(19)
(11) EP 0 071 322 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
14.05.1986 Bulletin 1986/20

(21) Application number: 82301433.7

(22) Date of filing: 19.03.1982
(51) International Patent Classification (IPC)4F42B 13/20, F42B 13/32, F42B 11/02

(54)

Training ammunition projectile

Geschosskörper für Schiessübungen

Projectile pour l'entraînement


(84) Designated Contracting States:
CH DE FR GB IT LI SE

(30) Priority: 13.04.1981 GB 8111671

(43) Date of publication of application:
09.02.1983 Bulletin 1983/06

(71) Applicant: Secretary of State for Defence in Her Britannic Majesty's Gov. of the United Kingdom of Great Britain and Northern Ireland
London SW1A 2HB (GB)

(72) Inventor:
  • Richards, Peter John
    Glendowie Auckland 5 (NZ)

(74) Representative: Lockwood, Peter Brian et al
D/IPR1, 7C/2/A31, MOD(PE) Abbey Wood, P.O. Box 702
Bristol BS12 7DU
Bristol BS12 7DU (GB)


(56) References cited: : 
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to training ammunition rounds of the axisymmetrical type such as bullets and shells. Such a round will in this specification be referred to as a projectile.

    [0002] Ammunition rounds usually contain explosive warheads and their use for training purposes is therefore inordinately expensive as well as unnecessarily dangerous. It is common, therefore, to produce projectiles specifically for training purposes.

    [0003] A problem that arises in the use of training projectiles is that the target range is usually much less than the potential maximum projectile range. In realistic battle training, therefore, much greater areas must be used than are called for merely by expected target ranges.

    [0004] There is, then, a requirement for training projectiles whose ballistic characteristics alter after travelling just beyond the target range so that that range is substantially the maximum range.

    [0005] In training rounds of known type which have shortened range, as described in DE-C-734249, a projectile comprises a plurality of components some of which are ejected during the flight of the round so suddently disturbing the centre of gravity of the round and thus causing it to fall to the ground.

    [0006] Other projectiles tried have been:-

    1. A composite projectile having a nose which melts due to aerodynamic heating, so allowing the projectile to break up into several smaller pieces, and

    2. A spinning tubular projectile which at high Mach numbers has "swallowed" internal flow but as the Mach number decreases the internal flow chokes with a consequent rise in drag.



    [0007] These still leave problems in achieving the desired change in ballistic requirements whilst consistently maintaining a ballistic performance accurately representative of operational projectiles up to the full target range.

    [0008] Almost all projectiles spin in flight, and with any spinning axisymmetric projectile the axis of symmetry performs angular oscillatory motions with respect to the tangent to the trajectory. These oscillatory motions have two natural frequencies, a slower precession frequency and a faster nutation frequency.

    [0009] According to the present invention an axisymmetrical training round projectile having a specified design launch condition including a cavity containing a fluid due to which the ballistic properties of the training round are modified, the cavity dimensions and liquid characteristics being so tuned that a main natural frequency of the liquid within the cavity approaches a nutation frequency of the projectile to cause resonance after a predetermined duration of flight following a design launch.

    [0010] Resonance results in the nutation amplitudes becoming undamped, giving a rapid increase in yaw angle and hence a sudden increase in drag which will rapidly terminate the projectile's flight. The predetermined duration of flight should be such that resonance occurs just after target range has been passed.

    [0011] Some embodiments of the invention will now be described, by way of example, with reference to the accompanying diagrammatic drawings, of which

    Figure 1 is a side elevation, in section, of a spin stabilized projectile.

    Figure 2 is an end elevation in section alone line II-II of Figure 1, and

    Figure 3 is a side elevation of a fin stabilised projectile.



