(19)
(11) EP 0 053 085 A1

(12) DEMANDE DE BREVET EUROPEEN

(43) Date de publication:
02.06.1982  Bulletin  1982/22

(21) Numéro de dépôt: 81420171.1

(22) Date de dépôt:  23.11.1981
(51) Int. Cl.3F23J 3/02, F28G 7/00, F28G 9/00, C23G 5/00
(84) Etats contractants désignés:
AT BE CH DE GB IT LI LU NL SE

(30) Priorité: 26.11.1980 FR 8025389

(71) Demandeur: Etablissements SOMALOR - FERRARI "SOMAFER" S.A.
F-57270 Uckange (FR)

(72) Inventeur:
  • Forster, Marc-André
    F-78170 La-Celle-Saint-Cloud (FR)

(74) Mandataire: Pascaud, Claude et al
PECHINEY 28, rue de Bonnel
69433 Lyon Cédex 3
69433 Lyon Cédex 3 (FR)


(56) Documents cités: : 
   
       


    (54) Procédé de nettoyage des surfaces d'une installation, encrassées par des dépôts résultant de la combustion de matières carbonées


    (57) L'invention est relative à un procédé de nettoyage des surfaces d'une installation, encrassées par des produits adhérents ou non, résultant de la combustion de matières carbonées et applicable sans avoir à arrêter le processus de combustion.
    Ce procédé est caractérisé en ce que l'on injecte dans l'installation au moins un corps susceptible de réagir chimiquement avec les produits carbonés et minéraux qui recouvrent lesdites surfaces, ces dernièrs étant détachés de l'installation au moyen de sources sonores.
    Ce procédé trouve son application dans le nettoyage des surfaces d'installations telles que, notamment, chambres de combustion de chaudières, échangeurs de chaleur tournants ou statiques, conduits et gaines de fumées, filtres électrostatiques, etc..., et sur lesquelles on veut intervenir sans avoir à arrêter le processus de combustion et maintenir un rendement calorifique maximum de manière à réaliser d'importantes économies d'énergie.




    Description


    [0001] La présente invention est relative à un procédé de nettoyage des surfaces d'une installation, encrassées par des dépôts inscrutants ou non, résultant de la combustion de matières carbonées, applicable sans avoir à arrêter le processus de combustion.

    [0002] L'homme de l'art sait que toute opération de combustion mettant en oeuvre des matières carbonées, qu'elles soient à l'état gazeux, liquide ou solide, s'accompagne généralement, d'une part, de l'émission de gaz plus ou moins chauds, d'autre part, de la formation de produits minéraux non combustibles et de produits carbonés imbrulés. Ces produits sont plus ou moins entraînés dans les circuits où sont véhiculés les gaz et ils peuvent soit se déposer à leur surface, soit réagir chimiquement avec les matériaux constitutifs desdites surfaces, en raison de la température élevée et de leur composition, fondre et adhérer à ces dernières. On a ainsi création de dépôts plus ou moins incrustants.

    [0003] Ces dépôts encrassent les surfaces avec lesquelles ils sont en contact et ceci peut avoir des conséquences fâcheuses lorsque ces surfaces sont, comme dans le cas de générateurs de chaleur, celles d'échangeurs chargées de transmettre un flux thermique à un fluide circulant de l'autre côté des surfaces. En effet, ces dépôts diminuent le coefficient de transfert de la surface et conduisent à une réduction de rendement calorifique des installations nécessitant parfois leur arrêt.

    [0004] Il s'avère donc nécessaire de procéder périodiquement au nettoyage de ces surfaces encrassées, afin de supprimer ces dépôts, ou tout au moins, d'en limiter la quantité à une valeur acceptable.

    [0005] Il est de pratique courante d'effectuer ce nettoyage par insufflation sur la surface à nettoyer d'un fluide sous pression tel que vapeur, eau ou air, qui agit à la fois ou séparément comme agent de refroidissement provoquant une rétraction des dépôts et comme agent mécanique assurant leur désagrégation.

