpha_1$ . The compounds can be used for the treatment of CNS disorders, such as anxiety in mammals, particularly humans. They may also be useful as antidepressants, antipsychotics (eg for use in schizophrenia, paranoia and manic-depressive illness) hypotensives and as agents for regulating the sleep/wake cycle, feeding behaviour and/or sexual function and as cognition enhancing agents.

**[0018]** The compounds of the invention are tested for 5-HT<sub>1A</sub> receptor binding activity in rat hippocampal membrane homogenate by the method of B S Alexander and M D Wood, *J Pharm. Pharmacol.*, 1988, **40**, 888-891. Results for some representative compounds of the invention are given below:

| Compound  | 5-HT <sub>1A</sub> Binding (IC <sub>50</sub> ) |
|-----------|------------------------------------------------|
| Example 1 | 3.3 nM                                         |
| Example 2 | 1.48 nM                                        |
| Example 5 | 3.73 nM                                        |

(continued)

| Compound   | 5-HT <sub>1A</sub> Binding (IC <sub>50</sub> ) |
|------------|------------------------------------------------|
| Example 8  | 3.5 nM                                         |
| Example 10 | 17.9 nM                                        |
| Example 14 | 1.96 nM                                        |
| Example 15 | 0.58 nM                                        |
| Example 16 | 4.46 nM                                        |

**[0019]** The invention also provides a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable acid addition salt thereof in association with a pharmaceutically acceptable carrier. Any suitable carrier known in the art can be used to prepare the pharmaceutical composition. In such a composition, the carrier is generally a solid or liquid or a mixture of a solid or liquid.

**[0020]** Solid form compositions include powders, granules, tablets, capsules (e.g. hard and soft gelatine capsules), suppositories and pessaries. A solid carrier can be, for example, one or more substances which may also act as flavouring agents, lubricants, solubilisers, suspending agents, fillers, glidants, compression aides, binders or tablet-disintegrating agents; it can also be an encapsulating material. In powders the carrier is a finely divided solid which is in admixture with the finely divided active ingredient. In tablets the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain up to 99%, e.g. from 0.03 to 99%, preferably 1 to 80% of the active ingredient. Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.

**[0021]** The term "composition" is intended to include the formulation of an active ingredient with encapsulating material as carrier to give a capsule in which the active ingredient (with or without other carriers) is surrounded by the carrier, which is thus in association with it. Similarly cachets are included.

**[0022]** Liquid form compositions include, for example, solutions, suspensions, emulsions, syrups, elixirs and pressurised compositions. The active ingredient, for example, can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fats. The liquid carrier can contain other suitable pharmaceutical additives such as solubilisers, emulsifiers, buffers, preservatives, sweeteners, flavouring agents, suspending agents, thickening agents, colours, viscosity regulators, stabilisers or osmo-regulators. Suitable examples of liquid carriers for oral and parenteral administration include water (particularly containing additives as above, e.g. cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (e.g. glycerol and glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil). For parenteral administration the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate. Sterile liquid carriers are used in sterile liquid form compositions for parenteral administration.

**[0023]** Liquid pharmaceutical compositions which are sterile solutions or suspensions can be utilized by, for example, intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. When the compound is orally active it can be administered orally either in liquid or solid composition form.

**[0024]** Preferably the pharmaceutical composition is in unit dosage form, e.g. as tablets or capsules. In such form, the composition is sub-divided in unit dose containing appropriate quantities of the active ingredient; the unit dosage forms can be packaged composition, for example packeted powders, vials, ampoules, prefilled syringes or sachets containing liquid. The unit dosage form can be, for example, a capsule or tablet itself, or it can be the appropriate number of any such compositions in package form. The quantity of the active ingredient in unit dose of composition may be varied or adjusted from 0.5 mg or less to 750 mg or more, according to the particular need and the activity of the active ingredient.

**[0025]** The following Examples illustrate the invention.

#### **Example 1**

##### **1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(2-methoxy-phenyl)-piperazin-1-yl]-2-phenyl-butan-1-one**

**[0026]** A mixture of 4-[4-(2-methoxyphenyl) piperazin-1-yl]-2-phenylbutanoic acid (4.0 g, 11.3 mmole), desmethyl-tropane (1.7 g, 15.3 mmole, prepared from tropane by the method used by R. A. Olofson et. al., J. Org. Chem., 1984, 49 (11), 2081, for the conversion of O-acetyl tropine to O-acetyl desmethyl tropine), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (2.2 g, 11.3 mmole) and triethylamine (0.19.8 mmole) in methylene chloride (25 mL) was stirred at ambient temperature for 48 hr. The mixture was poured into 1 N sodium hydroxide (100 mL) and extracted with ethyl

acetate (3 x 100 mL). The combined ethyl acetate layer was washed with water (100 mL) and brine (100 mL), dried over anhydrous magnesium sulfate, filtered and concentrated under vacuum to give crude product. Purification of this material by column chromatography (silica gel with 1 % ammonia in ethyl acetate as eluant) followed by the treatment with 1.1 equivalent of 1N hydrogen chloride in ether gave 2.5 g of the title compound as the hydrochloride hemihydrate, m. p. 225-228°C (dec.).

| Elemental Analysis For: C <sub>28</sub> H <sub>37</sub> N <sub>3</sub> O <sub>2</sub> · HCl · 0.5 H <sub>2</sub> O |           |          |          |
|--------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|
| Calcd                                                                                                              | C, 68.20; | H, 7.97; | N, 8.52. |
| Found                                                                                                              | C, 68.54; | H, 7.72; | N, 8.35. |

### Example 2

#### 1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(5-fluoro-2-methoxy-phenyl)-piperazin-1-yl]-2-phenyl-butan-1-one

**[0027]** A mixture of the 4-(5-fluoro-2-methoxyphenyl)-piperazine (2.1 g, 10.0 mmole, prepared by method disclosed in U. S. Pat. No. 4,585,773), 1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-chloro-2-phenyl-butan-1-one (3.40 g, 10.0 mmole), di-isopropylethylamine (1.4 g, 11.0 mmole) and potassium iodide (1.66 g, 10.0 mmole) was heated in dimethylformamide (35 mL) to 80°C for 5 hours. After cooling to ambient temperature, the mixture was poured into water (100 mL) and extracted with ethyl acetate (2 x 300 mL). The combined ethyl acetate layer was washed with water (100 mL) and brine (100 mL), dried over anhydrous magnesium sulfate, filtered and concentrated under vacuum to give crude product. Purification of this material by column chromatography (silica gel with 2 % methanol in ethyl acetate as eluant) followed by the treatment with 1.1 equivalent of 1N hydrogen chloride in ether gave 1.3 g of the title compound as the hydrochloride quarter hydrate, m. p. 203-206° C.

| Elemental Analysis For: C <sub>28</sub> H <sub>36</sub> FN <sub>3</sub> O <sub>2</sub> · HCl · 0.25 H <sub>2</sub> O |           |          |          |
|----------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|
| Calcd                                                                                                                | C, 66.39; | H, 7.46; | N, 8.29. |
| Found                                                                                                                | C, 66.18; | H, 7.46; | N, 8.07. |

### Example 3

#### (+)-(2S)-1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(5-fluoro-2-methoxy-phenyl)-piperazin-1-yl]-2-phenyl-butan-1-one

