(19)
(11) EP 0 090 932 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
12.10.1983  Patentblatt  1983/41

(21) Anmeldenummer: 83101516.9

(22) Anmeldetag:  17.02.1983
(51) Internationale Patentklassifikation (IPC)3B06B 1/08, H04R 15/02
(84) Benannte Vertragsstaaten:
AT BE CH DE FR GB IT LI LU NL SE

(30) Priorität: 01.03.1982 DE 3207305
08.12.1982 DE 3245448

(71) Anmelder: INTERATOM Gesellschaft mit beschränkter Haftung
D-51429 Bergisch Gladbach (DE)

(72) Erfinder:
  • Podgorski, Jan, Dipl.-Ing.
    D-5060 Bergisch Gladbach 1 (DE)
  • Meyner, Bernhard
    D-5000 Köln 90 (DE)

(74) Vertreter: Mehl, Ernst, Dipl.-Ing. et al
Postfach 22 13 17
D-80503 München
D-80503 München (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Magnetostriktiver Ultraschallwandler für sehr hohe Frequenzen und grosse Leistung, insbesondere zur Füllstandsmessung


    (57) (n der vorliegenden Erfindung wird ein magnetostriktiver Ultraschallwandler beschrieben, weicher für sehr hohe Frequenzen und große Leistung geeignet ist und insbesondere bei der Füllstandsmessung eingesetzt werden soll. Durch extreme Miniaturisierung bekannter UltraschallWandler-Areale werden hohe Betriebsfrequenzen erreicht. Besonders eine neue Form der Einzelschwinger (81) des Areals ermöglicht eine extreme Verkleinerung. Bei der angegebenen Form handelt es sich um Einzeischwinger, welche im Prinzip die Form eines I-Stahles aufweisen, an einem Ende jedoch eine quaderförmige Verlängerung (83) aufweisen, weiche an dieser Stelle eine Schallabstrahlung verhindert. Die angegebene Form ermöglicht breitere Öffnungen zwischen den Einzelschwingern ohne Verringerung der Resonanzfrequenz, so daß auch bei stark miniaturisierten Wandlern noch genügend dicke Spulen (82) verlegt werden können. Durch Auflöten einer dünnen Membran auf die Abstrahlfläche und den Einbau in ein Gehäuse kann der Wandler auch in heißen und aggressiven Flüssigkeiten benutzt werden.




    Beschreibung


    [0001] Die vorliegende Erfindung betrifft einen magnetostriktiven Ultraschallwandler für hohe Frequenzen und große Leistung, insbesondere zur Füllstandsmessung, nach dem Oberbegriff des Hauptanspruches. Aus "The Journal of the Acoustical Society of America", Volume 21, No. 4, July 1949, Seite 382 ff. ist die Theorie von magnetostriktiven Einzelschwingern und deren Zusammenwirken in Arealen bekannt. In der gleichen Zeitschrift Volume 20, No. 5, September 1948, Seite 616 ff. ist es auch bekannt, solche magnetostriktiven Körper aus geschichteten Formblechen herzustellen. Aus der Theorie und der Literatur zu solchen magnetostriktiven Schwingern ist zu ersehen, daß solche Schwinger unsymmetrisch bezüglich Ober- und Unterseite des magnetostriktiven Körpers hergestellt werden. Auf diese Weise wird eine Abstrahlung nur nach einer Seite erreicht, da bei geeigneter Dimensionierung der anderen Seite (etwa eine halbe Wellenlänge bei Resonanzfrequenz) dort eine Auslöschung durch Interferrenz stattfindet.

    [0002] Aus der DE-OS 24 14 936 ist auch schon ein elektroakustischer Wandler mit magnetostriktiven Elementen für die Verwendung in flüssigem Natrium bekannt. Dieser Wandler eignet sich allerdings aufgrund seiner Bauart nicht für Füllstandsmessungen unter erschwerten Bei dingungen, wie sie weiter unten aufgeführt werden.

    [0003] In der Technik stellt sich oft die Aufgabe, den Füllstand einer Flüssigkeit in einem Behälter zu messen. Die verschiedenen Methoden dazu hängen von den jeweiligen Randbedingungen ab. So sind außer der Messung des Druckes am Boden des Gefäßes induktive Füllstandssonden für elektrisch leitende Flüssigkeiten bekannt und verschiedene andere Methoden. Auch eine Füllstandsmessung mit Hilfe von Ultraschall wurde, nach dem anhand von Fig. 1 später näher erläuterten Prinzip, bereits durchgeführt. Die dabei verwendeten piezoelektrischen Ultraschallwandler sind jedoch nicht in allen Fällen anzuwenden.