    [0006] Mais ce procédé requiert l'utilisation de circuits de fluide sous une pression de plusieurs dizaines de bars, et s'applique aux seules surfaces qui peuvent être atteintes directement par le jet de fluide, écartant de ce fait son application aux installations présentant des circuits à chicanes.

    [0007] Par ailleurs, un tel procédé est en général mis en oeuvre en dehors de tout processus de combustion, c'est-à-dire l'installation arrêtée ; dans le cas contraire, il faut recourir à des têtes de soufflage conçues de façon à pouvoir être exposées à l'action de gaz chauds plus ou moins corrosifs sans se détériorer.

    [0008] Un autre procédé classique, et sans doute d'une certaine efficacité, consiste à laver les surfaces encrassées, mais on se heurte alors au problème des dépôts qui se dissolvent mal ou qui donnent naissance à des solutions acides conduisant à la corrosion et à la destruction des matériaux constitutifs de l'installation. L'inconvénient réside également dans le fàit qu'il faut inévitablement arrêter l'installation à nettoyer pendant un intervalle de temps assez prolongé, ce qui cause d'importantes pertes de productivité dans'le cas où celle-ci fait partie d'une unité de fabrication travaillant en continu.

    [0009] L'homme de l'art sait également qu'il peut résoudre ce problème de nettoyage par un grenaillage des surfaces de l'installation. Toutefois, une telle solution ne trouve son application que dans des installations de constitution particulière et disposées de façon convenable. D'où l'intérêt très limité de ce type de procédé.

    [0010] On peut également faire appel au nettoyage chimique consistant, par exemple, à imbiber les surfaces à nettoyer d'une solution d'ammoniaque pour neutraliser l'anhydride sulfurique présent dans les dépôts à éliminer. Cette méthode entraîne toutefois les mêmes inconvénients que ceux cités plus haut.

    [0011] C'est pcurquoi la demanderesse, soucieuse d'apporter sa contribution à un problème d'autant plus important que les économies d'énergie, et, donc, la recherche du rendement maximum des échangeurs de chaleur. constituent aujourd'hui pour les industriels un objectif primordial, a cherché et mis au point un procédé de nettoyage et d'entretien en état de propreté des surfaces encrassées par les dépôts résultant de la combustion de matières carbonées, tel, qu'il soit applicable sans avoir à arrêter en général le processus de combustion dans l'installation, c'est-à-dire sans perturber la marche des unités de production qui sont sous sa dépendance. Ce procédé présente également les avantages suivants : il permet de nettoyer les dépôts les plus adhérents sur des surfaces d'accès difficile sans recourir à l'utilisation de solutions de lavage créatrices de phénomènes de corrosion ou de dispositifs consommant des quantités d'énergie rédhibitoires et sans modification ou adaptation particulière de l'installation à nettoyer.

    [0012] Ce procédé est caractérisé en ce que l'on injecte dans l'installation au moins un corps susceptible de réagir chimiquement avec les dépôts carbonés et minéraux qui encrassent les surfaces et que l'on déplace les particules résultant des réactions chimiques par mise en phase avec des ondes acoustiques aériennes afin de provoquer leur entraînement par le flux d'air ou de gaz de combustion ou de leur chute vers les cendriers de l'installation.

    [0013] Ainsi, le procédé de nettoyage est caractérisé, d'abord, en ce que l'on injecte dans l'installation au moins un corps susceptible de réagir chimiquement avec les dépôts carbonés et minéraux résultant de la combustion des matières carbonées.

    [0014] La réaction chimique doit conduire, le plus généralement, à l'oxydation des dépôts. Dans le cas des dépôts carbonés, il y a combustion, donc, destruction desdits dépôts ; dans le cas des dépôts minéraux, il se produit une réaction d'oxydation conduisant à une augmentation de volume, et, donc à la désagrégation des structures cristallines des dépôts. Mais, cette destruction des structures peut également être induite par des réactions chimiques du type réactions de décomposition et/ou des réactions de substitution. La réaction chimique doit aussi pouvoir se produire dans des conditions de chimie des hautes températures.