**[0028]** The title compound was separated from the racemic base, 1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(5-fluoro-2-methoxy-phenyl)-piperazin-1-yl]-2-phenyl-butan-1-one ( see example 2), by preparative HPLC (Chiraldak, 10 u, 4.6 x 250 mm, 1:1 ethyl acetate: ethyl acetate, retention time was 8.865 min) and the resultant enantiomer was treated with 1.1 equivalent of 1 N hydrogen chloride in ether to give 0.097 g of product as the hydrochloride, m. p. 160-162° C, [α]<sub>D</sub><sup>25</sup> = + 14.97 (DMSO).

| Elemental Analysis For: C <sub>28</sub> H <sub>36</sub> FN <sub>3</sub> O <sub>2</sub> · HCl |           |          |          |
|----------------------------------------------------------------------------------------------|-----------|----------|----------|
| Calcd                                                                                        | C, 66.98; | H, 7.43; | N, 8.37. |
| Found                                                                                        | C, 67.09; | H, 7.61; | N, 8.35. |

### Example 4

#### (-)-(2R)-1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(5-fluoro-2-methoxy-phenyl)-piperazin-1-yl]-2-phenyl-butan-1-one

**[0029]** The title compound was separated from the racemic base, 1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(5-fluoro-2-methoxy-phenyl)-piperazin-1-yl]-2-phenyl-butan-1-one ( see example 2), by preparative HPLC as described in example 3 (retention time of 9.894 min) and the pure basic enantiomer was treated with 1.1 equivalent of 1 N hydrogen chloride in ether to give 0.170 g of product as the hydrochloride 0.6 hydrate, m. p. 170-172° C, [α]<sub>D</sub><sup>25</sup> = -27.91 (DMSO).

| Elemental Analysis For: C <sub>28</sub> H <sub>36</sub> FN <sub>3</sub> O <sub>2</sub> · HCl · 0.6 H <sub>2</sub> O |           |          |          |
|---------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|
| Calcd                                                                                                               | C, 65.67; | H, 7.51; | N, 8.19. |
| Found:                                                                                                              | C, 65.80; | H, 7.95; | N, 8.01. |

**Example 5**1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(1H-indol-4-yl)-piperazin-1-yl]-2-phenyl-butan-1-one

5 [0030] The title compound was prepared from 4-(1H-indol-4-yl)-piperazine (1.0 g, 4.97 mmole), 1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-chloro-2-phenyl-butan-1-one (1.6 g, 4.97 mmole), diisopropylethylamine (0.65 g, 4.97 mmole) and potassium iodide (0.83 g, 4.97 mmole) in dimethylformamide (8 mL) in the manner described in example 2 to yield 0.6 g of product as the hydrochloride 0.75 hydrate, m. p. 150-170° C.

10

| Elemental Analysis For: C <sub>29</sub> H <sub>36</sub> N <sub>4</sub> O · HCl · 0.75 H <sub>2</sub> O |           |          |           |
|--------------------------------------------------------------------------------------------------------|-----------|----------|-----------|
| Calcd                                                                                                  | C, 68.76; | H, 7.66; | N, 11.06. |
| Found                                                                                                  | C, 68.59; | H, 7.74; | N, 11.00. |

**Example 6**(-)-(2R)-1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(1H-indol-4-yl)-piperazin-1-yl]-2-phenyl-butan-1-one

20 [0031] The title compound is separated from the racemic base, 1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(1H-indol-4-yl)-piperazin-1-yl]-2-phenyl-butan-1-one ( see example 5), by preparative HPLC as in example 3 or by chiral synthesis to give the title product as the hydrochloride 1.6 hydrate, m. p. 160-240° C (dec.).

25

| Elemental Analysis For: C <sub>29</sub> H <sub>36</sub> N <sub>4</sub> O · HCl · 1.6 H <sub>2</sub> O |           |          |           |
|-------------------------------------------------------------------------------------------------------|-----------|----------|-----------|
| Calcd                                                                                                 | C, 66.74; | H, 7.76; | N, 10.73. |
| Found                                                                                                 | C, 67.02; | H, 7.74; | N, 10.33. |

**Example 7**1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(2-methoxy-5-trifluoromethylphenyl)-piperazin-1-yl]-2-phenyl-butan-1-one

30 [0032] The title compound was prepared from 4-(2-methoxy-5-trifluoromethyl-phenyl)-piperazine (0.7 g, 2.3 mmole, prepared according to the method reported in example 2), 1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-chloro-2-phenyl-butan-1-one (0.7 g, 2.3 mmole), diisopropylethylamine (0.4 g, 3.0 mmole) and potassium iodide (0.5 g, 3.0 mmole) in dimethylformamide (25 mL) in the manner described in example 2 to yield 0.8 g of title product as the hydrochloride hemihydrate, m. p. 198-199° C.

35

| Elemental Analysis For: C <sub>29</sub> H <sub>36</sub> F <sub>3</sub> N <sub>3</sub> O <sub>2</sub> · HCl · 0.5 H <sub>2</sub> O |           |          |          |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|
| Calcd                                                                                                                             | C, 62.08; | H, 6.83; | N, 7.49. |
| Found                                                                                                                             | C, 62.26; | H, 6.56; | N, 7.40. |

**Example 8**1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-2-phenyl-4-[4-(pyridin-2-yl)-piperazin-1-yl]-butan-1-one

45 [0033] The title compound was prepared from 4-(pyridin-2-yl)-piperazine ( 1.0 g, 6.0 mmole), 1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-bromo-2-phenyl-butan-1-one (1.6 g, 4.76 mmole), diisopropylethylamine (0.9 g, 7.0 mmole) and potassium iodide (0.8 g, 5.0 mmole) in dimethylformamide (30 mL) in the manner described in example 2 to yield 1.1 g of product as the dihydrochloride, m. p. 196-236° C.

50

| Elemental Analysis For: C <sub>26</sub> H <sub>34</sub> N <sub>4</sub> O · 2HCl |           |          |           |
|---------------------------------------------------------------------------------|-----------|----------|-----------|
| Calcd                                                                           | C, 63.54; | H, 7.38; | N, 11.40. |
| Found                                                                           | C, 63.05; | H, 7.47; | N, 11.31. |

**Example 9**1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(3-methoxy-pyridin-2-yl)-piperazin-1-yl]-2-phenyl-butan-1-one

5 [0034] The title compound was prepared from 4-(3-methoxy-pyridin-2-yl)-piperazine (1.0 g, 5.0 mmole) 1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-bromo-2-phenyl-butan-1-one (1.6 g, 4.76 mmole), diisopropylethylamine (0.9 g, 7.0 mmole) and potassium iodide (0.8 g, 5.0 mmole) in dimethylformamide (30 mL) in the manner described in example 2 to yield 0.87 g of title product as the hydrochloride hydrate, m. p. 140-147° C.

10

| Elemental Analysis For: C <sub>27</sub> H <sub>36</sub> N <sub>4</sub> O <sub>2</sub> · HCl H <sub>2</sub> O |           |          |           |
|--------------------------------------------------------------------------------------------------------------|-----------|----------|-----------|
| Calcd                                                                                                        | C, 64.46; | H, 7.81; | N, 11.14. |
| Found                                                                                                        | C, 64.32; | H, 7.91; | N, 10.64. |

**Example 10**1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-2-phenyl-4-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-butan-1-one

20 [0035] The title compound was prepared from 4-(3-trifluoromethyl-pyridin-2-yl)-piperazine (0.9 g, 3.9 mmole), 1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-chloro-2-phenyl-butan-1-one (1.6 g, 5.50 mmole), diisopropylethylamine (0.7 g, 5.4 mmole) and potassium iodide (0.8 g, 4.8 mmole) in dimethylformamide (30 mL) in the manner described in example 2 to yield 0.98 g of title product as the 1.75 hydrochloride, m. p. 108-118° C.

