(19)
(11) EP 0 031 078 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
01.07.1981  Patentblatt  1981/26

(21) Anmeldenummer: 80107777.7

(22) Anmeldetag:  10.12.1980
(51) Internationale Patentklassifikation (IPC)3D01D 5/04, D01F 6/18
(84) Benannte Vertragsstaaten:
AT BE DE FR GB IT

(30) Priorität: 21.12.1979 DE 2951803

(71) Anmelder: BAYER AG
51368 Leverkusen (DE)

(72) Erfinder:
  • Reinehr, Ulrich, Dr.
    D-4047 Dormagen 1 (DE)
  • Herbertz, Toni
    D-4047 Dormagen 3 (DE)
  • Jungverdorben, Hermann Josef
    D-4048 Grevenbroich 13 (DE)
  • Dross, Joachim
    D-4047 Dormagen 1 (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Feinsttitrige Synthesefasern und -fäden und Trockenspinnverfahren zu ihrer Herstellung


    (57) Trockengesponnene Synthesefasern und - fäden mit einem Spinneinzeltiter von höchstens 3 dtex werden erstmals erhalten, wenn man viskositätsstabile Spinnlösungen nach dem Trockenspinnprozeß mit einem Verzug von mindestens 20 verspinnt.


    Beschreibung


    [0001] In jüngster Zeit werden in der Chemiefaserindustrie verstärkt Antrengungen unternommen, Synthesefasern mit besonders feinen Titern herzustellen. Derartige feintitrige Fasern, die in der Regel einen Faserendtiter zwischen 0,4 - 0,8 dtex aufweisen, besitzen gegenüber herkömmlichen Synthesefasern, z.B. Acrylfasern, die im Titerbereich ab 1,3 dtex liegen, eine Reihe von Vorteilen wie: hoher Glanz, ansprechender Lüster, Eleganz im Flächengebilde, weicher Griff, hohe Flexibilität und Schmiegsamkeit sowie hohe Faserfestigkeit, bedingt durch die hohe Anzahl feiner Fasern im Garnquerschnitt.

    [0002] M. Okamato hat in Chemiefasern/Textilindustrie (1979), Heft 1, Seiten 30 - 34 und Heft 3, Seiten 175 - 178, alle bisher literaturbekannten Verfahren zusammengefaßt. Wie man dieser Übersicht entnehmen kann, lassen sich feinsttitrige Synthesefasern hauptsächlich durch apparative Änderungen im Spinnprozeß, wie z.B. durch Flash- und Blasspinnen durch Scher-, Koagulations-, Schlag- oder Zentrifugalkraftmethoden herstellen. Bei den konventionellen Spinnmethoden hat nur das Verspinnen von miteinander unverträglichen Polymermischungen zu Polymerblendfasern mit Matrix/Fibrillen-Struktur Bedeutung erlangt. Durch Entfernung der Polymermatrix erhält man feinsttitrige Fibrillenfasern, die hauptsächlich als Syntheseoberleder Verwendung finden.

    [0003] Der vorliegenden Erfindung lag die Aufgabe zugrunde, nach einem Trockenspinnverfahren feinsttitrige Synthesefasern, vornehmlich Acrylfasern, herzustellen.

    [0004] Um zu sehr feintitrigen Fasern nach einem solchen Verfahren zu gelangen, muß die Spinnlösung im Spinnschacht einem hohen Verzug ausgesetzt werden. Der Verzug (V) beim Spinnen ist definiert als Verhältnis von Abzugsgeschwindigkeit zur Ausspritzgeschwindigkeit



    [0005] Die Ausspritzgeschwindigkeit (S) ergibt sich zu

    = = Fördermenge in ccm/Min.

    Z = Anzahl der Düsenlöcher

    d2 = Düsenlochdurchmesser in cm



    [0006] Beim herkömmlichen Trockenspinnverfahren von beispielsweise Acrylfäden wird auf die Spinnlösungen ein Verzug von etwa dem 10- bis 20-fachen ausgeübt. Versucht man derartige Spinnlösungen unter den angewandten üblichen Spinnbedingungen höher zu verziehen. so treten Fadenabrisse auf, bis schließlich das Spinnbild im Düsenbereich zusammenbricht. Somit ist der Erhalt feinsttitriger Fäden und Fasern durch einfache Erhöhung des Verzugs bei einem Trockenspinnverfahren nicht möglich.

    [0007] Es wurde nun überraschend gefunden, daß man auch bei einem Trockenspinnverfahren die zur Erzeugung von feinen und feinsten Titern erforderlichen hohen Verzüge dennoch ausüben kann, wenn man zum einen viskositätsstabile Spinnlösungen verspinnt und zum anderen milde thermische Bedingungen im Spinnschacht wählt, die eine langsamere Verdampfung des Spinnlösungsmittels bedingen, als in einem herkömmlichen Trockenspinnprozeß üblich.

