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Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] This invention relates to a process for producing a liquid polyalphaolefin homopolymer, e.g., 1-decene, or
copolymer, e.g., one derived from 1-decene, employing hydrogen and a metallocene catalyst therefor. The resulting
polymer is useful in a lubricant composition in which the liquid polyalphaolefin functions as a viscosity modifier.

2. Description of the Prior Art

[0002] Catalytic oligomerization of olefins is a known technique for manufacturing hydrocarbon basestocks useful as
lubricants. Efforts to improve upon the performance of natural mineral oil based lubricants by the synthesis of oligomeric
hydrocarbon fluids have been the subject of important research and development in the petroleum industry for several
decades, leading to recent commercial production of a number of superior poly(alphaolefin) synthetic lubricants (here-
inafter referred to as "PAO"). These materials are primarily based on the oligomerization of alphaolefins such as C6-C12
olefins. Industrial research effort on synthetic lubricants has generally focused on fluids exhibiting useful viscosities over
a wide range of temperature, i.e., improved viscosity index (VI), while also showing lubricity, thermal and oxidative
stability and pour point equal to or better than mineral oil. These newer synthetic lubricants provide lower friction and
hence increase mechanical efficiency across the full spectrum of mechanical loads and do so over a wider range of
operating conditions than mineral oil lubricants.
[0003] Well known structural and physical property relationships for high polymers as contained in the various disci-
plines of polymer chemistry have pointed the way to alphaolefins as a fruitful field of investigation for the synthesis of
oligomers with the structure thought to be needed to confer improved lubricant properties thereon. Due largely to studies
on the polymerization of propene and vinyl monomers, the mechanism of the polymerization of alphaolefins and the
effect of that mechanism on polymer structure is reasonably well understood, providing a strong resource for targeting
on potentially useful oligomerization methods and oligomer structures. Building on that resource, oligomers of alphaolefins
from 6 to 12 carbon atoms have been prepared with commercially useful synthetic lubricants from, e.g., 1-decene
oligomerization, yielding a distinctly superior lubricant product via either cationic or Ziegler catalyzed polymerization.
[0004] A significant problem in the manufacture of synthetic lubricants is the production of lubricants in a preferred
viscosity range in good yield without excessive catalyst deactivation. Frequently, it is difficult to directly produce lower
viscosity range lubes without incurring lower yields due to the production of non-lubricant range materials. Methods to
control molecular weight of lubricants in the oligomerization step are sought after in the art to overcome the problems
in the manufacture of, particularly, lower viscosity lubricants.
[0005] EP 0 586 777 A1 discloses a process for producing liquid ethylene-type random copolymers. WO 97/38019
discloses a polyolefin elastomer. Derwent WPI; AN: 1990-207253 (JP 2140295 A) discloses a lubricating oil containing
an olefin oligomer and a modified silicone oil. EP 0 516 019 A2 discloses a process for producing syndiotactic polyolefins
having a molecular weight distribution Mw/Mn of A 3.

SUMMARY OF THE INVENTION

[0006] It is an object of the present invention to provide a polymerization process, e.g., one carried out under solution
or slurry conditions and in batch or continuously, for producing a liquid polyalphaolefin polymer employing hydrogen and
as the catalyst composition an activated bridged metallocene in which the bridging group possesses at least two bulky
groups.
[0007] It is a further object of the invention to provide such a process for the polymerization of olefins which eliminates
the need for a hydrogenation step to provide saturated liquid, low molecular weight polyalphaolefin homopolymers, e.g.,
1-decene, or copolymers, e.g., one derived from 1-decene.
[0008] Additional objects of the invention include providing a liquid polyolefin homo- or copolymer from at least on α-
olefin containing from 6 to 12 carbon atoms, possessing a combination of low molecular weight (Mw), low polydispersity
index (Mw/Mn), controllable kinematic viscosity (Kv100), low Iodine Number (I2), and low glass transition temperature
(Tg) with the resulting polyolefin being substantially amorphous, the process comprising contacting at least one monomer
having from 6 to 12 carbon atoms under polymerization conditions with hydrogen and a catalytically effective amount
of a catalyst composition comprising the product obtained by combining (a) a metallocene procatalyst, preferably one
containing a bridging group possessing at least two bulky groups, and (b) a cocatalyst, preferably an aluminoxane.
[0009] The terms "metallocene" and "metallocene procatalyst" as used herein shall be understood to refer to com-
pounds possessing a transition metal M, at least one non-cyclopentadienyl-derived ligand X and zero or one heteroatom-
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containing ligand Y, the ligand being coordinated to M and corresponding in number to the valence thereof. Such
compounds, cocatalysts useful for their activation to provide metallocene catalysts that may be employed for the polym-
erization of olefins to provide polyolefin homopolymers and copolymers and/or polymerization processes employing one
or more of the metallocene catalysts are described in, among others, U.S. Patent Nos. 4,752,597; 4,892,851; 4,931,417;
4,931,517; 4,933,403; 5,001,205; 5,017,714; 5,026,798; 5,034,549; 5,036,034; 5,055,438; 5,064,802; 5,086,134;
5,087,677; 5,126,301; 5,126,303; 5,132,262; 5,132,380; 5,132,381; 5,145,819; 5,153,157; 5,155,080; 5,225,501;
5,227,478; 5,241,025; 5,243,002; 5,278,119; 5,278,265; 5,281,679; 5,296,434; 5,304,614; 5,308,817; 5,324,800;
5,328,969; 5,329,031; 5,330,948; 5,331,057; 5,349,032; 5,372,980; 5,374,753; 5,385,877; 5,391,629; 5,391,789;
5,399,636; 5,401,817; 5,406,013; 5,416,177; 5,416,178; 5,416,228; 5,427,991; 5,439,994; 5,441,920; 5,442,020;
5,449,651; 5,453,410; 5,455,365; 5,455,366; 5,459,117; 5,466,649; 5,470,811; 5,470,927; 5,477,895; 5,491,205; and,
5,491,207.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0010] The liquid polyalphaolefin polymers obtained by this invention are substantially saturated, i.e., one possessing
a low iodine number which is discussed hereinbelow, and can be obtained by polymerizing at least one monomer, e.g.,
1-decene, in the presence of hydrogen and a catalyst composition formed by activating a metallocene procatalyst with
a suitable cocatalyst.
[0011] The α-olefins suitable for.use in the preparation of the saturated, liquid polyalphaolefin polymers described
herein contain from 6 to 12 carbon atoms. Suitable α-olefins include 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene,
1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-hepta-
decene, 1-octadecene, 1-nonadecene, 1-eicosene and the like and vinyl aromatic monomers such as styrene, α-methyl
styrene and the like. Preferred α-olefins for use herein are 1-octene, 1-decene and 1-dodecene with 1-decene being
most preferred.
[0012] The preferred liquid polyalphaolefin homopolymer will contain up to about 100 weight percent 1-decene while
the preferred liquid polyalphaolefin copolymer can contain up to 95, preferably from 20 to 90, and more preferably from
30 to 85, weight percent 1-decene, the balance being other α-olefin(s).
[0013] The catalyst composition for use herein is formed by activating a metallocene procatalyst with a suitable catalyst.
The metallocene procatalyst is one or a mixture of metallocene compounds of the following general formula:

(Cp1R1
m)R3(Cp2R2

p)MXq

wherein Cp1 of ligand (Cp1R1
m) and Cp2 of ligand (Cp2R2

p) are the same or different cyclopentadienyl rings, R1 and R2

each is, independently, a hydrocarbyl, halocarbyl, heterocarbyl, hydrocarbyl-substituted organometalloid or halocarbyl-
substituted organometalloid group containing up to about 20 carbon atoms, m is 0 to 5, p is 0 to 5 and two R1 and/or R2

substituents on adjacent carbon atoms of the cyclopentadienyl ring associated therewith can be joined together to form
a ring fused to the cyclopentadienyl ring, the fused ring containing from 4 to about 20 carbon atoms, R3 is a bridging
group bridging Cp1 and Cp2, M is a transition metal having a valence of from 3 to 6, each X is a non-cyclopentadienyl
ligand and is, independently, halogen or a hydrocarbyl, oxyhydrocarbyl, halocarbyl, hydrocarbyl-substituted organomet-
alloid, oxyhydrocarbyl-substituted organometalloid or halocarbyl-substituted organometalloid group containing up to
about 20 carbon atoms, and q is equal to the valence of M minus 2.
[0014] Methods for preparing these and other useful metallocene procatalysts are known in the art and do not constitute
a part of the present invention.
[0015] When employing the foregoing metallocene procatalyst and the cocatalyst is entirely an aluminoxane, ligand
(Cp1R1

m) must be different from ligand (Cp2R2
p), and bridging group R3 possess the structure

in which bulky groups R4 and R5 each, independently, is, or contains, a cyclohydrocarbyl group containing up to about
20, and preferably from 6 to about 12, carbon atoms and from 0 to 3 heteroatoms such as oxygen, sulfur, tertiary nitrogen,
boron or phosphorus, and is selected from cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, heteroaryl,
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alkaryl, alkylheteroaryl, aralkyl, and heteroaralkyl. Preferably, M is titanium, zirconium or hafnium, q is 2 and each X is
halogen.
[0016] Of this preferred group of bridged metallocenes, those in which ligand (Cp1Rm