    [0015] Du point de vue nature du corps injecté, la demanderesse utilise, de préférence, un oxydant et notamment un nitrate, ou encore un mélange de nitrates tels que le nitrate de potassium et le nitrate d'ammonium, lesquels, lorsqu'ils sont utilisés en solution aqueuse, ont une concentration de l'ordre de 200 à 300 g/litre.

    [0016] Dans certains cas, il est préférable, pour empêcher toute corrosion, d'amener ces solutions à un pH supérieur à 9 en y ajoutant de l'ammoniaque ou tout autre corps susceptible de stabiliser le pH des dépôts.

    [0017] Par ailleurs, le corps injecté contient toujours les inhibiteurs de corrosion nécessaires pour éviter les attaques chimiques sur les matériaux constitutifs du système. On peut, également, utiliser des corps susceptibles d'induire les réactions de neutralisation et/ou de substitution. Le choix des constituants du corps injecté et des quantités du corps injecté tiennent également compte des réglementations en matière de pollution atmosphérique.

    [0018] De préférence, on met en oeuvre le corps à l'état divisé afin d'obtenir la surface de contact la plus grande possible avec les dépôts carbonés et minéraux, et, par suite, une réduction chimique accélérée.

    [0019] Cet état de division peut être encore augmenté en injectant le corps sous forme d'une solution qui est atomisée au moyen d'atomiseurs ultra-soniques ou de tout autre moyen susceptible d'assurer une dispersion convenable et dont le nombre et la situation géographique sont essentiellement fonction de la structure de l'installation à nettoyer. Mais, ils sont généralement placés de façon que le nuage de corpuscules qu'ils produisent n'entre pas en contact avec la flamme résultant de la combustion des matières carbonées. Les atomiseurs peuvent être installés spécialement pour l'opération de nettoyage ou de façon permanente sur les ouvertures existantes de l'installation, par exemple sur les regards.

    [0020] Le corps peut être injecté en continu pendant toute la période de nettoyage ou de façon programmée. Ainsi, sous l'action de cette injection au sein de la zone chaude de l'installation, le corps pulvérisé et entraîné par les gaz résultant de la combustion est rapidement mis en contact avec les dépôts carbonés et minéraux sur lesquels il réagit en provoquant leur combustion ou la réaction chimique désirée. Ces réactions entraînent leur fine fragmentation qui favorisera leur déplacement ultérieur sous l'action des ondes acoustiques.

    [0021] Le système à nettoyer étant en marche normale pendant l'injection du corps, les températures auxquelles se produisent les réactions sont comprises entre 300 et 1000°C, et ces réactions sont donc très rapides, et même font appel à la chimie des hautes températures.

    [0022] La deuxième caractéristique de l'invention consiste donc à déplacer les particules résultant des réactions chimiques afin de provoquer leur entraînement dans le circuit des gaz de combustion ou leur chute vers les cendriers de l'installation. Cette mise en mouvement des particules est obtenue par leur mise en phase avec des ondes acoustiques aériennes, générées par des sources de vibrations sonores. Ces sources émettent des vibrations de fréquences audibles de 250 Hertz, par exemple. C'est dans le domaine de fréquences audibles que les sources sonores sont les plus efficaces pour le but recherché, mais il est possible de recourir à des sources infra ou ultra-sonores pour certains dépôts.

    [0023] Du point de vue puissance, une gamme comprise entre 100 et 200 décibels par source doit être mise en oeuvre.

    [0024] Ces sources doivent être à des emplacements judicieusement choisis en fonction des caractéristiques de l'installation, de la nature, de la situation géographique et de la quantité des dépôts à éliminer. Elles sont plus ou moins éloignées les unes des autres en fonction de leur rayon d'action. Leur conception doit être telle qu'elles puissent supporter des températures allant jusqu'à 1000°C sans se détériorer. Elles sont placées sur l'installation au moment du nettoyage ou restent à demeure.