    [0008] Die vorliegende Erfindung betrifft daher ein Verfahren zur Herstellung von Synthesefasern und -fäden mit Spinneinzeltitern von 3 dtex und darunter aus fadenbildenden synthetischen Polymeren nach einem Trockenspinnprozeß, das dadurch gekennzeichnet ist, daß viskositätsstabile Spinnlösungen unter solchen thermischen Bedingungen versponnen werden, die einen Verzug von mindestens 20, vorzugsweise 30-500, ermöglichen und das so erhaltene Spinngut in an sich bekannter Weise zu fertigen Fäder oder Fasern weiterbehandelt.

    [0009] Nach diesem Verfahren lassen sich Fäden und Fasern der genannten Titerfeinheit erzeugen, die nicht die beim Trockenspinnen übliche hantelförmigen Querschnitte aufweisen. Die Erfindung betrifft ebenfalls solche Fäden.

    [0010] Das erfindungsgemäße Verfahren ist im Prinzip ein Trockenspinnverfahren, das mit derselben apparativen Ausstattung durchgeführt werden kann, wie ein Verfahren, nach dem gröbere Titer gesponnen werden. So kann z.B. mit den üblichen Spinndüsen mit Lochdurchmessern von ca. 0,15 bis 0,8 mm, vorzugsweise 0,2 bis 0,4 mm, und in üblichen Spinnschächten gearbeitet werden. Auch die zum Einsatz kommenden Spinnlösungen sind die in dieser Technik üblichen und weisen Feststoffgehalte von etwa 25 bis 35 % auf. Bei mittleren K-Werten der Polymerisate von etwa 80 haben die Spinnlösungen damit Viskositäten von etwa 20 bis 100 Kugelfallsekunden bei 80°C (zur Kugelfallmethode s. K. Jost, Rheologica Acta (1958) Bd. 1, Nr. 2-3, Seite 303).

    [0011] Damit nach dem erfindungsgemäßen Verfahren der hohe Verzug, der vorzugsweise 30 bis 500 beträgt, jedoch auch noch darüber liegen kann, ausgeübt werden kann, ist - in Abhängigkeit von dem gewünschten Produkt - auf die Einhaltung gewisser Randbedingungen zu achten. So müssen beispielsweise viskositätsstabile Spinnlösungen eingesetzt werden, d.h. Spinnlösungen, deren Viskosität (gemessen in Kugelfallsekunden) sich während der Abspinnzeit, d.h. üblicherweise über Stunden hinweg maximal um 5 %, vorzugsweise um weniger als 1 %, am besten aber überhaupt nicht ändert. Solche Lösungen haben sich als besonders hoch verzugsfähig erwiesen, während Spinnlösungen, deren Viskosität nicht konstant ist, bei hohen Verzügen verstärkt zu Fadenabrissen neigen (vgl. Beispiel 2). Eine viskositätsstabile Spinnlösung läßt sich herstellen, indem die Lösung vor dem Verspinnen für eine gewisse Zeit auf einer gewissen Mindesttemperatur gehalten wird.

    [0012] Es ist offensichtlich, daß die Zubereitung einer solchen viskositätsstabilen Lösung von der Natur des verwendeten Polymerisats und der des ausgewählten Lösungsmittels abhängig ist. Erfindungsgemäß werden vorzugsweise Acrylnitrilpolymerisate versponnen, insbesondere solche, die aus mindestens 40 Gew.-%, vorzugsweise aus mindestens 85 Gew.-% Acrylnitrileinheiten bestehen. Als Spinnlösungsmittel kommen die bekannten polaren organischen Lösungsmittel in Betracht, insbesondere Dimethylacetamid, Dimethylsulfoxid, Ethylencarbonat, N-Methylpyrrolidon, bevorzugt jedoch Dimethylformamid. Im Falle von Polymerisaten aus 100 % Acrylnitril und bei üblichen K-Werten von z.B. 80 beträgt die obengenannte thermische Vorbehandlung bei Verwendung von Dimethylformamid (DMF) als Lösungsmittel mindestens etwa 4 Minuten bei mindestens etwa 140°C. Acrylnitrilpolymerisate mit einem Gehalt an Comonomeren, wie sie in dieser Technik üblich sind, können bei etwas niedrigeren Temperaturen von ca. 125-130°C für die genannte Zeitdauer vorbehandelt werden, um die gewünschte Viskositätsstabilität der Lösung zu erzielen. Je nach Wahl des Polymerisats und des Lösungsmittels sind einige Vor versuche zur Ermittlung der optimalen Bedingungen für die thermische Vorbehandlung zur Erzielung der Viskositätsstabilität empfehlenswert, wenn nicht erforderlich.

    [0013] Die oben erwähnte Abhängigkeit der Verfahrensprodukte von den nachstehend erläuterten Randbedingungen versteht sich wie folgt: Es hat sich gezeigt, daß nach dem erfindungsgemäßen Verfahren völlig überraschend nicht nur die beim Trockenspinnen üblicherweise erhaltenen hantelförmigen Faserquerschnitte erhalten werden können, sondern auch kreisrunde, runde und bohnen- bis nierenförmige, je nachdem, wie die thermischen Bedingungen im Spinnschacht gewählt werden.