1) is substituted or unsubstituted
cyclopentadienyl, ligand (Cp2Rp

2) is indenyl or fluorenyl, M is zirconium, R4 and R5 each is substituted or unsubstituted
phenyl and each X ligand is chlorine are still more preferred.
[0017] Still other preferred bridged metallocenes (I) that can be used in the polymerization process of this invention
include: diphenylinethylene(indenyl)(fluorenyl)zirconium dichloride, diphenylmethylene(cyclopentadienyl)(4,5,6,7-tet-
rahydro-indenyl)zirconium dichloride,
diphenylinethylene(cyclopentadienyl)(2-methylindenyl) zirconium dichloride, diphenylmethylene(2,4-dimethylcyclo-pen-
tadienyl)(3’,5’-dimethylcyclopentadienyl)zirconium dichloride, diphenylmethylene(2-methyl-4-tert-butylcyclo-pentadi-
enyl) (3’-tert-butyl-5’-methylcyclopentadienyl)zirconium dichloride, dixylylmethylene(2,3,5-trimethylcyclopentadienyl)
(2’,4’,5’-trimethylcyclopentadienyl)zirconium dichloride, dixylylmethylene(2,4-dimethylcyclopentadienyl)(3’,5’-dimethyl-
cyclopentadienyl)zirconium dichloride, dixylylmethylene(2-methyl-4-tert-butylcyclopentadienyl) (3’-tert-butyl-5-methyl-
cyclopentadienyl)zirconium dichloride, diaylylmethylene(cyclopentadienyl)(fluorenyl)zirconium dichloride, di-o-tolyl-
methylene(cyclopentadienyl)(3,4-dimethyl-cyclopentadienyl)zirconium dichloride,
di-o-tolylmethylene(cyclopentadienyl)(3,4-dimetliyl-cyclopentadienyl)zirconium dichloride,
di-o-tolylmethylene(cyclopentadienyl)(3,4-dimethylcyclopentadienyl)zirconium dichloride,
di-o-tolylmethylene(cyclopentadienyl)(indenyl)zirconium dichloride, dibenzylmethylene(cyclopentadienyl)(tetramethyl-
cyclopentadienyl)zirconium dichloride, dibenzylmethylene(cyclopentadienyl)(indenyl)zirconium dichloride, dibenzyl-
methylene(cyclopentadienyl)(fluorenyl)zirconium dichloride, dicyclohexylmethylene(cyclopentadienyl)(indenyl)zirconi-
um dichloride, dicyclohexyl(cyclopentadienyl)(fluorenyl)zirconium dichloride, dicyclohexylmethylene(2-methylcyclopen-
tadienyl)(fluorenyl) zirconium dichloride,
diphenylsilyl(2,4-dimethylcyclopentadienyl)(3’,5’-dimethylcyclopentadienyl)zirconium dichloride,
diphenylsilyl(2,4-dimethylcyclopentadienyl)(3’,5’-dimethylcyclopentadienyl)zirconium dichloride,
diphenylsilyl(2,3,5-trimethylcyclopentadienyl)(2,4,5-trimethylcyclopentadienyl)zirconium dichloride,
tetraphenyldisilyl(cyclopentadienyl)(indenyl)zirconium dichloride, tetraphenyldisilyl(3-methylcyclopentadienyl)(indenyl)
zirconium dichloride, tetraphenyldisilyl(cyclopentadienyl)(fluorenyl)zirconium dichloride,
di-o-tolylsilyl(cyclopentadienyl)(trimethylcyclopentadienyl) zirconium dichloride,
di-o-tolylsilyl(cyclopentadienyl)(tetramethylcyclopentadienyl)zirconium dichloride,
di-o-tolylsilyl(cyclopentadienyl)(3,4-diethylcyclopentadienyl)zirconium dichloride,
di-o-tolylsilyl(cyclopentadienyl)(triethylcyclopentadienyl) zirconium dichloride, dibenzylsilyl(cyclopentadienyl)(fluorenyl)
zirconium dichloride,
dibenzylsilyl(cyclopentadienyl)(2,7-di-t-butyl-fluorenyl)zirconium dichloride, and
dicyclohexylsilyl(cyclopentadienyl)(fluorenyl)zirconium dichloride.
[0018] The cocatalyst, or activator, employed with the preferred bridged metallocene procatalysts of formula (I) can
be any of the aluminoxanes known to activate metallocene procatalysts. For further details of the aluminoxane cocatalysts
including such alkylaluminoxanes as MAO see, e.g., U.S. Patent No. 5,229,478. In general, the bridged metallocene
procatalyst can be present in the reactor in an amount, expressed in terms of its transition metal content, of from 0.0001
to 0.02, preferably from 0.0002 to 0.015 and more preferably from 0.00025 to 0.01, millimoles/liter. Corresponding to
these amounts of transition metal, the aluminoxane cocatalyst can be utilized in an amount of from 0.01 to 100, preferably
from 0.02 to 75 and more preferably from 0.025 to 50, millimoles/liter. It will, of course, be recognized that optimum
levels of bridged metallocene procatalyst and aluminoxane cocatalyst will to some extent depend upon the specific
procatalyst and cocatalyst selected as well as other polymerization process variables.
[0019] When employing an aluminoxane cocatalyst, it can be advantageous to include a trialkylaluminum such as
trimethylaluminum, triethylaluminum, tri(n-propyl)aluminum, triisopropyaluminum, tri(n-butyl)aluminum, triisobutyl-alu-
minum, and the like, to reduce the amount of aluminoxane required for suitable activation of the metallocene procatalyst.
In general, the optional trialkylaluminum can be utilized in a molar ratio to metallocene procatalyst of from 1 to 1000 and
preferably from 2 to 500.
[0020] It is also contemplated that a neutral or anionic metal- and/or metalloid-containing component can optionally
be employed with the aluminoxane cocatalyst in activating the metallocene procatalyst.
[0021] Useful neutral metal- and/or metalloid-containing components for use herein include boranes such as perfluor-
oarylborane compounds, e.g., tris(pentafluorophenyl)borane, tris(methoxyphenyl)borane, tris(trifluoromethylphenyl)bo-
rane, tris(3,5-di[trifluoro-methyl]phenyl)borane, tris(tetrafluoroxylyl)borane, tris(tetrafluoro-o-tolyl)borane, etc., and the
like. Of the foregoing boranes, tris(pentafluorophenyl)borane and tris(3,5-di[trifluoromethyl]phenyl)borane are preferred.
Other useful second components include aluminum homologues of the foregoing compounds.
[0022] Suitable anionic metal- and/or metalloid-containing components for use herein include borates such as per-
fluoroaryl borates, e.g., lithium tetrakis(pentafluorophenyl)borate, lithium tetrakis(trifluoromethylphenyl)borate, lithium
tetrakis(3,5-di[tri-fluoromethyl]phenyl)borate, sodium tetrakis(pentafluoro-phenyl)borate, potassium tetralcis(pentafluor-
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ophenyl)borate, magnesium tetralcis(pentafluorophenyl)borate, titanium tetrakis(pentafluorophenyl)borate, tin tetrakis
(pentafluorophenyl)borate, dimethylanilinium tetrakis(pentafluorophenyl)borate, etc., and the like. Of the foregoing bo-
rates, dimethylanilinium tetralcis(pentafluorophenyl)borate and alkali metal borates such as lithium tetrakis(pentafluor-
ophenyl)borate and lithium tetrakis(3,5-di[trifluoro-methyl]phenyl)borate are preferred. Other useful components include
aluminate homologues of the foregoing compounds.
[0023] In general, the optional neutral or anionic metal- and/or metalloid-containing components can be utilized in a
molar ratio to metallocene procatalyst of from 0.1 to 10 and preferably from 0.5 to 3.
[0024] Activation of the metallocene can be achieved by combining the aforementioned metallocene procatalysts with
the aluminoxane cocatalyst either simultaneously or in any sequence and with any interval of time therebetween and
either within the presence of, or in the absence of, the olefin monomer(s) and hydrogen.
[0025] It is particularly advantageous to prepare the activated metallocene catalyst compositions in advance and
thereafter introduce it into the polymerization reactor with the olefin monomer(s) in the presence of hydrogen. The
reaction of the metallocene procatalyst with the aluminoxane cocatalyst is advantageously conducted at a temperature
ranging from 0 to 50°C for a time period of from about 1 minute to 72 hours.
[0026] Polymerization or copolymerization of the aforementioned monomers using hydrogen and the catalyst herein
can be carried out in any known manner, e.g., in the liquid phase, i.e., in a solution or slurry process, or in a suspension
process, either continuously or in batch. These processes are generally carried out at temperatures in the range of from
0 ° C to 200°C and preferably from 50°C to 150°C, and pressures from 10 to 3000 psig. As one skilled in the art would
readily appreciate, control of the polymerization temperature has a direct bearing on the quality of the polymerization,
e.g., activity, as well as the final product properties, e.g., Iodine Number. However, as these temperatures approach
150°C or greater, the exothermic temperature, i.e., the maximum temperature reached during the polymerization, should
be substantially close to the initial polymerization temperature, e.g., at temperatures above 150°C the exothermic tem-
perature should be no more than 20°C greater than the initial polymerization temperature.
[0027] Due to the nature of the final liquid polyolefin, the polymerization can be carried out in liquid monomer and in
the absence of solvent or, if desired, in the presence of solvent. Dilution solvents that can be employed include straight
and branched chain hydrocarbons such as the butanes, the pentanes, the hexanes, the heptanes, the octanes, and the
like, cyclic and alicyclic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane, methyl-cyclopentane, meth-
ylcyclohexane, methylcycloheptane and the like, and alkyl-substituted aromatic compounds such as toluene, xylene,
and the like and mixtures thereof.
[0028] A typical batch solution polymerization process can be carried out by first introducing the liquid monomer, e.g.,
1-decene, either alone or in combination with an optional hydrocarbon solvent, e.g., hexane, xylenes, etc., into a stirred
tank reactor. If copolymerization with an additional liquid monomer is desired, e.g., 1-octene, it can be added either
sequentially or simultaneously with the other monomer. A minor amount of an inert impurity scavenger, e.g., the afore-
mentioned trialkylaluminum compounds, can also be added at this time. The reactor is then brought up to the desired
temperature, e.g., from 0 to 200°C, preferably from 20 to 175°C, and a measured amount of hydrogen is then introduced
into the stirred tank reactor. If copolymerization is desired with a gaseous monomer, a monomer feed comprising, for
example, 1-decene, is then sparged into the liquid phase, either in combination with, or separate from the hydrogen
feed. By carrying out the polymerization reaction in the presence of hydrogen and employing the catalyst herein, a
hydrogenation step is eliminated and the liquid polyalphaolefins of this invention are substantially saturated and, therefore,
will possess a low iodine value, e.g., an Iodine Number of from 0.0 to 10, preferably from 0.1 to 5, and most preferably
from 0.2 to 3.
[0029] Once the desired conditions are established, a hydrocarbon solution of the catalyst in the required amounts
are then added to the liquid phase in the reactor. The rate of polymerization is controlled by the concentration of the
catalyst and monomer(s) present or added during polymerization. The reactor temperature is controlled by means of
cooling coils, etc., and the initial total pressure in the reactor is maintained by a constant flow of hydrogen, inert gas,
gaseous monomer(s) or a combination thereof. After polymerization is complete, the reactor is depressurized and the
catalyst is deactivated by conventional means.
[0030] Depending on the amount of monomer conversion and viscosity of the reactor contents, a hydrocarbon solvent
can be added to aid in removal the product liquid polyolefin. Spent catalyst components can be isolated from the reaction
product via mixing with, e.g., alcohol, water or a mixture of both, then by phase separation of the hydrocarbyl component
from the aqueous component. The liquid polyolefin can then be recovered from the hydrocarbyl component by conven-
tional methods, e.g., evaporation, distillation, etc., and then further processed as desired.
[0031] The liquid polyalphaolefin homo- or copolymers obtainable from monomers containing from 6 to 12 carbon
atoms, that can be obtained by the polymerization process herein are substantially amorphous, i.e., wherein a crystalline
phase is substantially absent from the resulting polyolefin as defined by an exothermic peak observation in a differential
scanning calorimetry (DSC) experiment. In addition to being substantially amorphous, liquid polyalphaolefin homo- or
copolymers obtainable from monomers containing from 6 to 12 carbon atoms that can be obtained by the polymerization
process herein possess a unique combination of low molecular weight (Mw), low polydispersity index (Mw/Mn), controllable
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kinematic viscosity (Kv100), high viscosity index (VI), low Iodine Number (I2), i.e., a substantially saturated polyolefin,
and low glass transition temperature (Tg) that distinguish them from known liquid polyolefin. The liquid polyalphaolefin
homo- or copolymers obtainable from monomers having from 6 to 12 carbons according to this invention are substantially
amorphous and possess a Mw of from 500, preferably from about 750, to 60,000 and more preferably from about 1,000
to about 40,000. Further, they may have a Mw/Mn of from 1.0 to 10, preferably from about 1.5 to about 5 and more
preferably from about 1.75 to 4. Moreover, they have a Kv100 of from 10 to 10,000, preferably from 20 to 7,500 and more
preferably from 25 to 5,000, cSt. Further, they may have an Iodine Number of from 0.0 to 10, preferably from 0.1 to 5,
and most preferably from 0.2 to 3 and a Tg of below -20°C, preferably below -30°C and more preferably below -40°C.
[0032] These advantageous properties can be exploited in a variety of products such as, for example, products which
require a viscous oil or an inert material with fluid properties such as dispersants, heat transfer fluids, cosmetics or other
such consumer products, and the like. Additionally, the products of this invention can be used in grafting applications to
produce functionalized low molecular weight polymers. The polyalphaolefin polymers of this invention are particularly
useful as a viscosity modifier for lubricating oils wherein the polymer is employed in a viscosity-modifying amount.
Concentrations of from 1 to 99 weight percent based on the total weight of the lubricating oil composition can be used.
Preferably, the concentration is from 5 to 85 weight percent.
[0033] In general, mineral oils, both paraffinic, naphthenic and mixtures thereof, including those oils defined as Amer-
ican Petroleum Institute Groups I, II, and III can be employed as the lubricant vehicle, and can be any suitable lubricating
viscosity range, as for example, from 2 cSt at 100°C to 1,000 cSt at 100°C and preferably from 2 to 100 cSt at 100°C.
These oils can have viscosity indexes preferably ranging to 180. The average molecular weights of these oils can range
from 250 to 800. Where synthetic oils are employed, they can include, but are not limited to, polyisobutylene, polybutenes,
hydrogenated polydecenes, polypropylene glycol, polyethylene glycol, trimethylpropane esters, neopentyl and pentaer-
ythritol esters, di(2-ethylhexyl) sebacate, di(2-ethylheayl) adipate, dibutyl phthalate, fluorocarbons, silicate esters, si-
lanes, esters of phosphorus-containing acids, liquid ureas, ferrocene derivatives, hydrogenated synthetic oils, chain-
type polyphenyls, siloxanes and silicones (polysiloxanes), alkylsubstituted diphenyl ethers typified by a butyl-substituted
bis(p-phenoxy phenyl) ether, and phenoxy phenylethers.
[0034] The lubricating oil compositions herein can also contain one or more other materials. For example, detergents,
corrosion inhibitors, oxidative inhibitors, dispersants, pour point dispersants, anti-foaming agents, anti-wear agents,
other viscosity modifiers, friction modifiers and the like at the usual levels in accordance with well known practice. Other
materials which can be employed herein include extreme pressure agents, low temperature properties modifiers and
the like can be used as exemplified respectively by metallic phenates or sulfonates, polymeric succinimides, non-metallic
or metallic phosphorodithioates and the like, at the usual levels in accordance with well known practice. These materials
do not detract from the value of the compositions of this invention, rather the materials serve to impart their customary
properties to the particular compositions in which they are incorporated.