25

| Elemental Analysis For: C <sub>27</sub> H <sub>33</sub> N <sub>4</sub> O · 1.75 HCl |           |          |           |
|-------------------------------------------------------------------------------------|-----------|----------|-----------|
| Calcd                                                                               | C, 58.92; | H, 6.36; | N, 10.18. |
| Found                                                                               | C, 58.87; | H, 6.49; | N, 10.04. |

**Example 11**1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-2-phenyl-4-[4-(5-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-butan-1-one

30 [0036] The title compound was prepared from 4-(3-trifluoromethyl-pyridin-2-yl)-piperazine (0.9 g, 3.9 mmole), 1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-chloro-2-phenyl-butan-1-one (1.6 g, 5.50 mmole), diisopropylethylamine (0.7 g, 5.4 mmole) and potassium iodide (0.8 g, 4.8 mmole) in dimethylformamide (30 mL) in the manner described in example 2 to yield 0.47 g of title product as the hydrochloride 0.3 hydrate, solid foam, m. p. 85-120° C, (dec.).

35

| Elemental Analysis For: C <sub>27</sub> H <sub>33</sub> N <sub>4</sub> O · HCl · 0.3 H <sub>2</sub> O |           |          |           |
|-------------------------------------------------------------------------------------------------------|-----------|----------|-----------|
| Calcd                                                                                                 | C, 61.37; | H, 6.60; | N, 10.60. |
| Found                                                                                                 | C, 61.50; | H, 7.01; | N, 10.47. |

**Example 12**4-[4-(2-Methoxy-phenyl)-piperazin-1-yl]-2-phenyl-1(1,3,3-trimethyl-6-aza-bicyclo[3.2.1]oct-6-yl)-butan-1-one

45 [0037] A mixture of 4-[4-(2-methoxyphenyl) piperazin-1-yl]-2-phenylbutanoic acid (1.70 g, 5.0 mmole), 1,3,3-trimethyl-6-azabicyclo[3.2.1]-octane (0.77 g, 5.0 mmole), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.96 g, 5.0 mmole) and triethylamine (0.55 g, 5.0 mmole) in methylene chloride (10 mL) was stirred at ambient temperature for 48 hr. The mixture was poured into 1 N sodium hydroxide (75 mL) and extracted with ethyl acetate (3 x 75 mL). The combined ethyl acetate layer was washed with water (100 mL) and brine (100 mL), dried over anhydrous magnesium sulfate, filtered and concentrated under vacuum to give crude product. This material was treated with 1.1 equivalent of 1N hydrogen chloride in ether (100 mL) to give 1.15 g of the title compound as the hydrochloride sequi-hydrate, m. p. 110-145°C (dec.).

50

| Elemental Analysis For: C <sub>31</sub> H <sub>43</sub> N <sub>3</sub> O <sub>2</sub> · HCl · 1.5 H <sub>2</sub> O |           |          |          |
|--------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|
| Calcd                                                                                                              | C, 67.31; | H, 8.56; | N, 7.60. |

(continued)

|                                                                                                                    |                    |          |
|--------------------------------------------------------------------------------------------------------------------|--------------------|----------|
| Elemental Analysis For: C <sub>31</sub> H <sub>43</sub> N <sub>3</sub> O <sub>2</sub> · HCl · 1.5 H <sub>2</sub> O |                    |          |
| Found                                                                                                              | C, 66.94; H, 8.48; | N, 7.63. |

5

**Example 13**1-(3-Aza-bicyclo[3.2.2]non-3-yl)-4-[4-(5-fluoro-2-methoxy-phenyl)-piperazin-1-yl]-2-phenyl-butan-1-one

[0038] The title compound was prepared from 4-(5-fluoro-2-methoxy-phenyl)-piperazine (2.1 g, 10.0 mmole), 1-(3-aza-bicyclo[3.2.2]non-3-yl)-4-bromo-2-phenyl-butan-1-one (3.5 g, 10.0 mmole), diisopropylethylamine (1.40 g, 11.0 mmole) and potassium iodide (1.66 g, 10.0 mmole) in dimethylformamide (30 mL) and the purified basic intermediate was treated with 1.1 equivalent of hydrogen chloride in ether to yield 2.5 g of title product as the hydrochloride 1.25 hydrate, m. p. 105-112° C.

|                                                                                                                      |                             |  |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| Elemental Analysis For: C <sub>29</sub> H <sub>38</sub> FN <sub>3</sub> O <sub>2</sub> · HCl · 1.25 H <sub>2</sub> O |                             |  |
| Calcd                                                                                                                | C, 64.67; H, 7.77; N, 7.80. |  |
| Found                                                                                                                | C, 64.74; H, 7.66; N, 7.56. |  |

20

**Example 14**1-(3-Aza-bicyclo[3.2.2]non-3-yl)-4-[4-(1H-indol-4-yl)-piperazin-1-yl]-2-phenylbutan-1-one

[0039] A mixture of 4-piperazinoindole (1.03 g, 5.1 mmole) 1-(3-azabicyclo[3.2.2]non-3-yl)-4-chloro-2-phenyl-butan-1-one (1.44 g, 4.7 mmole) and diisopropylethylamine (0.66 g, 0.89 mL, 5.1 mmole) in anhydrous dimethylformamide (50 mL) were stirred and heated at 80C for 1h. The dimethylformamide was removed under reduced pressure and the brown residue dissolved dilute hydrochloric acid, washed with ether, basified with potassium carbonate solution and the oil extracted into dichloromethane, dried (MgSO<sub>4</sub>) and evaporated under reduced pressure to give a brown oil. The oil was purified by chromatography on alumina (30% ethylacetate in hexane) to yield 1.3 g of oil. Solution of the oil in ethylacetate and addition of an ethereal solution of hydrogen chloride precipitated of the title compound, as the hydrochloride salt 1.25 g, mp 175-179.5C.

|                                                                                                |                            |  |
|------------------------------------------------------------------------------------------------|----------------------------|--|
| Elemental Analysis for: C <sub>30</sub> H <sub>38</sub> N <sub>4</sub> O.2HCl.H <sub>2</sub> O |                            |  |
| Found                                                                                          | C, 64.4; H, 7.4; N, 9.9%   |  |
| Calc                                                                                           | C, 64.1; H, 7.54; N, 10.0% |  |

35

**Example 15**1-(3-Azabicyclo[3.2.2]non-3-yl)-4-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenyl]-butan-1-one

[0040] A mixture of 4-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenyl butanoic acid (1.77 g, 5.0 mmole), dicyclohexylcarbodiimide (1.03 g, 5.0 mmol), 3-azabicyclo[3.2.2]nonane hydrochloride (808 mg, 5.0 mmol) and triethylamine (0.75 mL, 0.55 g, 5.4 mmol) in dichloromethane were stirred at ambient temperature for 18h. The reaction mixture was filtered and the precipitate washed with dichloromethane (2 x 10 mL). Concentration under reduced pressure gave a yellow foam which was chromatographed on silica, using ethyl acetate as eluant to give a colourless gum (1.83 g). The dihydrochloride was obtained by precipitation from an ethylacetate solution with a solution of ethereal hydrogen chloride affording 1.62 g mp 194 -198°C.