    [0014] Was die thermischen Bedingungen im Spinnschacht anbetrifft, so lassen sich hierzu, wie für den Fachmann offenkundig, nur sehr schwierig absolute Angaben machen, da diese thermischen Bedingungen z.B. von den physikalischen Daten des gewählten Spinnlösungsmittels abhängig sind.

    [0015] Wird beispielsweise Dimethylformamid alsLösungsmittel verwendet, so kann zu diesen thermischen Bedingungen im Spinnschacht ganz allgemein gesagt werden, daß die Spinnlösung eine Temperatur von nicht über 150°C haben sollte, die Spinnschachttemperatur 200°C nicht übersteigen sollte und die Spinnlufttemperatur höchstens etwa 400°C betragen sollte.

    [0016] Bei niedrigen Spinnlösungstemperaturen lassen sich extrem hohe Verzüge erreichen und somit sehr feine Titer spinnen. Ganz allgemein kann hierzu wieder gesagt werden, daß, je niedriger die Spinnlösungstemperatur ist, um so höher der Verzug gewählt werden kann. Niedrige Spinnlösungstemperaturen setzen jedoch viskositätsstabile Spinnlösungen voraus, da nur so eine Kältegelierung der Spinnlösung verhindert werden kann. So konnte beispielsweise aus einer viskositätsstabilen Acrylspinnlösung von 35°C mit einem Verzug von 457 ein Einzelspinntiter von 0,2 dtex erhalten werden, was nach einer 3,6-fachen Verstreckung zu Fäden vom Endtiter 0,07 dtex führte (Beispiel 1).

    [0017] Was für die Spinnlösungstemperatur festgestellt wurde, gilt im gleichen Maße für die Schacht- und Lufttemperatur beim erfindungsgemäßen Trockenspinnen fein(st)titriger Fasern. Niedrige Temperaturen erlauben das Spinnen mit hohen Verzügen infolge schwacher Lösungsmittelausdampfung (z.B. DMF) im Spinnschacht und somit die Herstellung extrem feiner Titer. Mit steigendem Spinntiter ab ca. 1 dtex sollten jedoch, wegen des erhöhten Polymer-Durchsatzes die Spinntemperaturen angehoben werden, um Verklebungen und Fadenabrisse zu vermeiden.

    [0018] Im speziellen wird nach dem erfindungsgemäßen Verfahren immer dann eine nicht hantelförmige Querschnittsform der feintitrigen Fasern erhalten, wenn man die Spinnbedingungen möglichst milde wählt, und mit hohen Verzügen arbeitet. Hierzu wird beispielsweise die Spinnlösung nach der viskositätsstabilisierenden thermischen Behandlung und vor dem Verspinnen auf Temperaturen von etwa 20°C bis etwa 100°C gekühlt, gleichzeitig die Spinnschachttesperatur auf einen Wert zwischen etwa 30°C und vorzugsweise unterhalb des Siedepunktes des verwendeten Lösungsmittels eingestellt und mit Spinnluft bis etwa 300°C gearbeitet. Mit anderen Worten wird dafür Sorge getragen, daß das Lösungsmittel aus dem aus der Düse austretenden Lösungsstrom nicht schlagartig oder zumindest verhältnismäßig rasch zur Ausdampfung gebracht wird, sondern ganz allmählich und möglichst gleichmäßig über die gesamte Schachtlänge. Dadurch ergeben sich die für trockengesponnene Fäden und Fasern völlig ungewöhnlichen kreisrunden bis runden Querschnittsformen. Verlagert man dagegen die thermischen Spinnbedingungen in die zuvor genannten oberen Bereiche, d.h. verspinnt man z.B. eine Acrylnitrilpolymerisat/DMF-Spinnlösung, die eine Temperatur von etwa 90-150°C hat, bei Schachttemperaturen von z.B. 150-200°C und Lufttemperaturen von 300°C und mehr, so verdampft das Lösungsmittel zügiger, war zur Folge hat, daß der Verzug nicht so hoch gewählt werden kann wie im vorigen Fall, so daß die Faserquerschnitte die bekannte Hantelform zeigen. Werden die Spinnbedingungen auf Werte eingestellt, die sich im wesentlichen zwischen den zuvor aufgezeigten befinden, so weist auch der Faserquerschnitt eine Zwischenform auf, z.B. eine Bohnen- oder Nierenform.

    [0019] Bei alledem ist selbstverständlich darauf zu achten, daß die Fäden am Schachtausgang genügend verfestigt sind.

    [0020] Diese Erläuterungen zeigen, daß es nach dem erfindungsgemäßen Verfahren möglich ist, die Feinheit und die Querschnittsform der erhaltenen Fäden zu variieren. Eine solche Festlegung des Faserquerschnitts kann für den einen oder anderen Einsatzzweck für die Fasern erwünscht sein.