    [0004] Im folgenden seien anhand der Fig. 1 und der Fig. 2 der Zeichnung Prinzip und Probleme einer Ultraschall-Füllstandsmessung näher erläutert.

    [0005] In Fig. 1 wird das Meßprinzip bei einer Ultraschall-Füllstandsmessung schematisch dargestellt. Von einem Schallsender k wird ein Schallsignal gerichtet zur Flüssigkeitsoberfläche o gesendet. Der reflektierte Schall wird von einem Empfänger i aufgefangen und die Laufzeit des Schallsignals über eine entsprechende elektronische Schaltung gemessen. Da die Schallgeschwindigkeit in einer Flüssigkeit stark von der Temperatur abhängt, ist ein Temperaturfühler m vorhanden, der über eine Korrekturschaltung h, g die Schallgeschwindigkeit zur Auswerteeinrichtung e weiterleitet. Die Messung wird diskontinuierlich in einzelnen kurzen Schallintervallen durchgeführt. Dazu wird von einem Trigger a ein Sendepulsgenerator b angeregt, welcher über einen Verstärker c den Ultraschallsender erregt. Das empfangene Schallsignal wird vom Empfänger 1 an einen Verstärker d und von dort an eine Auswerteschaltung e weitergegeben. In dieser Auswerteschaltung wird die Zeitdifferenz zwischen Sende- und Empfangsimpuls gemessen und durch die temperaturkorrigierte Schallgeschwindigkeit dividiert. Das Ergebnis wird in einem Anzeigegerät f angezeigt.

    [0006] Im Prinzip ist es nicht unbedingt nötig, für Sender und Empfänger verschiedene Ultraschallwandler zu benutzen. Es genügt auch, wenn das von der Oberfläche reflektierte Signal von dem gleichen Ultraschallwandler aufgezeichnet wird, wobei dann auch Korrekturen wegen des Abstandes von Sender und Empfänger nicht nötig sind. Insbesondere für diesen Fall werden anhand der Fig. 2 einige der auftretenden Probleme erläutert. Die Fig. 2 zeigt ein Diagramm, in dem Signalamplitude A gegen die Zeit t aufgetragen ist. Zum Zeitpunkt t wird der Sender mit einer Frequenz ν erregt. Die Sendeamplitude AS nimmt nun während der Aus;chwingzeit des Sender τs ab, bis sie zum Zeitpunkt t nur noch die Größe des normalen Rauschens hat. Nach einer Laufzeit T kommt dann zum Zeitpunkt t2 das Echo von der Oberfläche zurück und regt den Ultraschallwandler zu einer Schwingung mit der Amplitude Ae an, welche in der Zeit τe ausschwingt. Je höher die Füllstandshöhe ist, desto schwächer wird das Echo sein, so daß mit größer werdender Füllstandshöhe auch eine höhere Sendeleistung eingestrahlt werden muß, damit das Echo noch größer als der vorhandene Rauschpegel wird. Wenn andererseits die Füllstandshöhe sehr niedrig wird, so kommt das Echo bereits zurück, wenn die Sendeschwingung noch nicht abgeklungen ist. Auch in diesem Falle ist eine Messung von T schwierig, so daß eine möglichst kurze Ausschwingzeit des Ultraschallwandlers wünschenswert wird. Eine weitere beachtenswerte Problematik ergibt sich aus dem Auflösungsvermögen der Meßmethode. Das Auflösungsvermögen, d.h. die Füllstandsdifferenz, die das Gerät noch gerade feststellen kann, ist abhängig von der Frequenz des eingestrahlten Schallsignals. Nach der Theorie kann das Auflösungsvermögen nicht wesentlich größer als ein Viertel der Wellenlänge werden. Deshalb ist es wichtig, daß mit einer möglichst hohen Frequenz gearbeitet werden kann.

    [0007] Aufgabe der vorliegenden Erfindung ist ein magnetostriktiver Ultraschallwandler für hohe Frequenzen und große Leistung, der insbesondere zur Füllstandsmessung für hohe und niedrige Füllstände geeignet ist. Nach den vorhergehenden Erklärungen muß ein solcher Ultraschallwandler eine große Sendeleistung haben, eventuell eine kurze Ausschwingzeit besitzen und in einer möglichst hohen Frequenz schwingen können. Ein solcher Füllstandsmesser wird z.B. gebraucht in einer natriumgekühlten Kernenergieanlage, d.h. unter einer heißen, aggressiven, gegebenenfalls radioaktiven Flüssigkeit. Versuche mit Piezokristallen haben nicht zu befriedigenden Ergebnissen geführt, da einerseits die eingestrahlte Sendeleistung zu gering ist und andererseits die Lebensdauer und Temperaturbeständigkeit der Ultraschallwandler Probleme bereiten.