EXAMPLES

[0035] The examples that follow include those that are illustrative of the invention (Examples 1-31) and those that are
outside the scope of this invention (Comparative Examples A-K). The procatalysts, cocatalyst, solvents and monomers
employed in these examples are as follows:

1. diphenylmethylidene(cyclopentadienyl)-(9-fluorenyl)zirconium dichloride [Ph2C(Cp-9-Flu)ZrCl2]
2. diphenylmethylidene(3-n-butyl-cyclopentadienyl)-(9-fluorenyl)zirconium dichloride [Ph2C(nBuCp-9-Flu)ZrCl2]
3. diphenylsilyl(cyclopentadienyl)-(9-fluorenyl)zirconium dichloride [Ph2Si(Cp-9-Flu)ZrCl2]
4. isopropylidene(cyclopentadienyl)-(9-fluorenyl)zirconium dichloride [Me2C(Cp-9-Flu)ZrCl2]
5. dimethylsilylbis(9-fluorenyl)zirconium dichloride [Me2Si(Flu)2ZrCl2]
6. racemic-ethylenebis(1-indenyl)zirconium dichloride [rac-Et(Ind)2ZrCl2]
7. dimethylsilylbis(cyclopentadienyl)zirconium dichloride [Me2Si(Cp)2ZrCl2]
8. racemic-dimethylsilylbis(2-methyl-1-indenyl)zirconium dichloride [rac-Me2Si(2-MeInd)2ZrCl2]
9. meso-dimethylsilylbis(2-methyl-1-indenyl)zirconium dichloride [meso-Me2Si(2-MeInd)2ZrCl2]
10. dimethylsilyl(tetramethylcyclopentadienyl)(tert-butylamido)titanium dichloride [Me2Si(C5Me4)(ButN)TiCl2]
11. bis(cyclopentadienyl)zirconium dichloride [Cp2ZrCl2,]
12. bis(n-butyl-cyclopentadienyl)zirconium dichloride, [(nBuCp)2ZrCl2,]
13. Methyl aluminoxane [MAO], 10 weight % Al in toluene
14. Triisobutylaluminum [Al(Bui)3], 25 weight % Al in hexanes