|                                                                                                                 |                          |  |
|-----------------------------------------------------------------------------------------------------------------|--------------------------|--|
| Elemental Analysis for: C <sub>29</sub> H <sub>39</sub> N <sub>3</sub> O <sub>2</sub> .2HCl.0.5H <sub>2</sub> O |                          |  |
| Found                                                                                                           | C, 64.0; H, 7.9; N, 7.9% |  |
| Calc                                                                                                            | C, 64.1; H, 7.8; N, 7.7% |  |

50

55

**Example 16**(a) 1-(1,3,3a,4,7,7a-Hexahydro-isoindol-2-yl)-4-chloro-2-phenyl-butan-1-one.

5 [0041] 4-Bromo-2-phenylbutanoic acid (4.86 g 0.02 mol), dimethyl formamide (.05 mL), and thionyl chloride (2.2 mL 0.03 mol) were refluxed in dichloromethane (50 mL) for 2.5 hours under nitrogen. The reaction was evaporated. The residue was evaporated three times with benzene and then dissolved in diethyl ether (50 mL). The solution was chilled in ice and diisopropyl ethylamine (2.6 g 0.02 mol) and 1,3,3a,4,7,7a-hexahydroindole (2.46 g, 0.02 mol) were added. After 2 hours the reaction was essentially complete (TLC uniplate/EtAc). One half of the solution was washed with 10% 10 citric acid, saturated  $\text{NaHCO}_3$ , brine, and dried over  $\text{Na}_2\text{SO}_4$ . The solution was evaporated. Yield 2.7 g 89%. The oil was chromatographed on dry column silica gel (100 mL) and eluted with ethyl acetate. Yield 2.4 g (68.9%).

(b) 1-(1,3,3a,4,7,7a-Hexahydroisoindol-2-yl)-4-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenylbutan-1-one,

15 [0042] One half of the ether solution of the chloroamide product of Example 16(a) (.01 mol) was diluted with DMF (75 mL), the ether was evaporated and 2-methoxyphenylpiperazine (1.93 g, 0.01 mol) and diisopropyl ethyl amine (1.75 mL, 0.01 mol) were added. The mixture was stirred 72 hours at room temperature. Water (75 mL) was added and the solution was extracted with ethyl acetate (4x75 mL). The ethyl acetate was washed with saturated  $\text{NaHCO}_3$ , brine, and dried ( $\text{Na}_2\text{SO}_4$ ). Yield 4.4 g (95.7%). The product was purified by chromatography on dry column silica (400 20 mL) eluted with ethyl acetate. Yield 2.5 g. The amine was dissolved in diethyl ether (100 mL) and acidified with 3.6N HCl in ethyl acetate (4.0 mL). The dihydrochloride was filtered, washed with ether, and dried in vacuo at room temperature to give the title product as the dihydrochloride hemihydrate. Yield 1.85 g., m.p. 209-211°C.

25

| Elemental Analysis for: $\text{C}_{29}\text{H}_{37}\text{N}_3\text{O}_2 \cdot 2\text{HCl} \cdot 1/2 \text{H}_2\text{O}$ |           |          |         |
|-------------------------------------------------------------------------------------------------------------------------|-----------|----------|---------|
| Calc'd                                                                                                                  | C, 64.32; | H, 7.45; | N, 7.76 |
| Found                                                                                                                   | C, 64.04; | H, 7.40; | N, 7.44 |

**Example 17**(a) 1-(Octahydro-isoindol-2-yl)-4-bromo-2-phenyl-butan-1-one

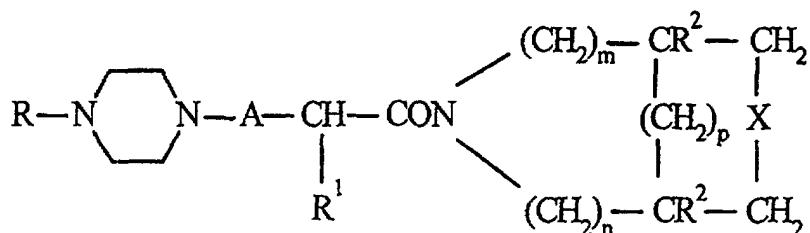
30 [0043] 4-Bromo-2-phenylbutanoic acid (4.86 g, 0.02 mol) and thionyl chloride (2.2 mL, 0.03 mol) were refluxed in dichloromethane (100 mL) under nitrogen for 3 hours. The solution was evaporated and flushed with benzene three 35 times. The residue was dissolved in diethyl ether (50 mL) and cooled in an ice bath. Octahydroisoindole (2.5 g, 0.02 mol) and diisopropylethylamine (3.5 mL, 0.02 mol) dissolved in diethyl ether (50 mL) were added and the reaction was stirred for 60 hours at room temperature. TLC (Uniplate/EtOAc) showed essentially complete reaction. The solution was washed with water, sat.  $\text{NaHCO}_3$ , and dried ( $\text{Na}_2\text{SO}_4$ ). Evaporation of solvent left crude product. Yield 6.46 g.

(40) (b) 4-[4-(2-Methoxyphenyl)piperazin-1-yl]-1-(octahydroisoindol-2-yl)-2-phenyl-butan-1-one

[0044] 1-(Octahydro-isoindol-2-yl)-4-bromo-2-phenyl-butan-1-one (3.23 g, 0.0092 mol), diisopropylethylamine (1.75 mL, 0.01 mol) and 2-methoxyphenylpiperazine (1.93 g, 0.01 mol) were stirred in DMF (50 mL) for 48 hours at room 45 temperature. Water (100 mL) was added and the solution was extracted with ethyl acetate (4X50 mL). The ethyl acetate solution was washed with brine and dried ( $\text{Na}_2\text{SO}_4$ ). The crude product was purified by chromatography on a 200 mL silica dry column. Elution with ethyl acetate-hexane (1:1) removed the less polar impurities. The product was eluted with ethyl acetate. Yield 1.8 g, (39%). The gum was dissolved in acetone (50 mL), acidified with 3.7N HCl in ethyl acetate, and precipitated by the addition of diethyl ether (100 mL) to give the title compound as the dihydrochloride hydrate. Yield 1.4 g (25%); m.p. 190-193°C.

50

| Elemental Analysis for: $\text{C}_{29}\text{H}_{39}\text{N}_3\text{O}_2 \cdot 2\text{HCl} \cdot \text{H}_2\text{O}$ |           |          |         |
|---------------------------------------------------------------------------------------------------------------------|-----------|----------|---------|
| Calc'd                                                                                                              | C, 63.04; | H, 7.84; | N, 7.60 |
| Found                                                                                                               | C, 63.01; | H, 7.76; | N, 7.48 |

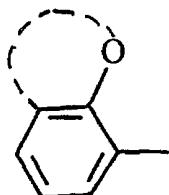

**Example 18**(+)-(2S)-1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(1H-indol-4-yl)-piperazin-1-yl]-2-phenyl-butan-1-one

5 [0045] The title compound is separated from the racemic base, 1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(1H-indol-4-yl)-piperazin-1-yl]-2-phenyl-butan-1-one (see example 5), by preparative HPLC as in example 3 or by chiral synthesis to give the title product as the hydrochloride hemihydrate, m. p. 227-230° C (dec.).