    [0008] Zur Lösung der Aufgabe wird ein magnetostriktiver Ultraschallwandler nach dem Hauptanspruch vorgeschlagen. Zur Erhöhung der Frequenz müssen zunächst die Dimensionen des Schwingers verkleinert werden, was zu besonderen weiteren Maßnahmen führt. Deshalb wird der magnetostriktive Körper aus sehr dünnen, oxidierten Blechen hergestellt. Das Material sollte einen hohen Curie-Punkt und eine große magnetostriktive Konstante haben, wie dies z.B. bei Kobalt-Eisen der Fall ist. Bei den gewünschten Frequenzen sind die Schwinger so winzig, daß praktisch nur noch durch Ätzen entsprechende Bleche herstellbar sind. Die Isolation zwischen den Blechen zur Vermeidung von Wirbelströmen wird durch Oxidschichten erreicht.

    [0009] Im Anspruch 2 wird eine besondere Weiterbildung der Erfindung angegeben, welche bei weiterer Erhöhung der Frequenz und der Leistung wichtig ist. Aufgabe der speziellen Weiterbildung magnetostriktiver Wanlder im Anspruch 2 ist es, eine Form für die Einzelschwinger und damit die einzelnen Bleche eines Areals anzugeben, welche eine zusätzliche Miniaturisierung und damit eine Erhöhung der Betriebsfrequenz magnetostriktiver Ultraschallwandler ermöglicht. Die im folgenden beschriebenen Ultraschallwandler sollen insbesondere auch bei hohen Temperaturen einsetzbar sein, was an die Isolierung der elektrischen Leitungen besondere Ansprüche stellt. Es können für diesen Anwendungsfall praktisch nur keramikisolierte Leiter verwendet werden, welche naturgemäß einen größeren Außenquerschnitt haben als beispielsweise mit Isolierlack versehene Leiter. Zum Einbringen einer genügenden Leistung müssen die Spulen genügenden Querschnitt bzw. genügende Windungszahl haben, wodurch der Miniaturisierung Grenzen gesetzt sind. Weiterhin ist zu beachten, daß je zwei nebeneinander liegende Einzelschwinger einen magnetischen Kreis bilden, welcher magnetisch möglichst gut geschlossen sein muß, damit die eingespeiste elektrische Leitung optimal in akustische Schalleistung umgesetzt werden kann.

    [0010] Diese Aufgabenstellung wird durch eine neue ganz spezielle Gestaltung der Einzelschwinger und damit der einzelnen Bleche des Areals gelöst. Es wurde eine Form gefunden, welche nunmehr breitere Öffnungen zwischen den Einzelschwingern aufweist, was etwa den optimalen Kompromiß zwischen'möglichst niedrigem Widerstand im magnetischem Kreis und möglichst großer Öffnung zwischen den Einzelschwingern darstellt. Die nach dem Stand der Technik be- kannten Formen wiesen immer längliche Öffnungen auf, welche im Verhältnis zum Umfang und damit zur Länge des magnetischen Weges keine optimale Fläche haben. Die von der bekannten Theorie nicht erfaßte Formänderung hat natürlich Änderungen in den Resonanzeigenschaften zur Folge; so sind weitere Maßnahmen nötig, um die dämpfende Eigenschaft einer Seite jedes Einzelschwingers auch bei der neuen Formgebung wieder herzustellen. Dazu wird die Dämpfungsseite nicht wie bisher einfach breiter als die Seite der Abstrahlfläche gemacht, sondern jeder Einzelschwinger ist zunächst symmetrisch etwa in der Form eines I-Stahls ausgeführt und weist an dem Ende der Dämpfungsseite eine quaderförmige Verlängerung auf, welche die gewünschten Dämpfungseigenschaften bewirkt. Die Dämpfungsseite eines Areals ist nunmehr etwa kammförmig, was aber keine weiteren Nachteile bei der Verwendung solcher Wandler mit sich bringt. Die vergrößerten Öffnungen, die nunmehr nicht mit einer Erniedrigung der Betriebsfrequenz erkauft werden müssen, erlauben es, mehr Windungen zu verlegen und damit eine größere Schalleistung zu bewirken. Das Produkt aus Schalleistung x Frequenz kann daher erheblich größer werden als bei den bisher bekannten Wandlern. Dies ist insbesondere im Hinblick auf Anwendungen von großer Bedeutung, bei denen der Flüssigkeitsstand in einem Behälter durch Einstrahlung des Ultraschalls von der Außenseite des Behälters aus gemessen werden soll. Dies ist nur bei hoher Frequenz und großer Schalleistung möglich. Die beschriebene Ausführungsform des Ultraschallwandlers eignet sich daher nicht nur zum Einbau im Inneren eines Behälters, sondern auch zur Direktankopplung an der Außenseite eines Behälters zum Zwecke der Füllstandsmessung.