[0036] Hexane solvent, olefin monomers 1-hexene, 1-octene, 1-decene, 1-dodecene and 1-hexadecene were purified
over 3 Å molecular sieves and activated silica/alumina. Anhydrous grade toluene solvent was used as received from
Aldrich Chemical Co. (Milwaukee, Wisconsin) and stored over dry, deoxygenated nitrogen or argon.
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[0037] Unless indicated otherwise, all polymerizations were performed in a jacketed 3 liter Büchi autoclave reactor
equipped with a magnetically coupled agitator, a thermocouple, and various inlets. The autoclave was flushed with
nitrogen and anhydrous hexane prior to use, then filled with monomer(s) and optionally with an inert diluent. TIBAI was
used optionally as an impurity scavenger, then the reactor was brought up to the desired pressure and temperature prior
to addition of the catalyst components. Polymerization was started upon addition of catalyst components. If desired,
reactor pressure was maintained by addition of Argon, Nitrogen and/or Hydrogen. The polymerization was terminated
by depressurization of the autoclave, then transfer of the reactor contents into an agitated vessel containing a mixture
of isopropanol and water acidified with 1% HCl. Periodically hexane was used to help facilitate removal of higher viscosity
products from the reactor and into the wash vessel.
[0038] The following procedures were used to determine the properties of the liquid polyolefins.

Kinematic Viscosity (Kv) and Viscosity Index (VI)

[0039] The kinematic viscosity (Kv) of te liquid polyolefins, Kv, was measures using a modified Ostwald viscometer
according to ASTM standard D445 and reported at temperatures of 100°C (Kv at 100°C) or 40 ° C (Kv at 40°C). The
viscosity index (VI) was measured according to ASTM standard D2270 using the measured kinematic viscosities for
each polyolefin.

Weight Average Molecular Weight (Mw), Number Average Molecular Weight (Mn) and (Mw/Mn)

[0040] The molecular weights of the liquid polyolefins, Mw and Mn, were measured in tetrahydrofuran at 35 °C on a
Waters GPC II gel permeation chromatograph equipped with a Waters RA401 refractive index detector and 5 Waters
Styragel HT columns (HT6, HT5, HT4, HT3, and HT2). The flow rate was 1 ml./min., and the concentration was 0.25 %.
Molecular weights were calculated from elution times calibrated against polystyrene standards from American Polymer
Standards Corp. (ranging for 162 molecular weight to 600,000 molecular weight) using a quadratic fit.

Glass Transition Temperature (Tg) and Crystalline Transition Temperature (Tc)

[0041] The glass transition temperatures and crystalline transition temperatures of liquid polyolefins (Tg and Tc, re-
spectively) were measured by differential scanning calorimetry upon 20-25 mg of polymer without molding. Tg is reported
as the midpoint of the glass transition, while Tc (if observed) is reported as the peak maximum of the exothermic peak
on the heating curve of the sample, recorded on a Perkin Elmer DSC 7 differential scanning calorimeter (from -100°C
to 180°C at a heating rate of 20°C/minute). Calibration was performed with both indium and octane standards.

Branching Ratio and Relative Unsaturation

[0042] The branch content of the liquid polyolefins were determined by infrared spectroscopy of thin polymer films on
a Perkin-Elmer infrared spectrophotometer model Paragon 1000 PC, by comparison of the relative intensities of methyl
to methylene groups in the polymer. This method closely parallels measurements from ASTM standard D3900, which
determines the relative ethylene to propylene ratio in EP copolymers. Relative unsaturation in the polymer was qualita-
tively determined via analysis of the region from 800-1100 cm-1 and 1600-1700 cm-1 of the same polymer film.

Unsaturation Determination by Iodine Number

[0043] The amount of unsaturation in the liquid polyolefins was determined by measurement of the Iodine Number (I2
No.) which is defined as the number of grams of iodine that add to 100 grams of sample. Only halogen that combines
with a sample by way of addition to double bonds is a true measurement of unsaturation. Substitution reactions and, to
a lesser extent, splitting-out reactions contribute to some error in the determination. In this method, the slow rate of
addition of iodine to double bonds is catalyzed by Mercuric Acetate allowing the reaction to be completed in about one
hour where the effects of the slower substitution and splitting-out reactions are minimized. The method was adapted
from Gallo et al., "Unsaturation in Isoprene-Isobutylene Copolymers", Industrial and Engineering Chemistry, Vol. 40,
(1948) pp. 1277-1280. An Iodine Number of less than about 5 is considered substantially saturated.

Polymer Analysis by NMR Spectroscopy

[0044] Polymer NMR analysis was provided by Process NMR Associates, LLC (Danbury, CT). Structural assignments
performed included detection of unsaturation in polymer, carbon chemical shift assignments, analyses of monomer
addition mechanisms and pentad, triad, and dyad sequence determinations. C3 chemical shift assignments and inte-
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gration were used to determine polymer sequence information. The C3 resonance in these samples was structurally
similar to the methyl resonance in polypropylene used for sequence determination in John C. Randall, "Polymer Sequence
Determination" Academic Press, New York (1977) Chapter 1. The effect of substituting an alkyl chain at C3 shifts the
resonance position from 21 ppm to 34 ppm as well as reduces the overall chemical shift dispersion by approximately
28 percent. However, all pentad sequences were resolved in these polymer samples as was observed in polypropylene.
Pentad functionalities were integrated and, triad, and dyad functionalities were calculated from the pentad functionalities.
[0045] The specific polymerization conditions and physical properties of the resulting polymers for each of the examples
are summarized below in Tables 1-10, infra.

EXAMPLE 1

[0046] The dried 3 liter Büchi reactor was filled under argon with 750 ml of dry 1-decene monomer. To this, 1.15 ml
of a 25% by wt. solution of triisobutylaluminum in hexane was added to scavenge moisture and impurities, and the
reactor temperature was brought up to 70°C. Once the temperature reached 70°C, 1 mole of hydrogen gas was added
to the reactor via pressure drop from a vessel of known volume. Then, a solution of 0.007 g of Ph2C(Cp-9-Flu)ZrCl2 was
dissolved in 8.8 ml of a 10 wt. % solution of MAO in toluene, which had been prepared 30 minutes prior to its use, was
injected into the stirring reactor under 200 psig argon pressure. The reactor was maintained at a temperature of 70°C
and 200 psig for a period of 30 minutes.
[0047] When complete, the reactor was depressurized and 400 ml hexane was added to the polymerized decene
solution to aid in transfer. The reactor contents were then pressure transferred to a vessel equipped with an agitator
containing 100 ml of acidified isopropanol, and agitated for 2 minutes. A white flocculent material presumed to be an
aluminum alkoxide precipitated and settled in the aqueous phase. One liter of deionized water was then added to the
washed mixture, stirred, allowed to settle, and then the organic layer was removed from the aluminum residue-laden
aqueous layer.
[0048] The polymer was obtained from the remaining organic solution by evaporation under reduced pressure in a
rotary evaporator. 460 Grams of polyolefin material was obtained with a Mn of 9,000 and a polydispersity Mw/Mn of 2.00.
DSC analysis gave a Tg of -72.6°C, with no indication of crystallinity. Kinematic viscosity measurements at 100°C gave
a viscosity of 635 cSt, and a viscosity index of 282. Unsaturation as measured by Iodine Number was 0.9.
[0049] 1H and 13C NMR analysis performed on this material indicated that there was no detectable unsaturation in
the polymer. Polymer distribution analysis of the polymer demonstrated that the product was primarily syndiotactic in
structure; the triad %rr result was 72.95%, and the pentad %rrrr was 44.39%. NMR results are summarized in the table
of Example 6.

EXAMPLE 2

[0050] The procedure of Example 1 was repeated with the same materials and amounts but using a higher temperature
to note the dependence of polymer viscosity on reaction temperature. The reaction was set at an initial temperature of
95°C, then the reactor temperature was increased to 160°C before bringing it back under control at its original setpoint.
After polymerization and workup, 450 grams of polymeric material was obtained with a Mn of 3,780 and a polydispersity
Mw/Mn of 2.14. DSC analysis gave a glass transition temperature Tg of -76.6°C, with no indication of crystallinity. Kinematic
viscosity measurements at 100°C gave a viscosity of 144 cSt, and a viscosity index of 217. Unsaturation as measured
by Iodine number was 3.75. 1H and 13C NMR analysis performed on this material indicated that there was no detectable
unsaturation in the polymer. Polymer distribution analysis of the polymer demonstrated that the product was primarily
syndiotactic in structure; the triad %rr result was 56.87%, and the pentad %rrrr was 22.31 %. NMR results are summarized
in the table of Example 6.