    [0021] Als geeignete Größen zur Beschreibung der entstandenen Querschnittsform haben sich die DMF-Verdampfungsgeschwindigkeit pro Kapillare in (mg/Sek.) in Verbindung mit der Verweilzeit der Fäden im Spinnschacht erwiesen. Wie aus zahlreichen Spinnversuchen hervorging, darf die DMF-Verdampfungsgeschwindigkeit bei einer Sekunde Verweilzeit im Spinnschacht den Wert von



    [0022] nicht überschreiten, wenn noch nicht hantelformige Querschnittsformen erhalten werden sollen. Bei längeren Verweilzeiten im Spinnschacht, beispielsweise 2 Sekunden, muß die Verdampfungsgeschwindigkeit geringer und bei kürzeren Verweilzeiten entsprechend höher sein.

    [0023] Abb. 1 zeigt die Kurve, die man erhält, wenn man die DMF-Verdampfungsgeschwindigkeit in

    als Ordinate gegen die Verweilzeit (in Sekunden) im Spinnschacht als Abszisse aufträgt. Sie ist annähernd eine Hyperbel, welche das Gebiet in hantel- und nichthantelförmige Faserquerschnittsstrukturen aufteilt. Unter nichthantelförmigen Faserquerschnittsprofilen werden dabei sowohl bohnen- als auch nierenförmige und runde Querschnittsformen sowie Übergänge zwischen den einzelnen Profilen verstanden. Wie aus Abb. 1 hervorgeht, stellen die Werte der Ordinate in Form der DMF-Verdampfungsgeschwindigkeit ein Maß für die thermischen Spinnbedingungen wie Schacht-, Luft- und Spinnlösungstemperatur dar, während die Werte der Abszisse in Form der Verweilzeit der Fäden im Spinnschacht ein Maß für die mechanischen Spinnbedingungen, wie Abzugsgeschwindigkeit und Schachtlänge, bedeuten. Jeder Punkt auf der Kurve der Abb. 1 stellt eine bestimmte DMF-Menge dar, wobei der DMF-Gehalt im Faden je nach Titer unterschiedlich sein kann. Das heißt mit anderen Worten, der Verlauf der Kurve ist vom Spinntiter unabhängig. Dem Kurvenverlauf ist ferner zu entnehmen, daß jeweils eine bestimmte DMF-Menge verdampft werden muß, um die Querschnittsstruktur zu ändern. Diese ist bei niedrigen Verweilzeiten bedeutend größer als bei längeren Verweilzeiten im Spinnschacht. Andererseits werden unterhalb einer bestimmten Verdampfungsgeschwindigkeit unabhängig von der Verweilzeit nie hantelförmige Querschnitte erreicht.

    [0024] Die DMF-Verdampfungsgeschwindigkeit pro Kapillare in (mg/Sek.) läßt sich aus der Differenz zwischen durchgesetzter Spinnlösungsmittelmenge pro Kapillare (mg/Sek.) und Restlösungsmittelmenge pro Kapillare (mg/Sek.) ermitteln. Dies soll an einer Modellberechnung für das Beispiel 1 gezeigt werden. Hierbei gilt:

    Durchgesetzte Menge an Polymerfeststoff in (g/min): Gesamtspinntiter (dtex) x Abzugsgeschwindigkeit (m/min) 10 000



    [0025] 

    Durchgesetzte Menge an Spinnlosungsmittel (g/min):

    Polymerfeststoff (g/min) x Soinnlösungskonzentration Feststoffkonzentration



    [0026] 

    Restlösungsmittelmenge im Spinngut (g/min):

    Nach dem Spinnprozeß wurden 9,9 % an Restlösungsmittel DMF bezogen auf Feststoff gefunden. Es gilt:



    x = 0,570 g DMF verbleiben im Spinngut.

    DMF-Verdampfungsgeschwindigkeit (g/min) = 13,765 - 0,570 = 13, 195 ;

    Bei der Durchführung des erfindungsgemäßen Verfahrens wurde in der Regel mit DMF-Spinnlösungen mit einem Gehalt von 29,5 Gew.-% Polymerisat gearbeitet. Bei höheren Konzentrationen ist wie aus Beispiel 6 hervorgeht eine niedrigere Verdampfungsgeschwindigkeit R1 nötig, um nicht hantelförmige Querschnitte zu erhalten. Die Werte folgen der empirischen Formel:

    wobei

    C1 DMF = die eingesetzte Konzentration an Spinnlösungsmittel,

    C2 DMF = 70,5 Gew.-% DMF und

    R2 = die DMF-Verdampfungsgeschwindigkeit

    (mg ) für die Spinnlösungskonzentration C2 Sek. Kapillare bedeuten. Den Wert für R2kann man direkt aus der Kurve der Abb. 1 für die entsprechende Verweilzeit im Spinnschacht (in Sek.) entnehmen. Dabei errechnet sich die Verweilzeit (in Sekunden) der Fäden im Spinnschacht aus der Beziehung



    [0027] Für Beispiel 6 errechnet sich demnach die DMF-Verdampfungsgeschwindigkeit R1 für eine von 70,5 Gew.-% DMF verschiedene Spinnlösungskonzentration, bei der eine Änderung der Querschnittsform eintritt, wie folgt:



    bei 1,16 Sek. Verweilzeit im Spinnschacht.