    [0011] Im Anspruch 3 wird in weiterer Ausgestaltung die optimale Form der Öffnungen und Stege angegeben. Eine etwa quadratische Öffnung zwischen den Einzelschwingern stellt eine Optimierung der Fläche in Bezug auf die Länge des magnetischen Weges dar. Sinnvollerweise sind alle Stege in einem magnetischen Kreis etwa gleich breit, so daß kein Wegstück mit besondeis großem magnetischen Widerstand zu überwinden ist.

    [0012] Im Anspruch 4 werden in spezieller Ausgestaltung der Erfindung die Verhältnisse der einzelnen Maße der neuen Schwingerform angegeben, wie sie sich als günstig erwiesen haben. Die genauen Maßverhältnisse werden in der Zeichnungsbeschreibung ausführlich erläutert. Die absolute Größe der Maße ist für die Resonanzfrequenz maßgebend, wobei im Anspruch 5 die Maße für einen Ultraschallwandler mit einer Betriebsfrequenz von 400 KHz angegeben werden. In diesem Falle sind die Maße des Anspruchs 4 als Millimeter auszulegen. Aus diesen Größenangaben ist zu ersehen, wie winzig ein solcher erfindungsgemäßer Ultraschallwandler ist. Die großen Schwierigkeiten bei der Herstellung und der späteren Einbringung der elektrischen Leitungen sind offenkundig. Daher kommen im diesem Falle insbesondere auch die an anderer Stelle angegebenen Maßnahmen, nämlich das Ätzen der einzelnen Bleche, das Laserverschweißen der Bleche untereinander und das Vergießen mit Keramikmasse nach Anbringung der elektrischen Leitungen als besonders vorteilhaft zum Tragen.

    [0013] Für den Fall, daß ein solcher spezieller Ultraschallwandler außen an ein Gefäß angekoppelt werden soll, wobei dessen Außenseite gewölbt sein kann, sieht der Anspruch 6 vor, die schallabstrahlende Fläche des Wandler-Areals ebenfalls etwas gewölbt auszuführen, wobei die Wölbung der Oberfläche des Einbauortes entsprechen soll. Das aus den Maßangaben zu ersehende leichte Übermaß der Stegbreite auf der Seite der Abstrahlfläche läßt eine gelegentliche Überarbeitung der Oberfläche und unter Umständen die Einarbeitung einer leichten Wölbung ohne Nachteile für die übrigen Eigenschaften des Wandlers zu.

    [0014] Gemäß Anspruch 7 kann in weiterer Ausgestaltung der Erfindung auf die Abstrahlfläche der erfindungsgemäßen Schwinger nach einer Glättung eine dünne Membran aufgelötet werden, was einen erheblichen Vorteil gegenüber den bekannten Ankopplungen von Ultraschallwandlern an eine Flüssigkeit darstellt. Die temperaturbeständige, hartgelötete Verbindung weist eine gute akustische Ankopplung an die Flüssigkeit auf und ist gegen Temperaturschwankungen unempfindlich. Durch den Aufbau des magnetostriktiven Wandlers aus vielen Einzelschwingern läßt sich dabei eine beachtliche Richtwirkung erreichen, was für die Füllstandsmessung besonders wichtig ist. Schon bei 30° Abweichung von der senkrechten Richtung zur Abstrahloberfläche nimmt die Schallintensität um zwei Zehnerpotenzen ab. Wird der magnetostriktive Körper in einem dichten, austenitischen Gehäuse untergebracht, so ist er gegen Korrosion in aggressiven Midien geschützt. Um eine kurze Ausschwingzeit zu erreichen, sollte der magnetostriktive Körper gut gedämpft sein. Daher wird vorgeschlagen, den magnetostriktiven Körper durch die angelötete Membran zu haltern ohne andere feste Verbindungen zu dem Gehäuse herzustellen.

    [0015] Solche Wandler ermöglichen eine Füllstandsmessung für Höhen weit über 10 m bei einem Auflösungsvermögen von weniger als 1 cm. Bei der kurzen Ausschwingzeit des Wandlers können auch Füllstände von 20 cm noch gemessen werden. So wird eine leistungsfähige Füllstandsmessung mit magnetostriktiven Wandlern für den Einsatz bei hohen Temperaturen und in aggressiven Medien zum ersten Mal realisierbar.