EXAMPLE 3

[0051] The procedure of Example 1 was repeated using the same materials at 150°C temperature and under reactor
control (i.e., the reactor did not exhibit a significant exotherm) to prepare material comparable to a commercially available
poly(1-decene) at 100 cSt viscosity. After polymerization and workup, 133 grams of polymeric material was obtained.
Kinematic viscosity measurements at 100°C gave a viscosity of 107 cSt, and a viscosity index of 210. Unsaturation as
measured by Iodine number was 5.6.
[0052] A commercial sample of high viscosity poly(1-decene) known as Synton® PAO-100 available from Crompton
Corporation (Middlebury, CT) was obtained and compared against the material synthesized. It’s Kv at 100°C was 100.3
cSt, and its VI was calculated at 171. Unsaturation as measured by Iodine number was 5.2. Thus, at comparable
viscosities, the material of Example 3 exhibits an increase in viscosity index of 39 points, indicative of its improved
temperature-viscosity behavior over the prior art.
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EXAMPLES 4-12 AND COMPARATIVE EXAMPLE A

[0053] Examples 4-12 and Comparative Example A illustrate the effect of temperature on the polymerization of 1-
decene using Ph2C(Cp-9-Flu)ZrCl2 and MAO under conditions similar to those of Examples 1-3 as shown below in Table
1. In all of the examples the molar ratio of MAO to procatalyst was maintained at 1000:1, although the catalyst charge
may have differed.

[0054] As these data illustrate, poly(1-decene) viscosity is controlled primarily by polymerization temperature in a
hydrogen-rich environment. In addition, the degree of unsaturation can be influenced by the degree to which the batch
polymerization exotherm can be controlled. In instances where the temperature setpoint or exotherm exceeds 20°C over
the initial temperature of 150 °C as shown by Comparative Example A compared to Examples 3 and 11 where the
exotherm temperature did not exceed 20°C over the initial temperature of 150 °C, a drop in viscosity accompanied by
an increase in the Iodine Number was achieved, indicating that the chain transfer by hydrogenolysis is in increasing
competition with beta-hydride elimination, leading to an unsaturated chain end. Also note that catalyst decay may also
become prevalent, as demonstrated in the drop-off in 1-decene conversion and procatalyst efficiency.

EXAMPLES 13-16 MAO Concentration Effects

[0055] Utilizing the conditions of Example 1 at 70°C, the ratio of MAO to Ph2C(Cp-9-Flu)ZrCl2 catalyst was varied
from 250:1 to 1000:1 with 0.44 mmol of Al(Bui)3 being added in addition to the MAO to serve as an impurity scavenger.
The polymerization conditions and properties are set forth below in Table 2.

[0056] As these data show, a change in MAO concentration does not effect the degree of polymer saturation as
measured by Iodine Number. With a modest drop in MAO/M ratio, a slight drop in catalyst activity and decene conversion
is seen, and is accompanied by a slight rise in poly(1-decene) viscosity. Although a molar ratio range of 250-1000 was
used in these examples, it is only representative; this range may in fact be much more versatile than outlined in the
examples, depending upon the final desired polymer viscosity and catalyst efficiency.

TABLE 1

Example/ 
Comp. Ex

catalyst 
(g)

Temp. 
(°C)

Exotherm 
(°C)

Activity 
(Kg/
gcat)

% Decene 
Conversion

Kv (at 
100°C)

Kv (at 
40°C) VI I2 No.

1 0.007 70 70 65.74 82.8 635 7,275 282 0.9
2 0.007 95 160 64.25 81.0 144 1,371 217 3.8
3 0.003 150 157 44.18 24.0 107 958 210 5.6
4 0.014 40 43 26.05 65.6 2,463 34,232 344 0.4
5 0.028 40 112 16.84 84.8 698 8,120 286 1.8
6 0.014 70 115 33.42 84.2 282 2,884 246 2.6
7 0.014 70 150 32.49 81.8 175 1,657 228 5.2
8 0.007 95 98 38.74 73.0 521 5,907 271 0.8
9 0.007 95 122 66.00 83.0 316 3,303 250 2.2

10 0.002 120 124 124.10 45.0 280 2,872 245 1.8
11 0.007 150 169 40.61 51.0 58 465 195 9.4
12 0.007 120 182 49.49 65.0 64 516 199 8.1
A 0.007 150 200 38.57 49.0 34 241 188 15.9

TABLE 2

Example
catalyst 

(g)
MAO/

M
Temp. 
(°C)

Exotherm 
(°C)

Activity 
Kg/
gcat

% Decene 
Conversion

Kv (at 
100°C)

Kv (at 
40°C) VI

I2 
No.

13 0.007 1,018 70 72 63.69 80.2 800 9,818 289 0.4
14 0.007 1,018 70 71 59.25 74.6 982 12,250 300 0.4
15 0.007 509 70 71 58.94 74.2 1,132 14,254 307 0.5
16 0.007 254 70 70 43.05 54.2 1,308 16,881 314 0.5
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COMPARATIVE EXAMPLE B

[0057] The conditions of Example 2 were repeated with the same materials, however, hydrogen was not added to the
reactor. Upon polymerization and workup, 39 grams of polymer was obtained, indicating a significant drop in both catalyst
efficiency and in monomer conversion. Kinematic viscosity measurements at 100°C gave a viscosity of 1,085 cSt,
demonstrating a significant increase in molecular weight. Unsaturation as measured by Iodine number was 26.35.
[0058] 1H and 13C NMR analysis performed on this material indicated that there was significant terminal vinylidene
unsaturation in the polymer, occurring as two peaks between 110 and 140 ppm in the 13C NMR. Polymer sequence
distribution analysis demonstrated that the product was primarily syndiotactic in structure; the dyad %rr result was
86.59%, and the pentad %rrrr was 40.36. The results of this comparative example are summarized in Table 3 and
compared to similar analyses performed for Examples 1 and 2.

[0059] Examples 1 and 2 employing hydrogen addition in the polymerization of 1-decene using the catalyst Ph2C(Cp-
9-Flu)ZrCl2 (within the scope of this invention) resulted in a substantially saturated polyolefin as compared to a polyolefin
obtained without the addition of hydrogen (which is outside the scope of this invention) of Comparative Example B. Also
hydrogen is able to serve all at once as a molecular weight regulator, a catalyst activator, and as an efficient chain
terminating agent for the Ph2C(Cp-9-Flu)ZrCl2/MAO catalyst system. Subsequent comparative examples will further
demonstrate the efficiency of this type of bridged metallocene structure over other metallocenes outside the scope of
this invention.

EXAMPLES 17- 21 Hydrogen concentration effects

[0060] Examples 17-21 were carried out to determine the magnitude of hydrogen concentration effect in the reactor.
All materials used in Examples 17-21 were similar to Example 1, with 0.007 g of Ph2C(Cp-9-Flu)ZrCl2 catalyst dissolved
in a 10 weight percent MAO in toluene solution at a 1000:1 MAO:Zr ratio. Reactor conditions were set at a temperature

TABLE 3
Example or Comparative Example 1 2 B

H2 (mmol) 1,000 1,000 0
Polym’n Temp (°C) 70 95 95
Activity (Kg/gcat) 65.73 64.2 5.5
% Decene Conversion 82.8 80.9 6.9
Kv(at100°C) (cSt) 635 144 1,085
Iodine Number (I2 No.) 0.9 3.8 26.35
Olefinics detected (via 13C-NMR) none detected none detected 116,139ppm

Strong
13C-NMR, Dyad distribution

%r 83.35 56.87 86.59
%m 16.65 43.13 13.41
Triad distribution

%rr 72.95 36.10 76.81
%rm 20.80 41.54 19.57
%mm 6.25 22.35 3.62
Pentad distribution

%rrrr 44.39 22.31 40.36
%rrrm 20.73 13.12 21.35
%rmrm 10.46 18.21 10.62
%mmmm 0.86 1.30 1.06
%mmmr 1.68 3.27 0.56
%rmmr 3.72 17.78 2.00
%mmrr 9.50 9.50 5.24
%mrrm 7.83 0.68 15.10
%mmrm/rmrr 3.62 13.84 3.71
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of 95°C with 750 ml 1-decene and 0.44 mol of Al(BUi)3 added prior to inclusion of gaseous components and catalyst
solution. Each example was carried for 30 minutes, with no significant reactor exotherm. Examples 17-20 were run while
feeding hydrogen on demand at the specified pressures. Example 21 differed in that hydrogen was added in a manner
identical to Example 1 and combined with Nitrogen to give 200 psig total reactor pressure prior to polymerization. The
results are summarized below in Table 4.

[0061] Examples 17-21 illustrate that hydrogen is effective at saturating the terminal end group of the formed polymer
at minimal concentration and pressure. However, in order to effectively lower the molecular weight to a usable kinematic
viscosity, and to realize the full activation effect, there needs to be a substantial concentration of hydrogen in the
polymerization vessel, partly due to the low solubility of hydrogen in the reaction medium.