    [0012] A projectile 10 (Figures 1 and 2) having an axis of symmetry 11 has within it an axisymmetrical cylindrical cavity 12 of length 2c and diameter 2a. The cavity 12 is substantially filled with a liquid. The liquid has a double infinity of natural frequencies of which the frequency of the principal mode of oscillation To is well documented as a function of the liquid characteristics, the fineness ratio c/a, and the fraction of cavity 12 volume filled with liquid. Calibration tables are contained, for example, in the United States Arms Material Command Pamphlet 706165 "Liquid Filled Projectile Design".

    [0013] In use the projectile 10 is launched from a fire-arm (not shown) at a velocity v and having a spin rate a imparted by rifling within the fire-arm. In flight the projectile oscillates with a nutation frequency T1 which is a function of spin rate a/velocity v. Both v and a decay due to air resistance during flight, but v decays at a faster rate than a so that T, increases during flight.

    [0014] It can be shown mathematically that resonance occurs between the liquid within cavity 12 and the nutation frequency T" if

    where s is the Stewartson parameter. The Stewartson parameter is a function of the projectile dimensions and inertia, the cavity dimensions and the liquid physical properties, and is defined in the above referenced pamphlet.

    [0015] If, on projection of the projectile τ1<T0-

    , T1 increases during flight, until τ1=T0-

    . Any further increase of T, results in resonance, which causes rapid divergence of the projectile yaw angle. The subsequent rapid increase in drag quickly terminates the flight of projectile 10.

    [0016] Modern ballistic theory, projectile design, and production methods are such that launch velocity and spin rate, and velocity and spin decay rates, are maintained within very small tolerances of a projectile specified launch condition. Liquid within cavity 12 of a projectile 10 can therefore be tuned, by changing the fill fraction, the fineness ratio, or both, to ensure that resonance occurs, after a specified launch, after a predetermined flight duration, and hence at a predetermined range, within 'very fine limits.

    [0017] Another type of axisymmetrical projectile 13 (Figure 3) is stabilised by fins 14 which set up a slow spin-rate (relative to the spin rate of a spin stabilised projectile). Due to the effects of the fins 14 the velocity and spin rate decay at the same rates, so that the nutation frequency T1 remains substantially constant. In this type of projectile a cavity (not shown, but similar to that described above and illustrated in Figures 1 and 2) contains liquid which, relatively slowly, takes up the spin rate of the projectile 13. The liquid and cavity are tuned so that the liquid resonates with the equilibrium nutation frequency when the liquid has the same spin rate as the projectile 13, and so that the liquid reaches the spin rate of the projectile 13 after a predetermined flight duration.

    [0018] It will be appreciated by those skilled in the art that variations in the above described projectiles are possible within the scope of the invention. For example the cavity 12 may be of axisymmetric spheroidal shape. When completely filled with liquid, the liquid has a single natural frequency of oscillation in such a cavity. Construction of a projectile with this shape of cavity is, however, complicated.


    Claims

    1. An axisymmetrical training round having a specified design launch condition including a cavity containing a fluid due to which the ballistic properties of the training round are modified, characterised in that the cavity dimensions and liquid characteristics are so tuned that a main natural frequency of the liquid within the cavity (12) approaches a nutation frequency of the projectile (10 & 13) to cause resonance after a predetermined duration of flight following a design launch.
     
    2. A projectile (10 & 13) as claimed in claim 1 wherein the design launch condition specifies an initial velocity v and initial spin rate a, characterised in that the cavity dimensions (2a and 2c) and liquid characteristics are such that the liquid has a principal mode of oscillation yo whereby a nutation frequency y, of the projectile, which is a function of spin rate divided by velocity v and which increases during flight of the missile, becomes equal to yo-VS, where s is the Stewartson parameter, after the predetermined duration of flight.
     
    3. A projectile (10 & 13) as claimed in claim 1 having stabilising fins (14) and characterised in that the cavity dimensions (2a & 2c) and liquid characteristics are so tuned that the liquid resonates with a nutation frequency of the projectile when the liquid has the same spin rate as the projectile, and so that the liquid spin rate reaches the spin rate of the projectile after the predetermined duration of flight.
     