| Elemental Analysis For: C <sub>29</sub> H <sub>36</sub> N <sub>4</sub> O · HCl · 0.5 H <sub>2</sub> O |           |          |           |
|-------------------------------------------------------------------------------------------------------|-----------|----------|-----------|
| Calcd                                                                                                 | C, 69.37; | H, 7.63; | N, 11.16. |
| Found                                                                                                 | C, 69.44; | H, 7.68; | N, 11.09. |

**Claims**

15 1. A compound of formula I:




30 or a pharmaceutically acceptable acid addition salt thereof in which

35 X represents -CR<sup>2</sup> = CR<sup>2</sup>- or -(CR<sup>2</sup>)<sub>q</sub>-; m represents 0, 1 or 2; n represents 0, 1 or 2; p represents 0, 1, 2 or 3 and q represents 0, 1, 2 or 3; A is an alkylene chain of 1 or 2 carbon atoms optionally substituted by one or more C<sub>1-4</sub> alkyl groups;

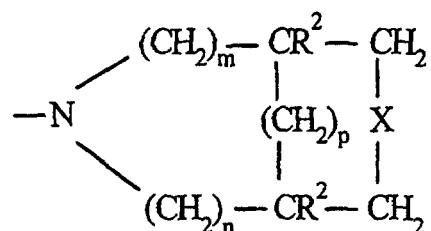
40 R is an aryl or heteroaryl radical;

45 wherein "aryl" means a phenyl, naphthyl or tetrahydronaphthyl radical optionally substituted by one or more of C<sub>1-4</sub> alkyl, C<sub>2-4</sub> alkenyl, C<sub>2-4</sub> alkynyl, C<sub>1-4</sub> alkoxy, halogen, halo(C<sub>1-4</sub>)alkyl, hydroxy, nitrile, (C<sub>1-4</sub>)alkylcarbonyl, (C<sub>1-4</sub>)alkoxycarbonyl, amino, (C<sub>1-4</sub>)alkylamino, di(C<sub>1-4</sub>)alkylamino, aminocarbonyl, (C<sub>1-4</sub>)alkylaminocarbonyl, di(C<sub>1-4</sub>)alkylaminocarbonyl, nitro, -CHO or thio(C<sub>1-4</sub>)alkyl substituents; or a bicyclic oxygen-containing radical of the formula:



50 wherein the heterocyclic ring containing the oxygen atom contains a total of 5 to 7 ring atoms, is non-aromatic, optionally contains one further oxygen atom, and may be optionally substituted as above;

55 and wherein "heteroaryl" means an aromatic radical selected from a monocyclic heteroaryl radical containing 5 to 7 ring atoms or a bicyclic heteroaryl radical containing 8 to 12 ring atoms, one or two hetero ring atoms being selected from nitrogen, oxygen and sulphur, which radical may be optionally substituted as above for "aryl";

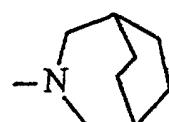

R<sup>1</sup> is an aryl or aryl(C<sub>1-4</sub>)alkyl radical;

and each R<sup>2</sup> is independently hydrogen or C<sub>1-4</sub>alkyl.

2. A compound as claimed in claim 1 wherein

5

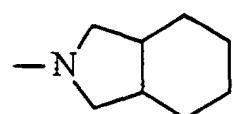
10




15

represents:

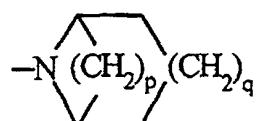
(i)


20



25

or (ii)


30

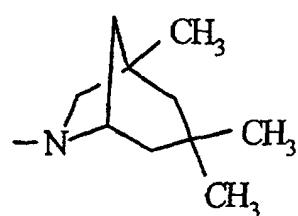


35

or (iii) a radical of formula

40




45

where p is 2 or 3 and q is 0, 1, 2, 3

or (iv)

50

55



3. A compound as claimed in claim 1 or claim 2 wherein A is -CH<sub>2</sub>CH<sub>2</sub>-.

4. A compound as claimed in any one of claims 1 to 3 wherein R is 2-(C<sub>1-4</sub>-alkoxy)phenyl, pyridyl or indolyl.

5. A compound as claimed in claim 1 which is:

1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(2-methoxy-phenyl)-piperazin-1-yl]-2-phenyl-butan- 1-one;

1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(5-fluoro-2-methoxy-phenyl)-piperazin-1-yl]-2-phenyl-butan-1-one;

1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(1H-indol-4-yl)-piperazin-1 -yl]-2-phenyl-butan-1-one;

1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(2-methoxy-5-trifluoromethylphenyl)-piperazin-1-yl]-2-phenyl-butan-1-one;

1-(8-aza-bicyclo[3.2.1]oct-8-yl)-2-phenyl-4-[4-(pyridin-2-yl)-piperazin-1-yl]-butan-1-one;

1-(8-aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(3-methoxy-pyridin-2-yl)-piperazin- 1-yl]-2-phenyl-butan-1-one;

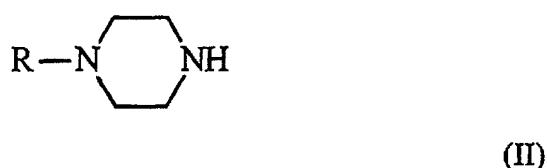
1-(8-aza-bicyclo[3.2.1]oct-8-yl)-2-phenyl-4-[4-(3-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-butan-1-one;

1-(8-aza-bicyclo[3.2.1]oct-8-yl)-2-phenyl-4-[4-(5-trifluoromethyl-pyridin-2-yl)-piperazin-1-yl]-butan- 1-one;

4-[4-(2-methoxy-phenyl)-piperazin-1-yl]-2-phenyl-1(1,3,3-trimethyl-6-aza-bicyclo[3.2. 1]oct-6-yl)-butan-1-one;

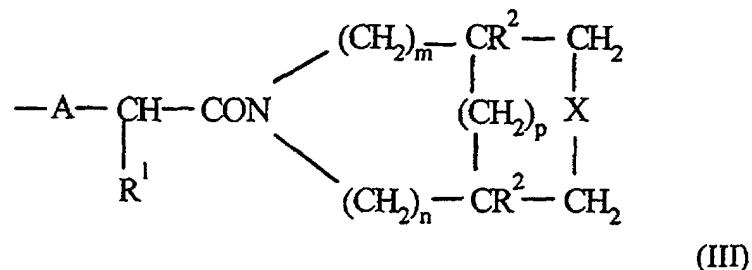
1-(3-aza-bicyclo[3.2.2]non-3-yl)-4-[4-(5-fluoro-2-methoxy-phenyl)-piperazin-1-yl]-2-phenyl-butan-1-one;

1-(3-aza-bicyclo[3.2.2]non-3-yl)-4-[4-(1H-indol-4-yl)-piperazin-1-yl]-2-phenylbutan-1-one;


1-(3-azabicyclo[3.2.2]non-3-yl)-4-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenyl]-butan-1-one;

1-(1,3,3a,4,7,7a-hexahydro-isoindol-2-yl)-4-chloro-2-phenyl-butan-1-one; or

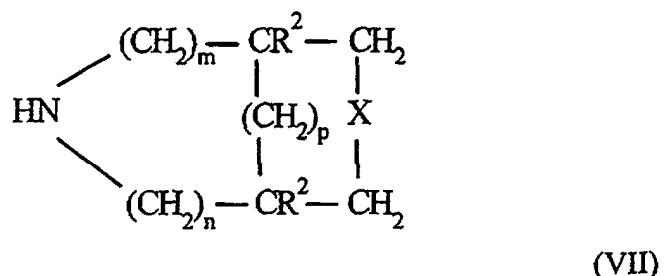
4-[4-(2-methoxyphenyl)piperazin-1-yl]-1-(octahydroisoindol-2-yl)-2-phenyl-butan-1-one.