EXAMPLES 22-27

[0062] Employing essentially the same procedure and materials as in Example 2, polymerizations were carried out
with various monomers. In Examples 22-26, 500 ml of monomer was combined with 500 ml of hexane to bring the reactor
volume up to 1 liter, then Al(Bui)3 was added to scavenge impurities. In Example 27, a mixture of monomers were used
which consisted of 274 ml of 1-octene, 165 ml of 1-decene and 311 ml of 1-dodecene for a total of 750 ml in the reactor.
The results of these examples are summarized below in Table 5.

[0063] As these data show, the catalyst contemplated in the invention are versatile across a wide range of monomers
and are limited only in the desired properties of the final product. Thus, polymerizing the different monomers with the
specific metallocene catalyst (of Example 2) and hydrogen illustrates that even though the Kv100 drops as the monomer
size is increased in homopolymerization, the overall molecular weight of the resulting polymer remains approximately
the same as measured by GPC. Additionally, the Iodine Number remains significantly low throughout, indicating little, if
any, unsaturation present in the polymer. Also note that amorphous behavior, as measured by the glass transition
temperature (Tg) reaches a minima for 1-decene as the monomer.

EXAMPLES 28-29

[0064] A dried 3 liter Büchi reactor was filled under Ar with 750 ml of dry 1-decene monomer. Next, 1.15 ml of a 25%
by wt. solution of Al(Bui)3 in hexane was added to scavenge moisture and impurities and the reactor temperature was
increased to a temperature of 95°C. 1 Mole of hydrogen gas was then added to the reactor via pressure drop from a

TABLE4

Example
Pressur e 

(psig)
H2 (mol)

Activity, Kg/
gcat

% Decene 
Conversion

Kv (at 100°C) Kv(at 40°C) VI I2No.

17 5 0.033 34.14 43 998 11,818 307 4.1
18 8 0.045 38.9 49 1,074 13,074 308 2.5
19 15 0.123 53.03 60 863 10,326 296 1.7
20 30 0.212 50.02 63 722 8417 288 1.4
21 200 2.18 61.13 77 512 5781 271 1.2

TABLE 5

Example Monomer(s)
Activity 
Kg/gcat

% Decene 
Conversion

Kv (at 
100°C) VI I2 No. Tg (°C) Mw Mw/Mn

22 1-hexene 27.84 57.7 2,862 251 1.2 -42.5 13,800 2.24
23 1-octene 40.38 79.1 888 276 0.6 -62.9 14,000 2.12
24 1-decene 40.97 77.4 515 272 1.5 -70.5 15,500 2.04
25 1-dodecene 39.20 72.4 402 264 1.2 -21.7 15,800 1.84
26 1-

hexadecene
38.35 68.6 193 n/a 4.2 40.1 15,700 1.82

27 1-octene, 45.9 58 561 271 1.1 -67.7 14,900 2.54
1-decene, 

and 1-
dodecene
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vessel of known volume. Then, a solution of 0.008 g of Ph2C(3-nBuCp-9-Flu)ZrCl2 for Example 28 and Ph2C(Cp-9-Flu)
ZrCl2 for Example 29 dissolved in 8.8 ml of a 10 wt. % solution of MAO in toluene, which had been prepared 30 minutes
prior to its use, was injected into the stirring reactor under 200 psig Ar pressure. The reactor was maintained at a
temperature of 95°C and a pressure of 200 psig for 30 minutes.
[0065] When polymerization was complete, the reactor was depressurized and 400 ml hexane was added to the
polymerized decene solution to aid in transfer. Then the reactor contents were pressure transferred to a vessel equipped
with an agitator containing 100 ml of acidified isopropanol and agitated for 2 minutes. A white flocculent material presumed
to be an aluminum alkoxide precipitated and settled in the aqueous phase. One liter of deionized water was then added
to the washed mixture, stirred, allowed to settle, and the organic layer was removed from the aluminum residue-laden
aqueous layer. The polymer was obtained from the remaining organic solution by evaporation under reduced pressure
in a rotary evaporator. 461 Grams of polymeric material was obtained for each example. The results are summarized
below in Table 6.

EXAMPLES 30-31

[0066] A dried 3 liter Büchi reactor was filled under Ar with 750 ml of dry 1-decene monomer. To this, 1.15 ml of a
25% by wt. solution of Al(Bui)3 in hexane was added to scavenge moisture and impurities and the reactor temperature
was increased to the desired temperature, listed in Table 7 below. Once the desired temperature was reached, 1 mole
of hydrogen gas was added to the reactor via pressure drop from a vessel of known volume. Then, a solution of 0.029
g of Ph2Si(Cp-9-Flu)ZrCl2 dissolved in 10 wt. % solution of MAO in toluene at a 1000:1 molar MAO:Zr ratio, which had
been prepared 30 minutes prior to its use, was injected into the stirring reactor under 200 psig Ar pressure. The reactor
was maintained at the desired temperature and at a pressure of 200 psig for 30 minutes.
[0067] When polymerization was complete, the reactor was depressurized and 400 ml hexane was added to the
polymerized decene solution to aid in transfer. Then the reactor contents were pressure transferred to a vessel equipped
with an agitator containing 100 ml of acidified isopropanol and agitated for 2 minutes. A white flocculent material presumed
to be an aluminum alkoxide precipitated and settled in the aqueous phase. One liter of deionized water was then added
to the washed mixture, stirred, allowed to settle, and the organic layer was removed from the aluminum residue-laden
aqueous layer. The polymer was obtained from the remaining organic solution by evaporation under reduced pressure
in a rotary evaporator. The results are summarized below in Table 7.

[0068] As these data show, the nature of the bridge substituent of the catalyst (within the scope of this invention) is
important both to attain an adequate rate of polymerization as well as provide some moderate effect on the efficiency
of hydrogenolysis during polyermization.

COMPARATIVE EXAMPLES C-E

[0069] A dried 3 liter Büchi reactor was filled under Ar with 750 ml of dry 1-decene monomer. To this, 1.15 ml of a
25% by wt. solution of Al(Bui)3 in hexane was added to scavenge moisture and impurities and the reactor temperature
was increased to the desired temperature, listed in the table below. Once at the desired temperature, hydrogen gas was
added to the reactor via pressure drop from a vessel of known volume to the desired molar quantity, listed in the table
below. Then, a solution of 0.022 g of Me2C(Cp-9-Flu)ZrCl2 dissolved in 10 wt. % solution of MAO in toluene at a 1000:
1 molar MAO:Zr ratio, which had been prepared 30 minutes prior to its use, was injected into the stirring reactor under
200 psig Ar pressure. The reactor was maintained at the desired temperature and at a pressure of 200 psig for 30 minutes.

TABLE 6

Example
catalyst 

(g)
Temp. 
(°C)

Activity Kg/
gcat

% Decene 
Conversion

Kv (at 
100°C Kv (at 40°C) VI I2 No.

28 0.008 92 57.66 83 335 3,379 258 - 2.7
29 0.007 86 61.13 77 521 5,781 271 1.2

TABLE 7

Example H2 (mol)
catalyst 

(g)
Temp. 
(°C)

Activity 
Kg/gcat

% Decene 
Conversion

Kv (at 
100°C)

Kv (at 
40°C) VI I2 No.

30 1.0 0.029 40 4.45 23 1,080 12,555 314 0.8
31 1.0 0.029 95 4.95 26 110 900 222 9.2
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[0070] When complete, the reactor was depressurized and 400 ml hexane was added to the polymerized decene
solution to aid in transfer. Then the reactor contents were pressure transferred to a vessel equipped with an agitator
containing 100 ml of acidified isopropanol and agitated for 2 minutes. A white flocculent material presumed to be an
aluminum alkoxide precipitated and settled in the aqueous phase. One liter of deionized water was then added to the
washed mixture, stirred, allowed to settle, and the organic layer was removed from the aluminum residue-laden aqueous
layer. The polymer was obtained from the remaining organic solution by evaporation under reduced pressure in a rotary
evaporator. The results are summarized below in Table 8.

[0071] As these data show, employing a catalyst outside the scope of this invention effects the rate of polymerization,
monomer conversion and efficiency of hydrogenolysis during polymerization thereby resulting in a significantly higher
Iodine Number as compared to those 1-decene polyolefins obtained in Examples 17-21, 24, and 28-31 utilizing a catalyst
within the scope of this invention.

COMPARATIVE EXAMPLES F-I

[0072] A dried 3 liter Büchi reactor was filled under Ar with 750 ml of dry 1-decene monomer. To this,1.15 ml of a 25%
by wt. solution of Al(Bui)3 in hexane was added to scavenge moisture and impurities and the reactor temperature was
increased to the desired temperature, listed in the table below. Once at the desired temperature, hydrogen gas was
added to the reactor via pressure drop from a vessel of known volume to the desired molar quantity, listed in the table
below. Then a solution of various unbridged metallocene catalysts (for Comparative Examples F, G, and H) and a bridged
metallocene catalyst (for Comparative Example I), whose type and weight are specified in the table below, and who are
known to produce amorphous polymers were dissolved in 10 wt. % solution of MAO in toluene at a 1000:1 molar MAO:
Zr ratio, which had been prepared 30 minutes prior to its use, was injected into the stirring reactor under 200 psig Ar
pressure. The reactor was maintained at the desired temperature and at a pressure of 200 psig for 30 minutes.
[0073] When complete, the reactor was depressurized and 400 ml hexane was added to the polymerized decene
solution to aid in transfer. Then the reactor contents were pressure transferred to a vessel equipped with an agitator
containing 100 ml of acidified isopropanol and agitated for 2 minutes. A white flocculent material presumed to be an
aluminum alkoxide precipitated and settled in the aqueous phase. One liter of deionized water was then added to the
washed mixture, stirred, allowed to settle, and the organic layer was removed from the aluminum residue-laden aqueous
layer.
[0074] The polymer was obtained from the remaining organic solution by evaporation under reduced pressure in a
rotary evaporator. The results are summarized below in Table 9.