    Ansprüche

    1. Achssymmetrisches Übungsgeschoß mit einen vorgeschriebenen Bemessungs-Abschußzustand, mit einem ein Fluid enthaltenden Hohlraum, aufgrund dessen die ballistischen Eigenschaften des Übungsgeschosses modifizierbar sind, dadurch gekennzeichnet, daß die Hohlraum-Abmessungen und Flüssigkeits-Eigenschaften so abgestimmt sind, daß eine Haupt-Eigenfrequenz der Flüssigkeit im Hohlraum (12) einer Nutationsfrequenz des Geschosses (10 & 13) angenähert ist und nach Ablauf einer vorbestimmten Flugdauer nach einem Bemessungs-Abschuß zu Resonanz führt.
     
    2. Übungsgeschoß (10 & 13) nach Anspruch 1, wobei der Bemessungs-Abschußzustand eine Anfangsgeschwindigket v und eine Anfangs-Drallrate a vorschreibt, dadurch gekennzeichnet, daß die Hohlraum-Abmessungen (2a & 2c) und Flüssigkeits-Eigenschaften derart sind, daß die Flüssigkeit einen Hauptschwingungsmodus yo hat, so daß nach der vorbestimmten Flugdauer eine Nutationsfrequenz y, des Geschosses, die eine Funktion der Drallrate dividiert durch die Geschwindigkeit v ist und während des Flugs des Geschosses ansteigt, gleich γo-

    wird, wobei s der Stewartson-Parameter ist.
     
    3. Übungsgeschoß (10 & 13) nach Anspruch 1 mit Stabilisierungsflossen (14), dadurch gekennzeichnet, daß die Hohlraum-Abmessungen (2a & 2c) und die Flüssigkeits-Eigenschaften so abgestimmt sind, daß die Flüssigkeit bei einer Nutationsfrequenz des Geschosses in Resonanz kommt, wenn die Flüssigkeit die gleiche Drallrate wie das Geschoß hat, und daß die Drallrate der Flüssigkeit die Drallrate des Geschosses nach der vorbestimmten Flugdauer erreicht.
     


    Revendications

    1. Munition d'exercice à symétrie autour d'un axe ayant une condition de lancement déterminée, comportant une cavité contenant un fluide grâce auquel les propriétés balistiques de la munition sont modifiées, caractérisée en ce que les dimensions de la cavité et les caractéristiques du liquide sont accordées de façon qu'une fréquence naturelle principale du liquide dans la cavité (12) se rapproche d'une fréquence de nutation du projectile (10 et 13) pour provoquer la résonance après une durée de vol prédéterminée faisant suite à un lancement dans des conditions déterminées.
     
    2. Un projectile (10 et 13) tel que défini dans la revendication 1, dans laquelle les conditions de lancement déterminées spécifient une vitesse initiale v est une vitesse de rotation initiale a, caractérisé en ce que les dimensions de la cavité (2a et 2c) et les caractéristiques du liquide sont telles que le liquide a une mode principal d'oscillation yo, grâce à quoi une fréquence de nutation y, du projectile, qui est une fonction du rapport entre la vitesse de rotation et la vitesse v et qui augmente au cours du vol du missile, devient égale à Yo-VS, où s est le paramètre de Stewartson, après la durée prédéterminée du vol.
     
    3. Un projectile (10 et 13) tel que défini dans la revendication 1 ayant des ailettes de stabilisation (14) et caractérisé en ce que les dimensions de la cavité (2a et 2c) et les caractéristiques du liquide sont accordées de façon que le liquide résonne avec une fréquence de nutation du projectile lorsque le liquide a la même vitesse de rotation que le projectile et de façon que la vitesse de rotation de liquide atteigne la vitesse de rotation du projectile après la durée prédéterminée de vol.
     




    Drawing