    [0016] Im Anspruch 8 wird eine besondere Ausgestaltung des magnetostriktiven Wandlers angegeben, welche insbesondere für die Ausprägung der Resonanzfrequenzen des Wandlers von Bedeutung ist. Danach besteht die aufgelötete Membran aus Edelstahl von einer Dicke, die klein gegenüber einer Viertelwellenlänge bei Resonanz des Wandlers ist. Es hat sich gezeigt, daß erst bei Erfüllung dieser Bedingung sich die Mambran von niedrigen Frequenzen bis zur Resonanzfrequenz aperiodisch verhält und daß damit auch die eigentliche Resonanzfrequenz des Wandlers ausgestrahlt wird. Das Material ist widerstandsfähig auch gegenüber aggressiven Medien und hoher Temperatur.

    [0017] Im Anspruch 9 wird eine Ausgestaltung der Erfindung vorgeschlagen, welche insbesondere im Hinblick auf die hohe Temperatur von Vorteil ist. Die Induktionswicklungen des Wandlers bestehen aus keramikisolierten Leitern, welche zusätzlich noch mit Keramikmasse vergossen sind. Auf diese Weise wird eine sichere Isolierung auch bei Temperaturen um 7000 C gewährleistet.

    [0018] Da die Bleche, aus denen der magnetostriktive Körper aufgebaut ist, scharfe Kanten aufweisen, können die Induktionswicklungen an den Außenseiten der Stege des magnetostriktiven Körpers gemäß Anspruch 10 über Keramikröhrchen geführt werden, wodurch eine Verletzung an den scharfen Kanten vermieden wird.

    [0019] Im Anspruch 11 wird eine weitere Ausgestaltung des magnetostriktiven Körpers angegeben, welche ein Zusammenhalten der einzelnen Bleche ohne weitere Hilfskonstruktionen ermöglicht. Danach werden die Bleche an den Seiten und/oder auf der Unterseite durch Schweißnähte verbunden. Insbesondere durch ein Laserschweißgerät lassen sich die winzigen Bleche problemlos zu einem kompakten Körper verbinden, ohne daß dabei die Resonanzfrequenz und die Wirbelstromverluste im Körper maßgeblich beeinflußt werden.

    [0020] Da die Membran, an der der magnetostriktive Körper aufgehängt ist, keine beliebig großen Drücke aufnehmen kann, wird im Anspruch 12 vorgeschlagen, den magnetostriktiven Körper über einen Dämpfungskörper gegen die Rückwand des Gehäuses abzustützen. Ein so aufgebauter akustischer Wandler ist auch für die Verwendung in unter Druck stehenden Flüssigkeiten geeignet, beispielsweise für einen Druckwasserreaktor. Da man um die Resonanzfrequenz die Abstrahlcharakteristik und die Ausschwingzeit nicht zu verschlechtern, keine direkte Verbindung zum Gehäuse herstellen kann, muß ein Dämpfungskörper als Verbindung dienen.

    [0021] Im Anspruch 13 wird eine mögliche Ausgestaltung des Dämpfungskörpers beschrieben. Danach besteht der Dämpfungskörper aus mehreren Dämpfungsblechen, welche beispielsweise auch aus Kobalt-Eisen hergestellt sein können, wobei die Bleche gitterförmig aus Stegen aufgebaut sind. Dabei werden die Dämpfungsbleche vorzugsweise abwechselnd um 900 gedreht aufeinandergelegt, so daß an den Kreuzungspunkten der Stege Auflagepunkte für den magnetostriktiven Körper entstehen, ohne daß die akustische Leitfähigkeit des Dämpfungskörpers in Gewicht fällt.

    [0022] Im Anspruch 14 wird eine andere Möglichkeit zur Ausgestaltung des magnetostriktiven Wandlers für Messung unter hohem Druck angegeben. Danach befindet sich im Gehäuse eine nicht korrodierende und nicht leitende Flüssigkeit, für Druckwasserreaktoren wäre beispielsweise Glyzerin geeignet, welche mittels Druckausgleichsvorrichtungen etwa auf dem Außendruck gehalten wird. Soweit die Elastizität der Membran für den Druckausgleich nicht ausreicht, könnte ein Faltenbalg oder eine weitere elastische Membran vorgesehen werden. Die Ausgestaltung nach Anspruch 14 hat den Vorteil, daß ganz auf einen Dämpfungskörper verzichtet werden kann, was in jedem Falle wünschenswert ist.