    [0028] Neben der veränderten Faserquerschnittsform feintitriger Fasern, die nach dem erfindungsgemäßen Verfahren hergestellt worden sind, weisen derartige Fasern mit nicht hantelförmigen Querschnittsprofilen noch einen außerordentlich hohen Glanz auf. Dies führt zu einer hohen Eleganz im Flächengebilde von Gebrauchsartikeln. Wie oberflächenmorphologische Untersuchungen mit dem Rasterelektronenmikroskop zeigen, besitzen die erfindungsgemäßen feintitrigen Fasern im Gegensatz zu herkömmlich trocken gesponnenen Acrylfasern keine borkige, fibrillierte Oberfläche mit Riefen begrenzter Länge unter wechselndem Winkel zur Faserachse. Die feintitrigen Fasern besitzen glatte Oberflächen und parallel zur Faserachse verlaufende Riefen und Streifungen, die nicht unterbrochen sind, so daß das Licht gerichtet reflektiert wird. Infolge der größeren Garnfeinheit (Nm 100/1) zeigen feintitrige Fasern, z.B. bei Interlockware, aus 3-Zylindergarnen einen sehr weichen Griff gegenüber herkömmlicher Acrylware aus 1,6 dtex Fasern. Dies ist besonders für hautnah getragene Artikel von hohem Gebrauchswert.

    [0029] Im Falle der Nachbehandlung von feintitrigem Spinngut hat es sich als äußerst günstig erwiesen, das Spinngut vor dem Streckprczeß durch Hindurchleiten durch Wannen mit warmer Waschflüssigkeit, vorzugsweise Wasser, auf ca. 79-80°C aufzuwärmen, um eine gleichmäßigere Verstreckung zu erzielen. Das feintitrige Spinngut läßt sich auf übliche Weise durch Waschen-Strecken-Präparieren-Trocknen-Kräuseln-Schneiden zu fertigen Acrylfasern nachbehandeln. Wegen der großen Titerfeinheit der Fäden, besonders bei Spinntiter kleiner 1 dtex, ist es ferner vorteilhaft, die Verstreckung in Stufen vorzunehmen.

    [0030] Das erfindungsgemäße Verfahren ist nicht allein auf die Herstellung feinster Titer aus Acrylfasern beschränkt. Ebenso lassen sich lineare, aromatische Polyamide, die gegebenenfalls noch heterocyclische Ringsysteme, wie z.B. Benzimidazole, Oxazole, Thiazole usw., aufweisen und die nach einem Trockenspinnverfahren herstellbar sind, wie beispielsweise das Polyamid aus m-Phenylendiamin und Isophthalsäure, nach dem erfindungsgemäßen Verfahren zu feinsten Titern verspinnen.

    [0031] Mit dem erfindungsgemäßen Verfahren ist es erstmals möglich, Fasern mit extrem feinen Endtitern von z.B. 0,1 dtex auch in größerem Tonnen-Maßstab herzustellen.

    [0032] Die Titerbestimmung nach der gravimetrischen Methode ist bei feinen Titern ( < 0,5 dtex) sehr ungenau. Die Titerbestimmung erfolgte deshalb nach der mikroskopischen Methode durch Ermittlung des Fadendurchmessers "d" mit dem Okularmikrometer nach DIN 53 811 gemäß der Formel:



    [0033] Literatur: Chemiefasern (1975), Heft 7. Seite 593.

    [0034] Die folgenden Beispiele dienen der näheren Erläuterung der Erfindung. Teil- und-Prozentangaben beziehen sich, wenn nicht anders vermerkt, auf das Gewicht.

    Beispiel 1



    [0035] 70,5 kg Dimethylformamid (DMF) wurden mit 29,5 kg eines Acrylnitrilcopolymerisates aus 93,6 % Acrylnitril, 5,7 % Acrylsäuremethylester und 0,7 % Natriummethallylsulfonat vom K-Wert 81 unter Rühren vermischt und in einem 60 cm langen, doppelwandigen Rohr von 8 cm innerem Durchmesser mit Dampf von 3,2 bar Druck erhitzt. Die Temperatur der Lösung, welche eine Feststoffkonzentration vcn 29,5 Gew.-% aufwies, betrug am Rohrausgang 135°C. Im Rohr befanden sich mehrere Mischkämme zur Homogenisierung der Spinnlösung. Die Spinnlösung wurde nach Verlassen der Aufheizvorrichtung filtriert und dem Spinnschacht zugeführt. Die Verweilzeit von der Aufheizvorrichtung bis zur Spinndüse betrug 8 Min. Die Spinnlösung besaß eine Viskosität von 30 Kugelfallsekunden gemessen bei 80°C. Dieser Wert blieb bei Messungen nach 1, 3 und 5 Stunden unverändert. Die Spinnlösung wurde anschließend auf 35°C abgekühlt und aus einer 720 Lochdüse mit Düsenlochdurchmessern von 0,2 mm trockenversponnen. Die Schachttemperatur betrug 50°C, die Lufttemperatur 200°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 400 m/min. Die Verweilzeit der Fäden im Spinnschacht betrug 0,87 Sekunden. Aus der Spinnpumpe wurden 19,8 ccm/min gefördert. Der Gesamtspinntiter betrug 144 dtex und der Restlösungsmittelgehalt des Spinngutes an DMF lag bei 9,9 Gew.-% bezogen auf Polymerfeststoff. Die DMF-Verdampfungsgeschwindigkeit berechnet sich hiernach zu 0,305 mg Der [Sek.Kapillare]