TABLE 8
Comparative 

Example H2 (mol) Temp. (°C)
Activity Kg/

gcat
% Decene 
Conversion

Kv (at 
100°C) Kv (at 40°C) VI I2 No.

C 1.0 40 2.68 11 290 2,347 276 10.4
D 1.0 95 9.66 38 18 83 237 48.5
E 3.7 95 6.66 26 20 103 219 32.1
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Table 9
Comp. Example Procatalyst M grams M H2 (mol) Temp. (°C) Activity Kg/gcat % Decene Conversion Kv (at 100°C) Kv (at 40°C) VI I2 No.

F Cp2ZrCl2 0.030 0.0 40 5.39 29 41.4 295 196 26
G Cp2ZrCl2 0.013 1.0 86 15.12 34 2.56 7.81 181 157
H (nBuCp)2ZrC I2 0.009 1.0 89 21.97 34 2.34 7.12 163 133
I Me2Si(Cp)2Zr Cl2 0.018 1.0 40 4.28 14 12 68 175 49.1
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[0075] As these data show, employing a catalyst outside the scope of this invention provides a polyolefin possessing
significantly high Iodine Numbers.

COMPARATIVE EXAMPLE J

[0076] A dried 3 liter Büchi reactor was filled under Ar with 750 ml of dry 1-decene monomer. To this, 1.15 ml of a
25% by wt. solution of Al(Bui)3 in hexane was added to scavenge moisture and impurities and the reactor temperature
was increased to 40°C. Next, 1 mole of hydrogen gas was added to the reactor via pressure drop from a vessel of known
volume. Then, a solution of 0.011g of rac-Et(Ind)2ZrCl2 dissolved in 10 wt. % solution of MAO in toluene at a 1000:1
molar MAO:Zr ratio, which had been prepared 30 minutes prior to its use, was injected into the stirring reactor under
200 psig Ar pressure. The reactor was maintained at a temperature of 40°C and at a pressure of 200 psig for 30 minutes.
[0077] After polymerization and workup, 379 grams of polymeric material was obtained with a viscosity of 702 cSt,
and a viscosity index of 296. Unsaturation as measured by Iodine Number was 0.4. 1H and 13C NMR analysis performed
on this material indicated that there was no detectable unsaturation in the polymer by these methods. Polymer sequence
distribution analysis revealed that the product was primarily isotactic in structure; i.e., the triad sequence %mm result
was 78.66%.
[0078] DSC analysis performed on the polymer of Example J revealed that in addition to a glass transition temperature
of-73.8°C, there was a crystalline transition temperature of 24.5°C in the polymer illustrating that the polymer is not
amorphous thus making the polymer unsuitable for lubricant applications. The results of this example are summarized
below in Table 10.

COMPARATIVE EXAMPLE K

[0079] Employing essentially the same procedure and materials as in Comparative Example I, 0.024 grams of Me2Si
(2-MeInd)2ZrCl2 was polymerized under the same conditions. After workup, 355 grams of poly(1-decene) was recovered,
representing 64% monomer conversion. The polymer had a Kv100 of 1,624 cSt, a VI of 341 and an Iodine Number of
0.35. DSC analysis performed on the polymer revealed that in addition to a glass transition temperature of -66.0°C, there
was a crystalline transition temperature of 33.1 °C in the polymer illustrating that the polymer is not amorphous thus
making the polymer unsuitable for lubricant applications.
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Table 10

Comp. Example Procatalyst H2 (mol) Temp. (°C) Activity Kg/gcat
% Decene 
Conversion Kv (at 100°C) Kv (at 40°C) VI I2No.

Crystalline 
Transition Temp. 

(°C)

J rac-Et
(Ind)2ZrCl2

1.0 40 34.44 68 702 7,528 296 0.4 24.5

K rac-Me2Si(2-
MeInd)2ZrCl2

1.0 40 14.79 64 1,624 18,529 341 0.35 33.1
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Claims

1. A process for producing a liquid polyalphaolefin homo- or copolymer having a kinematic viscosity at a temperature
of 100°C (Kv100) of from 10 to 10,000 mm2s-1 (cSt) and possessing a molecular weight (Mw) of from 500 to 60,000,
the process comprising polymerizing at least one α-olefin containing from 6 to 12 carbon atoms in the presence of
hydrogen and a catalytically effective amount of catalyst comprising the product obtained by combining a metallocene
procatalyst with a cocatalyst, the metallocene procatalyst being at least one compound of general formula:

(Cp1R1
m)R3(Cp2R2

p)MXq

wherein Cp1 of ligand (Cp1R1
m) and Cp2 of ligand (Cp2R2p) are the same or different cyclopentadienyl rings, R1

and R2 each is, independently, a hydrocarbyl, halocarbyl, heterocarbyl, hydrocarbyl-substituted organometalloid or
halocarbyl-substituted organometalloid group containing up to about 20 carbon atoms, m-is 0 to 5, p is 0 to 5 and
two R1 and/or R2 substituents on adjacent carbon atoms of the cyclopentadienyl ring associated therewith can be
joined together to form a ring fused to the cyclopentadienyl ring, the fused ring containing from 4 to about 20 carbon
atoms, R3 is a bridging group bridging Cp1 with Cp2, M is a transition metal having a valence of from 3 to 6, each
X is a non-cyclopentadienyl ligand and is, independently, halogen or a hydrocarbyl, oxyhydrocarbyl, halocarbyl,
hydrocarbyl-substituted organometalloid, oxyhydrocarbyl-substituted organametalloid or halocarbyl-substituted or-
ganometalloid group containing up to about 20 carbon atoms, and q is equal to the valence of M minus 2, the
cocatalyst being an aluminoxane and it being provided that ligand (Cp1R1

m) is different from ligand (Cp2R2
p) and

bridging group R3 possesses the structure

in which groups R4 and R5 each, independently, is, or contains, a cyclic group of from 6 to about 20 carbon atoms,
from 0 to 3 heteroatoms and hydrogens as the remaining atoms, selected from cycloalkyl, heterocycloalkyl, cy-
cloalkenyl, heterocycloalkenyl, aryl, heteroaryl, alkaryl, alkylheteroaryl, aralkyl or heteroaralkyl.

2. The process of Claim 1 wherein in the metallocene procatalyst, the cyclic group is a cycloalkyl, heterocycloalkyl,
cycloalkenyl, heterocycloalkenyl, aryl, heteroaryl, alkaryl, alkylheteroaryl, aralkyl or heteroaralkyl group.

3. The process of Claim 2 wherein in the metallocene procatalyst, ligand (Cp1R1
m) is unsubstituted cyclopentadienyl,

ligand (Cp2R2
p) is substituted or unsubstituted indenyl or fluorenyl, M1 is zirconium, R4 and R5 each is phenyl and

each ligand X is chlorine.

4. The process of Claim 1 wherein the metallocene procatalyst based in terms of the transition metal M, is present in
an amount from 0.0001 to about 0.02 millimoles/liter and the aluminoxane cocatalyst is present in an amount from
0.01 to about 100 millimoles/liter.

5. The process of Claim 1 wherein the α-olefin is 1-octene, 1-decene or 1-dodecene, and is especially 1-decene.

6. The process of Claim 1 wherein the metallocene procatalyst is combined with the aluminoxane cocatalyst and
hydrogen in any order thereof and in the presence or absence of α-olefin.