    [0025] Ainsi, sous l'action combinée du corps injecté et des ondes acoustiques, les dépôts qui encrassent les surfaces de l'installation, se trouvent réduits à une masse plus ou moins pulvérulente de particules qui est, soit entraînée par les gaz résultant de la combustion et arrêtée éventuellement par des électrofiltres, soit redéposée en certains endroits de l'installation, par exemple dans les parties basses de l'installation où elle ne gêne pas les échanges thermiques et pourra être récupérée à tout moment ou lors d'un arrêt de l'installation suivant la conception de cette dernière.

    [0026] La présente invention est illustrée par les dessins qui accompagnent la demande. Ces dessins représentent différents types d'installations susceptibles de recevoir application du procédé revendiqué.

    [0027] 

    La figure 1 concerne une chaudière de grande puissance.

    La figure 2 concerne une chaudière de petite puissance.

    La figure 3 concerne un four de raffinerie.



    [0028] La figure 1 représente, de façon schématique, une coupe verticale d'une chaudière de grande puissance (1) équipée d'un brûleur (2) émettant une flamme (3) générant des gaz chauds qui circulent suivant le sens des flèches (4), accompagnés par des produits carbonés et des produits minéraux qui viennent se déposer sur les surfaces (5) des quatre échangeurs (6). Quatre pulvérisateurs (7) disposés en différents endroits de la chaudière injectent le corps susceptible de réagir chimiquement avec les dépôts qui encrassent les surfaces tandis que cinq sources sonores (8) ont été placées sur chacune des deux faces latérales de l'installation, parallèles à l'axe du brûleur.

    [0029] La figure 2 représente une coupe verticale d'une chaudière acier de petite puissance (9) pour la production d'eau chaude ou de vapeur équipée d'un brûleur (10) émettant une flamme (11) d'où résultent des gaz qui circulent suivant le sens des flèches (12) en abandonnant une partie des produits solides qui les accompagnent sur les surfaces d'échange (13). Pour appliquer le procédé, on a placé trois injecteurs (14) tandis qu'une source sonore (15) a été mise en place entre les deux faisceaux tubulaires de l'installation.

    [0030] La figure 3 représente une coupe verticale d'un four (16) de raffinerie consommant 70 tonnes de fuel lourd par jour. Ce four est équipé de trois brûleurs (17) qui émettent des flammes (18) dans chacune des trois cellules de radiation (19). Les gaz de combustion circulent suivant le sens des flèches (20) et laissent déposer une partie des particules en suspension qu'elles entraînent sur les surfaces des échangeurs (21). Trois pulvérisateurs (22) ont été disposés près de chacun des brûleurs, et un quatrième, à la sortie des cellules de radiation, tandis que sept sources sonores (23) ont été placées pour trois d'entre elles sur une des parois latérales de l'installation au niveau des cellules et, pour les quatre autres, au niveau des échangeurs (21)..

    [0031] Pour mieux faire comprendre l'invention, on décrit maintenant deux exemples d'application de l'invention.

    Exemple 1 :



    [0032] Une chaudière classique à eau surchauffée, d'une puissance calorifique de 10 thermies par heure, chauffée au charbon, en service permanent, a été traitée pendant la marche suivant le procédé de l'invention pour nettoyer à la fois les zones de radiation et d'échange de chaleur.

    [0033] Le processus a été le suivant : on a injecté 200 litres d'une solution contenant 155 g/1 de nitrate d'ammonium et 135 g/1 de nitrate de potassium, amenée par addition d'ammoniaque à un pH voisin de 9,3 et ce, pendant une durée de 60 minutes en quatre périodes de 15 minutes, avec un arrêt de 30 mn entre chaque injection.

    [0034] Pendant la durée de l'injection, le tirage de la chaudière a été réduit au minimum afin d'éviter des pertes de corps par la cheminée et quatre sources sonores installées sur les parois de la chaudière ont été mises en action pendant 10 secondes toutes les 15 minutes suivant une fréquence de 250 Hz et une intensité de 140 décibèls. Ces sources étaient maintenues en service pendant 24 heures après la fin de l'injection pour parfaire le nettoyage. Les particules qui se sont détachées des surfaces ont été entraînées par'le flux des gaz de combustion et arrêtées par un électrofiltre.