    [0023] Weitere Erläuterungen und ein Ausführungsbeispiel der Erfindung sind in der Zeichnung dargestellt. Es zeigen:

    Fig. 1 den schematischen Aufbau einer Füllstandsmeßeinrichtung mit Hilfe von Ultraschall,

    Fig. 2 ein Diagramm zur Veranschaulichung des Signalbildes bei der Füllstandsmessung mit nur einem Ultraschallwandler,

    Fig. 3 den prinzipiellen Aufbau des magnetostriktiven Einzelschwingers,

    Fig. 4 den Aufbau eines magnetostriktiven Körpers gemäß der vorliegenden Erfindung,

    Fig. 5 eins der Bleche, aus denen der Dämpfungskörper aufgebaut wird,

    Fig. 6 einen Längsschnitt durch einen erfindungsgemäßen Ultraschallwandler,

    Fig. 7 einen Querschnitt durch eine aus zwei erfindungsgemäßen Ultraschallwandlern aufgebaute Füllstandsmeßsonde,

    Fig. 8 zwei besonders für sehr hohe Frequenzen gestaltete Einzelschwinger und

    Fig. 9 ein Blech zum Aufbau eines Areals mit Einzelschwingern wie in Fig. 8.



    [0024] Die in Fig. 1 dargestellte prinzipielle Meßanordnung bleibt auch für die hier vorgeschlagenen magnetostriktiven Wandler bestehen. Bei Verwendung von nur einem Wandler als Sender und Empfänger wird lediglich der Empfangsverstärker d ebenfalls an den Sender angeschlossen. Eine Referenzmessung einer bekannten Strecke im Meßraum unter den dort herrschenden Bedingungen oder eine Temperaturkorrektur ist in jedem Falle nötig, da die Schallgeschwindigkeit nur bei bekannter Temperatur und bekanntem Druck bestimmt werden kann.

    [0025] Das Signalbild in Abhängigkeit von der Zeit ist bereits in der Einleitung erläutert worden.

    [0026] In Fig. 3 ist ein magnetostriktiver Einzelschwinger, wie er aus der Literatur seit langem bekannt ist, in einer Prinzipskizze dargestellt. Ein näherungsweise hantelförmiger magnetostriktiver Körper 1 ist von einer Induktionsspule 2 umgeben. Wird die Spule 2 von einem aus einer Wechselstromquelle 4 kommenden Strom durchflossen, so ändert der magnetostriktive Körper seine Länge im Takt der Quellenfrequenz und beginnt zu schwingen. Dabei werden Schallwellen 5 abgestrahlt. Ein unsymmetrisch verlängertes Ende 3 des magnetostriktiven Körpers, welches etwa um eine halbe Wellenlänge länger ist als das andere Ende, bewirkt dort eine Auslöschung der Schallwellen durch Interferrenz, so daß Schall nur nach der anderen Seite abgestrahlt wird. Durch Aufeinanderschichten und Aneinanderlegen von solchen Einzelschwingern kann, wie theoretische Rechnungen zeigen, ein großer magnetostriktiver Körper von gleicher Eigenfrequenz aufgebaut werden.

    [0027] Fig. 4 zeigt einen im Prinzip aus vielen Einzelschwingern aufgebauten magnetostriktiven Körper 31. Eine Vielzahl von Blechen 10, von denen jedes im Prinzip aus mehreren Einzelschwingern 11 besteht, ist aufeinandergeschichtet und durch Schweißnähte 12, 13 verbunden. Auf diese Weise entstehen durch Stege getrennte Tunnel 14 und eine den Schall mit einer bestimmten Richtcharakteristik abstrahlende Oberfläche 15. Die Hauptabstrahlrichtung ist mit einem Pfeil 16 gekennzeichnet. Zwischen den Stegen durch die Tunnel 14 hindurch sind die Induktionsspulen 17 gewickelt, und zwar so, daß jeder Einzelschwinger von der gleichen Windungsanzahl umgeben ist. Zum Schutz der Induktionsspulen vor den scharfen Kanten der Fläche 10 können Keramikröhrchen 18 zwischen Steg und Induktionsspule 17 geschoben werden. Die Oberfläche 15 kann, gegebenenfalls nach einer Bearbeitung, mit einer Membrane hart verlötet werden.

    [0028] Fig. 5 zeigt eins der Bleche 20, aus welchem ein Dämpfungskörper zur Abstützung des magnetostriktiven Körpers an der Gehäuserückseite hergestellt wird. Ein solches Blech, welches vorzugsweise ebenfalls aus Kobalt-Eisen durch Ätzen hergestellt wird, besteht aus mehreren durch Zwischenräume 21 getrennten Stegen 22. Mehrere kreuzweise aufeinandergelegte solche Bleche bilden einen Dämpfungskörper.