    [0036] Einzelspinntiter lag bei 0,2 dtex. Der Verzug V betrug 457. Die Fäden wurden am Schachtausgang mit ölhaltiger Präparation benetzt, auf Spulen aufgewickelt, zu einem Kabel gefacht, in kochendem Wasser 1:3,6-fach verstreckt und auf übliche Weise zu Fasern vom Einzelendtiter 0,07 dtex nachbehandelt.

    [0037] Zur mikroskopischen Beurteilung der Querschnittsgeometrie wurden die Faserkapillaren in Methacrylsäuremethylester eingebettet und quergeschnitten. Die im differentiellen Interferenzkontrastverfahren hergestellten lichtmikroskopischen Aufnahmen zeigten, daß die Probenquerschnitte vollkommen gleichmäßig und rund sind. Der Titerwert wurde aus dem Fadendurchmesser d = 2,8 µm mit der vorgegebenen Dichte = 1,17 g/cm3 errechnet. Der mittlere Fadendurchmesser wurde mit dem Fasermeßokular bestimmt. Die Fasern besaßen einen außerordentlich hohen Glanz. Bei Untersuchungen im Rasterelektronenmikroskop zeigten die Fasern glatte Oberflächen mit längsgestreiften Riefen. Die Streifungen wiesen einen vollkommen parallelen Verlauf zur Faserachse auf und waren im Gegensatz zu denen bei herkömmlichen Acrylfasern nicht unterbrochen.

    Beispiel 2 (Vergleich)



    [0038] Ein Teil des Ansatzes aus Beispiel 1 wurde in der Aufheizvorrichtung bei 80°C anstatt bei 135°C gelöst und die Viskosität der Spinnlösung nach der Filtraticn bei 80°C bestimmt. Die Spinnlösung hatte eine Viskosität von 76 Kugelfallsekunden. Bei Reproduktionsmessungen betrug die Viskosität nach 1 Stde. 72, nach 3 Stdn. 67 und nach 5 Stdn. 64 Kugelfallsekunden. Die Spinnlösung wies somit eine abnehmende Viskosität auf. Die Spinnlösung wurde nach der Filtration wieder auf 35'C abgekühlt und aus einer 720-Lochdüse, wie in Beispiel 1 beschrieben, zu Fäden trockenversponnen. Es traten wiederholt Fadenabrisse im Düsenbereich auf. Wie lichtmikroskopische Querschnittsaufnahmen zeigten, lagen auch zahlreiche Titerschwankungen vor.

    Beispiel 3



    [0039] Ein Acrylnitrilcopolymerisat, mit der chemischen Zusammensetzung von Beispiel 1, wurde, wie dort beschrieben, in DMF gelöst, filtriert und die Spinnlösung vor der Düse auf 40°C abgekühlt. Dann wurde aus einer 720-Lochdüse mit Düsenlochdurchmesser von 0,2 mm trockenversponnen. Die Schachttemperatur betrug 50°C, die Lufttemperatur 200°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 250 m/min und die Verweilzeit der Fäden im Spinnschacht betrug 1,39 Sekunden. Aus der Spinnpumpe wurden 52,8 ccm/ min gefördert. Der Gesamtspinntiter war 648 dtex. Der Restlösungsmittelgehalt im Spinngut betrug 10,8 %. Die DMF-Verdampfungsgeschwindigkeit lag bei 0,856

    . Der Einzelspinntiter lag bei 0,9 dtex.

    [0040] Der Verzug betrug 107. Die Fäden wurden am Schachtausgang wiederum mit ölhaltiger Präparation benetzt, auf Spulen aufgewickelt, zu einem Kabel gefacht, in kochendem Wasser 1:3,6-fach verstreckt und auf übliche Weise zu Fasern vom Endtiter 0,3 dtex nachbehandelt. Die Faserquerschnitte waren wiederum vollkommen gleichmäßig und kreisrund. Die Fasern besaßen ebenfalls wieder einen sehr hohen Glanz und zeigten im Rasterelektronenmikroskop eine glatte Oberfläche mit parallel zur Faserachse längsgestreiften Riefen.