6. A process for preparing a compound as claimed in claim 1 which process comprises:

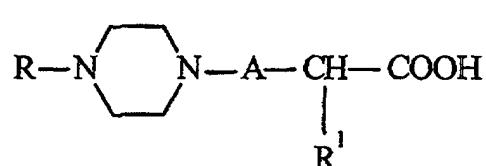
(a) alkylating a compound of formula



50


(where R is as defined in claim 1) with an alkylating agent providing the group




(where X, m, n, p, A, R<sup>1</sup> and R<sup>2</sup> are as defined in claim 1)

or

15 (b) acylating an amine of formula



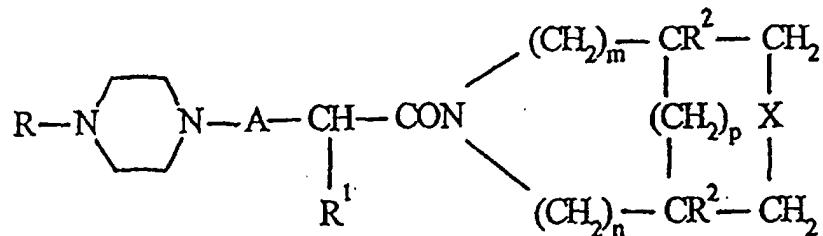
30 (where X, m, n, p and R<sup>2</sup> are as defined in claim 1) with an acid of formula



40 (where A, R and R<sup>1</sup> are as defined in claim 1) or with an acylating derivative thereof

or

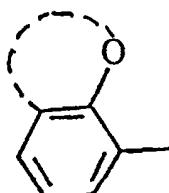
45 (c) converting a base as claimed in claim 1 into a pharmaceutically acceptable salt thereof or converting a pharmaceutically acceptable salt into the free base.


7. A compound as claimed in any one of claims 1 to 5 for use as a 5-HT<sub>1A</sub> receptor binding agent

45

8. The use of a compound as claimed in any one of claims 1 to 5 in the manufacture of a medicament for the treatment of anxiety.

50 **Patentansprüche**


1. Verbindung der Formel I:



oder ein pharmazeutisch annehmbares Säureadditionssalz davon, worin X für  $-\text{CR}^2=\text{CR}^2-$  oder  $-(\text{CR}^2)_q-$  steht; m für 0, 1 oder 2 steht; n für 0, 1 oder 2 steht; p für 0, 1, 2 oder 3 steht und q für 0, 1, 2 oder 3 steht; A eine Alkylenkette mit 1 oder 2 Kohlenstoffatomen darstellt, gegebenenfalls substituiert durch eine oder mehrere  $\text{C}_{1-4}$ -Alkylgruppen; R einen Aryl- oder Heteroarylrest darstellt; worin "Aryl" einen Phenyl-, Naphthyl- oder Tetrahydronaphthylrest bedeutet, gegebenenfalls substituiert durch einen oder mehrere  $\text{C}_{1-4}$ -Alkyl-,  $\text{C}_{2-4}$ -Alkenyl-,  $\text{C}_{2-4}$ -Alkinyl-,  $\text{C}_{1-4}$ -Alkoxy-, Halogen-, Halogen( $\text{C}_{1-4}$ )-alkyl-, Hydroxy-, Nitril-, ( $\text{C}_{1-4}$ )-Alkylcarbonyl-, ( $\text{C}_{1-4}$ )-Alkoxy carbonyl-, Amino-, ( $\text{C}_{1-4}$ )-Alkylamino-, Di( $\text{C}_{1-4}$ )-alkylamino-, Aminocarbonyl-, ( $\text{C}_{1-4}$ )-Alkylaminocarbonyl-, Di( $\text{C}_{1-4}$ )-alkylaminocarbonyl-, Nitro-,  $-\text{CHO}$ - oder  $\text{Thio}(\text{C}_{1-4})$ -alkylsubstituenten; oder einen bicyclischen, Sauerstoff enthaltenden Rest der Formel:

20

25



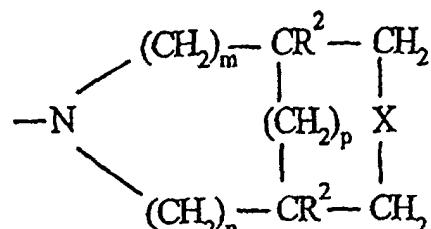
30

worin der heterocyclische Ring, welcher das Sauerstoffatom enthält, insgesamt 5 bis 7 Ringatome enthält, nicht-aromatisch ist, gegebenenfalls ein weiteres Sauerstoffatom enthält und gegebenenfalls wie oben substituiert sein kann;

35

und worin "Heteroaryl" einen aromatischen Rest bedeutet, ausgewählt aus einem monocyclischen Heteroarylrest, welcher 5 bis 7 Ringatome enthält, oder einem bicyclischen Heteroarylrest, welcher 8 bis 12 Ringatome enthält, wobei ein oder zwei Heteroringatome ausgewählt werden aus Stickstoff, Sauerstoff und Schwefel, wobei der Rest gegebenenfalls wie oben für "Aryl" substituiert sein kann;

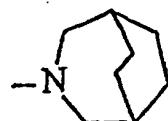
R<sup>1</sup> einen Aryl- oder Aryl( $\text{C}_{1-4}$ )-alkylrest darstellt;


und jedes R<sup>2</sup> unabhängig Wasserstoff oder  $\text{C}_{1-4}$ -Alkyl darstellt.

40

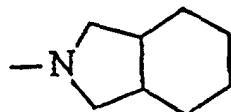
2. Verbindung, wie in Anspruch 1 beansprucht, worin

45


50



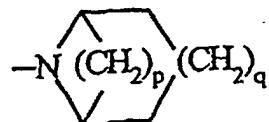
(i)


55

5



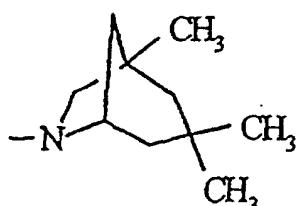
oder (ii)


10



15

oder (iii) einen Rest der Formel


20



25

worin p für 2 oder 3 steht und q für 0, 1, 2, 3 steht  
oder (iv)

30

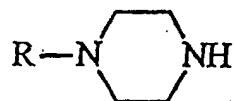


35

darstellt.

40 3. Verbindung, wie in Anspruch 1 oder Anspruch 2 beansprucht, worin A für -CH<sub>2</sub>CH<sub>2</sub>- steht.  
4. Verbindung, wie in einem der Ansprüche 1 bis 3 beansprucht, worin R für 2-(C<sub>1-4</sub>-Alkoxy)phenyl, Pyridyl oder Indolyl steht.