    [0029] In Fig. 6 ist ein Längsschnitt durch einen erfindungsgemäßen magnetostriktiven Wandler dargestellt. An einer dünnen Edelstahlmembran 32 ist ein magnetostriktiver Körper 31 aufgehängt, welcher gleichzeitig noch durch einen Dämpfungskörper 33 an der Rückseite des den Wandler umgebenden Gehäuses 30 abgestützt sein kann. Die zwei Zuleitungen für die Induktionsspulen sind nicht dargestellt.

    [0030] In Fig. 7 wird im Querschnitt eine aus zwei magnetostriktiven Wandlern bestehende Füllstandsmeßsonde gezeigt. In einem gemeinsamen Gehäuse 30 befinden sich zwei magnetostriktive Wandler nach Fig. 6. Die Zuleitungen werden sinnvollerweise in mit dem Gehäuse 30 fest verlöteten Metallrohren 34 geführt. Die ganze Sonde ist in einem Hüllrohr 35 untergebracht.

    [0031] In Fig. 8 sind besonders gestaltete Einzelschwinger 81 zu erkennen, die im Prinzip I-förmig sind, wobei die eine Seite eine Verlängerung 83 aufweist, welche, wenn man die Dicke der einzelnen Bleche berücksichtigt, quaderförmig ist. Es ist ebenfalls zu erkennen, daß bei der vorliegenden Ausführungsrorm eine vergrößerte Öffnung für das Verlegen einer Spule 82 vorhanden ist.

    [0032] In Fig. 9 ist ein aus vielen solchen nebeneinander liegenden Einzelschwingern aufgebautes Blech dargestellt, welches die Grundeinheit zum Aufbau eines Areals ist. Da im vorliegenden Falle die Maße von großer Wichtigkeit sind, werden deren relative Verhältnisse untereinander im folgenden angegeben. Für einen Wandler mit der Resonanzfrequenz von etwa 400 KHz können die angegebenen Maße direkt in Millimeter gewählt werden, für andere Frequenzen ist ein entsprechender Faktor anzunehmen. Die Maße sind: LA = 1,87, LB = 2,0, LT = 4,4, LD = 0,5, LE = 2,0, LF = 2,5, LG = 1,5, LH = 30,0 = 12 x LF, LI = 1,37. Die Dicke DR jedes einzelnen Blechs beträgt etwa 0,05, wobei diese auch kleiner sein kann. Die Bleche bestehen vorzugsweise aus dünnen, oxidierten Materialien mit hohem Curie-Punkt und großer magnetostriktiver Konstante, z.B. Kobalt-Eisen-Legierungen. Sie können untereinander durch Laserverschweißen verbunden sein. Für hohe Temperaturen müssen die elektrischen Leitungen aus keramikisoliertem Material bestehen. In dieser Ausführungsform sind die beschriebenen Wandler für verschiedene Anwendungsfälle den sonst häufig verwendeten piezoelektrischen UltraschallWandlern überlegen.


    Ansprüche

    1. Magnetostriktiver Ultraschallwandler mit einem aus mehreren Einzelschwingern (11) bestehenden als Areal ausgebildeten magnetostriktiven Körper (31), welcher aus dünnen Blechen (10) geschichtet ist, gekenn- zeichnet durch folgende Merkmale:

    a) Die Dimensionen der Einzelschwinger sind für Resonanzfrequenzen von 200 KHz oder höher ausgelegt.

    b) Der magnetostriktiver Körper besteht aus sehr dünnen, oxidierten Blechen (10), welche vorzugsweise durch Ätzen aus einem Material mit großer magnetostriktiver Konstante und hohem Curie-Punkt, z.B. Kobalt-Eisen, hergestellt sind.


     
    2. Magnetostriktiver Ultraschallwandler nach Anspruch 1, gekennzeichnet durch folgende Merkmale:

    a) Die Dämpfungsseite jedes Einzelschwingers (81) weist eine quaderförmige Verlängerung (83) auf.

    b) Der Querschnitt der Einzelschwinger (81) ist bis auf diese quaderförmige Verlängerung (83) etwa der eines I-Stahls, wobei die Querstege gegenüber den bekannten Schwingern verlängert sind.


     
    3. Magnetostriktiver Ultraschallwandler nach Anspruch 2, gekennzeichnet durch folgende Merkmale:

    a) Die zwischen zwei Einzelschwingern (81) bestehende Öffnung (LE x LB) zur Verlegung der Spulenwindungen ist etwa quadratisch mit abgerundeten Ecken.

    b) Die zu den magnetischen Kreisen gehörenden Stege sind überall im magnetischen Kreis etwa gleich breit.