    Beispiel 4



    [0041] Ein Acrylnitrilcopolymerisat mit der chemischen Zusammensetzung aus Beispiel 1 wurde wie dort beschrieben in DMF gelöst. Die Spinnlösung wurde anschließend filtriert, auf 90°C abgekühlt und aus einer 720-Lochdüse mit Düsenlochdurchmesser von 0,2 mm trockenversponnen. Die Schachttemperatur betrug 150°C, die Lufttemperatur 200°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 180 m/min. Es wurde an einem kürzer dimensionierten Spinnschacht gesponnen, so daß sich eine Verweilzeit von 1,66 Sek. ergab. Aus der Spinnpumpe wurden 82,8 ccm/Min. gefördert. Der Gesamtspinntiter war 1304 dtex. Der Restlösungsmittelgehalt im Spinngut lag bei 13,5 %. Die DMF-Verdampfungsgeschwindigkeit betrug 1,225



    [0042] Der Einzelspinntiter lag bei 1,8 dtex. Der Verzug betrug 48. Die Fäden wurden unter 1:4,0-facher Verstreckung zu Fasern vom Endtiter 0,6 dtex nachbehandelt. Die Fasern besaßen ein rundes bis schwach bohnenförmiges Querschnittsprofil. Ihr Glanz war wiederum außerordentlich hoch. Im Rasterelektronenmikroskop konnten wieder an der Oberfläche parallel zur Faserachse verlaufende Riefen und Streifungen beobachtet werden, die keine Unterbrechungen aufwiesen.

    [0043] In der folgenden Tabelle wird durch Spinnversuche die Abhängigkeit der Querschnittsform von der DMF-Verdampfungsgeschwindigkeit in

    demonstriert. Mit steigendem Spinntiter müssen die Energieverhältnisse im Spinnschacht angehoben werden, da mit steigendem Lösungsdurchsatz mehr Spinnlösungsmittel verdampfen muß, um eine Fadenverfestigung zu erhalten. Das Spinngut wurde jeweils 1:3,6-fach in kochendem Wasser verstreckt und wie üblich nachbehandelt. Die Einzelspinn- und Einzelendtiter wurden wiederum nach der lichtmikroskopischen Methode ermittelt und die Querschnittsformen anhand lichtmikroskopischer Aufnahmen nach dem differentiellen Interferenzkontrastverfahren bestimmt. Die unterschiedlichen Verweilzeiten im Spinnschacht wurden neben unterschiedlichen Abzugsgeschwindigkeiten auch durch andere Schachtlängen erzielt. Wie man der Tabelle entnehmen kann, entstehen von der Hantelform abweichende Querschnittsformen vornehmlich bei Spinntitern kleiner 3 dtex. Wie die Beispiele 12 und 17 zeigen, lassen sich jedoch auch bei Spinntitern ab 3,0 dtex und feiner hantelförmige Faserquerschnitte herstellen, wenn man nur die DMF-Verdampfungsgeschwindigkeit in

    hoch genug wählt. Man hat daher mit dieser Meßgröße, wie bereits erwähnt, einen geeigneten Parameter in der Hand, die Querschnittsform festzulegen.

    [0044] 




    Beispiel 5



    [0045] a) Ein Acrylnitrilcopolymerisat mit der chemischen Zusammensetzung von Beispiel 1 wurde wie dort beschrieben in DMF gelöst, filtriert und die Spinnlösung vor der Düse auf 112°C gehalten. Dann wurde aus einer 1050-Lochdüse mit Düsenlochdurchmesser von 0,25 mm trockenversponnen. Die Schachttemperatur betrug 150°C, die Lufttemperatur 260°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 300 m/min und die Verweilzeit der Fäden im Spinnschacht betrug 1,76 Sekunden. Aus der Spinnpumpe wurden 193,2 ccm/ min gefördert. Der Gesamtspinntiter war 1903 dtex. Der Restlösungsmittelgehalt im Spinngut betrug 8,3 %. Die DMF-Verdampfungsgeschwindigkeit lag bei 2,090

    Der Einzelspinntiter lag bei 1,81 dtex.

    [0046] Der Verzug betrug 80. Die Fäden wurden am Schachtausgang wiederum mit ölhaltiger Präparation benetzt, auf Spulen gesammelt, zu einem Kabel gefacht, in kochendem Wasser 1:4,0-facin verstreckt und auf übliche Weise zu Fasern nachbehandelt. Der Faserendtiter lag bei 0,56 dtex. Die Fasern zeigen die typische Hantelform.

    [0047] b) Ein Teil des Ansatzes aus Beispiel 5a wurde nach dem Löse- und Filtrationsvorgang vor der Düse auf 40°C abgekühlt und aus einer 1050-Lochdüse mit Düsenlochdurchmesser von 0,25 mm trockenversponnen. Die Schachttemperatur betrug 190°C, die Lufttemperatur 380°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 250 m/min und die Verweilzeit der Fäden im Spinnschacht betrug 2,11 Sekunden. Aus der Spinnpumpe wurden 161 ccm/min gefördert. Der Gesamtspinntiter war 1891 dtex. Der Restlösungsmittelgehalt im Spinngut war 8,8 %. Die DMF-Verdampfungsgeschwindigkeit lag bei 1,727

    Der Einzelspinn- titer lag bei 1,80 dtex. Der Verzug war 80. Die Fäden wurden wie in Beispiel 5a beschrieben nachbehandelt. Der Faserendtiter lag bei 0,58 dtex. Die Fasern zeigen wiederum die typische Hantelform.