    [0035] Le rendement thermique de la chaudière qui avait chuté à 85% de la normale était redevenu voisin de 98% après traitement.

    Exemple 2 :



    [0036] Un four de raffinerie du type représenté sur la figure 3 consommant 300 tonnes de fuel lourd par jour, en service depuis plus de six mois a été traité par le procédé de l'invention pour assurer le nettoyage des cellules de combustion et des échangeurs. Pour cela, on a injecté en cinq périodes de 30 minutes, séparées par des périodes de repos de 30 minutes, 5000 litres d'une solution contenant 115 g/1 de nitrate d'ammonium et 135 g/1 de nitrate de potassium amenée à un pH de 9,3 par addition d'ammoniaque.

    [0037] A la suite de chaque période d'injection, on mettait en action pendant 15 secondes, sept sources sonores réparties suivant la figure 3. Après entraînement des particules par les fumées ou leur dépôt dans le bas de l'installation, le rendement thermique de l'installation, qui avait chuté à 80%, est repassé à 95% de la normale habituelle.

    [0038] Ce procédé trouve son application dans le nettoyage des surfaces d'installations telles que, notamment, chambres de combustion de chaudières, échangeurs de chaleur tournants ou statiques, conduits et gaines de fumées, filtres électrostatiques,et sur lesquelles on veut intervenir sans avoir à arrêter le processus de combustion et maintenir un rendement calorifique maximum de manière à réaliser d'importantes économies d'énergie.


    Revendications

    1. Procédé de nettoyage des surfaces d'une installation, encrassées par des dépôts résultant de la combustion de matières carbonées, caractérisé en ce que l'on injecte dans l'installation, sous forme d'une dispersion qui est entraînée par les gaz de combustion, une solution d'au moins un corps susceptible de réagir chimiquement avec les dépôts carbonés et minéraux qui encrassent lesdites surfaces, et que l'on déplace les particules résultant des réactions chimiques par mise en phase avec des ondes acoustiques aériennes, afin de provoquer leur entraînement par le flux d'air ou de gaz de combustion ou leur chute vers les cendriers de l'installation.
     
    2. Procédé selon la revendication 1, caractérisé en ce que l'on injecte une solution d'au moins un corps susceptible de donner avec les dépôts à éliminer des réactions de décomposition et/où de substitution.
     
    3. Procédé selon la revendication 1, caractérisé en ce que l'on injecte une solution d'au moins un corps réagissant dans les conditions de chimie deshautes températures.
     
    4. Procédé selon la revendication 1, caractérisé en ce que l'on injecte une solution d'au moins un corps oxydant.
     
    5. Procédé selon la revendication 4, caractérisé en ce que l'on injecte une solution aqueuse contenant 200 à 300 g/1 de nitrate d'ammonium.
     
    6. Procédé selon la revendication 4, caractérisé en ce que l'on injecte une solution d'un mélange de nitrate de potassium et de nitrate d'ammonium.
     
    7. Procédé selon la revendication 1, caractérisé en ce que la solution aqueuse est amenée à un pH supérieur à 9 par addition d'ammoniaque ou tout autre corps susceptible de stabiliser le pH des dépôts.
     
    8. Procédé selon la revendication 1, caractérisé en ce que l'on injecte une solution d'au moins un corps mélangé à des inhibiteurs de corrosion.
     
    9. Procédé selon la revendication 1, caractérisé en ce que l'on injecte la solution en dehors des zones de combustion.
     
    10. Procédé selon la revendication 1, caractérisé en ce que la mise en phase des particules est réalisée avec des ondes de fréquences audibles.
     
    Il. Procédé selon la revendication 1, caractérisé en ce que les ondes acoustiques sont émises par des sources de vibrations sonores ayant chacune une puissance comprise entre 100 et 200 décibels.
     
    12. Procédé selon la revendication 11, caractérisé en ce que les sources de vibrations sonores supportent des températures allant jusqu'à 1000°C.
     




    Dessins










    Rapport de recherche