45 5. Verbindung, wie in Anspruch 1 beansprucht, welche

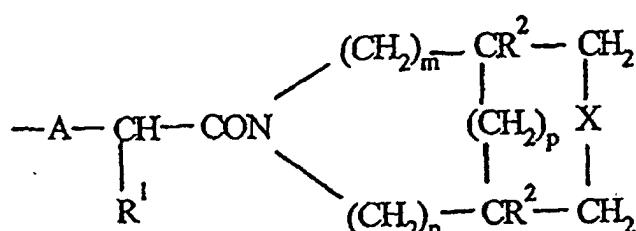

1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(2-methoxy-phenyl)-piperazin-1-yl]-2-phenyl-butan-1-on;  
1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(5-fluor-2-methoxyphenyl)-piperazin-1-yl]-2-phenyl-butan-1-on;  
1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(1H-indol-4-yl)-piperazin-1-yl]-2-phenyl-butan-1-on;  
50 1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(2-methoxy-5-trifluormethyl-phenyl)-piperazin-1-yl]-2-phenyl-butan-1-on;  
1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-2-phenyl-4-[4-(pyridin-2-yl)-piperazin-1-yl]-butan-1-on;  
1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-4-[4-(3-methoxy-pyridin-2-yl)-piperazin-1-yl]-2-phenyl-butan-1-on;  
55 1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-2-phenyl-4-[4-(3-trifluormethyl-pyridin-2-yl)-piperazin-1-yl]-butan-1-on;  
1-(8-Aza-bicyclo[3.2.1]oct-8-yl)-2-phenyl-4-[4-(5-trifluormethyl-pyridin-2-yl)-piperazin-1-yl]-butan-1-on;  
4-[4-(2-Methoxy-phenyl)-piperazin-1-yl]-2-phenyl-1(1,3,3-trimethyl-6-aza-bicyclo[3.2.1]oct-6-yl)-butan-1-on.;  
1-(3-Aza-bicyclo[3.2.2]non-3-yl)-4-[4-(5-fluor-2-methoxyphenyl)-piperazin-1-yl]-2-phenyl-butan-1-on;  
1-(3-Aza-bicyclo[3.2.2]non-3-yl)-4-[4-(1H-indol-4-yl)-piperazin-1-yl]-2-phenylbutan-1-on;

1-(3-Aza-bicyclo[3.2.2]non-3-yl)-4-[4-(2-methoxyphenyl)-piperazin-1-yl]-2-phenyl]-butan-1-on;  
 1-(1,3,3a,4,7,7a-Hexahydro-isoindol-2-yl)-4-chlor-2-phenylbutan-1-on; oder  
 4-[4-(2-Methoxyphenyl)piperazin-1-yl]-1-(octahydroisoindol-2-yl)-2-phenyl-butanol ist.

5 6. Verfahren zum Herstellen einer Verbindung, wie in Anspruch 1 beansprucht, welches Verfahren umfasst:

(a) Alkylieren einer Verbindung der Formel

10

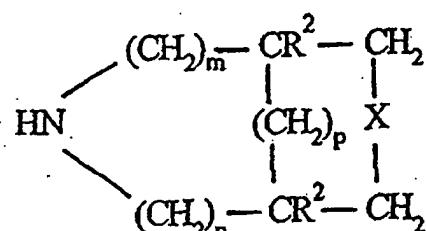



15

(II),

(worin R wie in Anspruch 1 definiert ist) mit einem Alkylierungsmittel, vorsehend die Gruppe

20

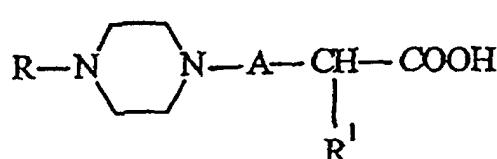



30

(III),

(worin X, m, n, p, A, R<sup>1</sup> und R<sup>2</sup> wie in Anspruch 1 definiert sind) oder  
 (b) Acylieren eines Amins der Formel

35




45

(VII),

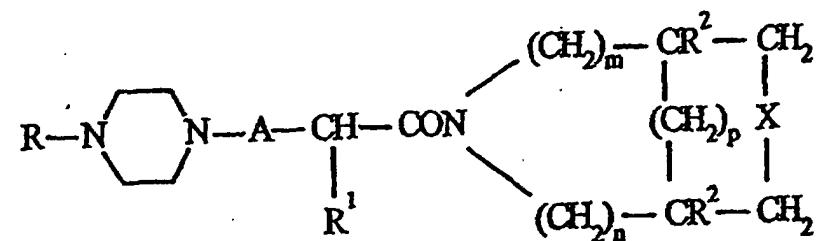
(worin X, m, n, p und R<sup>2</sup> wie in Anspruch 1 definiert sind) mit einer Säure der Formel

50



(VIII)

55


(worin A, R und R<sup>1</sup> wie in Anspruch 1 definiert sind) oder mit einem acylierenden Derivat davon oder  
 (c) Umwandeln einer Base, wie in Anspruch 1 beansprucht, in ein pharmazeutisch annehmbares Salz davon  
 oder Umwandeln eines pharmazeutisch annehmbaren Salzes in die freie Base.

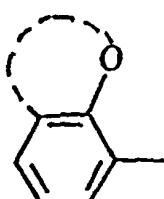
7. Verbindung, wie in einem der Ansprüche 1 bis 5 beansprucht, zur Verwendung als 5-HT<sub>1H</sub>-Rezeptor-Bindungsmittel.

5 8. Verwendung einer Verbindung, wie in einem der Ansprüche 1 bis 5 beansprucht, bei der Herstellung eines Medikaments für die Behandlung von Angstzuständen

**Revendications**

10 1. Composé de formule I :




ou un sel d'addition d'acide pharmaceutiquement acceptable de celui-ci dans laquelle

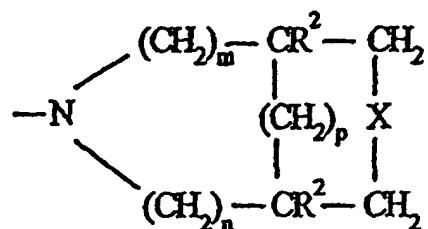
25 X représente -CR<sup>2</sup>=CR<sup>2</sup>- ou -(CR<sup>2</sup>)<sub>q</sub> ; m représente 0, 1 ou 2; n représente 0, 1 ou 2; p représente 0, 1, 2 ou 3 et q représente 0, 1, 2 ou 3; A est une chaîne alkylène de 1 ou 2 atomes de carbone facultativement substituée par un ou plusieurs groupements alkyle en C<sub>1</sub>-C<sub>4</sub>;

R est un radical aryle ou hétéroaryle;

30 dans laquelle "aryle" signifie un radical phényle, naphtyle ou tétrahydronaphtyle facultativement substitué par un ou plusieurs parmi des substituants alkyle en C<sub>1</sub>-C<sub>4</sub>, alcényle en C<sub>2</sub>-C<sub>4</sub>, alcynyle en C<sub>2</sub>-C<sub>4</sub>, alcoxy en C<sub>1</sub>-C<sub>4</sub>, halogène, halogénoalkyle en C<sub>1</sub>-C<sub>4</sub>, hydroxy, nitrile, (alkyl en C<sub>1</sub>-C<sub>4</sub>)carbonyle, (alcoxy en C<sub>1</sub>-C<sub>4</sub>)carbonyle, amino, (alkyl en C<sub>1</sub>-C<sub>4</sub>)amino, di(alkyl en C<sub>1</sub>-C<sub>4</sub>)amino, aminocarbonyle, (alkyl en C<sub>1</sub>-C<sub>4</sub>)aminocarbonyle, di(alkyl en C<sub>1</sub>-C<sub>4</sub>)aminocarbonyle, nitro, -CHO ou thioalkyle en C<sub>1</sub>-C<sub>4</sub>; ou un radical bicyclique contenant un oxygène de formule ;