     
    4. Magnetostriktiver Ultraschallwandler nach Anspruch 2 oder 3, gekennzeichnet durch folgende Merkmale:

    a) Die Breite (LF) eines Eiinselschwingers (81), seine Gesamtlänge (LC), die Breite (LG) der Verlängerung (83), die Länge (LI) der Verlängerung, die öffnungsweiten (LE ,LB) und die Breite (LD) der magnetischen Stege verhalten sich etwa wie: LF : LC : LG : LI : LE : LB : LD = 2,5 : 4,4 : 1,5 : 1,37 : 2,0 : 2,0 : 0,5.

    b) Die Dicke (DR) der Bleche and damit der Einzelschwinger verhält sich dazu etwa wie LF : DR = 2,5 : 0,05.


     
    5. Magnetostriktiver Ultraschallwandler nach Anspruch 4, gekennzeichnet durch folgende Merkmale:

    a) Für eine Frequenz von 400 KHz beträgt die Gesamtlänge (LC) eines Einzelschwingers 4,4 mm.

    b) Die Seitenlänge (LC) der Abstrahlfläche eines Areals mit guter Richtcharakteristik beträgt etwa 30mm, entsprechend 12 nebeneinanderliegenden Einzelschwingern, wobei die Anzahl der Bleche so gewählt ist, (ungefähr 600), daß die Abstrahlfäche quadratisch ist.


     
    6. Magnetostriktiver Ultraschallwandler nach einem der vorhergehenden Ansprüche, gekennzeichnet durch folgendes Merkmal:

    a) Die schallabstrahlende Fläche des Wandlerareals ist etwas gewölbt, insbesondere konkav, wobei die Wölbung der Oberfläche des Einbauortes entspricht.


     
    7. Magnetostriktiver Ultraschallwandler nach einem der vorhergehenden Ansprüche, gekennzeichnet durch folgende Merkmale:

    a) Auf die Abstrahlfläche (15) des magnetostriktiven Körpers (31) ist eine dünne Mambran (32) hart aufgelötet.

    b) Der magnetostriktive Körper (31) ist in einem dichten Gehäuse (30) untergebracht, wobei der magnetostriktive Körper durch die Membran (32) gehaltert ist.


     
    8. Magnetostriktiver Ultraschallwandler nach Anspruch 7, gekennzeichnet durch folgende Merkmale:

    a) Die Membran (32) besteht aus Edelstahl.

    b) Die Dicke der Membran (32) ist klein gegenüber einer Viertelwellenlänge bei Resonanzfrequenz.


     
    9. Magnetostriktiver Ultraschallwandler nach einem der vorhergehenden Ansprüche, gekennzeichnet durch folgende Merkmale:

    a) Die Induktionswicklungen (17) des Ultraschallwandlers bestehen aus keramikisolierten Leitern.

    b) Die Induktionswicklungen (71) sind mit Keramikmasse vergossen.


     
    10. Magnetostriktiver Ultraschallwandler nach einem der vorhergehenden Ansprüche, gekennzeichnet durch folgendes Merkmal:

    a) Die Induktionswicklungen (17) werden an der Außenseite der Stege des magnetostriktiven Körpers (31) über Keramikröhrchen (18) geführt.


     
    11. Magnetostriktiver Ultraschallwandler nach einem der vorhergehenden Ansprüche, gekennzeichnet durch folgendes Merkmal:

    a) Die Bleche (10) des magnetostriktiven Körpers (31) sind durch Schweißnähte (12, 13) an den Seiten und/ oder auf der Unterseite verbunden, wobei die Schweißnähte vorzugsweise durch Laserschweißen hergestellt sind.


     
    12. Magnetostriktiver Ultraschallwandler nach einem der vorhergehenden Ansprüche, gekennzeichnet durch folgendes Merkmal:

    a) Der magnetostriktive Körper (31) ist auf der Unterseite über einen Dämpfungskörper (33) gegen die Rückwand des Gehäuses (30) abgestützt.


     
    13. Magnetostriktiver Ultraschallwandler nach Anspruch 12, gekennzeichnet durch folgende Merkmale:

    a) Der Dämpfungskörper (33) besteht aus mehreren Dämpfungsblechen (20) die gitterförmig aus Stegen (22) aufgebaut sind.

    b) Die Dämpfungsbleche (20) sind abwechselnd um 900 gedreht angeordnet.


     
    14. Magnetostriktiver Ultraschallwandler nach einem der vorhergehenden Ansprüche, gekennzeichnet durch folgende Merkmale:

    a) Im Gehäuse (30) befindet sich eine nicht korrodierende, nicht leitende Flüssigkeit.

    b) Die Flüssigkeit wird mittels Druckausgleichsvorrichtungen etwa auf Außendruck gehalten.


     




    Zeichnung