    [0048] c) Ein Teil des Ansatzes aus Beispiel 5 wurde in der Aufheizvorrichtung bei 80°C anstatt bei 135°C gelöst, filtriert und die Spinnlösung vor der Düse wieder auf 112°C gehalten. Dann wurde wie in Beispiel 5a beschrieben versponnen. Die Fäden ließen sich nicht anlegen. Es kam ständig zu Abrissen unterhalb der Düse.

    [0049] d) Ein weiterer Teil des Ansatzes wurde in der Aufheizvorrichtung bei 80°C anstatt bei 135°C gelöst, filtriert und die Spinnlösung auf 40°C abgekühlt. Die Lösung hatte bei 50°C eine Viskosität von 235 Kugelfallsekunden. Bei 40°C stieg die Viskosität auf 356 Kugelfallsekunden an, und die Lösung wurde trübe. Beim Versuch, eine derartige Lösung wie in Beispiel 5a beschrieben zu verspinnen, konnten keine Fäden erhalten werden. Es kam ständig zu Abrissen unterhalb der Düse.

    Beispiel 6



    [0050] 35 kg eines Acrylnitrilcopolymerisates mit der chemischen Zusammensetzung aus Beispiel 1 wurden wie dort beschrieben in 65 kg DMF gelöst. Die Spinnlösung wurde anschließend filtriert, auf 35°C abgekühlt und aus einer 360-Lochdüse mit Düsenlochdurchmesser von 0,3 mm trockenversponnen. Die Schachttemperatur betrug 50°C, die Lufttemperatur 200°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 300 m/min. Die Verweilzeit im Spinnschacht betrug 1,16 Sekunden. Aus der Spinnpumpe wurden 126,8 ccm/ min gefördert. Der Gesamttiter war 1391 dtex. Der Restlösungsmittelgehalt im Spinngut lag bei 35,5 %. Die DMF-Verdampfungsgeschwindigkeit betrug 2,902

    . Der Einzelspinntiter lag bei 3,86 dtex. Der Verzug betrug 60. Die Fäden wurden unter 1:4,0-facher Verstreckung zu Fasern vom Endtiter 1,2 dtex nachbehandelt. Die Fasern besitzen ein hantelförmiges Querschnittsprofil. Während bei 70,5 %iger Spinnlösungskonzentration der Übergang der Querschnittsform von runder zur Hantelform bei 1,16 Sek. Verweilzeit im Spinnschacht nach Abb. 1 erst bei einer Verdampfungsgeschwindigkeit von 3,05



    [0051] zu erwarten ist, erfolgt somit der Übergang der Querschnittsform von rund nach hantelförmig bei einer 65 %igen Spinnlösungskonzentration gemäß

    bereits viel früher.


    Ansprüche

    1. Verfahren zur Herstellung von Synthesefasern und -fäden mit Spinneinzeltitern von 3 dtex und darunter aus fadenbildenden synthetischen Polymeren nach einem Trockenspinnprozeß und unter Weiterbehandlung des Spinngutes in an sich bekannter Weise zu fertigen Fasern oder Fäden, dadurch gekennzeichnet, daß viskositätsstabile Spinnlösungen unter solchen thermischen Bedingungen versponnen werden, die einen Verzug von mindestens 20 ermöglichen.
     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Polymeres ein Acrylnitrilpolymerisat mit mindestens 40 Gew.-% Acrylnitrileinheiten versponnen wird.
     
    3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß als Spinnlösungsmittel Dimethylformamid verwendet wird.
     
    4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Spinnlösung mit einem Verzug von 30-500 versponnen wird.
     
    5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß Fäden mit runden bis bohnenförmigen Querschnitten unter Verfahrensbedingungen nach Maßgabe der Abb. 1 hergestellt werden.
     
    6. Trockengesponnene Synthesefasern und -fäden aus fadenbildenden synthetischen Polymeren, dadurch gekennzeichnet, daß sie einen Spinneinzeltiter von höchstens 3 dtex aufweisen.
     
    7. Fäden und Fasern nach Anspruch 6, dadurch gekennzeichnet, daß sie aus Acrylnitrilpolymerisaten mit mindestens 40 Gew.-% an Acrylnitrileinheiten bestehen.
     
    8. Fäden und Fasern nach den Ansprüchen 6 und 7, dadurch gekennzeichnet, daß sie runde bis bohnenförmige Querschnitte aufweisen.
     
    9. Fäden und Fasern nach den Ansprüchen 6 bis 8, dadurch gekennzeichnet, daß sie eine glatte Oberfläche besitzen und hohen Glanz aufweisen, wobei die Oberfläche Längsstreifungen und Riefen parallel zur Faserachse aufweisen.
     




    Zeichnung