35




45 dans laquelle le cycle hétérocyclique contenant l'atome d'oxygène contient un total de 5 à 7 atomes de cycle, est non aromatique, contient facultativement un autre atome d'oxygène, et peut être facultativement substitué comme ci-dessus;

et dans laquelle "hétéroaryle" signifie un radical aromatique sélectionné parmi un radical monocyclique hétéroaryle contenant 5 à 7 atomes de cycle ou un radical hétéroaryle bicyclique contenant 8 à 12 atomes de cycle, un ou deux hétéroatomes de cycle sélectionnés parmi l'azote, l'oxygène et le soufre, lequel radical peut être facultativement substitué comme décrit ci-dessus pour un "aryle";

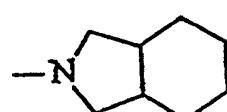
50 R<sup>1</sup> est un radical aryle ou arylalkyle en C<sub>1</sub>-C<sub>4</sub>;

et chaque R<sup>2</sup> est indépendamment un hydrogène ou un alkyle en C<sub>1</sub>-C<sub>4</sub>.

2. Composé suivant la revendication 1, dans lequel

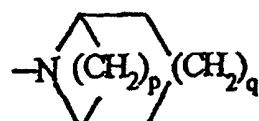


10

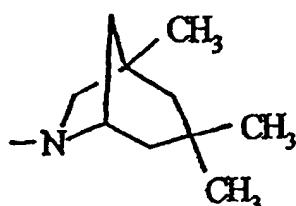

représente

(i)

15




ou (ii)

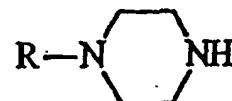



30

ou (iii) un radical de formule

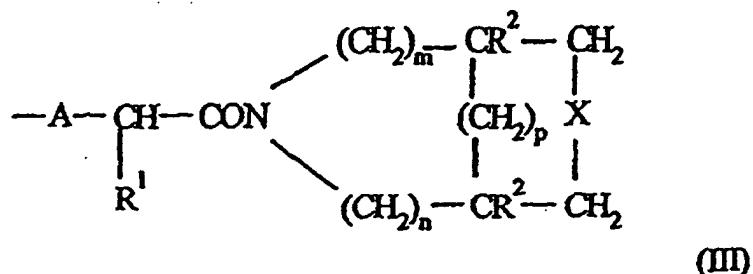


40


dans laquelle p est 2 ou 3 et q est 0, 1, 2, 3  
ou (iv)

3. Composé suivant la revendication 1 ou la revendication 2, dans lequel A est  $-\text{CH}_2\text{CH}_2-$ .
4. Composé suivant l'une quelconque des revendications 1 à 3, dans lequel R est un 2-(alcoxy en  $\text{C}_1\text{-C}_4$ )phényle, un pyridyle ou un indolyte.
5. Composé suivant la revendication 1 qui est :

la 1-(8-azabicyclo[3.2.1]oct-8-yl)-4-[4-(2-méthoxyphényl)pipérazin-1-yl]-2-phénylbutan-1-one;  
 la 1-(8-azabicyclo[3.2.1]oct-8-yl)-4-[4-(5-fluoro-2-méthoxyphényl)pipérazin-1-yl]-2-phénylbutan-1-one;  
 la 1-(8-azabicyclo[3.2.1]oct-8-yl)-4-[4-(1H-indol-4-yl)pipérazin-1-yl]-2-phénylbutan-1-one;  
 la 1-(8-azabicyclo[3.2.1]oct-8-yl)-4-[4-(2-méthoxy-5-trifluorométhylphényl)pipérazin-1-yl]-2-phénylbutan-1-one;  
 la 1-(8-azabicyclo[3.2.1]oct-8-yl)-2-phényl-4-[4-(pyridin-2-yl)pipérazin-1-yl]butan-1-one;  
 la 1-(8-azabicyclo[3.2.1]oct-8-yl)-4-[4-(3-méthoxypyridin-2-yl)pipérazin-1-yl]-2-phénylbutan-1-one;  
 la 1-(8-azabicyclo[3.2.1]oct-8-yl)-2-phényl-4-[4-(3-trifluorométhylpyridin-2-yl)pipérazin-1-yl]butan-1-one;  
 la 1-(8-azabicyclo[3.2.1]oct-8-yl)-2-phényl-4-[4-(5-trifluorométhylpyridin-2-yl)pipérazin-1-yl]butan-1-one;  
 la 4-[4-(2-méthoxyphényl)pipérazin-1-yl]-2-phényl-1-(1,3,3-triméthyl-6-azabicyclo[3.2.1]oct-6-yl)butan-1-one;  
 la 1-(3-azabicyclo[3.2.2]non-3-yl)-4-[4-(5-fluoro-2-méthoxyphényl)pipérazin-1-yl]-2-phénylbutan-1-one;  
 la 1-(3-azabicyclo[3.2.2]non-3-yl)-4-[4-(1H-indol-4-yl)pipérazin-1-yl]-2-phénylbutan-1-one;  
 la 1-(3-azabicyclo[3.2.2]non-3-yl)-4-[4-(2-méthoxyphényl)pipérazin-1-yl]-2-phénylbutan-1-one;  
 la 1-(1,3,3a,4,7,7a-hexahydroisoindol-2-yl)-4-chloro-2-phénylbutan-1-one; ou  
 la 4-[4-(2-méthoxyphényl)pipérazin-1-yl]-1-(octahydroisoindol-2-yl)-2-phénylbutan-1-one;

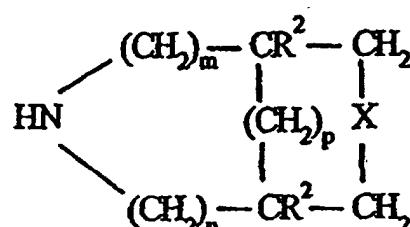

6. Procédé de préparation d'un composé suivant la revendication 1, lequel procédé comprend :

(a) -l'alkylation d'un composé de formule



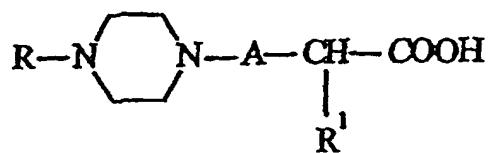
(III)

(dans laquelle R est comme défini à la revendication 1) avec un agent alkylant procurant le groupement




(III)

(dans laquelle X, m, n, p, A, R<sup>1</sup> et R<sup>2</sup> sont comme défini à la revendication 1)


ou

(b) l'acylation d'une amine de formule



(VII)

(dans laquelle X, m, n, p et R<sup>2</sup> sont comme défini à la revendication 1) avec un acide de formule



(dans laquelle A, R et R<sup>1</sup> sont comme défini à la revendication 1) ou avec un dérivé acylant de celui-ci  
ou

10 (c) la conversion d'une base suivant la revendication 1, en un sel pharmaceutiquement acceptable de celui-ci ou la conversion d'un sel pharmaceutiquement acceptable en la base libre.

15 7. Composé suivant l'une quelconque des revendications 1 à 5, pour une utilisation comme agent de liaison au récepteur 5-HT<sub>1A</sub>.

8. Utilisation d'un composé suivant l'une quelconque des revendications 1 à 5, dans la fabrication d'un médicament pour le traitement de l'anxiété.

20

25

30

35

40

45

50

55