7. The process of Claim 1 wherein polymerization is carried out under solution polymerization conditions.

8. The process of Claim 1 wherein polymerization is carried out under slurry polymerization conditions.
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Patentansprüche

1. Verfahren zur Herstellung eines flüssigen Polyalphaolefinhomo- oder -copolymers, das eine kinematische Viskosität
bei einer Temperatur von 100 °C (Kv100) von 10 bis 10.000 mm2s-1 (cSt) aufweist und das ein Molekulargewicht
(Mw) von 500 bis 60.000 besitzt, wobei das Verfahren umfasst ein Polymerisieren von mindestens einem α-Olefin,
das 6 bis 12 Kohlenstoffatome enthält, in Gegenwart von Wasserstoff und einer katalytisch wirksamen Menge eines
Katalysators, der das Produkt umfasst, das erhalten wird durch Kombinieren eines Metallocenprokatalysators mit
einem Cokatalysator, wobei der Metallocenprokatalysator mindestens eine Verbindung der folgenden allgemeinen
Formel ist:

(Cp1R1
m)R3(Cp2R2

p)MXq,

wobei Cp1 des Liganden (Cp1R1
m) und Cp2 des Liganden (Cp2R2

p) die gleichen oder verschiedenen Cyclopenta-
dienylringe sind, R1 und R2 jeweils unabhängig steht für eine Hydrocarbyl-, Halogencarbyl-, Heterocarbyl-, durch
Hydrocarbyl substituierte metalloidorganische oder durch Halogencarbyl substituierte metalloidorganische Gruppe,
die bis zu etwa 20 Kohlenstoffatome enthält, m für 0 bis 5 steht, p für 0 bis 5 steht, und zwei R1- und/oder R2-Sub-
stituenten an benachbarten Kohlenstoffatomen des Cyclopentadienylrings, der damit verbunden ist, verbunden sein
können, um einen Ring zu bilden, der an den Cyclopentadienylring anelliert ist, wobei der anellierte Ring 4 bis etwa
20 Kohlenstoffatome enthält, R3 für eine Verbrückungsgruppe steht, die Cp1 mit Cp2 verbrückt, M für ein Über-
gangsmetall mit einer Wertigkeit von 3 bis 6 steht, jedes X für einen Nicht-Cyclopentadienylliganden steht und
unabhängig steht für Halogen oder eine Hydrocarbyl-, Oxyhydrocarbyl-, Halogencarbyl-, durch Hydrocarbyl substi-
tuierte metalloidorganische, durch Oxyhydrocarbyl substituierte metalloidorganische oder durch Halogencarbyl sub-
stituierte metalloidorganische Gruppe steht, die bis zu etwa 20 Kohlenstoffatome enthält, und q gleich der Wertigkeit
von M minus 2 ist, wobei der Cokatalysator für ein Aluminoxan steht und unter der Bedingung, dass der Ligand
(Cp1R1

m) verschieden ist von dem Liganden (Cp2R2
p) und die Verbrückungsgruppe R3 die folgende Struktur besitzt

in der die Gruppe R4 und R5 jeweils unabhängig eine cyclische Gruppe ist oder enthält mit 6 bis etwa 20 Kohlen-
stoffatomen, mit 0 bis 3 Heteroatomen und Wasserstoffen als den verbleibenden Atomen, ausgewählt aus Cycloalkyl,
Heterocycloalkyl, Cycloalkenyl, Heterocycloalkenyl, Aryl, Heteroaryl, Alkylaryl, Alkylheteroaryl, Aralkyl oder Hete-
roaralkyl.

2. Verfahren nach Anspruch 1, wobei in dem Metallocenprokatalysator die cyclische Gruppe für eine Cycloalkyl-,
Heterocycloalkyl-, Cycloalkenyl-, Heterocycloalkenyl-, Aryl-, Heteroaryl-, Alkylaryl-, Alkylheteroaryl-, Aralkyl- oder
Heteroaralkylgruppe steht.

3. Verfahren nach Anspruch 2, wobei in dem Metallocenprokatalysator der Ligand (Cp1R1
m) für ein unsubstituiertes

Cyclopentadienyl steht, der Ligand (Cp2R2
p) für substituiertes oder unsubstituiertes Indenyl oder Fluorenyl steht,

M1 für Zirconium steht, R4 und R5 jeweils für Phenyl steht und jeder Ligand X für Chlor steht.

4. Verfahren nach Anspruch 1, wobei der Metallocenprokatalysator basierend in Bezug auf das Übergangsmetall M
in einer Menge von 0,0001 bis etwa 0,02 Millimol/Liter vorliegt und der Aluminoxancokatalysator in einer Menge
von 0,01 bis etwa 100 Millimol/Liter vorliegt.

5. Verfahren nach Anspruch 1, wobei das a-Olefin für 1-Octen, 1-Decen oder 1-Dodecen und insbesondere für 1-
Decen, steht.
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6. Verfahren nach Anspruch 1, wobei der Metallocenprokatalysator kombiniert wird mit dem Aluminoxancokatalysator
und Wasserstoff in einer beliebigen Reihenfolge davon und in Gegenwart oder Abwesenheit von α-Olefin.

7. Verfahren nach Anspruch 1, wobei die Polymerisation ausgeführt wird unter Bedingungen einer Lösungspolymeri-
sation.

8. Verfahren nach Anspruch 1, wobei die Polymerisation ausgeführt wird unter Bedingungen einer Fällungs- oder
Slurry-Polymerisation.

Revendications

1. Procédé de production d’un homo- ou d’un copolymère de polyalpha-oléfine liquide ayant une viscosité cinématique
à une température de 100°C (Kν100) de 10 à 10 000 mm2s-1 (cSt) et possédant une masse moléculaire (Mp) de 500
à 60 000, le procédé comprenant la polymérisation d’au moins une α-oléfine contenant de 6 à 12 atomes de carbone
en présence d’hydrogène et d’une quantité efficace au plan catalytique d’un catalyseur comprenant le produit obtenu
par combinaison d’un pro-catalyseur de type métallocène avec un co-catalyseur, le pro-catalyseur de type métal-
locène étant au moins un composé de formule générale:

(Cp1R1
m)R3(Cp2R2

p)MXq

dans laquelle Cp1 du ligand (Cp1R1
m) et Cp2 du ligand (Cp2R2

p) sont des cycles cyclopentadiényle identiques ou
différents, R1 et R2 sont chacun indépendamment un groupe hydrocarbyle, halogénocarbyle, hétérocarbyle, orga-
nométalloïde hydrocarbyl-substitué ou organométalloïde halogénocarbyl-substitué contenant jusqu’à environ 20
atomes de carbone, m vaut 0 à 5, p vaut 0 à 5 et deux substituants R1 et/ou R2 sur des atomes de carbone adjacents
du cycle cyclopentadiényle associé à ceux-ci peuvent être liés l’un à l’autre pour former un cycle condensé au cycle
cyclopentadiényle, le cycle condensé contenant de 4 à environ 20 atomes de carbone, R3 est un groupe pontant
reliant Cp1 à Cp2, M est un métal de transition ayant une valence de 3 à 6, chaque X est un ligand qui n’est pas un
groupe cyclopentadiényle et est indépendamment un atome d’halogène ou un groupe hydrocarbyle, oxyhydrocar-
byle, halogénocarbyle, organométalloïde hydrocarbyl-substitué, organométalloïde oxyhydrocarbyl-substitué ou or-
ganométalloïde halogénocarbyl-substitué contenant jusqu’à environ 20 atomes de carbone, et q est égal à la valence
de M moins 2, le co-catalyseur étant un aluminoxane et à condition que le ligand (Cp1R1

m) soit différent du ligand
(Cp2R2

p) et le groupe pontant R3 a la structure

dans laquelle chacun des groupes R4 et R5 est indépendamment, ou contient, un groupe cyclique de 6 à environ
20 atomes de carbone, de 0 à 3 hétéroatomes et des atomes d’hydrogène en tant qu’atomes restants, choisis parmi
les groupes cycloalkyle, hétérocycloalkyle, cycloalcényle, hétérocycloalcényle, aryle, hétéroaryle, alkaryle, alkylhé-
téroaryle, aralkyle ou hétéroaralkyle.

2. Procédé selon la revendication 1, dans lequel, dans le pro-catalyseur de type métallocène, le groupe cyclique est
un groupe cycloalkyle, hétérocycloalkyle, cycloalcényle, hétérocycloalcényle, aryle, hétéroaryle, alkaryle, alkylhé-
téroaryle, aralkyle ou hétéroaralkyle.

3. Procédé selon la revendication 2, dans lequel, dans le pro-catalyseur de type métallocène, le ligand (Cp1R1
m) est

un groupe cyclopentadiényle non substitué, le ligand (Cp2R2
p) est un groupe indényle ou fluorényle substitué ou

non substitué, M1 est un atome de zirconium, R4 et R5 sont chacun un groupe phényle et chaque ligand X est un
atome de chlore.
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4. Procédé selon la revendication 1, dans lequel le pro-catalyseur de type métallocène, en termes de métal de transition
M, est présent dans une quantité de 0,0001 à environ 0,02 millimole/litre et le co-catalyseur de type aluminoxane
est présent dans une quantité de 0,01 à environ 100 millimoles/litre.

5. Procédé selon la revendication 1, dans lequel l’α-oléfine est le 1-octène, le 1-décène ou le 1-dodécène et en
particulier le 1-décène.

6. Procédé selon la revendication 1, dans lequel le pro-catalyseur de type métallocène est combiné avec le co-cata-
lyseur de type aluminoxane et de l’hydrogène dans un ordre quelconque de ceux-ci et en présence ou en l’absence
de l’α-oléfine.

7. Procédé selon la revendication 1, dans lequel la polymérisation est réalisée dans des conditions de polymérisation
en solution.

8. Procédé selon la revendication 1, dans lequel la polymérisation est réalisée dans des conditions de polymérisation
en suspension.
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